This is a bilingual snapshot page saved by the user at 2025-7-14 11:30 for https://app.immersivetranslate.com/word/, provided with bilingual support by Immersive Translate. Learn how to save?

考察盐矿所需基础数据
Data required for salt mine assessment

以下是关键的基础数据类型:
The following are key types of basic data:

一、地质与资源数据
I. Geological and Resource Data

1. 区域地质背景:
1. Regional geological background:

区域地层序列(特别是含盐地层的位置、时代)。
Stratigraphic sequence of the area (especially the location and age of salt-bearing strata).

区域构造格局(褶皱、断层、构造单元划分)。
Tectonic pattern of the area (folds, faults, division of tectonic units).

区域盐矿成矿规律和已知矿床分布。
Mineralization 规律 and distribution of known salt deposits in the area.

2. 矿区地质特征:
2. Geological characteristics of the mining area:

详细的地层柱状图(岩性、厚度、接触关系)。
Detailed stratigraphic column (lithology, thickness, contact relationships).

矿区构造图(断层、褶皱的性质、规模、产状、分布及其对矿体的影响)。
Mine area structural map (nature, scale, attitude, distribution of faults and folds, and their impact on ore bodies).

岩相古地理分析(盐类沉积环境)。
Lithofacies paleogeographic analysis (salt deposit environment).

3. 矿体特征:
3. Ore body characteristics:

形态与产状:矿体形状(层状、透镜状、丘状等)、走向、倾向、倾角、厚度(总厚度、可采厚度)、埋深(地表至矿体顶板深度)。
Morphology and Occurrence: Ore body shape (bedded, lenticular, dome-shaped, etc.), strike, dip, dip angle, thickness (total thickness, mineable thickness), depth (from surface to ore body top plate).

规模与分布:矿体平面展布范围、纵向延伸长度、控制程度(勘探线间距、工程密度)。
Scale and Distribution: Planar extent of ore body, vertical extension length, degree of control (exploration line spacing, engineering density).

空间变化:厚度变化、品位变化、夹层(石盐层间的泥岩、钙芒硝等)分布、尖灭情况。
Spatial Variation: Thickness variation, grade variation, distribution of interlayers (e.g., mudstone between rock salt layers, calcium mirabilite), pinching-out occurrences.

4. 矿石质量(品位与组分):
4. Ore Quality (Grade and Composition):

主成分:NaCl(氯化钠)含量(%)。这是衡量盐矿经济价值的最核心指标。
Principal component: NaCl (sodium chloride) content (%). This is the most core indicator for measuring the economic value of salt deposits.

有益伴生组分:K⁺(钾)、Mg²⁺(镁)、Li⁺(锂)、Br⁻(溴)、I⁻(碘)、SO₄²⁻(硫酸根,如芒硝、钙芒硝)、B(硼)等含量及其分布规律(是否可综合利用)。
Beneficial associated components: K⁺ (potassium), Mg²⁺ (magnesium), Li⁺ (lithium), Br⁻ (bromine), I⁻ (iodine), SO₄²⁻ (sulfate, such as mirabilite and calcium mirabilite), B (boron) and their content and distribution patterns (whether they can be comprehensively utilized).

有害杂质: Ca²⁺(钙)、不溶物(泥沙、黏土)、Fe₂O₃(铁)、有机质等含量及其对产品品质(如工业盐白度、食品盐纯度、化工原料要求)的影响。
Harmful impurities: Ca²⁺ (calcium), insoluble matter (silt, clay), Fe₂O₃ (iron), organic matter and their content and impact on product quality (such as industrial salt whiteness, food salt purity, chemical raw material requirements).

物理性质:矿石颜色、结构构造、硬度、密度、溶解度、潮解性等。
Physical properties: ore color, structure and texture, hardness, density, solubility, hygroscopicity, etc.

化学分析:系统采集岩芯或样品进行化学分析,绘制品位等值线图。
Chemical Analysis: Systematically collect cores or samples for chemical analysis and plot grade isochore maps.

5. 资源量/储量估算:
5. Resource Quantity/Reserve Estimation:

根据勘探工程(钻孔、探槽、坑道)控制程度,采用合适的方法(地质块段法、断面法等)估算不同类别(探明的、控制的、推断的)的矿产资源量/储量。
Based on the degree of control from exploration projects (drilling, trenches, adits), use appropriate methods (geological block method, section method, etc.) to estimate the resource quantity/reserves of different categories (proven, probable, inferred).

估算结果需符合相关规范(如中国的《固体矿产资源储量分类》GB/T 17766等)。
The estimation results must comply with relevant standards (such as China's "Classification of Solid Mineral Resources and Reserves" GB/T 17766, etc.).

二、水文地质数据
II. Hydrogeological Data

1.含水层分布:
1. Aquifer Distribution:

矿体顶底板及围岩中含水层的数量、岩性、厚度、分布范围。
The number, lithology, thickness, and distribution range of aquifers in the ore body top and bottom plates and surrounding rocks.

含水层性质(孔隙水、裂隙水、岩溶水)。
Aquifer properties (pore water, fissure water, karst water).

2.地下水补给、径流、排泄条件:
2. Groundwater recharge, runoff, and discharge conditions:

补给来源(大气降水、地表水、侧向径流)。
Recharge sources (atmospheric precipitation, surface water, lateral runoff).

地下水流向、流速、水力梯度。
Groundwater flow direction, velocity, hydraulic gradient.

排泄方式(泉水、泄流、人工开采)。
Discharge methods (springs, outflow, artificial extraction).

3.含水层水文地质参数:
3. Aquifer hydrogeological parameters:

渗透系数、导水系数、储水系数、给水度等。
Hydraulic conductivity, transmissivity, storage coefficient, specific yield, etc.

4.地下水水质:
4. Groundwater quality:

各含水层水化学类型、矿化度、主要离子成分(尤其注意是否与矿体有水力联系)。
Hydrochemical types of each aquifer, mineralization degree, main ionic components (especially noting whether there is a hydrological connection with the ore body).

5.矿体及顶底板岩层含水性:
5. Water Content of Ore Body and Roof/Bottom Rock Layers:

盐矿体本身的渗透性(通常很低,但裂隙发育区需注意)。
Permeability of the salt ore body itself (usually very low, but attention is needed in areas with developed fissures).

顶底板隔水性能:这是盐矿安全开采的关键!顶底板岩层(通常是泥岩、石膏层等)的厚度、稳定性、完整性、渗透性(隔水能力)必须详细查明。
Waterproof performance of the roof and bottom plates: This is the key to the safe mining of salt! The thickness, stability, integrity, and permeability (waterproof ability) of the roof and bottom rock layers (usually mudstone, gypsum layers, etc.) must be thoroughly investigated.

6.地表水体:
6. Surface Water Bodies:

矿区及周边河流、湖泊、水库的位置、规模、流量、水质、与地下水的水力联系及其对矿坑涌水的潜在影响。
Location, scale, flow rate, water quality, hydrological connection with groundwater, and potential impact on mine water inflow of mining areas and surrounding rivers, lakes, and reservoirs.

三、 工程地质与岩石力学数据
III. Engineering Geology and Rock Mechanics Data

1.岩土体物理力学性质:
1. Physical and Mechanical Properties of Rock-Soil Bodies:

矿体、顶底板围岩、覆盖层的岩石类型、密度、抗压强度、抗拉强度、抗剪强度(内聚力、内摩擦角)、弹性模量、泊松比等。
Rock types, density, compressive strength, tensile strength, shear strength (cohesion, internal friction angle), elastic modulus, Poisson's ratio, etc., of ore bodies, surrounding rocks of top and bottom plates, and overburden.

2.岩体结构与质量:
2. Rock mass structure and quality:

节理、裂隙、层理等结构面的发育程度、产状、间距、长度、张开度、充填物、粗糙度。
Development degree, attitude, spacing, length, aperture, filling material, roughness of structural planes such as joints, fissures, bedding.

岩体质量分级(如RMR、Q系统等)。
Rock mass quality classification (e.g., RMR, Q system, etc.).

3. 工程地质分区:
3. Engineering geological zoning:

根据岩性、构造、水文、力学性质划分稳定性不同的区域。
Stability zones are divided according to lithology, structure, hydrology, and mechanical properties.

4. 特殊工程地质问题:
4. Special engineering geological problems:

软弱夹层分布。
Distribution of soft interlayers.

构造破碎带位置及性质。
Location and characteristics of structural broken zones.

潜在的地面沉降、塌陷风险(尤其是水溶开采)。
Potential ground subsidence and collapse risks (especially from water-soluble mining).

岩盐的流变性(长期强度)。
The rheology of rock salt (long-term strength).

四、 开采技术条件数据
IV. Data on Mining Technical Conditions

1.矿体产出特征:
1. Characteristics of the ore body:

埋深、厚度、倾角(影响开采方式选择:露天开采或地下开采/钻井水溶)。
Depth, thickness, dip angle (affecting the selection of mining methods: open-pit mining or underground mining/drilling leaching).

2.矿石加工技术性能:
2. Mineral processing technical performance:

可选性试验:对于需要选矿的盐矿(如含泥质、钙镁杂质高),需做洗选、重选、浮选等试验,确定工艺流程和回收率。
可选性 tests: For salt deposits requiring mineral processing (such as those containing clay, high calcium and magnesium impurities), tests such as washing, gravity separation, and flotation need to be conducted to determine the process flow and recovery rate.

溶解试验:对于水溶开采(钻井水溶、硐室水溶),需测试矿石在不同条件下的溶解速率、卤水浓度、不溶物含量等。
Dissolution tests: For water-soluble mining (drilling leaching, chamber leaching), tests need to be performed to measure the dissolution rate of the ore under different conditions, brine concentration, and insoluble content.

3.顶底板稳固性:直接关系地下开采和溶腔稳定性。
3. Stability of top and bottom plates: Directly related to underground mining and cavity stability.

4.瓦斯及其他气体:某些盐矿(特别是钾盐矿)可能伴生有甲烷、硫化氢等有害气体,需检测其含量和涌出量。
4. Methane and other gases: Some salt mines (especially potassium salt mines) may be associated with harmful gases such as methane, hydrogen sulfide, etc., and their content and outflow need to be detected.

5.地温梯度:影响深部开采环境。
5. Geothermal gradient: Affects the deep mining environment.

五、环境地质数据
V. Environmental geological data

1.地质灾害:崩塌、滑坡、泥石流、地面塌陷、地裂缝等在矿区及周边的历史与现状。
1. Geological hazards: Historical and current occurrences of collapses, landslides, debris flows, ground subsidence, and ground fissures in and around the mining area.

2.然地理:地形地貌、气象(降水量、蒸发量、极端天气)、植被覆盖、水土流失状况。
2. Natural geography: Topography, meteorology (precipitation, evaporation, extreme weather), vegetation coverage, and soil erosion conditions.

3.环境敏感目标:水源地保护区、生态保护区、基本农田、居民区、重要基础设施等与矿区的相对位置和距离。
3. Environmental sensitive targets: Relative locations and distances of water source protection areas, ecological protection areas, basic farmland, residential areas, and critical infrastructure from the mining area.

4.土壤及地下水本底值:开采前环境背景值,用于未来环境影响的对比。
4. Soil and groundwater baseline values: Pre-mining environmental background values for comparison with future environmental impacts.

5.放射性:必要时需检测矿石和围岩的放射性水平。
5. Radioactivity: Radioactivity levels of ore and surrounding rock must be tested when necessary.

六、 基础设施与经济地理数据
VI. Infrastructure and Economic Geographic Data

1. 地理位置与交通:矿区坐标、距主要城镇、铁路、公路、港口(若考虑出口)的距离和交通条件。
1. Geographical Location and Transportation: Mine coordinates, distances to major towns, railways, highways, and ports (if considering exports), and transportation conditions.

2. 水源条件:可供开采(特别是水溶法)、选矿和生活使用的水源位置、水量、水质、取水成本。
2. Water Source Conditions: Locations, quantities, quality, and water extraction costs of water sources available for mining (especially for solution mining), mineral processing, and domestic use.

3. 能源供应:电力供应(电网接入点、距离、容量、电价)、燃料(煤炭、天然气、柴油)供应渠道和价格。
3. Energy Supply: Electricity supply (grid connection points, distance, capacity, electricity prices), fuel supply channels and prices (coal, natural gas, diesel).

4. 土地资源:矿区用地性质、征地拆迁成本、场地平整条件。
4. Land Resources: Land use in mining areas, land acquisition and relocation costs, site leveling conditions.

5. 劳动力市场:当地劳动力资源状况和技术水平。
5. Labor Market: Local labor resource conditions and technical expertise.

6. 市场条件:目标市场(工业盐、食用盐、化工原料等)的规模、距离、竞争状况、价格趋势。
6. Market Conditions: Target market size (industrial salt, edible salt, chemical raw materials, etc.), distance, competitive status, and price trends.

7. 政策法规:国家及地方关于矿业权、环保、安全、土地、税收等方面的法律法规和政策。
7. Policies and Regulations: Laws and regulations and policies of the state and local governments concerning mineral rights, environmental protection, safety, land, taxation, and other aspects.

七、其他相关数据
7. Other Related Data

1.前人工作成果:收集并分析已有的地质勘查报告、科研论文、物化探资料等。
1. Previous Work Achievements: Collect and analyze existing geological exploration reports, research papers, geophysical and geochemical data, etc.

2.矿权信息:探矿权/采矿权的范围、有效期、权属关系。
2. Mineral Rights Information: Scope, validity period, and ownership relationship of exploration rights/mining rights.

3.遥感与地形图:高分辨率卫星/航拍影像、地形图(比例尺至少1:10000或更大)。
3. Remote Sensing and Topographic Maps: High-resolution satellite/aerial imagery, topographic maps (scale of at least 1:10000 or larger).

总结:
Summary:

盐矿考察是一项综合性很强的工作,需要地质、水文地质、工程地质、采矿、选矿、环保、经济等多专业协作。基础数据的收集务必系统、全面、准确,并达到相应勘查阶段(普查、详查、勘探)要求的精度和深度。这些数据是进行资源评价、可行性研究、矿山设计、安全评估和环境评价的根本依据,直接关系到项目的成败。特别要强调顶底板隔水层性能和水文地质条件的查明,这对盐矿安全开采至关重要(防止水害和地表塌陷)。
Salt mine exploration is a highly comprehensive task requiring collaboration among multiple disciplines such as geology, hydrogeology, engineering geology, mining, mineral processing, environmental protection, and economics. The collection of basic data must be systematic, comprehensive, and accurate, meeting the required precision and depth for the corresponding exploration stage (general survey, detailed survey, exploration). These data serve as the fundamental basis for resource assessment, feasibility studies, mine design, safety assessments, and environmental evaluations, directly impacting the success or failure of the project. It is particularly important to emphasize the investigation of the impermeable layers between the roof and floor and hydrogeological conditions, as this is crucial for the safe mining of salt deposits (preventing water damage and surface subsidence).