这是用户在 2025-6-27 15:54 为 https://app.immersivetranslate.com/pdf/ 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

面向 Zynq-7000 XC7Z045 SoC 的 ZC706 评估板

用户指南

UG954 (v1.8) 2019 年 8 月 6 日

ZC706 评估板用户指南 www.xilinx.com

2

UG954 (v1.8) 2019 年 8 月 6 日

免责声明

本协议项下向您披露的信息(“材料”)仅用于选择 Xilinx 产品。在适用法律允许的最大范围内:(1) 材料按“原样”提供,对于所有缺陷,Xilinx 特此否认所有明示、暗示或法定的保证和条件,包括但不限于适销性、非侵权性或适用于任何特定用途的保证;以及 (2) Xilinx 不对与材料(包括您对材料的使用)相关、引起或与之相关的任何类型或性质的任何损失或损害负责(无论是合同还是侵权行为,包括疏忽,还是根据任何其他责任理论),包括任何直接、间接、特殊、偶然或后果性损失或损害(包括数据丢失、 利润、商誉或因第三方提起的任何诉讼而遭受的任何类型的损失或损害),即使此类损害或损失是可合理预见的,或者 Xilinx 已被告知发生此类损害或损失的可能性。Xilinx 不承担纠正材料中包含的任何错误或通知您材料或产品规格更新的义务。未经事先书面同意,您不得复制、修改、分发或公开展示这些材料。某些产品受 Xilinx 有限保修条款和条件的约束,请参考 Xilinx 的销售条款,该条款可在 www.xilinx.com/legal.htm#tos 查看;IP 内核可能受 Xilinx 颁发给您的许可证中包含的保修和支持条款的约束。 Xilinx 产品并非为故障安全设计或意图,也不用于任何需要故障安全性能的应用;在此类关键应用中使用 Xilinx 产品的风险和责任由您自行承担,请参阅 Xilinx 的销售条款,该条款可在 www.xilinx.com/legal.htm#tos 上查看。汽车应用免责声明:除非存在符合 ISO 26262 汽车安全标准(“安全设计”)的安全概念或冗余功能,否则不保证汽车产品(在零件编号中标识为“XA”)可用于安全气囊的展开或用于影响车辆控制的应用(“安全应用”)。客户在使用或分发任何包含产品的系统之前,应出于安全目的对此类系统进行全面测试。在没有安全设计的情况下在安全应用中使用产品的风险完全由客户承担,仅受有关产品责任限制的适用法律和法规的约束。

© 版权所有 2012–2019 Xilinx, Inc. Xilinx、Xilinx 标识、Artix、ISE、Kintex、Spartan、Virtex、Vivado、Zynq 和此处包含的其他指定品牌是 Xilinx 在美国和其他国家/地区的商标。所有其他商标均为其各自所有者的财产。

修订历史记录

下表显示了此文档的修订历史记录。

日期

版本

校订

10/08/2012

1.0

初始 Xilinx 版本。

11/21/2012

1.1

在 ZC706 评估板功能部分、表 1-1、用户 I/O 部分、图 1-26 和表 1-28 中添加了额外的用户 LED。在表 1-1 中,添加了 10/100/1000 以太网 PHY、用户按钮、用户 DIP 开关和 FPGA PROG 按钮的风扇接收器信息和更新的注释。添加了 Encryption Key Backup Circuit 部分。更新了 DDR3 SODIMM 内存 (PL) 部分的第二段。

更新了 SD 卡接口部分的第二段。更新了表 1-11。在 HDMI 视频输出部分的第一段中添加了 U53 信息。在 Real Time Clock (RTC) 部分添加了第四个项目符号。更新图 1-24。在表 1-28 中新增引脚 A17。更新图 1-33。替换了附录 C 中的 UCF。添加了对其他资源的附加引用。

发送反馈

ZC706 评估板用户指南 www.xilinx.com

3

UG954 (v1.8) 2019 年 8 月 6 日

04/24/2013

1.2

第 1 章,ZC706 评估板功能:表 1-1 功能说明现在链接到本书中的相应部分。替换了图 1-3、图 1-34 和图 1-35。表 1-2 已删除,因为它与表 1-11 重复。表 1-2:添加了交换机 SW11 配置选项设置。FMC 连接器 JTAG 旁路,第 35 页已更新。图 1-18 下面的默认车道大小信息已更改。图 1-19 添加了 PCI Express Lane Size Select Jumper J19。引脚 18 和 19 的名称在表 1-17 中发生了变化。表 1-25 中 I C 总线 PMBUS_DATA/CLOCK 的地址发生了变化。参考标号 DS35 已添加到表 1-27 中。用户 I/O 第 59 页部分中的标注编号现在链接到表 1-1。SW13 信息被添加到用户按钮部分,第 61 页。在表 1-33 中,J5 引脚 H22 改为 XC7Z045(U1)引脚 AH26,H23 改为 AH27。添加了 ZC706 Board Power System(第 74 页)部分。VADJ Voltage Control,第 81 页中更改了电压电平。修改表 1-37,增加表 1-38。

附录 A,默认开关和跳线设置:表 A-1 中的 SW11 选择已更改。附录 F,监管和合规性信息:添加了指向主答复记录的链接。

07/31/2013

1.3

更新了表 1-22。将附录 C,Xilinx 约束文件中的主用户约束文件 (UCF) 列表替换为主 Xilinx 设计约束 (XDC) 列表。更新了整个文档中的引用。

04/28/2015

1.4

将“LMZ22000 系列稳压器描述”更新为 LMZ31500 和 LMZ31700 系列稳压器描述。更新了表 1-4、表 1-7、表 1-13、表 1-23、表 1-28 至表 1-30、表 1-32 至表 1-34、表 1-36 和表 A-2。添加了图 A-1。更新了附录 C,Xilinx 约束文件。

09/10/2015

1.5

更新了 J48 标头跳线设置(表 1-7 中的第三行)。

03/29/2016

1.6

将图 1-33 中 C6 的值从 270 pF 更新为 5600 pF。

07/01/2018

1.7

仅限编辑更新。没有技术内容更新。

08/06/2019

1.8

将图 1-27 从 VADJ 更新为 VCC1V5_PL。附录 F,法规和合规性信息:添加了指向主应答记录的更新链接。

日期

版本

校订

发送反馈

ZC706 评估板用户指南 www.xilinx.com

4

UG954 (v1.8) 2019 年 8 月 6 日

目录

修订历史 2

第 1 章:ZC706 评估板特性

概述

7

ZC706 评估板特性 7

框图10

电路板布局10

放电注意事项

11

功能描述

15

Zynq-7000 XC7Z045 SoC 15 设备配置 16 

加密密钥备份电路 17

I/O 电压轨 18

DDR3 SODIMM 内存 (PL) 19 

DDR3 组件内存 (PS23

四通道 SPI 闪存26

USB 2.0 ULPI 收发器29

SD 卡接口31

可编程逻辑 JTAG 编程选项33

可编程逻辑 JTAG Select 开关 33

FMC 连接器 JTAG 旁路 35

时钟生成 35系统时钟 36

可编程用户时钟 37

用户 SMA 时钟源 38

处理系统 Clock Source 39 

GTX SMA 时钟 (SMA_MGT_REFCLK_P 和 SMA_MGT_REFCLK_N 39 

抖动衰减时钟 40

GTX 收发器 41

PCI Express 端点连接46

SFP/SFP+ 模块连接器48

10/100/1000 Mb/s 三速以太网 PHY (PS49)

以太网 PHY 时钟源 50 USB 转 UART 桥接器 51

HDMI 视频输出52

I2C 总线55

实时时钟 (RTC57

状态和用户 LED58

以太网 PHY 用户 LED59

用户 I/O59

用户 LED 60

用户按钮 61

GPIO 拨码开关 62

发送反馈

ZC706 评估板用户指南 www.xilinx.com

5

UG954 (v1.8) 2019 年 8 月 6 日

用户 PMOD GPIO 接头 62 开关 64 电源开/关滑动开关 64

Program_B 按钮 65

PS 开机和系统重置按钮 66

FPGA 夹层 (FMC) 卡接口 67 HPC 连接器 J37 67

LPC 连接器 J5 71

ZC706 板电源系统 74 UCD90120A 描述 74

LMZ31500 和 LMZ31700 系列稳压器描述 74

XADC 电源系统测量 77

电源管理 79

VADJ 电压控制器 81

SoC 可编程逻辑 (PL) 电压控制 82

监控电压和电流 82

网赌最正规的平台 84

XADC 模数转换器 85

附录 A:默认开关和跳线设置

开关

88

运动员

89

附录 B:VITA 57.1 FMC 连接器引脚布局

附录 C:Xilinx 约束文件

附录 D:板设置

在 PC 机箱中安装 ZC706 板

95

附录 E:主板规格

尺寸

97

环境的

97

温度 97

湿度 97

工作电压 97

附录 F:监管和合规信息

概述

98

符合性声明

98

CE 指令

98

CE 标准

98

电磁兼容性 99

安全 99

标记

99

发送反馈

ZC706 评估板用户指南 www.xilinx.com

6

UG954 (v1.8) 2019 年 8 月 6 日

附录 G:其他资源

Xilinx 资源

101

解决方案中心

101

引用

101

发送反馈

ZC706 评估板用户指南 www.xilinx.com

7

UG954 (v1.8) 2019 年 8 月 6 日

第一章

ZC706 评估板特性

概述

面向 XC7Z045 SoC 的 ZC706 评估板为开发和评估针对 Zynq-7000® XC7Z045-2FFG900C SoC 的设计提供了硬件环境。ZC706 评估板提供许多嵌入式处理系统通用的功能,包括 DDR3 SODIMM 和组件存储器、四通道 PCI Express® 接口、以太网 PHY、通用 I/O 和两个 UART 接口。其他功能可以是

支持使用连接到低引脚数 (LPC) FMC 和高引脚数 (HPC) FMC 连接器的 VITA-57 FPGA 夹层卡 (FMC)。

ZC706 评估板特性

此处列出了 ZC706 评估板的功能。从第 15 页开始的功能描述中提供了每个功能的详细信息。

Zynq-7000 XC7Z045-2FFG900C SoC

可编程逻辑 (PL) 侧的 1 GB DDR3 内存 SODIMM

处理系统 (PS) 侧的 1 GB DDR3 组件内存(四个 [256 Mb x 8] 个器件)

两个 128 Mb Quad-SPI (QSPI) 闪存(Dual Quad-SPI)

USB 2.0 ULPI(UTMI+ 低引脚接口)收发器,带 micro-B USB 连接器

安全数字 (SD) 连接器

USB JTAG 接口,通过带有 micro-B USB 连接器的 Digilent 模块

时钟源:

°

固定 200 MHz LVDS 振荡器(差分)

°

我 C

可编程 LVDS 振荡器 (差分)

°

固定 33.33 MHz LVCMOS 振荡器(单端)

°

超小型型 A (SMA) 连接器(差分)

°

用于 GTX 收发器时钟(差分)的 SMA 连接器

发送反馈

ZC706 评估板用户指南 www.xilinx.com

8

UG954 (v1.8) 2019 年 8 月 6 日

概述

GTX 收发器

°

FMC HPC 连接器(8 个 GTX 收发器)

°

FMC LPC 连接器(一个 GTX 收发器)

°

SMA 连接器(TX、RX 和 REFCLK 各一对)

°

PCI Express(四通道)

°

小型可插拔增强型 (SFP+) 连接器

°

以太网 PHY RGMII 接口

PCI Express 端点连接

°

Gen1 4 通道 (x4)

°

Gen2 4 通道 (x4)

SFP+ 连接器

以太网 PHY RGMII 接口,带 RJ-45 连接器

带 mini-B USB 连接器的 USB 转 UART 桥接器

带 HDMI 连接器的 HDMI 编解码器

I C 总线

I C 总线多路复用至:

°

Si570 用户时钟

°

ADV7511 HDMI 编解码器

°

M24C08 EEPROM (1 kB)

°

1 对 16 TCA6416APWR 端口扩展器

°

DDR3 SODIMM

°

RTC-8564JE 实时时钟

°

FMC HPC 连接器

°

FMC LPC 连接器

°

PMBUS 数据/时钟

状态 LED:

°

以太网状态

°

TI 电源正常

°

线性电源良好

°

PS DDR3 组件 V tt 良好

°

PL DDR3 SODIMM V tt 良好

发送反馈

ZC706 评估板用户指南 www.xilinx.com

9

UG954 (v1.8) 2019 年 8 月 6 日

概述

°

FMC 电源正常

°

12V 输入开机

°

FPGA 初始化

°

FPGA 完成

用户 I/O:

°

四个 (PL) 用户 LED

°

三个 (PL) 用户按钮

°

一个 (PL) 用户 DIP 开关(4 极)

°

两个双排 Pmod GPIO 接头

SoC PS 复位按钮:

°

SRST_B PS 重置按钮

°

POR_B PS 重置按钮

VITA 57.1 FMC HPC 连接器

VITA 57.1 FMC LPC 连接器

电源开/关滑动开关

Program_B pushbutton 

Power management with PMBus voltage and current monitoring through TI power controller 

Dual 12-bit 1 MSPS XADC analog-to-digital front end 

Configuration options: 

°

Dual Quad-SPI flash memory 

°

USB JTAG configuration port (Digilent module) 

°

Platform cable header JTAG configuration port 

°

20-pin PL PJTAG header 

Send Feedback 

ZC706 Evaluation Board User Guide www.xilinx.com  

10

UG954 (v1.8) August 6, 2019 

Overview 

Block Diagram 

The ZC706 evaluation board block diagram is shown in Figure 1-1. 

Board Layout 

Figure 1-3 shows the ZC706 evaluation board. Each numbered feature that is referenced in Figure 1-3 is described in Table 1-1 with a link to detailed information provided under Feature Descriptions starting on page 15. 

Note: The image in Figure 1-3 is for reference only and might not reflect the current revision of the board. 

X-Ref Target - Figure 1-1

Figure 1-1: ZC706 Evaluation Board Block Diagram 

U1 

Zync-7000 AP SoC 

XC7Z045-2FFG900C 

Processing 

System 

Programmable Logic 

UG954_c1_01_1002012

JTAG Module 

and 

JTAG Header Page 16 

Dual Quad-SPI 

Flash Memory 

Page 21 

PCIe 

x 4-Lane 

Page 42 

SD Card 

Connector 

Page 22 

FMC HPC 

Connector 

Pages 24-27 

10/100/1,000

Ethernet PHY 

(RGMII only) Page 29, 30 

USB 2.0 ULPI 

Transceiver 

and Connector Page 31 

Clock and 

Reset/POR 

Pushbuttons Pages 15, 34 

USB UART 

and 

Connector Page 40 

ARM PJTAG 

页眉

第 39 页

开关

LED 和

按钮 第 38 页

机械

第 58 页

我 C

实时

时钟 第 37 页

DDR3 内存

SODIMM 系列

第 23 页

DDR3 内存

4 x 256 Mb x 8

SDRAM 第 17-20 页

HDMI 编解码器

连接页 32, 33

I C 多路复用器

IC EEPROM 第 36 页

XADC

页眉

第 35 页

配置

时钟

第 34 页

FMC LPC

连接器

第 28 页

注: 页码是指原理图 0381513 的页码。

发送反馈

ZC706 评估板用户指南 www.xilinx.com

11

UG954 (v1.8) 2019 年 8 月 6 日

放电注意事项

放电注意事项

谨慎!如果处理不当,ESD 会损坏电子元件,并可能导致完全或间歇性故障。拆卸和更换组件时,请始终遵循 ESD 预防程序。

为防止 ESD 损坏:

使用 ESD 腕带或踝带,并确保它与皮肤接触。将腕带的设备端连接到机箱上未上漆的金属表面。

避免将适配器碰到您的衣服上。腕带仅保护元件免受本体上的 ESD 影响。

仅通过支架或边缘处理适配器。避免触摸印刷电路板或连接器。

仅将适配器放在防静电表面上,例如套件中提供的袋子。

如果您要将适配器退回 Xilinx 产品支持,请立即将其放回防静电袋中。

如果没有腕带,请在处理适配器或计算机/服务器的任何其他部件之前触摸金属机箱,将自己接地。

X-Ref Target - Figure 1-2

图 1-2:AC701 板框图

UG952_c1_01_101512

Artix-7 FPGA

XC7A200T-2FBG676C

128 Mb 四通道 SPI

闪存

SD 卡

接口

4 通道 PCI Express

边缘连接器

LCD 显示屏(2 行 x 16 个字符)

1 KB EEPROM (I2C)

I2C 总线开关

XADC 接头

用户开关,

按钮和 LED

HDMI 视频

接口

差分时钟

GTP SMA 时钟

1 GB DDR3 内存

(SODIMM)

FMC 连接器

(高性能计算)

10/100/1000 以太网

接口

拨码开关 SW1

配置

USB 转 UART 桥接器

JTAG 接口 micro-B USB 连接器

SFP+ 单壳体

发送反馈

ZC706 评估板用户指南 www.xilinx.com

12

UG954 (v1.8) 2019 年 8 月 6 日

放电注意事项

X-Ref Target - Figure 1-3

图 1-3:ZC706 评估板组件位置

17

6

30

31

21

18

15

2

11

13

12

1

4

7

3

9

10

16

25

24

26

22

33

27

19

32

23

28

14

35

29

5

8

20

34

36 37

38

00

方形标注引用电路板背面的元件

圆形标注引用电路板正面的元件

00

UG954_c1_02_042114

表 1-1:ZC706 评估板组件说明

标注

特征

笔记

图解的

0381513

页码

1

Zynq-7000 XC7Z045 SoC,第 15 页带风扇接收器的 Zynq-7000 SoC

XC7Z045T-2FFG900C 带 Radian INC3001-7_1.5BU_LI98 风扇水槽

2

DDR3 SODIMM 内存 (PL),第 19 页 DDR3 SODIMM 内存插槽 (J1)

美光 MT8JTF12864HZ-1G6G1

23

3

DDR3 组件内存 (PS),第 23 页 DDR3 内存 1GB (4x256M U2-U5)

美光 MT41J256M8HX-15E

17-20

4

Quad-SPI 闪存,第 26 页双通道 Quad-SPI 闪存 (128Mb) (U58-U59)

跨度 S25FL128SAGMFIR01

21

5

SD 卡接口,第 31 页 SD 卡接口连接器 (J30)

莫仕 67840-8001

22

6

USB 2.0 ULPI 收发器,第 29 页 USB JTAG 接口,带 Micro-B 连接器 (U30)

Digilent USB JTAG 模块

16

7

系统时钟,第 36 页系统时钟,2.5V LVDS (U64)

西泰姆 SIT9102-243N25E200.0000

34

发送反馈

ZC706 评估板用户指南 www.xilinx.com

13

UG954 (v1.8) 2019 年 8 月 6 日

放电注意事项

8

可编程用户时钟,第 37 页 I C Prog. 用户时钟 3.3V LVDS(U37,板底部)

Silicon Labs SI570BAB0000544DG,默认 156.250 MHz

34

9

用户 SMA 时钟源,第 38 页用户差分 SMA 时钟 P/N (J67/J68)

罗森伯格 32K10K-400L5

44

10

GTX SMA 时钟(SMA_MGT_REFCLK_P 和 SMA_MGT_REFCLK_N),第 39 页 GTX 差分 SMA 时钟 P/N (J36/J31)

罗森伯格 32K10K-400L5

44

11

抖动衰减时钟,第 40 页抖动衰减时钟(U60,板底部)

Silicon Labs SI5324C-C-GM

43

12

GTX 收发器,第 41 页 GTX 收发器

嵌入在 SoC U1 中

8

13

PCI Express 端点连接,第 46 页 PCI Express 连接器 (P4)

4 通道卡边缘连接器

42

14

SFP/SFP+ 模块连接器,第 48 页 SFP/SFP+ 模块连接器 (P2)

莫莱克斯 74441-0010

41

15

10/100/1000 Mb/s 三速以太网 PHY (PS),第 49 页仅 RGMII 10/100/1000 Mb/s 以太网 PHY 带 RJ45 (U51, P3)

美满 88E1116RA0-NNC1C000

29

16

GTX 差分 SMA TX 和 RX P/N(J35/J34 和 J32/J33)

罗森伯格 32K10K-400L5

44

17

USB 转 UART 桥接器,第 51 页带 Mini-B 连接器的 USB 转 UART 桥接器(U52、J21)

Silicon Labs CP2103GM 桥

40

18

HDMI 视频输出,第 52 页 HDMI 控制器 (U53),HDMI 视频连接器 (P1)

Analog Devices ADV7511KSTZ-P, Molex 500254-1927,

32, 33

19

USB 2.0 ULPI 收发器,第 29 页 USB 2.0 ULPI 控制器,带 Micro-B 连接器(U12、J2)

SMSC USB3320C-EZK

31

20

I2C 总线,第 55 页 I C 总线多路复用器(U65,板底部)

在 PCA9548ARGER

36

21

以太网 PHY 用户 LED,第 59 页以太网 PHY 状态 LED 指示灯 (DS28-DS30)

EPHY 状态 LED,绿色单堆栈

29

22

用户 LED,第 60 页 用户 LED(DS8-DS10、DS35)

GPIO LED,绿色 0603

38

23

用户按钮,第 61 页用户按钮,高电平有效(SW7、9、8)

左、中、右模式的 E-Switch TL3301EF100QG

38

表 1-1:ZC706 评估板组件说明(续)

标注

特征

笔记

图解的

0381513

页码

发送反馈

ZC706 评估板用户指南 www.xilinx.com

14

UG954 (v1.8) 2019 年 8 月 6 日

放电注意事项

24

GPIO DIP 开关,第 62 页 GPIO DIP 开关 (SW12)

4-pole C&K SDA04H1SBD  

38

25

ARM® core PJTAG Header (J64)  

2x10 0.1inch male header, Samtec TST-110-01-G-D  

39

26

User PMOD GPIO Headers, page 62 PMOD Headers (J57, J58) 

2x6 0.1 inch male header  

37, 39

27

Power On/Off Slide Switch, page 64 Power On/Off Switch (SW1) 

C&K 1201M2S3AQE2  

48

28

Program_B Pushbutton, page 65 FPGA PROG pushbutton (SW10) 

E-Switch TL3301EF100QG  

38

29

SoC MIO Config. DIP Switch (SW11)  

5-pole DPDT CTS 206-125  

15

30

HPC Connector J37, page 67 FMC HPC connector (J37) 

Samtec ASP_134486_01  

24-27

31

LPC Connector J5, page 71 FMC LPC connector (J5) 

Samtec ASP_134603_01  

28

32

Power Management, page 79 Power Management System (top and bottom of board) 

TI UCD90120ARGC in conjunction w/various regulators  

48-57

33

XADC Analog-to-Digital Converter, page 85 XADC Connector (J63) 

2x10 0.1inch male header, Samtec TST-110-01-G-D  

35

34

Programmable Logic JTAG Select Switch, page 33 JTAG Configuration DIP Switch (SW4) 

2-pole C&K SDA02H1SBD 

16

35

JTAG Flying Lead Header (J62)  

2x10 0.1inch male header, Samtec TST-110-01-G-D  

16

36

2x5 shrouded PMBus connector J4  

ASSMAN HW10G-0202  

48

37

2x7 2mm shrouded JTAG cable connector J3  

MOLEX 87832-1420  

16

38

12V power input 2x6 connector J22  

MOLEX-39-30-1060  

48

Notes: 

1.

Jumper header locations are identified in Appendix A, Default Switch and Jumper Settings. 

Table 1-1: ZC706 Evaluation Board Component Descriptions (Cont’d) 

Callout  

Feature  

Notes 

Schematic 

0381513

Page Number 

Send Feedback 

ZC706 Evaluation Board User Guide www.xilinx.com  

15

UG954 (v1.8) August 6, 2019 

Feature Descriptions 

Feature Descriptions 

Detailed information for each feature shown in Figure 1-3 and listed in Table 1-1 is provided in this section. 

Zynq-7000 XC7Z045 SoC 

[Figure 1-3, callout 1] 

The ZC706 evaluation board is populated with the Zynq-7000 XC7Z045-2FFG900C SoC. 

The XC7Z045 SoC consists of an integrated processing system (PS) and programmable logic (PL), on a single die. The high-level block diagram is shown in Figure 1-4. 

The PS integrates two ARM® Cortex™-A9 MPCore™ application processors, AMBA® interconnect, internal memories, external memory interfaces, and peripherals including USB, Ethernet, SPI, SD/SDIO, I C , CAN, UART, and GPIO. The PS runs independently of the PL and boots at power-up or reset. 

A system level block diagram is shown in Figure 1-5. 

X-Ref Target - Figure 1-4

Figure 1-4: High-Level Block Diagram 

Application Processor Unit (APU)  

Common 

Peripherals 

Custom 

Peripherals 

Common Accelerators 

Custom Accelerators 

Memory 

Interfaces 

Processing 

System 

(PS) 

Programmable 

Logic 

(PL) 

Input Output 

Peripherals 

(IOP) 

High-Bandwidth 

AMBAAXI Interfaces 

UG954_c1_03_100112

Interconnect 

Send Feedback 

ZC706 Evaluation Board User Guide www.xilinx.com  

16

UG954 (v1.8) August 6, 2019 

Feature Descriptions 

For additional information on Zynq-7000 SoC devices, see Zynq-7000 SoC Overview (DS190) and Zynq-7000 SoC Technical Reference Manual (UG585). 

Device Configuration 

the Zynq-7000 XC7Z045 SoC uses a multi-stage boot process that supports both a non-secure and a secure boot. The PS is the master of the boot and configuration process. For a secure boot, the PL must be powered on to enable the use of the security block located within the PL, which provides 256-bit AES and SHA decryption/authentication. 

The ZC706 evaluation board supports these configuration options: 

PS Configuration: Quad-SPI flash memory 

PS Configuration: Processor System Boot from SD Card (J30) 

X-Ref Target - Figure 1-5

Figure 1-5: Zynq-7000 Block Diagram 

2x USB 2x GigE 2x SD 

Zynq-7000 AP SoC 

I/O 

Peripherals 

IRQ 

IRQ 

EMIO 

SelectIO 

Resources 

DMA 8 

Channel 

CoreSight 

Components 

Programmable Logic 

DAP 

DevC 

SWDT 

DMA 

Sync 

Notes: 1) Arrow direction shows control (master to slave) 2) Data flows in both directions: AXI 32-Bit/64-Bit, AXI 64-Bit, AXI 32-Bit, AHB 32-Bit, APB 32-Bit, Custom 

ACP 

256K 

SRAM 

Application Processor Unit 

TTC 

System- 

Level 

Control 

Regs 

GigE 

CAN 

SD 

SDIO 

UART 

GPIO 

UART 

CAN 

I2C 

SRAM/ 

NOR ONFI 1.0 

NAND 

Processing System 

Memory 

Interfaces 

Q-SPI 

CTRL 

USB 

GigE 

I2C 

USB 

SD 

SDIO 

SPI 

SPI 

Programmable Logic to Memory Interconnect 

MMU 

FPU and NEON Engine 

Snoop Controller, AWDT, Timer 

GIC 

32 KB 

I-Cache 

ARM Cortex-A9 

CPU 

ARM Cortex-A9 

CPU  

MMU 

FPU and NEON Engine 

Config 

AES/ 

SHA 

XADC 

12-Bit ADC 

Memory 

Interfaces 

512 KB L2 Cache & Controller 

OCM 

Interconnect 

DDR2/3, 

LPDDR2 

Controller 

UG954_c1_04_100112

32 KB 

D-Cache 

32 KB 

I-Cache 

32 KB 

D-Cache 

MIO 

Clock 

Generation  

Reset 

Central 

Interconnect 

General-Purpose 

Ports 

High-Performance Ports 

Send Feedback 

ZC706 Evaluation Board User Guide www.xilinx.com  

17

UG954 (v1.8) August 6, 2019 

Feature Descriptions 

PL Configuration: USB JTAG configuration port (Digilent module U30) 

PL Configuration: Platform cable header J3 and flying lead header J62 JTAG configuration ports 

TIP: Designs using serial configuration based on Quad-SPI flash memory can take advantage of low-cost commodity SPI flash memory. 

The JTAG configuration option is selected by setting SW11 (PS) as shown in Table 1-2 and SW4 (PL) as described in Programmable Logic JTAG Programming Options, page 33. SW11 is callout 29 in Figure 1-3. 

For more information about Zynq-7000 SoC configuration settings, see Zynq-7000 SoC Technical Reference Manual (UG585). 

Encryption Key Backup Circuit 

The XC7Z045 SoC U1 implements bitstream encryption key technology. The ZC706 board provides the encryption key backup battery circuit shown in Figure 1-6. The Seiko TS518FE rechargeable 1.5V lithium button-type battery B2 is soldered to the board with the positive output connected to the XC7Z045 SoC U1 VCCBATT pin P9. The battery supply current IBATT specification is 150 nA max when board power is off. B2 is charged from the VCCAUX 1.8V rail through a series diode with a typical forward voltage drop of 0.38V and 4.7 KΩ current limit resistor. The nominal charging voltage is 1.42V. 

Table 1-2: Switch SW11 Configuration Option Settings 

Boot Mode  

SW11.1  

SW11.2  

SW11.3  

SW11.4  

SW11.5 

JTAG mode  

0

0

0

0

0

Independent JTAG mode  

1

0

0

0

0

QSPI mode  

0

0

0

1

0

SD mode  

0

0

1

1

0

MIO configuration pin  

MIO2  

MIO3  

MIO4  

MIO5  

MIO6 

Notes: 

1.

Default switch setting 

Send Feedback 

ZC706 Evaluation Board User Guide www.xilinx.com  

18

UG954 (v1.8) August 6, 2019 

Feature Descriptions 

I/O Voltage Rails 

There are eleven I/O banks available on the XC7Z045 SoC. The voltages applied to the XC7Z045 SoC I/O banks used by the ZC706 evaluation board are listed in Table 1-3. 

X-Ref Target - Figure 1-6

Figure 1-6: Encryption Key Backup Circuit 

UG954_c1_05_041113

GND 

2

1

B2 

Lithium Battery 

Seiko 

TS518SE_FL35E 

1.5V 

2

1

3

BAS40-04 

D7 

40V 电压

200 毫瓦

数控

FPGA_VBATT

+

VCCAUX 餐厅

R9 系列

4.70K 1%

1/16 瓦

To XC7Z045 AP SoC

U1 引脚 P9

(VCCBATT)

表 1-3:I/O 电压轨 XC7Z045 (U1)

网络名称

电压

连接到

PL Bank 0 (盈出库 0)

VCC3V3_FPGA

3.3V

SoC 配置库 0

PL Bank 9 (盈出银行 9)

VADJ_FPGA

2.5V

PMOD、USER_SMA_CLOCK、SM_FAN、REC_CLOCK SFP_TX_DISABLE

PL Bank 10 (盈方银行 10)

FMC_LPC、PL_JTAG、GPIO

PL Bank 11 (盈出银行 11)

FMC_HPC、GPIO_LED、HDMI

PL Bank 12 (盈方银行 12)

FMC_LPC、HDMI

PL Bank 13

FMC_HPC、HDMI

PL 银行 33

VCC1V5_PL

1.5V

PL_DDR3_D[31:0]

PL Bank 34

PL_DDR3_A、SYSCLK

PL Bank 35

PL_DDR3_D[63:32], XADC

发送反馈

ZC706 评估板用户指南 www.xilinx.com

19

UG954 (v1.8) 2019 年 8 月 6 日

功能描述

DDR3 SODIMM 内存 (PL)

[图 1-3,标注 2]

J1 的内存模块是 1 GB DDR3 小外形双列直插式内存模块 (SODIMM)。它提供易失性同步动态随机存取存储器 (SDRAM),用于存储用户代码和数据。

零件编号:MT8JTF12864HZ-1G6G1 (Micron Technology)

电源电压:1.5V

数据路径宽度:64 位

数据速率:高达 1,600 MT/s

ZC706 XC7Z045 SoC PL DDR 接口性能记录在 Zynq-7000 SoC(Z-7030、035、045 和 Z-7100):直流和交流开关特性数据表 (DS191)[参考文献 2] 中。

DDR3 接口在 PL 侧 I/O bank 上实现。bank 33 和 bank 35 具有专用的 DCI VRP/N 电阻器连接。为数据接口组提供了一个外部 0.75V 基准 VTTREF_SODIMM。任何连接到这些 bank 的需要 VTTREF 电压的接口都必须使用此 FPGA 电压参考。DDR3 内存和 SoC 之间的连接如表 1-4 所示。

PS 银行 500

VCCP1V8

1.8V

QSPI0、QSPI1

PS 银行 501

PHY_IF,SDIO_IF,USB_IF

PS 银行 502

PS_DDR3_IF

笔记:

1.

ZC706 评估板出厂时 V 设置为 2.5V。

表 1-4:DDR3 SODIMM 插槽 J1 与 XC7Z045 SoC 的连接

XC7Z045 (U1)

网络名称

I/O 标准

DDR3 SODIMM 内存 J1

引脚号

引脚名称

E10 系列

PL_DDR3_A0

SSTL15

98

答 0

B9 系列

PL_DDR3_A1

SSTL15

97

答 1

E11 系列

PL_DDR3_A2

SSTL15

96

答 2

答 9

PL_DDR3_A3

SSTL15

95

答 3

D11

PL_DDR3_A4

SSTL15

92

A4

B6 系列

PL_DDR3_A5

SSTL15

91

答 5

F9 系列

PL_DDR3_A6

SSTL15

90

答 6

表 1-3:I/O 电压轨(续)

XC7Z045 (U1)

网络名称

电压

连接到

发送反馈

ZC706 评估板用户指南 www.xilinx.com

20

UG954 (v1.8) 2019 年 8 月 6 日

功能描述

E8 系列

PL_DDR3_A7

SSTL15

86

答 7

B10 系列

PL_DDR3_A8

SSTL15

89

答 8

D8

PL_DDR3_A9

SSTL15

85

答 9

D6 系列

PL_DDR3_A10

SSTL15

107

A10/AP

B7 系列

PL_DDR3_A11

SSTL15

84

答 11

H12 系列

PL_DDR3_A12

SSTL15

83

A12_BC_N

答 10

PL_DDR3_A13

SSTL15

119

答 13

11 年级

PL_DDR3_A14

SSTL15

80

答 14

C6 系列

PL_DDR3_A15

SSTL15

78

答 15

F8

PL_DDR3_BA0

SSTL15

109

BA0 系列

H7 系列

PL_DDR3_BA1

SSTL15

108

BA1 系列

答 7

PL_DDR3_BA2

SSTL15

79

BA2 系列

L1 系列

PL_DDR3_D0

SSTL15

5

DQ0

L2 (二层)

PL_DDR3_D1

SSTL15

7

DQ1

K5 系列

PL_DDR3_D2

SSTL15

15

DQ2

第 4 天

PL_DDR3_D3

SSTL15

17

DQ3

K1 (英语)

PL_DDR3_D4

SSTL15

4

DQ4

L3 系列

PL_DDR3_D5

SSTL15

6

DQ5

第 5 天

PL_DDR3_D6

SSTL15

16

DQ6

K6 系列

PL_DDR3_D7

SSTL15

18

DQ7

G6 系列

PL_DDR3_D8

SSTL15

21

DQ8

H4 系列

PL_DDR3_D9

SSTL15

23

DQ9 

H6  

PL_DDR3_D10  

SSTL15  

33

DQ10 

H3  

PL_DDR3_D11  

SSTL15  

35

DQ11 

G1  

PL_DDR3_D12  

SSTL15  

22

DQ12 

H2  

PL_DDR3_D13  

SSTL15  

24

DQ13 

G5  

PL_DDR3_D14  

SSTL15  

34

DQ14 

G4  

PL_DDR3_D15  

SSTL15  

36

DQ15 

E2  

PL_DDR3_D16  

SSTL15  

39

DQ16 

E3  

PL_DDR3_D17  

SSTL15  

41

DQ17 

D4  

PL_DDR3_D18  

SSTL15  

51

DQ18 

E5  

PL_DDR3_D19  

SSTL15  

53

DQ19 

F4  

PL_DDR3_D20  

SSTL15  

40

DQ20 

F3  

PL_DDR3_D21  

SSTL15

42

DQ21 系列

第一天

PL_DDR3_D22

SSTL15

50

DQ22 系列

表 1-4:DDR3 SODIMM 插槽 J1 与 XC7Z045 SoC 的连接(续)

XC7Z045 (U1)

网络名称

I/O 标准

DDR3 SODIMM 内存 J1

引脚号

引脚名称

发送反馈

ZC706 评估板用户指南 www.xilinx.com

21

UG954 (v1.8) 2019 年 8 月 6 日

功能描述

D3

PL_DDR3_D23

SSTL15

52

DQ23

答 2

PL_DDR3_D24

SSTL15

57

DQ24 系列

B2 层

PL_DDR3_D25

SSTL15

59

DQ25 系列

B4 厅

PL_DDR3_D26

SSTL15

67

DQ26 

B5

PL_DDR3_D27

SSTL15

69

DQ27

A3

PL_DDR3_D28

SSTL15

56

DQ28

B1

PL_DDR3_D29

SSTL15

58

DQ29

C1

PL_DDR3_D30

SSTL15

68

DQ30

C4

PL_DDR3_D31

SSTL15

70

DQ31

K10

PL_DDR3_D32

SSTL15

129

DQ32

L9

PL_DDR3_D33

SSTL15

131

DQ33

K12

PL_DDR3_D34

SSTL15

141

DQ34

J9

PL_DDR3_D35

SSTL15

143

DQ35

K11

PL_DDR3_D36

SSTL15

130

DQ36

L10

PL_DDR3_D37

SSTL15

132

DQ37

J10

PL_DDR3_D38

SSTL15

140

DQ38

L7

PL_DDR3_D39

SSTL15

142

DQ39

F14

PL_DDR3_D40

SSTL15

147

DQ40

F15

PL_DDR3_D41

SSTL15

149

DQ41

F13

PL_DDR3_D42

SSTL15

157

DQ42

G16

PL_DDR3_D43

SSTL15

159

DQ43

G15

PL_DDR3_D44

SSTL15

146

DQ44

E12

PL_DDR3_D45

SSTL15

148

DQ45

D13

PL_DDR3_D46

SSTL15

158

DQ46

E13

PL_DDR3_D47

SSTL15

160

DQ47

D15

PL_DDR3_D48

SSTL15

163

DQ48

E15

PL_DDR3_D49

SSTL15

165

DQ49

D16

PL_DDR3_D50

SSTL15

175

DQ50

E16

PL_DDR3_D51

SSTL15

177

DQ51

C17

PL_DDR3_D52

SSTL15

164

DQ52

B16

PL_DDR3_D53

SSTL15

166

DQ53

D14

PL_DDR3_D54

SSTL15

174

DQ54

B17

PL_DDR3_D55

SSTL15

176

DQ55

B12

PL_DDR3_D56

SSTL15

181

DQ56

C12

PL_DDR3_D57

SSTL15

183

DQ57

Table 1-4: DDR3 SODIMM Socket J1 Connections to the XC7Z045 SoC (Cont’d)

XC7Z045 (U1)

Pin

Net Name

I/O Standard

DDR3 SODIMM Memory J1

Pin Number

Pin Name

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

22

UG954 (v1.8) August 6, 2019

Feature Descriptions

A12

PL_DDR3_D58

SSTL15

191

DQ58

A14

PL_DDR3_D59

SSTL15

193

DQ59

A13

PL_DDR3_D60

SSTL15

180

DQ60

B11

PL_DDR3_D61

SSTL15

182

DQ61

C14

PL_DDR3_D62

SSTL15

192

DQ62

B14

PL_DDR3_D63

SSTL15

194

DQ63

J3

PL_DDR3_DM0

SSTL15

11

DM0

F2

PL_DDR3_DM1

SSTL15

28

DM1

E1

PL_DDR3_DM2

SSTL15

46

DM2

C2

PL_DDR3_DM3

SSTL15

63

DM3

L12

PL_DDR3_DM4

SSTL15

136

DM4

G14

PL_DDR3_DM5

SSTL15

153

DM5

C16

PL_DDR3_DM6

SSTL15

170

DM6

C11

PL_DDR3_DM7

SSTL15

187

DM7

K2

PL_DDR3_DQS0_N

DIFF_SSTL15

10

DQS0_N

K3

PL_DDR3_DQS0_P

DIFF_SSTL15

12

DQS0_P

H1

PL_DDR3_DQS1_N

DIFF_SSTL15

27

DQS1_N

J1

PL_DDR3_DQS1_P

DIFF_SSTL15

29

DQS1_P

D5

PL_DDR3_DQS2_N

DIFF_SSTL15

45

DQS2_N

E6

PL_DDR3_DQS2_P

DIFF_SSTL15

47

DQS2_P

A4

PL_DDR3_DQS3_N

DIFF_SSTL15

62

DQS3_N

A5

PL_DDR3_DQS3_P

DIFF_SSTL15

64

DQS3_P

K8

PL_DDR3_DQS4_N

DIFF_SSTL15

135

DQS4_N

L8

PL_DDR3_DQS4_P

DIFF_SSTL15

137

DQS4_P

F12

PL_DDR3_DQS5_N

DIFF_SSTL15

152

DQS5_N

G12

PL_DDR3_DQS5_P

DIFF_SSTL15

154

DQS5_P

E17

PL_DDR3_DQS6_N

DIFF_SSTL15

169

DQS6_N

F17

PL_DDR3_DQS6_P

DIFF_SSTL15

171

DQS6_P

A15

PL_DDR3_DQS7_N

DIFF_SSTL15

186

DQS7_N

B15

PL_DDR3_DQS7_P

DIFF_SSTL15

188

DQS7_P

G7

PL_DDR3_ODT0

SSTL15

116

ODT0

C9

PL_DDR3_ODT1

SSTL15

120

ODT1

G17

PL_DDR3_RESET_B

SSTL15

30

RESET_B

J11

PL_DDR3_S0_B

SSTL15

114

S0_B

H8

PL_DDR3_S1_B

SSTL15

121

S1_B

Table 1-4: DDR3 SODIMM Socket J1 Connections to the XC7Z045 SoC (Cont’d)

XC7Z045 (U1)

Pin

Net Name

I/O Standard

DDR3 SODIMM Memory J1

Pin Number

Pin Name

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

23

UG954 (v1.8) August 6, 2019

Feature Descriptions

The ZC706 DDR3 SODIMM interface adheres to the constraints guidelines documented in

the “Dynamic Memory” section of the Zynq-7000 SoC PCB Design and Pin Planning Guide

(UG933). The ZC706 DDR3 SODIMM interface is a 40Ω impedance implementation. For more details, see the MT8JTF12864HZ-1G6G1 data sheet [Ref 35].

DDR3 Component Memory (PS)

[Figure 1-3, callout 3]

The 1 GB, 32-bit wide DDR3 component memory system is comprised of four SDRAMs at U2-U5. This memory system is connected to the XC7Z045 SoC Processing System (PS) memory interface bank 502.

Part number: MT41J256M8HX-15E (Micron Technology)

Configuration: 2Gb: 256 Mb x 8

Supply voltage: 1.5V

Datapath width: 32 bits

Data rate: Up to 1,333 MT/s

The ZC706 XC7Z045 SoC PS DDR Bank 502 interface performance is documented in the Zynq-7000 SoC (Z-7030, 035, 045, and Z-7100): DC and AC Switching Characteristics Data Sheet (DS191)[Ref 2].

The DDR3 0.75V VTT termination voltage is sourced from linear regulator U27. The connections between the DDR3 component memory and XC7Z045 SoC bank 502 are listed in Table 1-5.

M10

PL_DDR3_TEMP_EVE

NT

SSTL15

198

EVENT_B

F7

PL_DDR3_WE_B

SSTL15

113

WE_B

E7

PL_DDR3_CAS_B

SSTL15

115

CAS_B

H11

PL_DDR3_RAS_B

SSTL15

110

RAS_B

D10

PL_DDR3_CKE0

SSTL15

73

CKE0

C7

PL_DDR3_CKE1

SSTL15

74

CKE1

F10

PL_DDR3_CLK0_N

DIFF_SSTL15

103

CK0_N

G10

PL_DDR3_CLK0_P

DIFF_SSTL15

101

CK0_P

D8

PL_DDR3_CLK1_N

DIFF_SSTL15

104

CK1_N

D9

PL_DDR3_CLK1_P

DIFF_SSTL15

102

CK1_P

Table 1-4: DDR3 SODIMM Socket J1 Connections to the XC7Z045 SoC (Cont’d)

XC7Z045 (U1)

Pin

Net Name

I/O Standard

DDR3 SODIMM Memory J1

Pin Number

Pin Name

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

24

UG954 (v1.8) August 6, 2019

Feature Descriptions

Table 1-5: DDR3 Component Memory Connections to the XC7Z045 SoC

XC7Z045 (U1) Pin

Net Name

Component Memory

Pin Number

Pin Name

Ref. Des.

E26

PS_DDR3_DQ0

B3

DQ0

U2

A25

PS_DDR3_DQ1

C7

DQ1

U2

E27

PS_DDR3_DQ2

C2

DQ2

U2

E25

PS_DDR3_DQ3

C8

DQ3

U2

D26

PS_DDR3_DQ4

E3

DQ4

U2

B25

PS_DDR3_DQ5

E8

DQ5

U2

D25

PS_DDR3_DQ6

D2

DQ6

U2

B27

PS_DDR3_DQ7

E7

DQ7

U2

A27

PS_DDR3_DQ8

B3

DQ8

U3

A28

PS_DDR3_DQ9

C7

DQ9

U3

A29

PS_DDR3_DQ10

C2

DQ10

U3

C28

PS_DDR3_DQ11

C8

DQ11

U3

D30

PS_DDR3_DQ12

E3

DQ12

U3

A30

PS_DDR3_DQ13

E8

DQ13

U3

D29

PS_DDR3_DQ14

D2

DQ14

U3

D28

PS_DDR3_DQ15

E7

DQ15

U3

H27

PS_DDR3_DQ16

B3

DQ16

U4

G27

PS_DDR3_DQ17

C7

DQ17

U4

H28

PS_DDR3_DQ18

C2

DQ18

U4

E28

PS_DDR3_DQ19

C8

DQ19

U4

E30

PS_DDR3_DQ20

E3

DQ20

U4

F28

PS_DDR3_DQ21

E8

DQ21

U4

G30

PS_DDR3_DQ22

D2

DQ22

U4

F30

PS_DDR3_DQ23

E7

DQ23

U4

K27

PS_DDR3_DQ24

B3

DQ24

U5

J30

PS_DDR3_DQ25

C7

DQ25

U5

J28

PS_DDR3_DQ26

C2

DQ26

U5

J29

PS_DDR3_DQ27

C8

DQ27

U5

K30

PS_DDR3_DQ28

E3

DQ28

U5

M29

PS_DDR3_DQ29

E8

DQ29

U5

L30

PS_DDR3_DQ30

D2

DQ30

U5

M30

PS_DDR3_DQ31

E7

DQ31

U5

C27

PS_DDR3_DM0

B7

DM0

U2

C26

PS_DDR3_DQS0_P

C3

DQS0_P

U2

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

25

UG954 (v1.8) August 6, 2019

Feature Descriptions

B26

PS_DDR3_DQS0_N

D3

DQS0_N

U2

B30

PS_DDR3_DM1

B7

DM1

U3

C29

PS_DDR3_DQS1_P

C3

DQS1_P

U3

B29

PS_DDR3_DQS1_N

D3

DQS1_N

U3

H29

PS_DDR3_DM2

B7

DM2

U4

G29

PS_DDR3_DQS2_P

C3

DQS2_P

U4

F29

PS_DDR3_DQS2_N

D3

DQS2_N

U4

K28

PS_DDR3_DM3

B7

DM3

U5

L28

PS_DDR3_DQS3_P

C3

DQS3_P

U5

L29

PS_DDR3_DQS3_N

D3

DQS3_N

U5

L25

PS_DDR3_A0

K3

A0

U2, U3, U4, U5

K26

PS_DDR3_A1

L7

A1

U2, U3, U4, U5

L27

PS_DDR3_A2

L3

A2

U2, U3, U4, U5

G25

PS_DDR3_A3

K2

A3

U2, U3, U4, U5

J26

PS_DDR3_A4

L8

A4

U2, U3, U4, U5

G24

PS_DDR3_A5

L2

A5

U2, U3, U4, U5

H26

PS_DDR3_A6

M8

A6

U2, U3, U4, U5

K22

PS_DDR3_A7

M2

A7

U2, U3, U4, U5

F27

PS_DDR3_A8

N8

A8

U2, U3, U4, U5

J23

PS_DDR3_A9

M3

A9

U2, U3, U4, U5

G26

PS_DDR3_A10

H7

A10

U2, U3, U4, U5

H24

PS_DDR3_A11

M7

A11

U2, U3, U4, U5

K23

PS_DDR3_A12

K7

A12

U2, U3, U4, U5

H23

PS_DDR3_A13

N3

A13

U2, U3, U4, U5

J24

PS_DDR3_A14

N7

A14

U2, U3, U4, U5

M27

PS_DDR3_BA0

J2

BA0

U2, U3, U4, U5

M26

PS_DDR3_BA1

K8

BA1

U2, U3, U4, U5

M25

PS_DDR3_BA2

J3

BA2

U2, U3, U4, U5

K25

PS_DDR3_CLK_P

F7

CK

U2, U3, U4, U5

J25

PS_DDR3_CLK_N

G7

CK_B

U2, U3, U4, U5

M22

PS_DDR3_CKE

G9

CKE

U2, U3, U4, U5

N23

PS_DDR3_WE_B

H3

WE_B

U2, U3, U4, U5

M24

PS_DDR3_CAS_B

G3

CAS_B

U2, U3, U4, U5

N24

PS_DDR3_RAS_B

F3

RAS_B

U2, U3, U4, U5

F25

PS_DDR3_RESET_B

N2

RESET_B

U2, U3, U4, U5

Table 1-5: DDR3 Component Memory Connections to the XC7Z045 SoC (Cont’d)

XC7Z045 (U1) Pin

Net Name

Component Memory

Pin Number

Pin Name

Ref. Des.

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

26

UG954 (v1.8) August 6, 2019

Feature Descriptions

The ZC706 DDR3 component interface adheres to the constraints guidelines documented in

the DDR3 Design Guidelines section of Zynq-7000 SoC PCB Design and Pin Planning Guide

(UG933). The ZC706 DDR3 component interface is a 40Ω impedance implementation. For more details, see the MT41J256M8HX-15E data sheet [Ref 35].

Quad-SPI Flash Memory

[Figure 1-3, callout 4]

The Quad-SPI flash memory located at U58 and U59 provides 2 x 128 Mb of nonvolatile storage that can be used for configuration and data storage.

Part number: S25FL128SAGMFIR01 (Spansion)

Supply voltage: 1.8V

Datapath width: 4 bits

Data rate: Various depending on Single/Dual/Quad mode

The connections between the SPI flash memory and the XC7Z045 SoC are listed in Table 1-6.

N22

PS_DDR3_CS_B

H2

CS_B

U2, U3, U4, U5

L23

PS_DDR3_ODT

G1

ODT

U2, U3, U4, U5

N21

PS_VRN

M21

PS_VRP

L22

VTTVREF_PS

L24

VTTVREF_PS

Table 1-5: DDR3 Component Memory Connections to the XC7Z045 SoC (Cont’d)

XC7Z045 (U1) Pin

Net Name

Component Memory

Pin Number

Pin Name

Ref. Des.

Table 1-6: Quad-SPI Flash Memory Connections to the XC7Z045 SoC

XC7Z045 (U1)

Schematic

Net Name

Quad-SPI Flash Memory

QSPI Device

MIO Select

Header

Pin Name

Bank

Pin Number

Pin Number

Pin Name

Ref. Des.

PS_MIO6

500

D24

QSPI0_CLK

16

C

U58

J74.2

PS_MIO5

500

C24

QSPI0_IO3

1

DQ3_HOLD_B

U58

J73.2

PS_MIO4

500

E23

QSPI0_IO2

9

WP_B

U58

J72.2

PS_MIO3

500

C23

QSPI0_IO1

8

DQ1

U58

J71.2

PS_MIO2

500

F23

QSPI0_IO0

15

DQ0

U58

J70.2

PS_MIO1

500

D23

QSPI0_CS_B

7

S_B

U58

N/A

PS_MIO9

500

A24

QSPI1_CLK

16

C

U59

N/A

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

27

UG954 (v1.8) August 6, 2019

Feature Descriptions

The configuration section of the Zynq-7000 SoC Technical Reference Manual UG585, provides details on using the Quad-SPI flash memory.

Figure 1-7 shows the connections of the linear Quad-SPI flash memory on the ZC706 evaluation board. For more details, see the Spansion S25FL128SAGMFIR01 data sheet [Ref 17].

PS_MIO13

500

F22

QSPI1_IO3

1

DQ3_HOLD_B

U59

N/A

PS_MIO12

500

E21

QSPI1_IO2

9

WP_B

U59

N/A

PS_MIO11

500

A23

QSPI1_IO1

8

DQ1

U59

N/A

PS_MIO10

500

E22

QSPI1_IO0

15

DQ0

U59

N/A

PS_MIO0

500

F24

QSPI1_CS_B

7

S_B

U59

N/A

Table 1-6: Quad-SPI Flash Memory Connections to the XC7Z045 SoC (Cont’d)

XC7Z045 (U1)

Schematic

Net Name

Quad-SPI Flash Memory

QSPI Device

MIO Select

Header

Pin Name

Bank

Pin Number

Pin Number

Pin Name

Ref. Des.

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

28

UG954 (v1.8) August 6, 2019

Feature Descriptions

X-Ref Target - Figure 1-7

Figure 1-7: 128 Mb Quad-SPI Flash Memory

DQ3_HOLD_B

VCC

NC0

NC1

NC2

NC3

S_B

DQ1

C714

0.1UF

25V

X5R

C

DQ0

NC7

NC6

NC5

NC4

VSS

DQ2_VPP_WP_B

16

15

14

13

12

11

10

9

QSPI0_IO3

QSPI0_CS_B

QSPI0_IO1

QSPI0_CLK

QSPI0_IO0

QSPI0_IO2

QSPI1_IO3

QSPI1_CS_B

QSPI1_IO1

QSPI1_CLK

QSPI1_IO0

QSPI1_IO2

NC

NC

NC

NC

NC

NC

NC

1

2

3

4

5

6

7

8

SO16_50P300X413

U58

GND

S25FL128SAGMFIR01

DQ3_HOLD_B

VCC

NC0

NC1

NC2

NC3

S_B

DQ1

C

DQ0

NC7

NC6

NC5

NC4

VSS

DQ2_VPP_WP_B

16

15

14

13

12

11

10

9

NC

NC

NC

NC

NC

NC

NC

1

2

3

4

5

6

7

8

SO16_50P300X413

U59

GND

UG954_c1_06_073013

GND

VCCP1V8

VCC3V3_PS

VCCP1V8

VCCP1V8

VCC3V3_PS

VCCP1V8

1

2

C39

0.1UF

25V

X5R

GND

1

2

R207

330

1/10W

5%

1

2

R527

DNP

DNP

DNP

1

2

R531

0

1/10W

5%

1

2

R528

DNP

DNP

DNP

1

2

C715

0.1UF

25V

X5R

1 2

C40

0.1UF

25V

X5R

1

2

R208

330

1/10W

5%

1

2

R530

DNP

DNP

DNP

1

2

R532

0

1/10W

5%

1

2

R529

DNP

DNP

DNP

1

2

S25FL128SAGMFIR01

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

29

UG954 (v1.8) August 6, 2019

Feature Descriptions

USB 2.0 ULPI Transceiver

[Figure 1-3, callout 19]

The ZC706 evaluation board uses a Standard Microsystems Corporation USB3320 USB 2.0 ULPI Transceiver at U12 to support a USB connection to the host computer. A USB cable is supplied in the ZC706 evaluation kit (Standard-A connector to host computer, Micro-B connector to ZC706 evaluation board connector J2). The USB3320 is a high-speed USB 2.0 PHY supporting the UTMI+ low pin interface (ULPI) interface standard. The ULPI standard defines the interface between the USB controller IP and the PHY device which drives the physical USB bus. Use of the ULPI standard reduces the interface pin count between the USB controller IP and the PHY device.

The USB3320 is clocked by a 24 MHz crystal. Consult the SMSC USB3320 data sheet for clocking mode details [Ref 18].

The interface to the USB3320 transceiver is implemented through the IP in the XC7Z045 SoC Processor System.

Table 1-7 describes the jumper settings for the USB 2.0 circuit. Bold text identifies the default OTG mode settings.

Table 1-7: USB Jumper Settings

Header

Function

Shunt Position

Notes

J11

USB PHY reset

Shunt ON = USB PHY reset

Shunt OFF = USB PHY normal operation

Clean reset requires external debouncing

J10

V 5V Supply Shunt ON = Host or OTG mode

Shunt OFF = Device mode

J48

RVBUS select

Position 1–2 = Device mode only (10 KΩ)

Position 2–3 = OTG or Host mode (1 KΩ)

Overvoltage protection

J50

CVBUS select

Position 1-2 = OTG and Device mode 1 μF

Position 2-3 = Host mode 120 μF

V load capacitance

J49

Cable ID select

Position 1-2 = A/B cable detect

Position 2-3 = ID not used

Used in OTG mode

J51

USB Micro-B

Position 1-2 = Shield connected to GND

Position 2-3 = Shield floating

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

30

UG954 (v1.8) August 6, 2019

Feature Descriptions

The connections between the USB Micro-B connector at J2 and the PHY at U12 are listed in Table 1-8.

The connections between the USB 2.0 PHY at U12 and the XC7Z045 SoC are listed in Table 1-9.

For additional information on the Zynq-7000 SoC device USB controllers, see Zynq-7000 SoC Overview (DS190) and Zynq-7000 SoC Technical Reference Manual (UG585).

Table 1-8: USB Connector Pin Assignments and Signal Definitions Between J2 and U12

USB Connector

J1

Net Name

Description

USB3320 (U12)

Pin

Pin

Name

1

VBUS

USB_VBUS_SEL

+5V from host system

22

2

D_N

USB_D_N

Bidirectional differential serial data (N-side)

19

3

D_P

USB_D_P

Bidirectional differential serial data (P-side)

18

5

GND

GND

Signal ground

33

Table 1-9: USB 2.0 ULPI Transceiver Connections to the XC7Z045 SoC

XC7Z045 (U1)

Schematic Net Name

USB3320 (U12) Pin

Pin Name

Bank

Pin Number

PS_MIO36

501

H17

USB_CLKOUT

1

PS_MIO31

501

H21

USB_NXT

2

PS_MIO32

501

K17

USB_DATA0

3

PS_MIO33

501

G22

USB_DATA1

4

PS_MIO34

501

K18

USB_DATA2

5

PS_MIO35

501

G21

USB_DATA3

6

PS_MIO28

501

L17

USB_DATA4

7

PS_MIO37

501

B21

USB_DATA5

9

PS_MIO38

501

A20

USB_DATA6

10

PS_MIO39

501

F18

USB_DATA7

13

PS_MIO30

501

L18

USB_STP

29

PS_MIO29

501

E8

USB_DIR

31

PS_MIO7

500

D5

USB_RESET_B_AND

27 (via AND gate U13) Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

31

UG954 (v1.8) August 6, 2019

Feature Descriptions

Figure 1-8 shows the USB 2.0 ULPI transceiver circuitry. Note that the shield for the USB Micro-B connector (J2) can be tied to GND by a jumper on header J51 pins 1–2 (default). The USB shield can optionally be connected through a capacitor to GND by installing a capacitor (body size 0402) at location C335 and jumping pins 2-3 on header J51.

SD Card Interface

[Figure 1-3, callout 5]

The ZC706 evaluation board includes a secure digital input/output (SDIO) interface to provide user-logic access to general purpose nonvolatile SDIO memory cards and peripherals. Information for the SD I/O card specification can be found at the SanDisk and SD card websites [Ref 19], [Ref 20].

The SDIO signals are connected to XC7Z045 SoC PS bank 501 which has its VCCMIO set to 1.8V. A MAX13035E high-speed logic-level translator (U11) is used between XC7Z045 SoC 1.8V PS bank 501 and the 3.3V SD card connector (J30).

X-Ref Target - Figure 1-8

Figure 1-8: USB 2.0 ULPI Transceiver

EN

OUT2

IN

GND

NC1

FLG

NC2

OUT1

REFSEL2_14

DATA0_3

RBIAS_23

ID_23

VBUS_22

VBAT_21

VDD33_P

DM_19

DP_18

CPEN33_17

NC_12

REFSEL0_8

DATA4_7

DATA6_10

CLKOUT_1

NXT_2

DATA2_5

REFSEL1_11

VDDIO_32

DIR_31

DATA5_9

DATA7_13

DATA1_4

SPK_L_15

REFCLK_26

SPK_R_16

XO_25

VDD18_30

DATA3_6

STP_29

VDD18_28RESETB_27

CTR_GND_33

SHLD5SHLD6

GND

SHLD4

VBUS

D_N

D_P

SHLD1SHLD2SHLD3

ID

1-2 = DEVICE MODE

OFF = DEVICE MODE

2-3 = HOST OR OTG MODE

ON = HOST OR OTG MODE

USB HOST POWER

1-2 = A/B CABLE DETECT

2-3 = ID NOT USED

3 PLACES

2 PLACES

CVBUS Select:

1-2: OTG Mode

2-3: Host Mode

1

2

L11

FERRITE-220

USB_D_P

27

USB_D_N

27

USB_RESET_B

31

USB_STP

9

USB_DIR

9

USB_DATA7

8

USB_DATA6

8

USB_DATA5

8

USB_DATA4

8

1

2

C76 0.1UF

25V

31

USB_D_N

2

1

R267

10.0K

1/10W

GND

1

2

J10

1

2

C380 1UF

16V

X5R

1011

5

9

1

2

3

678

4

J2

ZX62D_AB_5P8

GND

GND

1

2

C484 120UF

20V

TANT

3

2

1

J50

GND

1

2

3

J49

USB_CLKOUT

8

USB_NXT

8

USB_DATA1

8

USB_DATA0

8

USB_DATA2

8 USB_DATA3

8

14

3

24

23

22

21

20

19

18

17

12

8

7

10

1

2

5

11

32

31

9

13

4

15

26

16

25

30

6

29

28

27

33

U12 USB3320_QFN32

USB3320_QFN32

GND

1

2

C71

1

2

C70

0.1UF

25V

2

1

C496

18PF

50V

NPO

GND

GND

2

1

X2

24.000MHZ

GND

2

1

C209 2.2UF

6.3V

GND

GND

VCC5V0

GND

2

1

C335

DNP

1

2

3 J48

USB_VBUS_SEL

VCC5V0

2

1

C447

5.6UF

10V

1

2

L12

FERRITE-220

VCC3V3

GND

2

1

DS25

LED-RED-SMT

2

1

R389

261

1/10W

1

8

7

3

4

2

5

6

U22 SOP127P500X600_8

MIC2025_SOP8

2

1 R359 1.00K

1/16W

GND

1

2

C75 0.1UF

25V

USB_VBUS_SEL

1

2

3

J51

1

2

C469 150UF

10V

TANT

GND

2

1

C497 18PF

50V

NPO

2

1

R403

1.0M

1/10W

5%

1

2

C74

USB_ID

27

USB_VDD33

27

USB_ID

31

USB_D_P

31

NC

NC

NCNC

NC

USB_VDD33

27

GND

2

1

R1788.06K1%

2

1

25V

0.1UF

C72

VCCMIO

VCCP1V8

UG954_c1_07_041113

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

32

UG954 (v1.8) August 6, 2019

Feature Descriptions

Figure 1-9 shows the connections of the SD card interface on the ZC706 evaluation board.

Table 1-10 lists the SD card interface connections to the XC7Z045 SoC

X-Ref Target - Figure 1-9

Figure 1-9: SD Card Interface

UG954_c1_08_041113

GND

GND

GND

IOGND2

GNDTAB1

GNDTAB2

GNDTAB3

CMD

VSS1

CLK

VSS2

DAT0

DAT1

DAT2

CD_DAT3

DETECT

VDD

PROTECT

DETECT_PROTECT

GNDTAB4

IOGND1

SDIO_SDWP

8

SDIO_SDDET

8

1

2

5%

1/10W

4.7 KΩ

R29

2

1

R28

4.7 KΩ

1/10W

5%

VCCP1V8

18

13

14

15

2

3

5

6

7

8

9

1

10

4

11

12

16

17

J30

67840-8001

22

SDIO_CLK

VCC3V3_PS

1

2

C41

0.1 μF

25V

X5R

SDIO_DAT2

22

SDIO_DAT0

22

22

SDIO_DAT1

SDIO_CD_DAT3

22

22

SDIO_CMD

Table 1-10: SDIO Connections to the XC7Z045 SoC

XC7Z045 (U1) Pin

Schematic

Net Name

Level Shifter (U11)

SDIO Connector (J30)

Pin Name

Bank

Pin

Number

1.8V Side

Pin

3.3V Side

Pin

Pin

Number

Pin

Name

PS_MIO15

500

C22

SDIO_SDWP

N/A

N/A

11

PROTECT

PS_MIO14

500

B22

SDIO_SDDET

N/A

N/A

10

DETECT

PS_MIO41

501

J18

SDIO_CMD_LS

4

20

2

CMD

PS_MIO40

501

B20

SDIO_CLK_LS

9

19

5

CLK

PS_MIO44

501

E20

SDIO_DAT2_LS

1

23

9

DAT2

PS_MIO43

501

E18

SDIO_DAT1_LS

7

16

8

DAT1

PS_MIO42

501

D20

SDIO_DAT0_LS

6

18

7

DAT0

PS_MIO45

501

H18

SDIO_CD_DAT3_LS

3

22

1

CD_DAT3

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

33

UG954 (v1.8) August 6, 2019

Feature Descriptions

Programmable Logic JTAG Programming Options

[Figure 1-3, callout 6]

The ZC706 evaluation board JTAG chain is shown in Figure 1-10.

Programmable Logic JTAG Select Switch

[Figure 1-3, callout 35]

The PL JTAG chain can be programmed by three different methods made available through a 3-to-1 analog switch (U45, U46, and U47) controlled by a 2-position DIP switch at SW4.

Figure 1-11 shows the JTAG analog switches and DIP switch SW4.

X-Ref Target - Figure 1-10

Figure 1-10: JTAG Chain Block Diagram

UG954_c1_09_041113

3.3V

3.3V

FMC HPC

Connector

TDI TDO

J37

U1

Zynq-7000

XC7Z045

AP SoC

TDI

TDO

SN74AVC2T245

and

SN74LV541APWR

Buffers TDI

TDO

U10

FMC LPC

Connector

TDI TDO

J5

SPST Bus Switch

U32

N.C.

N.C.

SPST Bus Switch

U31

JTAG

Module TDO

TDI

U30

JTAG

Header

TDO

TDI

J3

JTAG

Header TDO

TDI

J62

3:1

Analog

Switch

U45

U46

U47

SW4

1

2

ON

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

34

UG954 (v1.8) August 6, 2019

Feature Descriptions

DIP switch SW4[1:2] setting 10 selects the 14-pin header J3 for configuration using either a Parallel Cable IV (PC4) or Platform Cable USB II. DIP switch SW4 setting 01 selects the USB-to-JTAG Digilent bridge U30 for configuration over a Standard-A to Micro-B USB cable. DIP switch SW4 setting 11 selects the JTAG 20-pin header at J62. The four JTAG signals TDI, TDO, TCK, and TMS would be connected to J62 through flying leads from a JTAG cable. The 3-to-1 analog switch settings are shown in Table 1-11.

X-Ref Target - Figure 1-11

Figure 1-11: PL JTAG Programming Source Analog Switch

UG954_c1_10_041113

SDA02H1SBD

SW4

VCC3V3

4

3

JTAG_SEL_1

JTAG_SEL_2

R20

4.7kΩ

0.1 W

5%

R21

4.7kΩ

0.1 W

5%

GND

1

2

JTAG_TCK

U47

TS5A3359

SP3T

ANALOG SWITCH

1

2

3

4

GND

8

6

5

7

IN2

IN1

V+

U46

TS5A3359

SP3T

ANALOG SWITCH

1

2

3

4

GND

8

6

5

7

IN2

IN1

V+

U45

TS5A3359

SP3T

ANALOG SWITCH

1

2

3

4

GND

8

6

5

7

IN2

IN1

V+

NO1

NO2

NO0

COM

NO1 NO2

NO0

COM

NO1

NO2

NO0

COM

VCC3V3

JTAG_TMS

JTAG_TDI

14PIN_JTAG_TCK

14PIN_JTAG_TDI

14PIN_JTAG_TMS

DIGILENT_TCK

DIGILENT_TMS

DIGILENT_TDI

20PIN_JTAG_TCK

20PIN_JTAG_TMS

20PIN_JTAG_TDI

To J3

Parallel Cable or

Platform Cable

(14 pins)

To U30

USB-to-JTAG

Digilent bridge

To J62

Parallel Cable

(20 Pins)

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

35

UG954 (v1.8) August 6, 2019

Feature Descriptions

FMC Connector JTAG Bypass

When an FPGA mezzanine card (FMC) is attached to HPC J37 or LPC J5 it is automatically added to the JTAG chain through electronically controlled single-pole single-throw (SPST) switches U32 and U31 respectively. The SPST switches are normally closed and transition to an open state when an FMC is attached. Switch U32 adds an attached FMC to the JTAG chain as determined by the FMC_HPC_PRSNT_M2C_B signal. Switch U31 adds an attached FMC to the JTAG chain as determined by the FMC_LPC_PRSNT_M2C_B signal. The attached FMC card must implement a TDI-to-TDO connection through a device or bypass jumper for the JTAG chain to be completed to the SoC U1.

The JTAG connectivity on the ZC706 board allows a host computer to download bitstreams to the SoC using the Xilinx® iMPACT software. In addition, the JTAG connector allows debug tools such as the Vivado serial I/O analyzer or a software debugger to access the SoC. The iMPACT software tool can also indirectly program the linear QSPI flash memory. To accomplish this, the iMPACT software configures the SoC with a temporary design to access and program the QSPI memory device.

Clock Generation

[Figure 1-3, callouts 7, 8, and 9]

The ZC706 evaluation board provides four clock sources for the XC7Z045 SoC. Table 1-12 lists the source devices for each clock.

Table 1-11: Switch SW4 Configuration Option Settings

Configuration Source

DIP Switch SW4

Switch 1 JTAG_SEL_1

Switch 2 JTAG_SEL_2

None

0

0

Cable Connector J3(2)

1

0

Digilent USB-to-JTAG interface U30

0

1

JTAG (flying lead) Header J62

1

1

Notes:

1.

0 = open, 1 = closed

2.

Default switch setting

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

36

UG954 (v1.8) August 6, 2019

Feature Descriptions

Table 1-13 lists the pin-to-pin connections from each clock source to the XC7Z045 SoC.

System Clock

[Figure 1-3, callout 7]

Table 1-12: ZC706 Evaluation Board Clock Sources

Clock Name

Clock Source

Description

System Clock

U64

SiT9102 2.5V LVDS 200 MHz fixed-frequency oscillator (SiTime).

See System Clock, page 36.

User Clock

U37

Si570 3.3V LVDS I C programmable oscillator, 156.250 MHz default (Silicon Labs). See Programmable User Clock, page 37.

User SMA Clock

J67(P), J68(N)

User clock input SMAs, limit input swing voltage to VADJ_FPGA setting (1.8V, 2.5V, 3.3V). See User SMA Clock Source, page 38.

PS Clock

U24

SIT8103 1.8V single-ended CMOS 33.3333 MHz fixed frequency oscillator (SiTime). See Processing System Clock Source, page 39.

GTX SMA REF Clock

J36(P), J31(N)

User clock input SMAs. See GTX SMA Clock (SMA_MGT_REFCLK_P and SMA_MGT_REFCLK_N), page 39.

Jitter Attenuated Clock

U60

Si5324C LVDS precision clock multiplier/jitter attenuator (Silicon Labs).

See Jitter Attenuated Clock, page 40.

Table 1-13: Clock Connections, Source to XC7Z045 SoC

Clock Source Pin

Net Name

I/O Standard

XC7Z045 (U1) Pin

U64.5

SYSCLK_N

LVDS

G9

U64.4

SYSCLK_P

LVDS

H9

U37.5

USRCLK_N

LVDS_25

AG14

U37.4

USRCLK_P

LVDS_25

AF14

J67.1

USER_SMA_CLOCK_P

LVDS_25

AD18

J68.1

USER_SMA_CLOCK_N

LVDS_25

AD19

J24.3

PS_CLK

NA(1)

A22 (Bank 500)

J36.1

SMA_MGT_REFCLK_P

NA(1)

W8

J31.1

SMA_MGT_REFCLK_N

NA(1)

W7

U60.29

SI5324_OUT_C_N

NA(1)

AC7

U60.28

SI5324_OUT_C_P

NA(1)

AC8

U60.17

REC_CLOCK_C_N

LVDS_25

AE20

U60.16

REC_CLOCK_C_P

LVDS_25

AD20

U60.3

SI5324_INT_ALM_LS

LVCMOS25

AJ25

U60.1

SI5324_RST_LS

LVCMOS25

W23

Notes:

1.

PS-side and GTX nets do not have an assigned I/O standard.

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

37

UG954 (v1.8) August 6, 2019

Feature Descriptions

The system clock source is an LVDS 200 MHz oscillator at U64. It is wired to a multi-region clock capable (MRCC) input on programmable logic (PL) bank 34. The signal pair is named SYSCLK_P and SYSCLK_N and each signal is connected to U1 (pins H9 and G9, respectively) on the XC7Z045 SoC.

Oscillator: SiTime SiT9102AI-243N25E200.00000 (200 MHz)

Frequency tolerance: 50 ppm

LVDS Differential Output

The system clock circuit is shown in Figure 1-12.

For more details, see the SiTime SiT9102 data sheet [Ref 21].

Programmable User Clock

[Figure 1-3, callout 8]

The ZC706 evaluation board has a programmable low-jitter 3.3V LVDS differential oscillator (U37) connected to the MRCC inputs of bank 10. This USRCLK_P and USRCLK_N clock signal pair is connected to XC7Z045 SoC U1 pins AF14 and AG14, respectively. On power-up the user clock defaults to an output frequency of 156.250 MHz. User applications can change the output frequency within the range of 10 MHz to 810 MHz through an I C interface. Power cycling the ZC706 evaluation board reverts the user clock to the default frequency of 156.250 MHz.

Programmable Oscillator: Silicon Labs Si570BAB0000544DG (10 MHz–810 MHz)

Frequency tolerance: 50 ppm

LVDS Differential Output

X-Ref Target - Figure 1-12

Figure 1-12: System Clock Source

UG954_c1_11_041113

GND

VCC2V5

SIT9102

200 MHz

Oscillator

OE

NC

GND

VCC

OUT_B

OUT

1

2

3

6

5

4

U64

R322

100Ω

1/20W 5%

SYSCLK_P

SYSCLK_N

C89

0.1 μF 10V

X5R

1

2

2

1

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

38

UG954 (v1.8) August 6, 2019

Feature Descriptions

The user clock circuit is shown in Figure 1-13.

See the Silicon Labs Si570 data sheet [Ref 22].

User SMA Clock Source

The ZC706 board provides a pair of SMAs for differential user clock input into PL Bank 9 (see Figure 1-14). The P-side SMA J67 signal USER_SMA_CLOCK_P is connected to U1 pin AD18, with the N-side SMA J68 signal USER_SMA_CLOCK_N connected to U1 pin AD19. Bank 9 Vcco is VADJ_FPGA, a variable voltage (1.8V, 2.5V, 3.3V) depending on the ZC706 FMC interface banks voltage. The USER_SMA_CLOCK input voltage swing should not exceed the board VADJ_FPGA voltage setting.

X-Ref Target - Figure 1-13

Figure 1-13: User Clock Source

X-Ref Target - Figure 1-14

Figure 1-14: User SMA Clock

UG954_c1_12_041113

GND

VCC3V3

1

2

3

8

7

6

U37

R37

4.7KΩ

1/10W

5%

C348

0.01 μF 25V

X7R

4

5

GND

VCC3V3

10 MHz-810 MHz

50PPM

Si570

Programmable

Oscillator NC

OE

GND

SCL

SDA

VDD

OUT_B-

OUT+

R323

100Ω

1/20W 5%

USRCLK SFP SDA USRCLK SFP SCL

USRCLK N

USRCLK P

1

2

1

2

1

2

UG954_c1_13_041113

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

39

UG954 (v1.8) August 6, 2019

Feature Descriptions

Processing System Clock Source

The Processing System (PS) clock source is a 1.8V LVCMOS single-ended fixed 33.33333 MHz oscillator at U24. It is wired to PS bank 500, pin A22 (PS_CLK), on the XC7Z045 SoC.

Oscillator: SiTime SiT8103AC-23-18E-33.33333 (33.3 MHz)

Frequency tolerance: 50 ppm

Single-ended output

The system clock circuit is shown in Figure 1-15.

For more details, see the SiTime SiT8103 data sheet [Ref 21].

GTX SMA Clock (SMA_MGT_REFCLK_P and SMA_MGT_REFCLK_N)

[Figure 1-3, callout 10]

The ZC706 board includes a pair of SMA connectors for a GTX clock wired to GTX Quad bank 111. This differential clock has signal names SMA_MGT_REFCLK_P and SMA_REFCLK_N, which are connected to SoC U1 pins W8 and W7 respectively.

External user-provided GTX reference clock on SMA input connectors

Differential Input

X-Ref Target - Figure 1-15

Figure 1-15: Processing System Clock Source

UG954_c1_14_041113

GND

VCCP1V8

SiT8103

Oscillator

33.33333 MHz

50 PPM

OE

GND

VCC

1

2

4

U24

R38

4.7KΩ

1/10W

5%

C349

0.01 μF 25V

X7R

3

GND

VCCP1V8

OUT

R173

24.9Ω

1/10W 1%

PS CLK

1

2

1

2

1

2

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

40

UG954 (v1.8) August 6, 2019

Feature Descriptions

Figure 1-16 shows this AC-coupled clock circuit.

Jitter Attenuated Clock

[Figure 1-3, callout 11]

The ZC706 board includes a Silicon Labs Si5324 jitter attenuator U60 on the back side of the board. SoC user logic can implement a clock recovery circuit and then output this clock to a differential I/O pair on I/O bank 9 (REC_CLOCK_C_P, SoC U1 pin AD20 and REC_CLOCK_C_N, SoC U1 pin AE20) for jitter attenuation. The jitter attenuated clock (Si5324_OUT_C_P, Si5324_OUT_C_N) is then routed as a reference clock to GTX Quad 110 inputs MGTREFCLK1P (SoC U1 pin AC8) and MGTREFCLK1N (SoC U1 pin AC7).

The primary purpose of this clock is to support CPRI/OBSAI applications that perform clock recovery from a user-supplied SFP/SFP+ module and use the jitter attenuated recovered clock to drive the reference clock inputs of a GTX transceiver. The jitter attenuated clock circuit is shown in Figure 1-17.

X-Ref Target - Figure 1-16

Figure 1-16: GTX SMA Clock Source

UG954_c1_15_041113

SMA_MGT_REFCLK_P

SMA_MGT_REFCLK_C_P

SMA

Connector

J36

GND

C145

0.01 μF 25V

X7R

SMA_MGT_REFCLK_N

SMA_MGT_REFCLK_C_N

SMA

Connector

J31

GND

C144

0.01 μF 25V

X7R

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

41

UG954 (v1.8) August 6, 2019

Feature Descriptions

See the Silicon Labs Si5324 data sheet [Ref 22].

GTX Transceivers

[Figure 1-3, callout 12]

The ZC706 board provides access to 16 GTX transceivers:

Four of the GTX transceivers are wired to the PCI Express x4 endpoint edge connector (P4) fingers

Eight of the GTX transceivers are wired to the FMC HPC connector (J37)

One GTX transceiver is wired to the FMC LPC connector (J5)

One GTX transceiver is wired to SMA connectors (RX: J32, J33 TX: J35, J34)

One GTX transceiver is wired to the SFP/SFP+ Module connector (P2)

X-Ref Target - Figure 1-17

Figure 1-17: Jitter Attenuated Clock

UG954_c1_16_041113

R89

4.7 KΩ 5%

SI5324_VCC

Si5324C-C-GM

Clock Multiplier/

Jitter Attenuator

VDD3

GND

XB

XA

NC5

32

6

30

29

28

U60

CKOUT1_N

7

33

CKOUT1_P

C137

0.1 μF 25V

X5R

C136

0.1 μF 25V

X5R

SI5324_XTAL_XA

GND2

GND1

XB

XA

X4

114.285 MHz

20 ppm

SI5324_OUT_C_N

SI5324_OUT_C_P

SI5324_OUT_N

SI5324_OUT_P

SI5324_XTAL_XB

GND

NC4

2

1

3

4

C138

0.1 μF 25V

X5R

C141

0.1 μF 25V

X5R

REC_CLOCK_P

REC_CLOCK_N

REC_CLOCK_C_P

REC_CLOCK_C_N

16

17

R251

100Ω

CKIN1_P

CKIN1_N

NC

NC

12

13

CKIN2_P

CKIN2_N

10

5

VDD2

VDD1

14

NC3

9

NC2

2

NC1

NC

NC

NC

NC

NC

35

34

NC

NC

CKOUT2_P

CKOUT2_N

SI5324_INT_ALM

3

NC 4

NC 11

NC 15 NC 18

19

20

SI5324_RST

1

21

31

GND2

9

GND1

31

A2_SS

31

A1

24

A0

22

RTC SI5324_SCL

SCL

23

RTC SI5324_SDA

SDA_SDO

27

NC

SDI

36

CMODE

GND

GND4

GND3

LOL

RATE1

RATE0

C2B

INT_C1B

CS_CA

RST_B

37

GNDPAD

0.1W

1%

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

42

UG954 (v1.8) August 6, 2019

Feature Descriptions

One GTX transceiver is unused and is wired in a capacitively coupled TX-to-RX loopback configuration

The GTX transceivers in Zynq-7000 series SoCs are grouped into four channels described as Quads. The reference clock for a Quad can be sourced from the Quad above or Quad below the GTX Quad of interest. There are four GTX Quads on the ZC706 board with connectivity as shown here:

Quad 109:

°

MGTREFCLK0 - FMC_HPC_GBTCLK0_M2C clock

°

MGTREFCLK1 - not connected

°

Contains 4 GTX transceivers allocated to FMC_HPC_DP[3:0]_C2M_P/N

Quad 110:

°

MGTREFCLK0 - FMC_HPC_GBTCLK1_M2C clock

°

MGTREFCLK1 - SI5324_OUT_C_P/N jitter attenuator clock

°

Contains 4 GTX transceivers allocated to FMC_HPC_DP[7:4]_C2M_P/N

Quad 111:

°

MGTREFCLK0 - FMC_LPC_GBTCLK0_M2C_C_P/N

°

MGTREFCLK1 - SMA_MGT_REFCLK_P/N SMA GTX clock input

°

Contains 1 GTX transceiver allocated to FMC_LPC_DP0_C2M_P/N

°

Contains 1 GTX transceiver allocated to SMA_MGT_TX_P/N and RX_P/N SMA connectors

°

Contains 1 GTX transceiver allocated to SFP_TX and _RX_P/N SFP/SFP+ connector

°

Contains 1 GTX transceiver which is unused and is wired in TX-to-RX loopback configuration

Quad 112:

°

MGTREFCLK0 - PCIE_CLK_Q0_P/N PCIe edge connector clock

°

MGTREFCLK1 - not connected

°

Contains 4 GTX transceivers allocated to PCIe lanes 0-3

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

43

UG954 (v1.8) August 6, 2019

Feature Descriptions

Table 1-15 lists the GTX Banks 109 and 110 interface connections between the SoC U1 and FMC HPC connector J37.

Table 1-14: SoC GTX Banks 109 and 110 Interface Connections to FMC HPC J37

Transceiver

Bank

SoC U1

Pin

Number

SoC U1 Pin Name

Schematic Net Name

Connected

Pin

Connected

Device

GTX_BANK_109

AK10

MGTPTXP0_109

FMC_HPC_DP0_C2M_P

C2

FMC HPC

J37

AK9

MGTPTXN0_109

FMC_HPC_DP0_C2M_N

C3

AH10

MGTPRXP0_109

FMC_HPC_DP0_M2C_P

C6

AH9

MGTPRXN0_109

FMC_HPC_DP0_M2C_N

C7

AK6

MGTPTXP1_109

FMC_HPC_DP1_C2M_P

A22

AK5

MGTPTXN1_109

FMC_HPC_DP1_C2M_N

A23

AJ8

MGTPRXP1_109

FMC_HPC_DP1_M2C_P

A2

AJ7

MGTPRXN1_109

FMC_HPC_DP1_M2C_N

A3

AJ4

MGTPTXP2_109

FMC_HPC_DP2_C2M_P

A26

AJ3

MGTPTXN2_109

FMC_HPC_DP2_C2M_N

A27

AG8

MGTPRXP2_109

FMC_HPC_DP2_M2C_P

A6

AG7

MGTPRXN2_109

FMC_HPC_DP2_M2C_N

A7

AK2

MGTPTXP3_109

FMC_HPC_DP3_C2M_P

A30

AK1

MGTPTXN3_109

FMC_HPC_DP3_C2M_N

A31

AE8

MGTPRXP3_109

FMC_HPC_DP3_M2C_P

A10

AE7

MGTPRXN3_109

FMC_HPC_DP3_M2C_N

A11

AD10

MGTREFCLK0P_109

FMC_HPC_GBTCLK0_M2C_C_P

D4

AD9

MGTREFCLK0N_109

FMC_HPC_GBTCLK0_M2C_C_N D5

AF10

MGTREFCLK1P_109

NC

NA

NA

AF9

MGTREFCLK1N_109

NC

NA

NA

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

44

UG954 (v1.8) August 6, 2019

Feature Descriptions

GTX_BANK_110

AH2

MGTPTXP0_110

FMC_HPC_DP4_C2M_P

A34

FMC HPC

J37

AH1

MGTPTXN0_110

FMC_HPC_DP4_C2M_N

A35

AH6

MGTPRXP0_110

FMC_HPC_DP4_M2C_P

A14

AH5

MGTPRXN0_110

FMC_HPC_DP4_M2C_N

A15

AF2

MGTPTXP1_110

FMC_HPC_DP5_C2M_P

A38

AF1

MGTPTXN1_110

FMC_HPC_DP5_C2M_N

A39

AG4

MGTPRXP1_110

FMC_HPC_DP5_M2C_P

A18

AG3

MGTPRXN1_110

FMC_HPC_DP5_M2C_N

A19

AE4

MGTPTXP2_110

FMC_HPC_DP6_C2M_P

B36

AE3

MGTPTXN2_110

FMC_HPC_DP6_C2M_N

B37

AF6

MGTPRXP2_110

FMC_HPC_DP6_M2C_P

B16

AF5

MGTPRXN2_110

FMC_HPC_DP6_M2C_N

B17

AD2

MGTPTXP3_110

FMC_HPC_DP7_C2M_P

B32

AD1

MGTPTXN3_110

FMC_HPC_DP7_C2M_N

B33

AD6

MGTPRXP3_110

FMC_HPC_DP7_M2C_P

B12

AD5

MGTPRXN3_110

FMC_HPC_DP7_M2C_N

B13

AA8

MGTREFCLK0P_110

FMC_HPC_GBTCLK1_M2C_P

B20

AA7

MGTREFCLK0N_110

FMC_HPC_GBTCLK1_M2C_N

B21

AC8

MGTREFCLK1P_110

SI5324_OUT_C_P

28

SI5324C

U60

AC7

MGTREFCLK1N_110

SI5324_OUT_C_N

29

Notes:

1.

SoC U1 GTX input clock nets are capacitively coupled to the FMC HPC J37 pins.

2.

SoC U1 GTX input clock nets are capacitively coupled to the SI5324C Recovery Clock U60 output pins.

Table 1-14: SoC GTX Banks 109 and 110 Interface Connections to FMC HPC J37 (Cont’d)

Transceiver

Bank

SoC U1

Pin

Number

SoC U1 Pin Name

Schematic Net Name

Connected

Pin

Connected

Device

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

45

UG954 (v1.8) August 6, 2019

Feature Descriptions

Table 1-15 lists the GTX Bank interface connections between the SoC U1 and FMC LPC connector J5.

For additional information on Zynq-7000 GTX transceivers, see 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476).

Table 1-15: SoC GTX Bank 111 Interface Connections to FMC LPC J5

Transceiver

Bank

SoC U1 Pin

Number

SoC U1 Pin Name

Schematic Net Name

Connected

Pin

Connected

Device

GTX_BANK_11

1

AB2

MGTPTXP0_111

FMC_LPC_DP0_C2M_P

C2

FMC LPC

J5

AB1

MGTPTXN0_111

FMC_LPC_DP0_C2M_N

C3

AC4

MGTPRXP0_111

FMC_LPC_DP0_M2C_P

C6

AC3

MGTPRXN0_111

FMC_LPC_DP0_M2C_N

C7

Y2

MGTPTXP1_111

SMA_MGT_TX_P

J35.1

GTX TX/RX

SMA

Y1

MGTPTXN1_111

SMA_MGT_TX_N

J34.1

AB6

MGTPRXP1_111

SMA_MGT_RX_P

J32.1

AB5

MGTPRXN1_111

SMA_MGT_RX_N

J33.1

W4

MGTPTXP2_111

SFP_TX_P

18

SFP+

Conn. P2

W3

MGTPTXN2_111

SFP_TX_N

19

Y6

MGTPRXP2_111

SFP_RX_P

13

Y5

MGTPRXN2_111

SFP_RX_N

12

V2

MGTPTXP3_111

(capacitively coupled to AA4)

U1.AA4

SoC U1

GTX

Loopback

V1

MGTPTXN3_111

(Cooperatively coupled to AA3)

U1.AA3

AA4

MGTPRXP3_111

See Pin V2 loopback

U1.V2

AA3

MGTPRXN3_111

See Pin V1 loopback

U1.V1

U8

MGTREFCLK0P_111

FMC_LPC_GBTCLK0_M2C_C_P

D4

FMC LPC

J5

U7

MGTREFCLK0N_111

FMC_LPC_GBTCLK0_M2C_C_N D5

W8

MGTREFCLK1P_111

SMA_MGT_REFCLK_P

J36.1

GTX

REFCLK

SMA

W7

MGTREFCLK1N_111

SMA_MGT_REFCLK_N

J31.1

Notes:

1.

SoC U1 GTX input clock nets are capacitively coupled to the FMC LPC J5 pins.

2.

SoC U1 GTX input nets are capacitively coupled to the RX and MGT_REFCLK SMA pins.

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

46

UG954 (v1.8) August 6, 2019

Feature Descriptions

PCI Express Endpoint Connectivity

[Figure 1-3, callout 13]

The 4-lane PCI Express edge connector performs data transfers at the rate of 2.5 GT/s for a Gen1 application and 5.0 GT/s for a Gen2 application. The PCIe transmit and receive signal data paths have a characteristic impedance of 85Ω ±10%. The PCIe clock is routed as a 100Ω differential pair.

The XC7Z045-2FFG900C SoC (-2 speed grade) included with the ZC706 board supports up to Gen2 x4.

The PCIe clock is input from the edge connector. It is AC coupled to the SoC through the MGTREFCLK0 pins of Quad 112. PCIE_CLK_Q0_P is connected to SoC U1 pin N8, and the _N net is connected to pin N7. The PCI Express clock circuit is shown in Figure 1-18.

PCIe lane width/size is selected by jumper J19 (Figure 1-18). The default lane size selection is 4-lane (J19 pins 3 and 4 jumpered).

X-Ref Target - Figure 1-18

Figure 1-18: PCI Express Clock

UG954_c1_17_041113

PCI Express

Eight-Lane

Edge connector

GND

GND

A15

A13

A14

P4

REFCLK+

A12

GND

C352

0.01μF 25V

X7R

C353

0.01μF 25V

X7R

PCIE_CLK_Q0_P

PCIE_CLK_Q0_N

PCIE_CLK_Q0_C_P

PCIE_CLK_Q0_C_N

OE

REFCLK-

X-Ref Target - Figure 1-19

Figure 1-19: PCI Express Lane Size Select Jumper J19

UG954_c1_18_041113

PCIE_PRSNT_B

PCIE_PRSNT_X1

PCIE_PRSNT_X4

J19 1

3

2

4

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

47

UG954 (v1.8) August 6, 2019

Feature Descriptions

Table 1-18 lists the GTX Bank 112 interface connections between the SoC U1 and PCIe 4-lane connector P4.

For additional information about Zynq-7000 PCIe functionality, see 7 Series FPGAs

Integrated Block for PCI Express Product Guide for Vivado Design Suite (PG054). Additional information about the PCI Express standard is available [Ref 23].

Table 1-16: SoC GTX Bank 112 Interface Connections to PCIe 4-Lane Connector P4

Transceiver

Bank

SoC U1 Pin Number

SoC U1 Pin Name

Schematic Net Name

PCIe 4-Lane Conn. P4

Pin Number

GTX_BANK_112

T2

MGTPTXP0_112

PCIE_TX3_P

A29 (1)

T1

MGTPTXN0_112

PCIE_TX3_N

A30 (1)

V6

MGTPRXP0_112

PCIE_RX3_P

B27

V5

MGTPRXN0_112

PCIE_RX3_N

B28

R4

MGTPTXP1_112

PCIE_TX2_P

A25 (1)

R3

MGTPTXN1_112

PCIE_TX2_N

A26 (1)

U4

MGTPRXP1_112

PCIE_RX2_P

B23

U3

MGTPRXN1_112

PCIE_RX2_N

B24

P2

MGTPTXP2_112

PCIE_TX1_P

A21 (1)

P1

MGTPTXN2_112

PCIE_TX1_N

A22 (1)

T6

MGTPRXP2_112

PCIE_RX1_P

B19

T5

MGTPRXN2_112

PCIE_RX1_N

B20

N4

MGTPTXP3_112

PCIE_TX0_P

A16 (1)

N3

MGTPTXN3_112

PCIE_TX0_N

A17 (1)

P6

MGTPRXP3_112

PCIE_RX0_P

B14

P5

MGTPRXN3_112

PCIE_RX0_N

B15

N8

MGTREFCLK0P_112

PCIE_CLK_QO_P

A13 (1)

N7

MGTREFCLK0N_112

PCIE_CLK_QO_N

A14 (1)

R8

MGTREFCLK1P_112

NC

NA

R7

MGTREFCLK1N_112

NC

NA

Notes:

1.

PCIE_TXn_P/N and PCIE_CLK_Q0_P/N are capacitively coupled to the PCIe edge connector P4.

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

48

UG954 (v1.8) August 6, 2019

Feature Descriptions

SFP/SFP+ Module Connector

[Figure 1-3, callout 14]

The ZC706 board contains a small form-factor pluggable (SFP/SFP+) connector and cage assembly P2 that accepts SFP or SFP+ modules. Figure 1-20 shows the SFP/SFP+ module connector circuitry.

Table 1-17 lists the SFP+ module RX and TX connections to the SoC.

X-Ref Target - Figure 1-20

Figure 1-20: SFP+ Module Connector

UG954_c1_19_041113

GND12

GND1

GND2 GND3

GND4 GND5

GND6

GND7 GND8

GND9

GND10

TD_N

TD_P

VCCT

VCCR

RD_P

RD_N

LOS

VEET_3

VEET_2

VEER_3

VEER_1

VEER_2

VEET_1

RS0

RS1

MOD_ABS

SCL

SDA

TX_DISABLE

TX_FAULT

GND11

2-3: LOW BW TX

2-3: LOW BW RX

1-2: FULL BW RX

SFP Enable

1-2: FULL BW TX

SFP_RS1

SFP_VCCT

32

21

22

23

24

25

26

27

28

29

30

19

18

16

15

13

12

8

20

17

14

10

11

1

7

9

6

5

4

3

2

31

P2

SFP+ Module

Connector

74441-0010

SFP_LOS

SFP_TX_FAULT

SFP_IIC_SDA

SFP_IIC_SCL

SFP_RX_P

SFP_RX_N

SFP_TX_P

SFP_TX_DISABLE_TRANS

SFP_RS0

3

2

1

J38

J39

1

2

J17

HDR_1X2

SFP_MOD_DETECT

1

J21

SFP_TX_N

SFP_VCCR

R87

4.7KΩ

L7

4.7μH

3.0 A

VCC3V3

C135

0.1μF

GND

VCC3V3

L6

4.7μH

3.0 A

C199

22μF

C134

0.1μF

C198

22μF

GND

1

Q12

NDS331N

460 mW SFP_TX_DISABLE

3

2

R84

4.7KΩ

VCC3V3

GND

R83

4.7KΩ

R85

4.7KΩ

R86

4.7KΩ

1

J22

1

HDR_1X1

J20

HDR_1X3

R88

4.7KΩ

VCC3V3

VCC3V3

GND

GND

1

2

3

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

49

UG954 (v1.8) August 6, 2019

Feature Descriptions

Table 1-18 lists the SFP+ module control and status connections to the SoC.

For additional information about the enhanced Small Form Factor Pluggable (SFP+) module, see the SFF-8431 specification [Ref 24].

10/100/1000 Mb/s Tri-Speed Ethernet PHY (PS)

[Figure 1-3, callout 15]

The ZC706 evaluation board uses the Marvell Alaska PHY device (88E1116R) at U51 for Ethernet communications at 10 Mb/s, 100 Mb/s, or 1000 Mb/s. The board supports RGMII mode only. The PHY connection to a user-provided Ethernet cable is through a Halo HFJ11-1G01E RJ-45 connector (P3) with built-in magnetics.

On power-up, or on reset, the PHY is configured to operate in RGMII mode with PHY address 0b00111 using the settings shown in Table 1-19. These settings can be overwritten via software commands passed over the MDIO interface.

Table 1-17: SoC U1 to SFP+ Module Connections

SoC (U1) Pin

Schematic Net name

SFP+ Module (P2)

Pin

Name

Y5

SFP_RX_N

12

RD_N

Y6

SFP_RX_P

13

RD_P

W4

SFP_TX_P

18

TD_P

W3

SFP_TX_N

19

TD_N

AA18

SFP_TX_DISABLE_TRANS

3

TX_DISABLE

Table 1-18: SFP+ Module Control and Status Connections

SFP Control/ Status

Signal

Board Connection

SFP_TX_FAULT

Test Point J23

High = Fault

Low = Normal operation

SFP_TX_DISABLE

Jumper 17

Off = SFP Disabled

On = SFP enabled

SFP_MOD_DETECT

Test Point J24

High = Module not present

Low = Module present

SFP_RS0

Jumper 56

Jumper pins 1-2 = Full RX bandwidth

Jumper pins 2-3 = Reduced RX bandwidth

SFP_RS1

Jumper 55

Jumper pins 1-2 = Full TX bandwidth

Jumper pins 2-3 = Reduced TX bandwidth

SFP_LOS

Test Point J25

High = Loss of receiver signal

Low = Normal operation

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

50

UG954 (v1.8) August 6, 2019

Feature Descriptions

The Ethernet connections from the XC7Z045 SoC at U1 to the 88E1116R PHY device at U51 are listed in Table 1-20.

Ethernet PHY Clock Source

A 25.00 MHz 50 ppm crystal at X1 is the clock source for the 881116R PHY at U51.

Figure 1-21 shows the clock source.

Table 1-19: Board Connections for PHY Configuration Pins

U51 Pin

Setting

Configuration

CONFIG (64)

VCCP1V8

PHYAD[1]=1

PHYAD[0]=1

CONFIG1 (1)

PHY_LED0

PHYAD[3]=0

PHYAD[2]=1

CONFIG2 (2)

GND

ENA_XC=0

PHYAD[4]=0

PHY_LED0

ENA_XC=0

PHYAD[4]=1

VCCP1V8

ENA_XC=1

PHYAD[4]=1

CONFIG3 (3)

GND

RGMII_TX=0

RGMII_RX=0

PHY_LED0

RGMII_TX=0

RGMII_RX=1

PHY_LED1

RGMII_TX=1

RGMII_RX=0

VCCP1V8

RGMII_TX=1

RGMII_RX=1

Table 1-20: Ethernet Connections, XC7Z045 SoC to the PHY Device

XC7Z045 (U1) Pin

Schematic

Net Name

M88E1116R PHY U51

Pin Name

Bank

Pin

Number

Pin

Name

PS_MIO53

501

C18

PHY_MDIO

45

MDIO

PS_MIO52

501

D19

PHY_MDC

48

MDC

PS_MIO16

501

L19

PHY_TX_CLK

60

TX_CLK

PS_MIO21

501

J19

PHY_TX_CTRL

63

TX_CTRL

PS_MIO20

501

M20

PHY_TXD3

62

TXD3

PS_MIO19

501

J20

PHY_TXD2

61

TXD2

PS_MIO18

501

K20

PHY_TXD1

59

TXD1

PS_MIO17

501

K21

PHY_TXD0

58

TXD0

PS_MIO22

501

L20

PHY_RX_CLK

53

RX_CLK

PS_MIO27

501

G20

PHY_RX_CTRL

49

RX_CTRL

PS_MIO26

501

M17

PHY_RXD3

55

RXD3

PS_MIO25

501

G19

PHY_RXD2

54

RXD2

PS_MIO24

501

M19

PHY_RXD1

51

RXD1

PS_MIO23

501

J21

PHY_RXD0

50

RXD0

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

51

UG954 (v1.8) August 6, 2019

Feature Descriptions

The data sheet can be obtained under NDA with Marvell. Contact information can be found at their website [Ref 25].

For additional information on the Zynq-7000 SoC device gigabit Ethernet controller, see

Zynq-7000 SoC Overview (DS190) and Zynq-7000 SoC Technical Reference Manual (UG585).

USB-to-UART Bridge

[Figure 1-3, callout 17]

The ZC706 evaluation board contains a Silicon Labs CP2103GM USB-to-UART bridge device (U52) which allows a connection to a host computer with a USB port. The USB cable is supplied in the ZC706 evaluation kit (Standard-A end to host computer, Type Mini-B end to ZC706 evaluation board connector J21). The CP2103GM is powered by the USB 5V provided by the host PC when the USB cable is plugged into the USB port on the ZC706 evaluation board.

The CP2013GM TX and RX pins are wired to the UART_1 IP block within the XC7Z045 SoC PS I/O Peripherals set. The XC7Z045 SoC supports the USB-to-UART bridge using two signal pins: Transmit (TX) and Receive (RX).

Silicon Labs provides royalty-free Virtual COM Port (VCP) drivers for the host computer. These drivers permit the CP2103GM USB-to-UART bridge to appear as a COM port to communications application software (for example, TeraTerm or HyperTerm) that runs on the host computer. The VCP device drivers must be installed on the host PC prior to establishing communications with the ZC706 evaluation board.

The USB Connector pin assignments and signal definitions between J21 and U52 are listed in Table 1-21.

X-Ref Target - Figure 1-21

Figure 1-21: Ethernet PHY Clock Source

UG954_c1_20_041113

GND

R355

DNP

C495

18 pF 50V

NPO

C494

18 pF 50V

NPO

PHY XTAL OUT

X1 25.00 MHz

50 PPM

PHY XTAL IN

3

4

1

2

1

2

1

2

1

2

NC

NC

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

52

UG954 (v1.8) August 6, 2019

Feature Descriptions

Table 1-22 lists the USB connections between the XC7Z045 SoC PS Bank 501 and the CP2103 UART bridge.

Refer to the Silicon Labs website for technical information on the CP2103GM and the VCP drivers [Ref 22].

For additional information on the Zynq-7000 SoC device UART controller, see Zynq-7000 SoC Overview (DS190) and Zynq-7000 SoC Technical Reference Manual (UG585).

HDMI Video Output

[Figure 1-3, callout 18]

The ZC706 evaluation board provides a high-definition multimedia interface (HDMI®) video output using an Analog Devices ADV7511KSTZ-P HDMI transmitter at U53. The HDMI transmitter U53 is connected to the XC7Z045 SoC PL-side banks 12 and 13 and its output is provided on a Molex 500254-1927 HDMI type-A receptacle at P1. The ADV7511 supports 1080P 60Hz, YCbCr 4:4:4 encoding via 24-bit input data mapping.

The ZC706 evaluation board supports the following HDMI device interfaces:

24 data lines

Independent VSYNC, HSYNC

Single-ended input CLK

Interrupt Out pin to XC7Z045 SoC

Table 1-21: USB Connector J21 Pin Assignments and Signal Definitions

USB Connector (J21)

Net Name

Description

CP2103GM (U52)

Pin

Name

Pin

Name

1

VBUS

USB_UART_VBUS

+5V VBUS Powered

7

REGIN

8

VBUS

2

D_N

USB_UART_D_N

Bidirectional differential serial data (N-side)

4

D –

3

D_P

USB_UART_D_P

Bidirectional differential serial data (P-side)

3

D +

5

GND

USB_UART_GND

Signal ground

2

GND1

29

CNR_GND

Table 1-22: XC7Z045 SoC to CP2103 Connections

XC7045 SoC (U1)

Schematic Net

Name

CP2103GM Device (U52)

Pin Name Bank PIN Function Direction IOSTANDARD

PIN Function Direction

PS_MIO48

501

C19

TX

Output

LVCMOS18

USB_UART_RX

24

RXD

Input

PS_MIO49

501

D18

RX

Input

LVCMOS18

USB_UART_TX

25

TXD

Output

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

53

UG954 (v1.8) August 6, 2019

Feature Descriptions

I C

SPDIF

Figure 1-22 shows the HDMI codec circuit.

X-Ref Target - Figure 1-22

Figure 1-22: HDMI Codec Circuit

UG954_c1_21_041113

GND

GND

VCC3V3

GND

GND

OE

GND

OUT

VCC

D31 D32

D33

D34

D35

D12

D13 D14

D15

D29

D30

D1

D4

D5

D6

D28

D27

D26

D25

D24

D23

D22

D21

D20

D0

D19

D3

D2

D11

D10

D9

D8

D7

D16

GND10

DE

CLK

D18

D17

SPDIF

VSYNC

HSYNC

SDA

SCL

CEC_CLK

SPDIF_OUT

INT

PD

PVDD1

PVDD2

PVDD3

AVDD2

AVDD3

AVDD1

GND1

GND2

GND6

GND3

GND4

GND5

GND7

GND8

GND9

GND11

DVDD_3V

BGVDD

DVDD1

DVDD2

DVDD3

DVDD4

DVDD5

HPD

To HDMI

Connector

HDMI_SPDIF_OUT

61

60

59

58

57

84

83

82

81

63

62

95

92

91

90

64

65

66

67

68

69

70

71

72

96

73

93

94

85

86

87

88

89

80

44

97

79

74

78

10

2

98

56

55

50

46

45

38

21

24

25

34

41

29

99

100

23

18

20

22

27

31

37

75

47

26

76

77

49

19

1

30

U53 ADV7511

HDMI_D10

VADJ

HDMI_HEAC_C_N

HDMI_AVDD

HDMI_PLVDD

HDMI_PLVDD

2

1

X5R

25V

0.1μF

C88

HDMI_CLK

HDMI_HSYNC

HDMI_VSYNC

HDMI_INT

1

1%

1/10W

2.43KΩ

R165

R164

2.43 KΩ

1/10W

1%

IIC_SCL_HDMI

1

2

3

4

U50

12.00000 MHZ SIT8102

50 PPM

VCC2V5

IIC_SDA_HDMI

HDMI_DVDD

HDMI_DE

R163

2.43 KΩ

1/10W

1%

HDMI_SPDIF

HDMI_AVDD

HDMI_DVDD_3V

HDMI_D4

HDMI_D5

HDMI_D7

HDMI_D8

HDMI_D9

HDMI_D11

HDMI_D6

HEAC_P

HEAC_N

TX2_P

TX2_N

TX1_P

TX1_N

TX0_P

TX0_N

TXC_P

TXC_N

DDCSDA

DDCSCL

CEC

52

51

43

42

40

39

36

35

33

32

54

53

48

HDMI_CEC

HDMI_DDCSDA

HDMI_D0_P

HDMI_DDCSCL

HDMI_HEAC_N

HDMI_HEAC_P

HDMI_CLK_N

HDMI_CLK_P

HDMI_D2_N

HDMI_D2_P

HDMI_D1_N

HDMI_D1_P

HDMI_D0_N

To HDMI

Connector

DSD0

DSD1

DSD2

DSD3

DSD4

DSD5

DSD_CLK

I2S0

I2S2

I2S1

LRCLK

SCLK

I2S3

R_EXT

MCLK

2

1

2

1

2

1

2

3

4

5

6

7

8

9

12

14

13

17

16

15

28

11

R158

887Ω

1/10W 1%

R172

24.9Ω

1/10W 1%

HDMI_D22

HDMI_D16

HDMI_D17

HDMI_D19

HDMI_D20

HDMI_D21

HDMI_D23

HDMI_D18

HDMI_D34

HDMI_D28

HDMI_D28

HDMI_D31

HDMI_D32

HDMI_D33

HDMI_D35

HDMI_D30

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

54

UG954 (v1.8) August 6, 2019

Feature Descriptions

Table 1-23 lists the connections between the codec and the XC7Z045 SoC.

Table 1-23: XC7Z045 SoC U1 to HDMI Codec Connections (ADV7511)

XC7Z045 (U1)

Pin

Net Name

I/O Standard

ADV7511 (U53)

Pin Number

Pin Name

U24

HDMI_R_D4

LVCMOS25

92

D4

T22

HDMI_R_D5

LVCMOS25

91

D5

R23

HDMI_R_D6

LVCMOS25

90

D6

AA25

HDMI_R_D7

LVCMOS25

89

D7

AE28

HDMI_R_D8

LVCMOS25

88

D8

T23

HDMI_R_D9

LVCMOS25

87

D9

AB25

HDMI_R_D10

LVCMOS25

86

D10

T27

HDMI_R_D11

LVCMOS25

85

D11

AD26

HDMI_R_D16

LVCMOS25

80

D16

AB26

HDMI_R_D17

LVCMOS25

78

D17

AA28

HDMI_R_D18

LVCMOS25

74

D18

AC26

HDMI_R_D19

LVCMOS25

73

D19

AE30

HDMI_R_D20

LVCMOS25

72

D20

Y25

HDMI_R_D21

LVCMOS25

71

D21

AA29

HDMI_R_D22

LVCMOS25

70

D22

AD30

HDMI_R_D23

LVCMOS25

69

D23

Y28

HDMI_R_D28

LVCMOS25

64

D28

AF28

HDMI_R_D29

LVCMOS25

63

D29

V22

HDMI_R_D30

LVCMOS25

62

D30

AA27

HDMI_R_D31

LVCMOS25

61

D31

U22

HDMI_R_D32

LVCMOS25

60

D32

N28

HDMI_R_D33

LVCMOS25

59

D33

V21

HDMI_R_D34

LVCMOS25

58

D34

AC22

HDMI_R_D35

LVCMOS25

57

D35

V24

HDMI_R_DE

LVCMOS25

97

DE

R22

HDMI_R_HSYNC

LVCMOS25

98

HSYNC

U21

HDMI_R_VSYNC

LVCMOS25

2

VSYNC

P28

HDMI_R_CLK

LVCMOS25

79

CLK

AC23

HDMI_INT

LVCMOS25

45

INT

AC21

HDMI_R_SPDIF

LVCMOS25

10

SPDIF

AB22

HDMI_SPDIF_OUT_LS

LVCMOS25

46

SPDIF_OUT

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

55

UG954 (v1.8) August 6, 2019

Feature Descriptions

Table 1-24 lists the connections between the codec and the HDMI receptacle P1.

Information about the ADV7511KSTZ-P is available on the Analog Devices website [Ref 26].

For additional information about HDMI IP options, see the LogiCORE IP DisplayPort Product Guide for Vivado Design Suite (PG064).

I2C Bus

[Figure 1-3, callout 20]

The ZC706 evaluation board implements two I C ports on the XC7Z045 SoC. The PL-side I C port (IIC_SDA and _SCL_MAIN) is routed to level shifter U87. The PS-side I C port (PS_SDA and _SCL_MAIN) is routed to level shifter U88. The "output" side of the two level shifters are wired to the common I C bus IIC_SDA and _SCL_MAIN which is connected to TI Semiconductor PCA9548 1-to-8 channel I C bus switch (U65). The bus switch can operated at speeds up to 400 kHz.

IMPORTANT: The PCA9548 U65 RESET_B pin 24 is connected to FPGA U1 bank 501 pin F20 via level-shifter U25. FPGA pin F20 net IIC_MUX_RESET_B_LS must be driven High to enable I2C bus transactions with the devices connected to U65.

Table 1-24: ADV7511 to HDMI Receptacle Connections

ADV7511 (U53)

Net Name

HDMI Receptacle

P1 Pin

36

HDMI_D0_P

7

35

HDMI_D0_N

9

40

HDMI_D1_P

4

39

HDMI_D1_N

6

43

HDMI_D2_P

1

42

HDMI_D2_N

3

33

HDMI_CLK_P

10

32

HDMI_CLK_N

12

54

HDMI_DDCSDA

16

53

HDMI_DDCSCL

15

52

HDMI_HEAC_P

14

51

HDMI_HEAC_N

19

48

HDMI_CEC

13

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

56

UG954 (v1.8) August 6, 2019

Feature Descriptions

The ZC706 evaluation board I C bus topology is shown in Figure 1-23.

User applications that communicate with devices on one of the downstream I C buses must first set up a path to the desired bus through the U65 bus switch at I C address 0x74 (0b01110100). Table 1-25 lists the address for each bus.

Information about the PCA9548 is available on the TI Semiconductor website at [Ref 27].

For additional information on the Zynq-7000 SoC device I C controller, see Zynq-7000 SoC Overview (DS190) and Zynq-7000 SoC Technical Reference Manual (UG585).

X-Ref Target - Figure 1-23

Figure 1-23: I C Bus Topology

CH7 - PMBUS_DATA/CLK

PCA9548

12C 1-to-8

Bus Switch

U65

CH6 - FMC_LPC_IIC_SDA/SCL

CH5 - FMC_HPC_IIC_SDA/SCL

CH4 - IIC_RTC_SDA/SCL

CH3 - PORT_EXPANDER_SDA/SCL

CH2 - EEPROM_IIC_SDA/SCL

CH1 - IIC_SDA/SCL_HDMI

CH0 - USRCLK_SFP_SDA/SCL

XC7Z045 AP SoC

PS Bank 501

(1.8V)

U1

UG954_c1_22_04113

XC7Z045 AP SoC

PL Bank 10

(2.5V)

U1

PCA9517

I C

Level Shifter

U87

3.3 V

VADJ 2.5V

A

B

PCA9517

I C

Level Shifter

U88

3.3 V

VCCMIO_PS 1.8V

A

B

IIC_SDA/SCL_MAIN

PS_SDA/SCL_MAIN

IIC_SCL/SDA_MAIN

Table 1-25: I C Bus Addresses

Device

I C Switch Position

I C Address

Device

PCA9548 8-Channel bus switch

NA

0b1110100

PCA9548 U65

Si570 clock

0

0b1011101

Si570 U37

0b1010000

SFP+ Conn. P2

ADV7511 HDMI

1

0b0111001

ADV7511 U53

I2C EEPROM

2

0b1010100

M24C08 U9

I2C port expander and DDR3 SODIMM

3

0b0100001

Port Expander U16

0b1010000

0b0011000

DDR3 SODIMM J1

I2C real time clock and Si5324 clock

4

0b1010001

RTC8564JE U26

0b1101000

SI5324 U60

FMC HPC

5

0bxxxxx00

FMC HPC J37

FMC LPC

6

0bxxxxx00

FMC LPC J5

UCD90120A pmbus

7

0b1100101

UCD90120A U48

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

57

UG954 (v1.8) August 6, 2019

Feature Descriptions

Real Time Clock (RTC)

The Epson RTC-8564JE (U26) is an I C bus interface real-time clock that has a built-in 32.768 KHz oscillator with these features:

Frequency output options: 32.768 KHz, 1,024 Hz, 32 Hz or 1 Hz

Calendar output functions: Year, month, day, weekday, hour, minute and second

Clock counter, alarm and fixed-cycle timer interrupt functions

Back-up battery B3 Panasonic ML621S/DN, 3.0V rechargeable cell

Programming information for the RTC-8564JE is available in the RTC-8564JE/NB Application Manual [Ref 30].

Figure 1-24 shows the real time clock circuit.

Real time clock connections to the XC7Z045 SoC and the PCA9548 8-Channel bus switch are listed in Table 1-26. Refer to Table 1-25 for the RTC I C address.

Information about the RTC-8564JE is available at the Epson Electronics America website [Ref 31].

X-Ref Target - Figure 1-24

Figure 1-24: Real Time Clock Circuit

Table 1-26: Real Time Clock Connections

RTC-8564JE (U16) Pin

Net Name

Connects To

6

IIC_RTC_SCL

U65.11 (PCA9548 SC4)

7

IIC_RTC_SDA

U65.10 (PCA9548 SD4)

10

IIC_RTC_IRQ_1_B U1.AA17 (XC7Z045 SoC PL BANK 10)

UG954_c1_23_041113

VCC3V3

VCC2V5

VADJ

GND

IIC_RTC_SCL

B3

Panasonic

ML621S/DN

3V

C350

0.01μF

25V

X7R

1

J60

YELLOW

IIC_RTC_IRQ_1_B

IIC_RTC_SDA

D5

BAT54T1G

30V 400 mW

RTC-8564JE

Real Time Clock

Module

7

6

10

U26

16

15

14 13

INT

SCL

SDA

GND

CLKOUT

CLKOE

VCC

D4

BAT54T1G

30V 400 mW

D6

BAT54T1G

30V 400 mW

GND

GND

R270

10.0 KΩ

0.1W

R501

4.7 KΩ

0.1WW

1

2

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

58

UG954 (v1.8) August 6, 2019

Feature Descriptions

Status and User LEDs

Table 1-27 defines the status and user LEDs.

Table 1-27: Status LEDs

Reference

Designator

Net Name

LED Color

Description

DS1

POR

RED

Processor System Power-ON reset is active

DS2

FPGA_INIT_B

GRN/RED

Green: FPGA initialization was successful Red: FPGA initialization is in progress

DS3

DONE

GRN

FPGA bit file download is complete

DS8

GPIO_LED_LEFT

GRN

Geographically LEFT located user LED

DS9

GPIO_LED_CENTER

GRN

Geographically CENTER located user LED

DS10

GPIO_LED_RIGHT

GRN

Geographically RIGHT located user LED

DS11

VCCINT

GRN

VCCINT voltage on indicator

DS13

VCC1V5_PL

GRN

VCC1V5_PL voltage on indicator

DS15

VADJ_FPGA

GRN

VADJ_FPGA voltage on indicator

DS16

VCC3V3_FPGA

GRN

VCC3V3 voltage on indicator

DS20

PS_DDR_LINEAR_PG

GRN

VTTDDR_PS voltage on indicator

DS21

SODIMM_DDR_LINEAR_PG

GRN

VTTDDR_SODIMM voltage on indicator

DS22

VCC12_P

GRN

VCC12_P voltage on indicator

DS23

PWRCTL1_FMC_PG_C2M

GRN

FMC power good INDICATOR

DS24

CTRL1_PWRGOOD

GRN

Power Controller controlled voltage regulator outputs are all ≥ their minimum “good” threshold

DS25

U22_FLG

RED

USB 2.0 MOSFET power switch fault

DS26

LINEAR_POWER_GOOD

GRN

MGTAVCC, MGTAVTT, MGTVCCAUX voltage regulator outputs are all ≥ their minimum “good” threshold

DS27

VCCAUX

GRN

VCCAUX voltage on indicator

DS28

PHY_LED0

GRN

Ethernet PHY LED0

DS29

PHY_LED1

GRN

Ethernet PHY LED1

DS30

PHY_LED2

GRN

Ethernet PHY LED2

DS35

GPIO_LED_0

GRN

General Purpose user LED

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

59

UG954 (v1.8) August 6, 2019

Feature Descriptions

Ethernet PHY User LEDs

[Figure 1-3, callout 21]

The three Ethernet PHY user LEDs shown in Figure 1-25 are located near the RJ45 Ethernet jack P3. The on/off state for each LED is software dependent and has no specific meaning at Ethernet PHY power on.

Refer to the Marvell 881116R Alaska Gigabit Ethernet transceiver data sheet for details concerning the use of the Ethernet PHY user LEDs. They are referred to in the data sheet as LED0, LED1, and LED2. See the data sheet and other product information for the Marvell 881116R Alaska Gigabit Ethernet Transceiver [Ref 25].

User I/O

[Figure 1-3, callout 22–24]

The ZC706 evaluation board provides the following user and general purpose I/O capabilities:

Four user LEDs (callout 22)

°

GPIO_LED_LEFT DS8, GPIO_LED_CENTER DS9, GPIO_LED_RIGHT DS10, GPIO_LED_0 DS35

Three user pushbuttons (callout 23)

°

GPIO_SW_LEFT SW7, GPIO_SW_CENTER SW9, GPIO_SW_RIGHT SW8

PL CPU reset pushbutton

°

PL_CPU_RESET SW13

4-position user DIP Switch (callout 24)

X-Ref Target - Figure 1-25

Figure 1-25: Ethernet PHY User LEDs

UG954_c1_24_041113

1

3

2

Q4

NDS331N

460 mW

DS30

VCC3V3

PHY LED 2

1

3

2

Q6

NDS331N

460 mW

DS28

VCC3V3

PHY LED 0

388

261Ω

0.1W

1

3

2

Q5

NDS331N

460 mW

DS29

VCC3V3

PHY LED1

387

261Ω

0.1W

GND

GND

GND

386

261Ω

0.1W

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

60

UG954 (v1.8) August 6, 2019

Feature Descriptions

°

GPIO_DIP_SW[3:0] SW12

Two user GPIO male pin headers (callout 26)

2 x 6 0.1 in. pitch PMOD1 J57

2 x 6 0.1 in. pitch PMOD2 J58

User LEDs

[Figure 1-3, callout 22]

The ZC706 evaluation board supports four user LEDs connected to XC7Z045 SoC Banks 11, 33, and 35. Figure 1-26 shows the user LED circuits.

Table 1-28 lists the user LED connections to XC7Z045 SoC U1.

X-Ref Target - Figure 1-26

Figure 1-26: User LEDs

UG954_c1_25_041113

1

3

2

1

2

1

2

Q7

NDS331N

460 mW

DS8

VCC3V3

R390

261Ω

0.1W

1%

GND

1

3

2

Q8

NDS331N

460 mW

DS9

VCC3V3

R391

261Ω

0.1W

1%

GND

1

3

2

Q9

NDS331N

460 mW

DS10

VCC3V3

R392

261Ω

0.1W

1%

GND

GPIO_LED_

CENTER

GPIO_LED_

RIGHT

GPIO_LED_0

GPIO_LED_

LEFT

1

2

1

2

1

2

1

2

1

3

2

Q30

NDS331N

460 mW

DS35

VCC3V3

R544

261Ω

0.1W

1%

GND

1

2

1

2

Table 1-28: User LED Connections to XC7Z045 SoC U1 XC7Z045 SoC (U1) Pin Net Name

I/O Standard

LED Reference

Y21

GPIO_LED_LEFT

LVCMOS25

DS8

G2

GPIO_LED_CENTER

LVCMOS25

DS9

W21

GPIO_LED_RIGHT

LVCMOS25

DS10

A17

GPIO_LED_0

LVCMOS25

DS35

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

61

UG954 (v1.8) August 6, 2019

Feature Descriptions

User Pushbuttons

[Figure 1-3, callout 23]

Figure 1-27 shows the user pushbutton circuits.

Table 1-29 lists the user pushbutton connections to XC7Z045 SoC U1.

X-Ref Target - Figure 1-27

Figure 1-27: User Pushbuttons

VADJ

GPIO_SW_LEFT

R66

4.7 kΩ

0.1 W

5%

GND

4

3

2

1

SW7

VCC1V5_PL

GPIO_SW_CENTER

R72

4.7 kΩ

0.1 W

5%

GND

4

3

2

1

SW9

GPIO_SW_RIGHT

R67

4.7 kΩ

0.1 W

5%

GND

4

3

2

1

SW8

VCC1V5_PL

PL_CPU_RESET

R516

1.00K

1/16 W

1%

GND

1

3

2

1

SW13

VADJ

X22404-022719

Table 1-29: User Pushbutton Connections to XC7Z045 SoC U1 XC7Z045 SoC (U1) Pin Net Name

I/O Standard

Pushbutton Reference

AK25

GPIO_SW_LEFT

LVCMOS25

SW7

K15

GPIO_SW_CENTER

LVCMOS15

SW9

R27

GPIO_SW_RIGHT

LVCMOS25

SW8

A8

PL_CPU_RESET

LVCMOS15

SW13

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

62

UG954 (v1.8) August 6, 2019

Feature Descriptions

GPIO DIP Switch

Figure 1-28 shows the GPIO DIP switch circuit.

Table 1-30 lists the GPIO DIP switch connections to XC7Z045 SoC U1.

User PMOD GPIO Headers

[Figure 1-3, callout 26]

The ZC706 evaluation board GPIO 2 x 6 male headers J57 and J58 support Digilent Pmod Peripheral Modules. J57 pins (IIC_PMOD_[0:7]) are connected to the TI TCA6416APWR I2C expansion port device U16. J58 pins (PMOD1_[0:7]) are connected to the TI TXS0108E 3.3V-to-VADJ level-shifter U40.

See the Digilent website for information on Digilent Pmod Peripheral Modules [Ref 36].

Information about the TCA641APWR and TXS0108E devices is available at the Texas Instruments website [Ref 27].

X-Ref Target - Figure 1-28

Figure 1-28: GPIO DIP Switch

Table 1-30: GPIO DIP Switch Connections to XC7Z045 SoC at U1

XC7Z045 S0C (U1) Pin

Net Name

I/O Standard

DIP Switch SW12 Pin

AB17

GPIO_DIP_SW0

LVCMOS25

1

AC16

GPIO_DIP_SW1

LVCMOS25

2

AC17

GPIO_DIP_SW2

LVCMOS25

3

AJ13

GPIO_DIP_SW3

LVCMOS25

4

UG954_c1_27_041113

SDA02H1SBD

SW12

VADJ

8 7

GPIO_DIP_SW0

GPIO_DIP_SW1

R70

4.7 kΩ

0.1 W

5%

R71

4.7 kΩ

0.1 W

5%

1 2

R68

4.7 kΩ

0.1 W

5%

R69

4.7 kΩ

0.1 W

5%

GND

GPIO_DIP_SW2 GPIO_DIP_SW3

6

5

3

4

1

2

1

2

1

2

1

2

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

63

UG954 (v1.8) August 6, 2019

Feature Descriptions

Figure 1-29 shows the user GPIO male pin header circuits.

X-Ref Target - Figure 1-29

Figure 1-29: User GPIO Headers

PMOD1_0_LS

PMOD1_1_LS

PMOD1_2_LS

PMOD1_3_LS

PMOD1_4_LS

PMOD1_5_LS

PMOD1_6_LS

PMOD1_7_LS

PMOD1_0

PMOD1_1

PMOD1_2

PMOD1_3

PMOD1_4

PMOD1_5

PMOD1_6

PMOD1_7

HDR_2X6

VCC3V3

VCCA

A1

A2

A3

A4

A5

A6

A7

A8

OE

VCCB

B1

B2

B3

B4

B5

B6

B7

B8

GND

19

20

18

17

16

15

14

13

12

11

2

4

6

8

10

12

1

3

5

7

9

11

PMOD1_4

PMOD1_5

PMOD1_6

PMOD1_7

PMOD1_0

PMOD1_1

PMOD1_2

PMOD1_3

2

1

3

4

5

6

7

8

9

10

TSSOP_20

TCA6416APWR

U40

U16

GND

GND

UG954_c1_28_031715

R310

DNP

DNP

DNP

R330

0

1/10W

5%

R65

4.7

1/10W

5%

1

2

1

2

1

2

TXS0108E

C105

0.1UF

10V

X5R

C104

0.1UF

10V

X5R

J58

1

2

GND

1

2

GND

GND

PORT_EXPANDER_DDR3_SDA PORT_EXPANDER_DDR3_SCL

NC

IIC_PMOD_0

IIC_PMOD_1

IIC_PMOD_2

IIC_PMOD_3

IIC_PMOD_4

IIC_PMOD_5

IIC_PMOD_6

IIC_PMOD_7

FMC_VADJ_ON_R_B

FMC_LPC_PRSNT_M2C_B

FMC_HPC_PRSNT_M2C_B

FMC_HPC_PG_M2C

XADC_MUX_ADDR0

XADC_MUX_ADDR1

XADC_MUX_ADDR2

PL_PWR_ON_R

HDR_2X6

VCC3V3_PS

VCCP

VCCI

SDA

SCL

ADDR

RESET_B

INT_B

GND

P00

P01

P02

P03

P04

P05

P06

P07

P10

P11

P12

P13

P14

P15

P16

P17

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

2

4

6

8

10

12

1

3

5

7

9

11

IIC_PMOD_4

IIC_PMOD_5

IIC_PMOD_6

IIC_PMOD_7

IIC_PMOD_0

IIC_PMOD_1

IIC_PMOD_2

IICPMOD_3

24

2

23

22

21

3

1

12

VCC3V3_PS

VCC3V3_PS

TCA6416APWR

C97

0.1UF

10V

X5R

C96

0.1UF

10V

X5R

J57

1

2

GND

1

2

GND

GND

GND VADJ

VCC3V3

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

64

UG954 (v1.8) August 6, 2019

Feature Descriptions

Table 1-31 lists the GPIO Header connections to XC7Z045 SoC U1.

See Zynq-7000 SoC Technical Reference Manual (UG585) for information about the PS PJTAG functionality.

Switches

The ZC706 evaluation board includes a power and a configuration (PL PROG_B) switch:

Power On/Off slide switch SW1 (callout 27)

SW10 (FPGA_PROG_B), active-Low pushbutton (callout 28)

PS System Reset Pushbuttons

Power On/Off Slide Switch

[Figure 1-3, callout 27]

The ZC706 evaluation board power switch is SW1. Sliding the switch actuator from the Off to On position applies 12V power from J22 a 6-pin mini-fit connector. Green LED DS22 illuminates when the ZC706 evaluation board power is on. See Power Management for details on the onboard power system.

Table 1-31: GPIO Header Connections to XC7Z045 SoC at U1

TCA6416APWR (U16) PORT: Pin

Net Name

GPIO Header J57 Pin

P00:4

IIC_PMOD_0

J57.1

P01:5

IIC_PMOD_1

J57.3

P02:6

IIC_PMOD_2

J57.5

P03:7

IIC_PMOD_3

J57.7

P04:8

IIC_PMOD_4

J57.2

P05:9

IIC_PMOD_5

J57.4

P06:10

IIC_PMOD_6

J57.6

P07:11

IIC_PMOD_7

J57.8

XC7Z045 SoC (U1) Pin

Net Name

GPIO Header J58 Pin

AJ21

PMOD1_0

J58.1

AK21

PMOD1_1

J58.3

AB21

PMOD1_2

J58.5

AB16

PMOD1_3

J58.7

Y20

PMOD1_4

J58.2

AA20

PMOD1_5

J58.4

AC18

PMOD1_6

J58.6

AC19

PMOD1_7

J58.8

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

65

UG954 (v1.8) August 6, 2019

Feature Descriptions

CAUTION! Do NOT plug a PC ATX power supply 6-pin connector into J22 on the ZC706 Evaluation Board. The ATX 6-pin connector has a different pinout than J22. Connecting an ATX 6-pin connector into J22 will damage the ZC706 Evaluation Board and void the board warranty.

The ZC706 evaluation kit provides the adapter cable shown in Figure 1-30 for powering the ZC706 board from the ATX power supply 4-pin peripheral connector. The Xilinx part number for this cable is 2600304, and is equivalent to Sourcegate Technologies part number AZCBL-WH-1109-RA4. For information on ordering this cable, see [Ref 37].

Figure 1-31 shows the power connector J22, power switch SW1 and indicator LED DS22.

Program_B Pushbutton

[Figure 1-3, callout 28]

Switch SW10 grounds the XC7Z045 SoC PROG_B pin when pressed. This action clears the programmable logic configuration. The FPGA_PROG_B signal is connected to XC7Z045 SoC U1 pin Y9.

See 7 Series FPGAs Configuration User Guide, (UG470) for further details on configuring the 7 series FPGAs.

X-Ref Target - Figure 1-30

Figure 1-30: ATX Power Supply Adapter Cable

X-Ref Target - Figure 1-31

Figure 1-31: Power On/Off Switch SW1

UG954_c1_29_041113

To ATX 4-Pin Peripheral Power Connector

To J22 on ZC706 Board

UG954_c1_30_041113

VCC12_P_IN

VCC12_P

R171

2.15kΩ

.1W

1%

INPUT_GND

1

2

3

4

SW1

GND

C568

330 μF

25V

C319

1μF

25V

GND

DS22

5

6

J22

1

2

3

4

5

6

12V

N/C

COM

12V

N/C

COM

INPUT_GND

U18 50Ω

1

3

8

7

6

5

1

2

1

2

1

2

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

66

UG954 (v1.8) August 6, 2019

Feature Descriptions

Figure 1-32 shows SW10.

PS Power-On and System Reset Pushbuttons

Figure 1-33 shows the reset circuitry for the processing system.

Depressing and then releasing pushbutton SW1 causes PS_POR_B_SW to strobe low.

PS_POR_B: This reset is used to hold the PS in reset until all PS power supplies are at the required voltage levels. It must be held Low through PS power-up. PS_POR_B should be generated by the power supply power-good signal.

X-Ref Target - Figure 1-32

Figure 1-32: PROG_B Pushbutton SW10

UG954_c1_31_041113

FPGA_PROG B

VCC3V3

R73

4.7 kΩ

0.1 W

5%

GND

2

1

3

4

SW10

X-Ref Target - Figure 1-33

Figure 1-33: PS Power On and System Reset Circuitry

UG954_c1_32_032916

MAX16025 Dual Voltage Monitor and Sequencer

2 3

6

13

9

4

U8

7

8

TH1

12

11

10

15

17

14

16

5

TH0

TOL

MR_B

EN2

EN1

IN2

IN1

GND

EPAD

CRESET

CDLY2

CDLY1

OUT2

OUT1

RST_B

1

VCC

VCCP1V8

R177

8.06 KΩ

0.1W

1%

R264

10.0 Ω

0.1W

1%

VCCP1V8

R265

10.0 KΩ

0.1W

1%

R149

249Ω

0.1W

1%

R176

8.06 KΩ

0.1W

1%

R256

10.0 KΩ

0.1W

1%

R263

10.0 KΩ

0.1W

1%

R262

10.0 KΩ

0.1W

1%

R261

10.0 K

0.1W

1%

J7

1

2

SW3

1

2

SW2

GND

VCCP1V8

PS_POR_B

PS_SRST_B

C8

DNP

DNP

xxx

C7

0.1 μf

25V

X5R

C6

5600 pF

25V

X5R

GND

VCC3V3_PS

DS1

GND

PS_POR_B_SW PS_SRST_B_SW

1

2

3

J44

VCCP1V8

R266

10.0 KΩ

0.1W

1%

1

2

3

J43

PS_POR_B PS_SRST_B

VCC3V3

C8 = DNP, SRST delay = 35 μS C6 = 5600 pF, POR delay = 22.4 mS

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

67

UG954 (v1.8) August 6, 2019

Feature Descriptions

Depressing and then releasing pushbutton SW3 causes PS_SRST_B_SW (connected to the XC7Z045 SoC U1 dedicated PS Bank 500 pin D21) to strobe low.

PS_SRST_B: This reset is used to force a system reset. It can be tied or pulled High, and can be High during the PS supply power ramps.

See Zynq-7000 SoC Technical Reference Manual (UG585) for information concerning the resets.

FPGA Mezzanine (FMC) Card Interface

[Figure 1-3, callout 30 and 31]

The ZC706 evaluation board supports the VITA 57.1 FPGA Mezzanine Card (FMC) specification by providing subset implementations of the high pin count (HPC) connector at J37 and low pin count (LPC) version at J5. Both connectors use a 10 x 40 form factor. The HPC connector is populated with 400 pins, while the LPC connector is partially populated with 160 pins. The connectors are keyed so that a mezzanine card, when installed in either of these FMC connectors on the ZC706 evaluation board, faces away from the ZC706 board.

Connector Type:

Samtec SEAF Series, 1.27 mm (0.050 in) pitch. Mates with SEAM series connector

More information about SEAF series connectors is available at the Samtec website [Ref 32]. More information about the VITA 57.1 FMC specification is available at the VITA FMC Marketing Alliance website [Ref 38].

HPC Connector J37

[Figure 1-3, callout 30]

The 400-pin HPC connector defined by the FMC specification (Figure B-2, page 93) provides connectivity for up to:

160 single-ended or 80 differential user-defined signals

10 GTX transceivers

2 GTX clocks

4 differential clocks

159 ground and 15 power connections

The connections between the HPC connector at J37 and SoC U1 (Table 1-32) implements a subset of this connectivity:

34 differential user-defined pairs (34 LA pairs, LA00–LA33)

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

68

UG954 (v1.8) August 6, 2019

Feature Descriptions

8 GTX transceivers

2 GTX clocks

2 differential clocks

159 ground and 15 power connections

The ZC706 board V ADJ voltage for the J37 and J5 connectors is determined by the FMC V ADJ power sequencing logic described in the Power Management, page 79.

Note: HPC FMC (J37) GA0 = GA1 = 0 = GND.

Table 1-32 shows the J37 HPC FMC to SoC U1 connections.

Table 1-32: J37 HPC FMC Connections to XC7Z045 SoC U1

J37 FMC

HPC Pin

Net Name

I/O Standard

XC7Z045

(U1) Pin

J37 FMC

HPC Pin

Net Name

I/O Standard

XC7Z045

(U1) Pin

A2

FMC_HPC_DP1_M2C_P

(1)

AJ8

B1

NC

N/A

N/A

A3

FMC_HPC_DP1_M2C_N

(1)

AJ7

B4

NC

N/A

N/A

A6

FMC_HPC_DP2_M2C_P

(1)

AG8

B5

NC

N/A

N/A

A7

FMC_HPC_DP2_M2C_N

(1)

AG7

B8

NC

N/A

N/A

A10

FMC_HPC_DP3_M2C_P

(1)

AE8

B9

NC

N/A

N/A

A11

FMC_HPC_DP3_M2C_N

(1)

AE7

B12

FMC_HPC_DP7_M2C_P

(1)

AD6

A14

FMC_HPC_DP4_M2C_P

(1)

AH6

B13

FMC_HPC_DP7_M2C_N

(1)

AD5

A15

FMC_HPC_DP4_M2C_N

(1)

AH5

B16

FMC_HPC_DP6_M2C_P

(1)

AF6

A18

FMC_HPC_DP5_M2C_P

(1)

AG4

B17

FMC_HPC_DP6_M2C_N

(1)

AF5

A19

FMC_HPC_DP5_M2C_N

(1)

AG3

B20

FMC_HPC_GBTCLK1_M2C_P

(1)

AA8

A22

FMC_HPC_DP1_C2M_P

(1)

AK6

B21

FMC_HPC_GBTCLK1_M2C_N

(1)

AA7

A23

FMC_HPC_DP1_C2M_N

(1)

AK5

B24

NC

N/A

N/A

A26

FMC_HPC_DP2_C2M_P

(1)

AJ4

B25

NC

N/A

N/A

A27

FMC_HPC_DP2_C2M_N

(1)

AJ3

B28

NC

N/A

N/A

A30

FMC_HPC_DP3_C2M_P

(1)

AK2

B29

NC

N/A

N/A

A31

FMC_HPC_DP3_C2M_N

(1)

AK1

B32

FMC_HPC_DP7_C2M_P

(1)

AD2

A34

FMC_HPC_DP4_C2M_P

(1)

AH2

B33

FMC_HPC_DP7_C2M_N

(1)

AD1

A35

FMC_HPC_DP4_C2M_N

(1)

AH1

B36

FMC_HPC_DP6_C2M_P

(1)

AE4

A38

FMC_HPC_DP5_C2M_P

(1)

AF2

B37

FMC_HPC_DP6_C2M_N

(1)

AE3

A39

FMC_HPC_DP5_C2M_N

(1)

AF1

B40

NC

N/A

N/A

C2

FMC_HPC_DP0_C2M_P

(1)

AK10

D1

PWRCTL1_FMC_PG_C2M

LVCMOS25

AB20

C3

FMC_HPC_DP0_C2M_N

(1)

AK9

D4

FMC_HPC_GBTCLK0_M2C_P

(1)

AD10

C6

FMC_HPC_DP0_M2C_P

(1)

AH10

D5

FMC_HPC_GBTCLK0_M2C_N

(1)

AD9

C7

FMC_HPC_DP0_M2C_N

(1)

AH9

D8

FMC_HPC_LA01_CC_P

LVCMOS25

AG21

C10

FMC_HPC_LA06_P

LVCMOS25

AG22

D9

FMC_HPC_LA01_CC_N

LVCMOS25

AH21

C11

FMC_HPC_LA06_N

LVCMOS25

AH22

D11

FMC_HPC_LA05_P

LVCMOS25

AH23

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

69

UG954 (v1.8) August 6, 2019

Feature Descriptions

C14

FMC_HPC_LA10_P

LVCMOS25

AG24

D12

FMC_HPC_LA05_N

LVCMOS25

AH24

C15

FMC_HPC_LA10_N

LVCMOS25

AG25

D14

FMC_HPC_LA09_P

LVCMOS25

AD21

C18

FMC_HPC_LA14_P

LVCMOS25

AC24

D15

FMC_HPC_LA09_N

LVCMOS25

AE21

C19

FMC_HPC_LA14_N

LVCMOS25

AD24

D17

FMC_HPC_LA13_P

LVCMOS25

AA22

C22

FMC_HPC_LA18_CC_P

LVCMOS25

W25

D18

FMC_HPC_LA13_N

LVCMOS25

AA23

C23

FMC_HPC_LA18_CC_N

LVCMOS25

W26

D20

FMC_HPC_LA17_CC_P

LVCMOS25

V23

C26

FMC_HPC_LA27_P

LVCMOS25

V28

D21

FMC_HPC_LA17_CC_N

LVCMOS25

W24

C27

FMC_HPC_LA27_N

LVCMOS25

V29

D23

FMC_HPC_LA23_P

LVCMOS25

P25

C30

FMC_HPC_IIC_SCL

N/A

U65.13

D24

FMC_HPC_LA23_N

LVCMOS25

P26

C31

FMC_HPC_IIC_SDA

N/A

U65.12

D26

FMC_HPC_LA26_P

LVCMOS25

R28

C34

GA0 = 0 = GND

N/A

N/A

D27

FMC_HPC_LA26_N

LVCMOS25

T28

C35

VCC12_P

N/A

N/A

D29

FMC_HPC_TCK_BUF

N/A

U23.15

C37

VCC12_P

N/A

N/A

D30

FMC_TDI_BUF

N/A

U23.18

C39

VCC3V3

N/A

N/A

D31

FMC_HPC_TDO_FMC_LPC_TDI

N/A

U32.2

D32

VCC3V3

N/A

N/A

D33

FMC_HPC_TMS_BUF

N/A

U23.17

D34

NC

N/A

N/A

D35

GA1 = 0 = GND

N/A

N/A

D36

VCC3V3

N/A

N/A

D38

VCC3V3

N/A

N/A

D40

VCC3V3

N/A

N/A

E2

NC

N/A

N/A

F1

FMC_HPC_PG_M2C

N/A

U16.16

E3

NC

N/A

N/A

F4

NC

N/A

N/A

E6

NC

N/A

N/A

F5

NC

N/A

N/A

E7

NC

N/A

N/A

F7

NC

N/A

N/A

E9

NC

N/A

N/A

F8

NC

N/A

N/A

E10

NC

N/A

N/A

F10

NC

N/A

N/A

E12

NC

N/A

N/A

F11

NC

N/A

N/A

E13

NC

N/A

N/A

F13

NC

N/A

N/A

E15

NC

N/A

N/A

F14

NC

N/A

N/A

E16

NC

N/A

N/A

F16

NC

N/A

N/A

E18

NC

N/A

N/A

F17

NC

N/A

N/A

E19

NC

N/A

N/A

F19

NC

N/A

N/A

E21

NC

N/A

N/A

F20

NC

N/A

N/A

E22

NC

N/A

N/A

F22

NC

N/A

N/A

E24

NC

N/A

N/A

F23

NC

N/A

N/A

E25

NC

N/A

N/A

F25

NC

N/A

N/A

Table 1-32: J37 HPC FMC Connections to XC7Z045 SoC U1 (Cont’d)

J37 FMC

HPC Pin

Net Name

I/O Standard

XC7Z045

(U1) Pin

J37 FMC

HPC Pin

Net Name

I/O Standard

XC7Z045

(U1) Pin

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

70

UG954 (v1.8) August 6, 2019

Feature Descriptions

E27

NC

N/A

N/A

F26

NC

N/A

N/A

E28

NC

N/A

N/A

F28

NC

N/A

N/A

E30

NC

N/A

N/A

F29

NC

N/A

N/A

E31

NC

N/A

N/A

F31

NC

N/A

N/A

E33

NC

N/A

N/A

F32

NC

N/A

N/A

E34

NC

N/A

N/A

F34

NC

N/A

N/A

E36

NC

N/A

N/A

F35

NC

N/A

N/A

E37

NC

N/A

N/A

F37

NC

N/A

N/A

E39

VADJ

N/A

N/A

F38

NC

N/A

N/A

F40

VADJ

N/A

N/A

G2

FMC_HPC_CLK1_M2C_P

LVCMOS25

U26

H1

NC

N/A

N/A

G3

FMC_HPC_CLK1_M2C_N

LVCMOS25

U27

H2

FMC_HPC_PRSNT_M2C_B

N/A

U16.15

G6

FMC_HPC_LA00_CC_P

LVCMOS25

AF20

H4

FMC_HPC_CLK0_M2C_P

LVCMOS25

AE22

G7

FMC_HPC_LA00_CC_N

LVCMOS25

AG20

H5

FMC_HPC_CLK0_M2C_N

LVCMOS25

AF22

G9

FMC_HPC_LA03_P

LVCMOS25

AH19

H7

FMC_HPC_LA02_P

LVCMOS25

AK17

G10

FMC_HPC_LA03_N

LVCMOS25

AJ19

H8

FMC_HPC_LA02_N

LVCMOS25

AK18

G12

FMC_HPC_LA08_P

LVCMOS25

AF19

H10

FMC_HPC_LA04_P

LVCMOS25

AJ20

G13

FMC_HPC_LA08_N

LVCMOS25

AG19

H11

FMC_HPC_LA04_N

LVCMOS25

AK20

G15

FMC_HPC_LA12_P

LVCMOS25

AF23

H13

FMC_HPC_LA07_P

LVCMOS25

AJ23

G16

FMC_HPC_LA12_N

LVCMOS25

AF24

H14

FMC_HPC_LA07_N

LVCMOS25

AJ24

G18

FMC_HPC_LA16_P

LVCMOS25

AA24

H16

FMC_HPC_LA11_P

LVCMOS25

AD23

G19

FMC_HPC_LA16_N

LVCMOS25

AB24

H17

FMC_HPC_LA11_N

LVCMOS25

AE23

G21

FMC_HPC_LA20_P

LVCMOS25

U25

H19

FMC_HPC_LA15_P

LVCMOS25

Y22

G22

FMC_HPC_LA20_N

LVCMOS25

V26

H20

FMC_HPC_LA15_N

LVCMOS25

Y23

G24

FMC_HPC_LA22_P

LVCMOS25

V27

H22

FMC_HPC_LA19_P

LVCMOS25

T24

G25

FMC_HPC_LA22_N

LVCMOS25

W28

H23

FMC_HPC_LA19_N

LVCMOS25

T25

G27

FMC_HPC_LA25_P

LVCMOS25

T29

H25

FMC_HPC_LA21_P

LVCMOS25

W29

G28

FMC_HPC_LA25_N

LVCMOS25

U29

H26

FMC_HPC_LA21_N

LVCMOS25

W30

G30

FMC_HPC_LA29_P

LVCMOS25

R25

H28

FMC_HPC_LA24_P

LVCMOS25

T30

G31

FMC_HPC_LA29_N

LVCMOS25

R26

H29

FMC_HPC_LA24_N

LVCMOS25

U30

G33

FMC_HPC_LA31_P

LVCMOS25

N29

H31

FMC_HPC_LA28_P

LVCMOS25

P30

G34

FMC_HPC_LA31_N

LVCMOS25

P29

H32

FMC_HPC_LA28_N

LVCMOS25

R30

G36

FMC_HPC_LA33_P

LVCMOS25

N26

H34

FMC_HPC_LA30_P

LVCMOS25

P23

G37

FMC_HPC_LA33_N

LVCMOS25

N27

H35

FMC_HPC_LA30_N

LVCMOS25

P24

G39

VADJ

N/A

N/A

H37

FMC_HPC_LA32_P

LVCMOS25

P21

H38

FMC_HPC_LA32_N

LVCMOS25

R21

H40

VADJ

N/A

N/A

Table 1-32: J37 HPC FMC Connections to XC7Z045 SoC U1 (Cont’d)

J37 FMC

HPC Pin

Net Name

I/O Standard

XC7Z045

(U1) Pin

J37 FMC

HPC Pin

Net Name

I/O Standard

XC7Z045

(U1) Pin

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

71

UG954 (v1.8) August 6, 2019

Feature Descriptions

LPC Connector J5

[Figure 1-3, callout 31]

The 160-pin LPC connector defined by the FMC specification (Figure B-1, page 92) provides connectivity for up to:

68 single-ended or 34 differential user-defined signals

1 GTX transceiver

J2

NC

N/A

N/A

K1

NC

N/A

N/A

J3

NC

N/A

N/A

K4

NC

N/A

N/A

J6

NC

N/A

N/A

K5

NC

N/A

N/A

J7

NC

N/A

N/A

K7

NC

N/A

N/A

J9

NC

N/A

N/A

K8

NC

N/A

N/A

J10

NC

N/A

N/A

K10

NC

N/A

N/A

J12

NC

N/A

N/A

K11

NC

N/A

N/A

J13

NC

N/A

N/A

K13

NC

N/A

N/A

J15

NC

N/A

N/A

K14

NC

N/A

N/A

J16

NC

N/A

N/A

K16

NC

N/A

N/A

J18

NC

N/A

N/A

K17

NC

N/A

N/A

J19

NC

N/A

N/A

K19

NC

N/A

N/A

J21

NC

N/A

N/A

K20

NC

N/A

N/A

J22

NC

N/A

N/A

K22

NC

N/A

N/A

J24

NC

N/A

N/A

K23

NC

N/A

N/A

J25

NC

N/A

N/A

K25

NC

N/A

N/A

J27

NC

N/A

N/A

K26

NC

N/A

N/A

J28

NC

N/A

N/A

K28

NC

N/A

N/A

J30

NC

N/A

N/A

K29

NC

N/A

N/A

J31

NC

N/A

N/A

K31

NC

N/A

N/A

J33

NC

N/A

N/A

K32

NC

N/A

N/A

J34

NC

N/A

N/A

K34

NC

N/A

N/A

J36

NC

N/A

N/A

K35

NC

N/A

N/A

J37

NC

N/A

N/A

K37

NC

N/A

N/A

J39

NC

N/A

N/A

K38

NC

N/A

N/A

K40

NC

N/A

N/A

Notes:

1.

No I/O standards are associated with MGT connections.

Table 1-32: J37 HPC FMC Connections to XC7Z045 SoC U1 (Cont’d)

J37 FMC

HPC Pin

Net Name

I/O Standard

XC7Z045

(U1) Pin

J37 FMC

HPC Pin

Net Name

I/O Standard

XC7Z045

(U1) Pin

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

72

UG954 (v1.8) August 6, 2019

Feature Descriptions

1 GTX clock

2 differential clocks

61 ground and 10 power connections

The connections between the HPC connector at J5 and SoC U1 implements a subset of this connectivity:

34 differential user-defined pairs (34 LA pairs, LA00–LA33)

1 GTX transceiver

1 GTX clock

2 differential clocks

61 ground and 9 power connections

Note: LPC FMC (J5) GA0 = GA1 = 0 = GND.

Table 1-33 shows the FMC LPC connections between J5 and XC7Z045 SoC U1.

Table 1-33: J5 LPC FMC Connections to SoC U1

J5 FMC

LPC Pin

Net Name

I/O Standard

XC7Z045

(U1) Pin

J5 FMC

LPC Pin

Net Name

I/O Standard

XC7Z045

(U1) Pin

C2

FMC_LPC_DP0_C2M_P

(1)

AB2

D1

PWRCTL1_FMC_PG_C2M

LVCMOS25

AB20

C3

FMC_LPC_DP0_C2M_N

(1)

AB1

D4

FMC_LPC_GBTCLK0_M2C_P

(1)

U8

C6

FMC_LPC_DP0_M2C_P

(1)

AC4

D5

FMC_LPC_GBTCLK0_M2C_N

(1)

U7

C7

FMC_LPC_DP0_M2C_N

(1)

AC3

D8

FMC_LPC_LA01_CC_P

LVCMOS25

AF15

C10

FMC_LPC_LA06_P

LVCMOS25

AB12

D9

FMC_LPC_LA01_CC_N

LVCMOS25

AG15

C11

FMC_LPC_LA06_N

LVCMOS25

AC12

D11

FMC_LPC_LA05_P

LVCMOS25

AE16

C14

FMC_LPC_LA10_P

LVCMOS25

AC14

D12

FMC_LPC_LA05_N

LVCMOS25

AE15

C15

FMC_LPC_LA10_N

LVCMOS25

AC13

D14

FMC_LPC_LA09_P

LVCMOS25

AH14

C18

FMC_LPC_LA14_P

LVCMOS25

AF18

D15

FMC_LPC_LA09_N

LVCMOS25

AH13

C19

FMC_LPC_LA14_N

LVCMOS25

AF17

D17

FMC_LPC_LA13_P

LVCMOS25

AH17

C22

FMC_LPC_LA18_CC_P

LVCMOS25

AE27

D18

FMC_LPC_LA13_N

LVCMOS25

AH16

C23

FMC_LPC_LA18_CC_N

LVCMOS25

AF27

D20

FMC_LPC_LA17_CC_P

LVCMOS25

AB27

C26

FMC_LPC_LA27_P

LVCMOS25

AJ28

D21

FMC_LPC_LA17_CC_N

LVCMOS25

AC27

C27

FMC_LPC_LA27_N

LVCMOS25

AJ29

D23

FMC_LPC_LA23_P

LVCMOS25

AJ26

C30

FMC_LPC_IIC_SCL

N/A

U65.15

D24

FMC_LPC_LA23_N

LVCMOS25

AK26

C31

FMC_LPC_IIC_SDA

N/A

U65.14

D26

FMC_LPC_LA26_P

LVCMOS25

AJ30

C34

GA0 = 0 = GND

N/A

N/A

D27

FMC_LPC_LA26_N

LVCMOS25

AK30

C35

VCC12_P

N/A

N/A

D29

FMC_LPC_TCK_BUF

N/A

U23.14

C37

VCC12_P

N/A

N/A

D30

FMC_HPC_TDO_FMC_LPC_TDI

N/A

U31.1

C39

VCC3V3

N/A

N/A

D31

FMC_LPC_TDO_FPGA_TDI

N/A

U31.2

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

73

UG954 (v1.8) August 6, 2019

Feature Descriptions

D32

VCC3V3

N/A

N/A

D33

FMC_LPC_TMS_BUF

N/A

U23.16

D34

NC

N/A

N/A

D35

GA1 = 0 = GND

N/A

N/A

D36

VCC3V3

N/A

N/A

D38

VCC3V3

N/A

N/A

D40

VCC3V3

N/A

N/A

G2

FMC_LPC_CLK1_M2C_P

LVCMOS25

AC28

H1

NC

LVCMOS25

G3

FMC_LPC_CLK1_M2C_N

LVCMOS25

AD28

H2

FMC_LPC_PRSNT_M2C_B

LVCMOS25

U16.14

G6

FMC_LPC_LA00_CC_P

LVCMOS25

AE13

H4

FMC_LPC_CLK0_M2C_P

LVCMOS25

AG17

G7

FMC_LPC_LA00_CC_N

LVCMOS25

AF13

H5

FMC_LPC_CLK0_M2C_N

LVCMOS25

AG16

G9

FMC_LPC_LA03_P

LVCMOS25

AG12

H7

FMC_LPC_LA02_P

LVCMOS25

AE12

G10

FMC_LPC_LA03_N

LVCMOS25

AH12

H8

FMC_LPC_LA02_N

LVCMOS25

AF12

G12

FMC_LPC_LA08_P

LVCMOS25

AD14

H10

FMC_LPC_LA04_P

LVCMOS25

AJ15

G13

FMC_LPC_LA08_N

LVCMOS25

AD13

H11

FMC_LPC_LA04_N

LVCMOS25

AK15

G15

FMC_LPC_LA12_P

LVCMOS25

AD16

H13

FMC_LPC_LA07_P

LVCMOS25

AA15

G16

FMC_LPC_LA12_N

LVCMOS25

AD15

H14

FMC_LPC_LA07_N

LVCMOS25

AA14

G18

FMC_LPC_LA16_P

LVCMOS25

AE18

H16

FMC_LPC_LA11_P

LVCMOS25

AJ16

G19

FMC_LPC_LA16_N

LVCMOS25

AE17

H17

FMC_LPC_LA11_N

LVCMOS25

AK16

G21

FMC_LPC_LA20_P

LVCMOS25

AG26

H19

FMC_LPC_LA15_P

LVCMOS25

AB15

G22

FMC_LPC_LA20_N

LVCMOS25

AG27

H20

FMC_LPC_LA15_N

LVCMOS25

AB14

G24

FMC_LPC_LA22_P

LVCMOS25

AK27

H22

FMC_LPC_LA19_P

LVCMOS25

AH26

G25

FMC_LPC_LA22_N

LVCMOS25

AK28

H23

FMC_LPC_LA19_N

LVCMOS25

AH27

G27

FMC_LPC_LA25_P

LVCMOS25

AF29

H25

FMC_LPC_LA21_P

LVCMOS25

AH28

G28

FMC_LPC_LA25_N

LVCMOS25

AG29

H26

FMC_LPC_LA21_N

LVCMOS25

AH29

G30

FMC_LPC_LA29_P

LVCMOS25

AE25

H28

FMC_LPC_LA24_P

LVCMOS25

AF30

G31

FMC_LPC_LA29_N

LVCMOS25

AF25

H29

FMC_LPC_LA24_N

LVCMOS25

AG30

G33

FMC_LPC_LA31_P

LVCMOS25

AC29

H31

FMC_LPC_LA28_P

LVCMOS25

AD25

G34

FMC_LPC_LA31_N

LVCMOS25

AD29

H32

FMC_LPC_LA28_N

LVCMOS25

AE26

G36

FMC_LPC_LA33_P

LVCMOS25

Y30

H34

FMC_LPC_LA30_P

LVCMOS25

AB29

G37

FMC_LPC_LA33_N

LVCMOS25

AA30

H35

FMC_LPC_LA30_N

LVCMOS25

AB30

G39

VADJ

N/A

N/A

H37

FMC_LPC_LA32_P

LVCMOS25

Y26

H38

FMC_LPC_LA32_N

LVCMOS25

Y27

H40

VADJ

N/A

N/A

Notes:

1.

No I/O standards are associated with MGT connections.

Table 1-33: J5 LPC FMC Connections to SoC U1 (Cont’d)

J5 FMC

LPC Pin

Net Name

I/O Standard

XC7Z045

(U1) Pin

J5 FMC

LPC Pin

Net Name

I/O Standard

XC7Z045

(U1) Pin

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

74

UG954 (v1.8) August 6, 2019

Feature Descriptions

ZC706 Board Power System

The ZC706 board hosts a power system based on the Texas Instruments (TI) UCD90120A power supply sequencer and monitor, and the LMZ31500 and LMZ31700 family voltage regulators.

UCD90120A Description

The UCD90120A is a 12-rail PMBus/I C addressable power-supply sequencer and monitor.

The device integrates a 12-bit ADC for monitoring up to 12 power-supply voltage inputs. Twenty-six GPIO pins can be used for power supply enables, power-on reset signals, external interrupts, cascading, or other system functions. Twelve of these pins offer pulse width modulation (PWM) functionality. Using these pins, the UCD90120A offers support for margining and general purpose PWM functions.

The TI Fusion Digital Power™ designer software is provided for device configuration. This PC-based graphical user interface (GUI) offers an intuitive interface for configuring, storing, and monitoring all system operating parameters.

LMZ31500 and LMZ31700 Family Regulator Description

The LMZ31520 SIMPLE SWITCHER® power module is a step-down DC-DC solution capable of driving up to 20A load. The LMZ31520 module can accept an input voltage rail between 3V and 14.5V and deliver an adjustable and highly accurate output voltage as low as 0.6V.

The LMZ31506 SIMPLE SWITCHER® power module is a step-down DC-DC solution capable of driving up to 6A load. The LMZ31506 module can accept an input voltage rail between 3V and 14.5V and deliver an adjustable and highly accurate output voltage as low as 0.6V. In older documentation this regulator was known as the TI TPS84621.

The LMZ31710 SIMPLE SWITCHER® power module is a step-down DC-DC solution capable of driving up to 10A load. The LMZ31710 module can accept an input voltage rail between 4.5V and 17V and deliver an adjustable and highly accurate output voltage as low as 0.6V.

These modules only requires two external resistors plus external capacitors to provide a complete power solution. These modules offer the following protection features: thermal shutdown, programmable input under-voltage lockout, output over-voltage protection, short-circuits protection, output current limit, and each allows startup into a pre-biased output.

The LMZ31710 sync input allows synchronization over the 200 kHz to 1,200 kHz switching frequency range and up to six modules can be connected in parallel for higher load currents.

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

75

UG954 (v1.8) August 6, 2019

Feature Descriptions

Table 1-34 shows the ZC706 board TI power system configuration for controller U48.

Table 1-34: ZC706 TI Controller U48 Power System Configuration

Sequencer

Schematic Page

Regulator Type, U#

Voltage Current

Page

Contents

Net Name

U48 PMBus

Addr 101

5 Rails

49

UCD90120A

50

Addr 101, Rail 1

VCCINT

LMZ31520 U42

1.0V

16A

51

Addr 101, Rail 2

VCCAUX, VCC1V8

LMZ31710 U98

1.8V

10A

52

Addr 101, Rail 3

VCC1V5_PL

LMZ31506 U85

1.5V

6A

53

Addr 101, Rail 4

VADJ_FPGA,VADJ

LMZ31506 U86

2.5V

6A

54

Addr 101, Rail 5

VCC3V3_FPGA,VCC3V3

LMZ31710 U15

3.3V

10A

Notes:

ZC706 boards prior to Rev. 2.0 implemented different voltage regulators for VCCINT, VCCAUX/VCC1V8, VCC1V5_PL, VADJ_FPGA/VADJ and VCC3V3_FPGA/VCC3V3. Refer to UG954 v1.3 and earlier, and to the schematic for the particular version of the ZC706 board prior to Rev. 2.0. Notes on ZC706 boards prior to Rev. 2.0:

1.

VCCINT is implemented utilizing 2xLMZ22008 8A components (U42, U43) in parallel which provides 16A capability.

2.

The 1.8V rails are supplied from a LMZ22010 10A component (U98).

3.

VCC1V5_PL and the 2.5V rails are supplied from TPS84621 6A components (U85, U86).

4.

The 3.3V rails are supplied from a LMZ22010 10A component (U15).

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

76

UG954 (v1.8) August 6, 2019

Feature Descriptions

Figure 1-34 shows the power system for UCD90120A U48 controller.

X-Ref Target - Figure 1-34

Figure 1-34: ZC706 TI UCD90120A Controller U48 Power System

Sense Connected

at Point of Load

GPIO (out)

FPWM (out)

ADC (in)

ADC (in)

GPIO (out)

Rail Enable

PWM Margin

Current Sense

Voltage Sense

Low Pwr Select

Vin

EN

FB

Vout

12V Input

Filter

Bulk Filter Caps

Low Power || Radj Low = 1.0V (Default) High = 0.9V

V

Input

Filter

Bulk Filter Caps

V

Vin

EN

FB

Vout

Vin

EN

FB

Vout

Vin

EN

FB

Vout

Vin

EN

FB

Vout

LMZ31520

U42

LMZ31710

U98

Rail Enable

PWM Margin

Current Sense

Voltage Sense

Rail Enable

PWM Margin

Current Sense

Voltage Sense

Rail Enable

PWM Margin

Current Sense

Voltage Sense

Rail Enable

PWM Margin

Current Sense

Voltage Sense

I0B

I1B

I2B

I3B

S[1:0]

YB

FMC_ADJ_SEL[1:0]

GPIO (out)

FPWM (out)

ADC (in)

ADC (in)

GPIO (out)

FPWM (out)

ADC (in)

ADC (in)

GPIO (out)

FPWM (out)

ADC (in)

ADC (in)

GPIO (out)

GPIO (out)

FPWM (out)

ADC (in)

ADC (in)

FMC_ADJ_SEL[1:0]

VCCINT 1.0V

UCD90120A Controller U48

VCCINT 1.0V Nom.

VCCAUX 1.8V Nom.

Input

Filter

Bulk Filter Caps

V

LMZ31506

U85

VCC1V5_PL 1.5V Nom.

Input

Filter

Bulk Filter Caps

V

LMZ31506

U86

VADJ_FPGA 2.5V Nom.

Input

Filter

Bulk Filter Caps

V

LMZ31710

U15

VCC3V3 FPGA 3.3V Nom.

U66

Dual 4-to-1 Mux

Sense Connected

at Point of Load

VCCAUX 1.8V

VCC1V8 1.8V

Sense Connected

at Point of Load

VADJ_FPGA 2.5V

VADDJ 2.5V

Sense Connected

at Point of Load

VCC3V3 FPGA 3.3V

VCC3V3 3.3V

Sense Connected

at Point of Load

VCC1V5_PL 1.5V

[ 1 0 ]

0

0

1

1

0

1

0

1

UG954_c1_33_041615

Notes:

1. Capacitors labeled Cf are bulk filter capacitors.

2. Voltage Sense is connected a point of load.

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

77

UG954 (v1.8) August 6, 2019

Feature Descriptions

The LMZ31520, LMZ31506, and LMZ31710 adjustable voltage regulators have their output voltage set through an external resistor. The regulator topology on the ZC706 board permits the TI UCD90120A module to monitor rail voltage and current. Voltage margining at +5% and -5% is also implemented.

Each voltage regulator’s external V OUT setting resistor is calculated and implemented as if the regulator is stand-alone. The TI UCD90120A module has two ADC inputs allocated per voltage rail, one input for the remote voltage sense connection, the other for the current sense resistor op amp output voltage connection. The TI UCD90120A ADC full scale input is 2.5V. The remote voltage feedback is scaled to approximately 2V if it exceeds 2V, that is, the V CCO_VADJ rail for the 2.5V and 3.3V modes, and the FPGA_3V3 rail also at 3.3V are

resistor-attenuated to scale the remotely sensed voltage at a ratio of 0.606 to give approximately 2V at the ADC input pin for a 3.3V remote sense value. Rails below 2V are not scaled.

Each rail’s current sense op amp has its gain set to provide approximately 2V maximum at the TI UCD90120A ADC input pin when the rail current is at its expected maximum current level, as can be seen in the U48 controller power system figure (Figure 1-34).

The TI UCD90120A module has an assignable group of GPIO pins with PWM capability. Each controller “channel” has a PWM GPIO pin wired to the associated voltage regulator V ADJ pin. The external V OUT setting resistor is also wired to this pin. The PWM GPIO pin is configured in 3-state mode. This pin is not driven unless a Margin command is executed. The Margin command is available within the TI Fusion Digital Power™ designer software.

During the margin-High or Low operation, the PWM GPIO pin drives a voltage into the voltage regulator V ADJ pin, which causes a slight voltage change resulting in the regulator V OUT moving to the margin +5% or -5% voltage commanded.

XADC Power System Measurement

The ZC706 board XADC interface includes power system voltage and current measuring capability. The V CCINT and V CCAUX rail voltages are measured using the XADC internal voltage measurement capability. Other rails are measured through an external Analog Devices ADG707BRU multiplexer U6. Each rail has a separate TI INA333 op amp strapped across its series current sense resistor Kelvin terminals. This op amp has its gain adjusted to give approximately 1V at the expected full scale current value for the rail.

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

78

UG954 (v1.8) August 6, 2019

Feature Descriptions

Figure 1-35 shows the XADC external MUX block diagram.

See Table 1-35 which lists the ZC706 XADC power system voltage and current measurement details for the external MUX U6.

X-Ref Target - Figure 1-35

Figure 1-35: XADC External MUX Block Diagram

Notes:

1.

_XADC_P/N = Remote Voltage Sense

2.

_XADC_CS_P/N = Current Sense From OP Amp

UG954_c1_34_041113

U1

U6

3.3 Scaled to 0.825V

ADG707BRU

Bank 35

ADIP L13

DA

DB

10PF

A0

A1

A2

3.01K

1.00K

GND

49.9

49.9

A[2:0]

P14 17

P15 18

P16 19

S1A/B

S2A/B

S3A/B

S4A/B

S5A/B

S6A/B

S7A/B

S8A/B

VCC3V3_FPGA_SENSE_P

VCC3V3_FPGA_XADC_P

VCC3V3_FPGA_SENSE_N

VADJ 2.5V Scaled to 0.625V

3.01K

1.00K

GND

VCC3V3_FPGA_SENSE_P

VCC3V3_FPGA_XADC_P

VCC3V3_FPGA_SENSE_N

Scaled to 0.75V

3.01K

1.00K

GND

VCC3V3_FPGA_SENSE_P

VCC3V3_FPGA_XADC_P

VCC3V3_FPGA_SENSE_N

VCCINT_XADC_CS_P/N

VCCAUX_XADC_CS_P/N

VCC1V5_PL_XADC_P/N

VCC1V5_PL_XADC_CS_P/N

VADJ_FPGA_XADC_P/N

VADJ_FPGA_XADC_CS_P/N

VCC3V3_PL_XADC_P/N

VCC3V3_PL_XADC_CS_P/N

AD1N K13

U16

XC7Z045

TCA6416APWR

12C Port

Expander

Table 1-35: XADC Measurements through MUX U6

Meas.

Type

Rail Name

Current

Range

Isense Op Amp

Schematic Net Name

8-to-1 MUX U6

MUX A[2:0]

Reference

Designator

Gain

Vo Range

Pin

Num

Pin

Name

V

VCCINT

NA

NA

NA

NA

XADC INTERNAL

NA

NA

NA

I

VCCINT CS

0A-8A

U69

20

0V-0.8V

VCCINT_XADC_CS_P

19

S1A

000

VCCINT_XADC_CS_N

11

S1B

V

VCCAUX

NA

NA

NA

NA

XADC INTERNAL

NA

NA

NA

I

VCCAUX CS

0A-4A

U68

50

0V-1V

VCCAUX_XADC_CS_P

20

S2A

001

VCCAUX_XADC_CS_N

10

S2B

V

VCC1V5_PL

NA

VCC1V5_PL REMOTE SENSE DIVIDED

TO DELIVER 0.75V ON

VCC1V5_PL_XADC_P

VCC1V5_PL_XADC_P

21

S3A

010

VCC1V5_PL_SENSE_N

9

S3B

I

VCC1V5_PL CS

0A-2A

U67

100

0V-1V

VCC1V5_PL_XADC_CS_P

22

S4A

011

VCC1V5_PL_XADC_CS_N

8

S4B

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

79

UG954 (v1.8) August 6, 2019

Feature Descriptions

Power Management

[Figure 1-3, callout 32]

The ZC706 board uses power regulators and a PMBus-compliant system controller from Texas Instruments to supply core and auxiliary voltages. The Texas Instruments Fusion Digital Power graphical user interface is used to monitor the voltage and current levels of the board power modules.

The PCB layout and power system design meet the recommended criteria described in Zynq-7000 SoC PCB Design and Pin Planning Guide (UG933).

The ZC706 evaluation board power distribution diagram is shown in Figure 1-36.

V

VADJ_FPGA

NA

VADJ_FPGA 2.5V REMOTE SENSE DIVIDED TO DELIVER 0.625V ON

VADJ_FPGA_XADC_P

VADJ_FPGA_XADC_P

23

S5A

100

VADJ_FPGA_SENSE_N

7

S5B

I

VADJ_FPGA CS

0A-2A

U70

100

0V-1V

VADJ_FPGA_XADC_CS_P

24

S6A

101

VADJ_FPGA_XADC_CS_N

6

S6B

V

VCC3V3_FPGA

NA

VCC3V3_FPGA REMOTE SENSE DIVIDED TO DELIVER 0.825V ON

VCC3V3_FPGA_XADC_P

VCC3V3_FPGA_XADC_P

25

S7A

110

VCC3V3_FPGA_SENSE_N

5

S7B

I

VCC3V3_FPGA CS

0A-2A

U97

100

0V-1V

VCC3V3_FPGA_XADC_CS_P

26

S8A

111

VCC3V3_FPGA_XADC_CS_N

4

S8B

Table 1-35: XADC Measurements through MUX U6 (Cont’d)

Meas.

Type

Rail Name

Current

Range

Isense Op Amp

Schematic Net Name

8-to-1 MUX U6

MUX A[2:0]

Reference

Designator

Gain

Vo Range

Pin

Num

Pin

Name

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

80

UG954 (v1.8) August 6, 2019

Feature Descriptions

The ZC706 evaluation board uses power regulators and PMBus compliant PWM system controllers from Texas Instruments to supply the core and auxiliary voltages listed in Table 1-36.

X-Ref Target - Figure 1-36

Figure 1-36: Onboard Power Regulators

Switching Module VCC1V8/VCCAUX 1.8V @ 10A U98 p. 51

Switching Module

VCC1V5_PL 1.5V @ 6A

U85

p. 52

Switching Module VADJ/VADJ _FPGA 2.5V @ 6A U96 p. 53

Switching Module VCC3V3/VCC3V3_FPGA 3.3V @ 10A U15 p. 54

Linear Regulator

MGTVCCAUX 1.8V @ 3A

U95

p. 57

Linear Regulator

VCC2V5 2.5V @ 1.5A

U19

p. 57

Linear Regulator

MGTAVCC 1.0V @ 3A

U93

p. 57

Linear Regulator

MGTAVTT 1.2V @ 3A

U94

p. 57

Linear Regulator

VCCAUX_IO 2.0V @ 3A

U92

p. 57

Source/Sink Regulator VTTDDR_PL 0.75V @ 3A U28

p. 56

Source/Sink Regulator VTTDDR_PS 0.75V @ 0.5A (3A Max) U27 p. 56

Switching Module

VCCINT 1.00V @ 16A

Power Controller 1

PMBus 0x65

Note: Page numbers reference the pages

on schematic 0381513

12V

PWR

Jack

J22

U42

p. 50

U48

p. 49

p. 48

Switching Dual VCC1V5_PS 1.5V @ 2.5A U104

p. 55

Switching Dual

VCCPINT 1.0V @ 1.5A

U104

p. 55

Switching Dual VCC3V3_PS 3.3V @ 2.5A U105

p. 55

Switching Dual

VCCP1V8 1.8V @ 1.5A

U105

p. 55

Linear Regulator V33D_CTL1 3.3V @ 0.25A U20

p. 49

Switching Regulator

VCC5V0 5.0V @ 2A

U44

p. 56

UG954_c1_35_031615

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

81

UG954 (v1.8) August 6, 2019

Feature Descriptions

VADJ Voltage Control

The V ADJ rail is set to 2.5V. When the ZC706 evaluation board is powered on, the state of the FMC_VADJ_ON_B signal wired to header J18 is sampled by the TI UCD90120A controller U48. If a jumper is installed on J18 signal FMC_VADJ_ON_B is held Low, and the TI controller U48 energizes the V ADJ rail at power on.

Table 1-36: Onboard Power System Devices

Device Type

Reference

Designator

Description

Power Rail

Net Name

Power Rail

Voltage

Schematic

Page

UCD90120A

U48

PMBus Controller, PMBus Addr = 101

49

LMZ31520RLG

U42

16A 0.6 - 3.6V Adj. Switching Regulator

VCCINT

1.00V

50

LMZ31710RVQ

U98

10A 0.6V - 5.5V Adj. Switching Regulator

VCCAUX

1.80V

51

LMZ31506RUQ

U85

6A 0.6V - 5.5V Adj. Switching Regulator

VCC1V5_PL

1.50V

52

LMZ31506RUQ

U86

6A 0.6V - 5.5V Adj. Switching Regulator

VADJ_FPGA

2.50V

53

LMZ31710RVQ

U15

10A 0.6V - 5.5V Adj. Switching Regulator

VCC3V3_FPGA

3.30V

54

TPS54291PWP

(Dual Output)

U104

2.5A 0.8V - 10V Adj. Switching Regulator

VCCPINT

1.00V

55

2.5A 0.8V - 10V Adj. Switching Regulator

VCC1V5_PS

1.50V

55

TPS54291PWP

(Dual Output)

U105

2.5A 0.8V - 10V Adj. Switching Regulator

VCCP1V8

1.80V

55

2.5A 0.8V - 10V Adj. Switching Regulator

VCC3V3_PS

3.30V

55

TPS51200DR

U27

3A Push/Pull Tracking Regulator

VTTDDR_PS

0.75V

56

TPS51200DR

U28

3A Push/Pull Tracking Regulator

VTTDDR_SODIMM

0.75V

56

TPS74901RGW

U92

3A 0.8V - 3.6V Adj. Linear Regulator

VCCAUX_IO

2.00V

57

TPS74901RGW

U93

3A 0.8V - 3.6V Adj. Linear Regulator

MGTAVCC

1.00V

57

TPS74901RGW

U94

3A 0.8V - 3.6V Adj. Linear Regulator

MGTAVTT

1.20V

57

TPS74901RGW

U95

3A 0.8V - 3.6V Adj. Linear Regulator

MGTVCCAUX

1.80V

57

TL1963A

U19

1.5A 1.21V - 3.3V Adj. Linear Regulator

VCC2V5

2.50V

57

TPS79433

U20

0.25A 3.3V Fixed Linear Regulator

V33D_CTL1

3.30V

49

LMZ31704RVQ

U44

2A 0.6V - 5.5V Adj. Switching Regulator

VCC5V0

5.00V

56

Notes:

1.

VCCINT max. current is 16A

2.

VCCBRAM 1.0V is also sourced from the Vccint rail

3.

VCC1V8 1.80V is also sourced from the Vccaux rail

4.

VADJ (1.80V/2.50V/3.30V) for the FMC connectors is also sourced from the Vadj_fpga rail

5.

VCC3V3 3.30V is also sourced from the Vcc3v3_fpga rail

6.

Paralleled dual LMZ22008TZ (U42/U43) 8A 0.8V - 6V Adj. Switching Regulators on ZC706 board versions prior to Rev. 2.0

7.

LMZ22010TZ (U98 VCCAUX, U15 VCC3V3_FPGA) 10A 0.8 - 6V Adj. Switching Regulators on ZC706 board versions prior to Rev. 2.0

8.

LMZ12002TZ U44 2A 0.8 - 6V Adj. Switching Regulator on ZC706 board versions prior to Rev. 2.0

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

82

UG954 (v1.8) August 6, 2019

Feature Descriptions

Because the rail turn on decision is made at power on time based on the presence of the J18 jumper, removing the jumper at J18 after the board is powered up does not affect the 2.5V power delivered to the V ADJ rail and it remains on.

A jumper installed at J18 is the default setting.

In this mode the user can control when to turn on V ADJ and to which voltage level (1.8V, 2.5V, 3.3V). With V ADJ off the XC7Z045 SoC still configures and has access to the TI controller PMBUS along with the FMC_VADJ_ON_B signal. The combination of these allows the user to develop code to command the V ADJ rail to be set to something other than the default setting of 2.5V. Once the new V ADJ voltage level has been programmed into TI controller U48, the FMC_VADJ_ON_B signal can be driven low by the user logic and the V ADJ rail comes up at the new V ADJ voltage level. Installing a jumper at J18 after a ZC706 board powers up in the V ADJ off (no jumper on J18 at ZC706 power up) mode turns on the V ADJ rail.

The FMC_VADJ_ON_B signal is connected to the TCA6416APWR I C port expander U16 pin 13 (see Figure 1-29). The XC7Z045 SoC is thus able to drive the FMC_VADJ_ON_B signal by writing to the I²C port expander U16.

The I C port expander IIC_PORT_EXPANDER SDA/SCL bus is wired to the PCA9548ARGER I C U65 bus switch (see I2C Bus, page 55).

Documentation describing PMBUS programming for the UCD90120A power controller is available at the website [Ref 27].

SoC Programmable Logic (PL) Voltage Control

All PL and PS power rails are enabled by default. When the ZC706 board is powered on, the state of the PL_PWR_ON signal wired to 2-pin header J66 is sampled by the TI UCD90120A controller U48. If a jumper is not installed on J66, signal PL_PWR_ON is held high, and the TI controller U48 energizes all the PL and PS power rails.

Because the rail turn on decision is made at power on time based on the presence of the J66 jumper, installing the jumper at J66 after the board is powered up does not affect power delivered to the any PS or PL rails, all rails remain on.

A jumper not installed at J66 is the default setting.

If a jumper is installed on J66 when the ZC706 board is powered on, signal PL_PWR_ON is held low, and the ZC706 board does not energize the PL side power rails at power on.

Monitoring Voltage and Current

Voltage and current monitoring and control are available for selected power rails through Texas Instruments' Fusion Digital Power Designer graphical user interface. The onboard TI power controller (U48 at address 101) is accessed through the PMBus connector J4, which is provided for use with the TI USB Interface Adapter PMBus pod (TI part number EVM USB-TO-GPIO), which can be ordered from the Texas Instruments website [Ref 28] and

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

83

UG954 (v1.8) August 6, 2019

Feature Descriptions

associated TI Fusion Digital Power Designer GUI (downloadable from the TI site [Ref 29]. This is the simplest and most convenient way to monitor the voltage and current values for the power rails listed in Table 1-37.

In the table, the Power Good (PG) On Threshold is the setpoint at or above which the particular rail is deemed "good". The PG Off Threshold is the setpoint at or below which the particular rail is no longer deemed "good". The controller internally OR's these per rail PG conditions together and drives an output PG pin high only if all active rail PG states are "good". The On and Off Delay and parameters are relative to when the board power on-off slide switch SW12 is turned on and off.

Table 1-37 Power Rail Specifications for UCD90120A PMBus controller at Address 101 defines the voltage and current values for each power rail controlled by the UCD90120A U48.

IMPORTANT: In Table 1-37, the values defined in the Shutdown columns are the voltage and current thresholds that cause the regulator to shut down if the value is exceeded.

The ZC706 power system rail turn on timing is not strictly controlled through the Turn On Delay shown in Table 1-37. The Table 1-37 Turn On Delay delay values are applied after the preceding rail has reached 90% of its nominal voltage. See Table 1-38 for rail turn on dependency details.

Table 1-37: Power Rail Specifications for UCD90120A PMBus Controller at Address 101

Device

Address

Rail

Nominal

Voltage

Power

Good

On

Power

Good

Off

Turn

On

Delay

(ms)

Turn

Off

Delay

(ms)

Shutdown

Over

Voltage

Over

Current

UCD90120A

U48

101d

1

VCCINT

1.000

0.900

0.850

0.0

25.0

1.150

11.50

2

VCCAUX

1.800

1.620

1.530

5.0

20.0

2.070

6.91

3

VCC1V5_PL

1.500

1.350

1.275

5.0

10.0

1.725

3.50

4

VADJ_FPGA

2.500

2.250

2.125

5.0

5.0

2.875

3.50

5

VCC3V3_FPGA

3.300

2.970

2.805

5.0

15.0

3.795

6.91

Notes:

1.

The values defined in these columns are the voltage and current thresholds that cause the regulator to shut down if the value is exceeded.

2.

See Table 1-39 for rail turn on dependency details.

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

84

UG954 (v1.8) August 6, 2019

Feature Descriptions

Cooling Fan

The XC7Z045 SoC cooling fan connector is shown in Figure 1-37.

When V ADJ is modified from a default of 2.5V to 1.8V or a lower V ADJ setting, the SoC U1 cooling fan turns off. Transistor Q1 is used to switch on the fan and has a max VGS of 2V, hence the fan is not guaranteed to work at 1.8V or lower V ADJ, setting. See [Ref 16].

The fan turns on when the ZC706 is powered up due to pull-up resistor R369. The SM_FAN_PWM and SM_FAN_TACH signals are wired to XC7Z045 SoC U1 pins AB19 and

Table 1-38: Power Rail Sequence On Dependencies for UCD90120A PMBus Controller at Address 101

Device

Address

Rail

Nominal

Voltage

Turn On Order

Turn On Timing

UCD90120A

101d

1

VCCINT

1.000

1

Turn on at board power-on

2

VCCAUX

1.800

2

5ms after VCCINT hits 90%

5

VCC3V3_FPGA

3.300

3

5ms after VCCAUX hits 90%

3

VCC1V5_PL

1.500

4

5ms after VCC3V3 hits 90%

4

VADJ_FPGA

2.500

5

5ms after VCC1V5_PL hits 90%

X-Ref Target - Figure 1-37

Figure 1-37: Cooling Fan Circuit

SM FAN TACH

SM FAN PWM

R279

10.0K

1/10W

1%

R278

10.0K

1/10W

1%

1

2

1

2

2

4

1

3

R190

4.75K

1/10W

1%

Q1

1.3W

NDT3055L

VADJ

GND

GND

J61

Keyed Fan Header

VCC12_P

R369

1.00K

1/16W

1%

1

2

1

2

D2

MM3Z2V7B

2.7V

460MW

2

1

D1

DL4148

100V

460MW

22_11_2032

1

2

1

2

3

UG954_c1_36_073013

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

85

UG954 (v1.8) August 6, 2019

Feature Descriptions

AA19 respectively, enabling the user to implement their own fan speed control IP in the SoC PL logic.

More information about the power system components used by the ZC706 evaluation board are available from the Texas Instruments digital power website [Ref 33].

XADC Analog-to-Digital Converter

[Figure 1-3, callout 33]

The XC7Z045 SoC provides an Analog Front End XADC block. The XADC block includes a dual 12-bit, 1 MSPS Analog-to-Digital Convertor (ADC) and on-chip sensors. See 7 Series FPGAs and Zynq-7000 SoC XADC Dual 12-Bit 1 MSPS Analog-to-Digital Converter User Guide (UG480) for details on the capabilities of the analog front end. Figure 1-38 shows the XADC block diagram.

X-Ref Target - Figure 1-38

Figure 1-38: XADC Block Diagram

XC7Z020

AP SoC

U1

VAUX0N

VAUX0P

VAUX8N

VAUX8P

XADC_VREF (1.25V)

VREFN

VCCADC

GNDADC

VN

VP

DXP

DXN

UG8954_c1_37_041715

100Ω

1 nF

100Ω

100Ω

1 nF

100Ω

To

Header

J63

Dual Use IO

(Analog/Digital)

100Ω

1 nF

100Ω

To

Header

J63

100 nF

XADC_AGND

REF3012

U38

Out In

Gnd

J52

XADC_AGND

To Header J63

10 μF

Ferrite Bead

Ferrite Bead

J13

J12

Star Grid

Connection

J54

XADC_VCC

XADC_AGND

GND

VREFP

XADC_VREFP

ADP123

U14

Out In

Gnd

XADC_AGND

10 μF

XADC_VCC Header J40

100 nF

XADC_AGND

To J54

XADC_VCC

J53

Ferrite Bead

VCCAUX

VCC5V0

10

μF

XADC_VCC5V0 To Header J63

1.8V 150 mV max

J14

Close to

Package Pins

Close to

Package Pins

1

2

3

1

2

3

1

2

3

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

86

UG954 (v1.8) August 6, 2019

Feature Descriptions

The ZC706 evaluation board supports both the internal XC7Z045 SoC sensor measurements and the external measurement capabilities of the XADC. Internal measurements of the die temperature, VCCINT, VCCAUX, and VCCBRAM are available.

Jumper J52 can be used to select either an external voltage reference (VREF) or on-chip voltage reference for the analog-to-digital converter.

For external measurements an XADC header (J63) is provided. This header can be used to provide analog inputs to the XC7Z045 SoC's dedicated VP/VN channel, and to the VAUXP[0]/VAUXN[0], VAUXP[8]/VAUXN[8] auxiliary analog input channels. Simultaneous sampling of Channel 0 and Channel 8 is supported.

A user-provided analog signal multiplexer card can be used to sample additional external analog inputs using the 4 GPIO pins available on the XADC header as multiplexer address lines. Figure 1-39 shows the XADC header connections.

Table 1-39 describes the XADC header J40 pin functions.

X-Ref Target - Figure 1-39

Figure 1-39: XADC Header (J63)

UG954_c1_38_041113

XADC_VP

XADC_VAUX0N

XADC_VAUX8P

XADC_DXN

XADC_VCC_HEADER

XADC_VN

XADC_VAUX0P

XADC_VAUX8N

XADC_DXP

XADC_VREF

XADC_GPIO_0

XADC_GPIO_2

XADC_GPIO_1

XADC_GPIO_3

J63

1

3

5

7

9

11

13

15

17

19

2

4

6

8

10

12

14

16

18

20

GND XADC_AGND

XADC_AGND

XADC_VCC5V0

VCC1V5_PL

Table 1-39: XADC Header J63 Pinout

Net Name

J63 Pin

Number

Description

VN, VP

1, 2

Dedicated analog input channel for the XADC.

XADC_VAUX0P, N

3, 6

Auxiliary analog input channel 0. Also supports use as I/O inputs when anti alias capacitor is not present.

XADC_VAUX8N, P

7, 8

Auxiliary analog input channel 8. Also supports use as I/O inputs when anti alias capacitor is not present.

DXP, DXN

9, 12

Access to thermal diode.

XADC_AGND

4, 5, 10

Analog ground reference.

XADC_VREF

11

1.25V reference from the board.

XADC_VCC5V0

13

Filtered 5V supply from board.

XADC_VCC_HEADER

14

Analog 1.8V supply for XADC.

VCC1V5_PL

15

VCCO supply for bank which is the source of DIO pins.

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

87

UG954 (v1.8) August 6, 2019

Feature Descriptions

GND

16

Digital Ground (board) Reference

XADC_GPIO_3, 2, 1, 0

19, 20, 17,

18

Digital I/O. These pins should come from the same bank. These IOs should not be shared with other functions because they are required to support three-state operation.

Table 1-39: XADC Header J63 Pinout (Cont’d)

Net Name

J63 Pin

Number

Description

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

88

UG954 (v1.8) August 6, 2019

Appendix A

Default Switch and Jumper Settings

The default switch and jumper settings for the ZC706 evaluation board are provided in this appendix.

Switches

[Figure 1-3, callout 24]

Default switch settings are listed in Table A-1. The locations of the ZC706 jumper headers called out in Table A-2 are shown in Figure A-1.

Table A-1: Default Switch Settings

Switch

Function

Default

Selects

Figure 1-3

Callout

SW1

Board main power On-Off Slide Switch

OFF

Delivered in OFF position

27

SW4

2-pole SPST DIP Switch, JTAG mode select signals JTAG_SEL_[1:2]

10

JTAG = cable connector J3

34

SW11

5-pole DPDT DIP Switch, PS Boot Mode select signals MIO[6:2]_SELECT

All Down

JTAG flat cable header J3

29

SW12

4-pole SPST DIP Switch, user signals GPIO_DIP_SW[0:3], poles [1:4]

All OFF

All = 0 (4.7K p/d to GND)

24

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

89

UG954 (v1.8) August 6, 2019

Jumpers

Jumpers

[Figure 1-3, callout 24]

Default jumper positions are listed in Table A-2.

Table A-2: Default Jumper Settings

Jumper

Callout

Jumper

Function

Default Jumper

Position

Option Selected

Schematic

0381513

Page

HDR_1 X 2

1

J6

J65

SoC U1 Bank 0 CFGBVS pin V9 logic 0/1 Select

(call out #1 applies to this, too): J65 is an INIT_B (pin 1) and DONE (pin 2) test header

OPEN

OPEN

CFGBVS pin V9 = 1

N/A

3

3

2

J7

U8 MAX16025 POR Device Reset MR_B pin 13 logic 0/1 Select

OPEN

U8 MR_B pin 13 = 1

15

3

J8

JTAG Header J62 pin 2 can be connected to 3.3V

OPEN

J62 pin 2 is NC

16

4

J9

U51 Ethernet PHY CONFIG2 pin 2 1K pull-down to logic 0 (GND)

1-2

U51 pin 2 CONFIG2 = 0

5

J10

U12 USB3320 2.0 Host/OTG or Device Select Header

1-2

HOST source VBUS power (from U22)

31

6

J11

U12 USB3320 2.0 RESET Header

OPEN

U12 not held in RESET

31

7

J12

U38 REF3012 VREF XADC_AGND-to-GND L3 inductor bypass

OPEN

L3 not bypassed

35

8

J13

U38 REF3012 VREF XADC_AGND-to-GND Select Header

1-2

XADC_AGND connected to GND

35

9

J14

XADC circuit VCC5V0 sources XADC_VCC5V0 Select Header

1-2

XADC_VCC5V0 = filtered (L1) VCC5V0

35

10

J15

ARM PJTAG Header J64 pin 2 can be connected to VADJ

OPEN

J64 pin 2 is NC

39

11

J17

SPF+ P2 pin 3 SFP_TX_DISABLE_TRANS logic 0/1 Select Header

OPEN

SPF+ P2 SFP TX is enabled (P2 pin 3 = 1)

41

12

J18

FMC_VADJ_ON_B Select Header

1-2

FMC VADJ enabled (U48 UCD90120A pin 37 = logic

0)

49

13

J19

PCIe® Lane Width Select Header

3-4

4-Lane PCIe selected

42

14

J66

PL_PWR_ON Header

OPEN

PL Power enabled (U48 UCD90120A pin 24 = logic 1)

49

15

J69

XADC Power System Vccint CS OpAmp U69 Gain Select Header

OPEN

U69 Current Sense OpAmp Gain = 10

45

16

J70

MIO Select Header MIO2 (Note: DIP SW11 pole 1 affects this signal)

1-2

QSPI0_IO0 = MIO2_SELECT

15

17

J71

MIO Select Header MIO3 (Note: DIP SW11 pole 2 affects this signal)

1-2

QSPI0_IO1 = MIO3_SELECT

15

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

90

UG954 (v1.8) August 6, 2019

Jumpers

18

J72

MIO Select Header MIO4 (Note: DIP SW11 pole 3 affects this signal)

1-2

QSPI0_IO4 = MIO2_SELECT

15

19

J73

MIO Select Header MIO5 (Note: DIP SW11 pole 4 affects this signal)

1-2

QSPI0_IO5 = MIO2_SELECT

15

20

J74

MIO Select Header MIO6 (Note: DIP SW11 pole 5 affects this signal)

1-2

QSPI0_CLK = MIO6_SELECT

15

HDR_1 X 3

21

J43

PS_SRST_B Select Header

1-2

PS_SRST_B = PS_SRST_B_SW (MAX16025 U8 pin 10)

15

22

J44

PS_POR_B Select Header

1-2

PS_POR_B = PS_POR_B_SW (MAX16025 U8 pin 11)

15

23

J45

U51 Ethernet PHY CONFIG3 pin 3 1K pull-up to 1.8V or 1 KΩ pull-down to GND Select Header

1-2

U51 pin 3 CONFIG3 = 1 (p/u to 1.8V)

29

24

J46

U51 Ethernet PHY CONFIG2 pin 2 tie to 1.8V or LED0 Select Header

OPEN

J9 sets U51 pin 2 CONFIG2 condition

29

25

J47

U51 Ethernet PHY CONFIG3 pin 3 LED1 or LED0 Select Header

OPEN

No connection to LED0 or LED1, J45 sets U51 pin 3 CONFIG3 condition

29

26

J48

U12 USB3320 2.0 MODE Select Header

2-3

HOST/OTG Mode selected

31

27

J49

USB 2.0 Micro-B connector J2 ID pin 4 function Select Header

1-2

J2 ID pin 4 connected to USB3320 U12 pin 23 ID

31

28

J50

USB_VBUS_SEL 1uF/120 uF capacitor to GND Select Header

2-3

USB_VBUS_SEL net has 120 uF to GND

31

29

J51

USB 2.0 Micro-B connector J2 ID shield pins connection Select Header

1-2

J2 shield pins to GND

31

30

J52

XADC_VREFP source Select Header

1-2

XADC_VREFP = XADC_VREF

35

31

J53

XADC_VCC source Select Header

1-2

XADC_VCC = VCCAUX 1.8V

35

32

J54

U38 REF3012 VREF Vin Select Header

2-3

U38 powered by XADC_VCC (U14 1.85V)

35

33

J55

SPF+ P2 SFP_RS1 BW Select Header

2-3

LOW BW TX selected

41

34

J56

SPF+ P2 SFP_RS0 BW Select Header

2-3

LOW BW RX selected

41

Table A-2: Default Jumper Settings (Cont’d)

Jumper

Callout

Jumper

Function

Default Jumper

Position

Option Selected

Schematic

0381513

Page

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

91

UG954 (v1.8) August 6, 2019

Jumpers

X-Ref Target - Figure A-1

Figure A-1: ZC706 Jumper Header Locations

UG954_aA_01_042415

34

33

11

24

25

23

4

13

32

7 1

8

31

9 30

10

15

12

14 5

26 28

6

29

27

2

3

21

22

16

17

18

19

20

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

92

UG954 (v1.8) August 6, 2019

Appendix B

VITA 57.1 FMC Connector Pinouts

Figure B-1 shows the pinout of the FPGA mezzanine card (FMC) low pin count (LPC) connector defined by the VITA 57.1 FMC specification. For a description of how the ZC706 evaluation board implements the FMC specification, see FPGA Mezzanine (FMC) Card Interface, page 67 and LPC Connector J5, page 71.

Figure B-2 shows the pinout of the FPGA mezzanine card (FMC) high pin count (HPC) connector defined by the VITA 57.1 FMC specification. For a description of how the ZC706 evaluation board implements the FMC specification, see FPGA Mezzanine (FMC) Card Interface, page 67 and HPC Connector J37, page 67.

X-Ref Target - Figure B-1

Figure B-1: FMC LPC Connector Pinout

VREF_A_M2C

PRSNT_M2C_L

GND

CLK0_M2C_P

CLK0_M2C_N

GND

LA02_P

LA02_N

GND

LA04_P

LA04_N

GND

LA07_P

LA07_N

GND

LA11_P

LA11_N

GND

LA15_P

LA15_N

GND

LA19_P

LA19_N

GND

LA21_P

LA21_N

GND

LA24_P

LA24_N

GND

LA28_P

LA28_N

GND

LA30_P

LA30_N

GND

LA32_P

LA32_N

GND

VADJ

GND

DP0_C2M_P

DP0_C2M_N

GND

GND

DP0_M2C_P

DP0_M2C_N

GND

GND

LA06_P

LA06_N

GND

GND

LA10_P

LA10_N

GND

GND

LA14_P

LA14_N

GND

GND

LA18_P_CC

LA18_N_CC

GND

GND

LA27_P

LA27_N

GND

GND

SCL

SDA

GND

GND

GA0

12P0V

GND

12P0V

GND

3P3V

GND

PG_C2M

GND

GND

GBTCLK0_M2C_P

GBTCLK0_M2C_N

GND

GND

LA01_P_CC

LA01_N_CC

GND

LA05_P

LA05_N

GND

LA09_P

LA09_N

GND

LA13_P

LA13_N

GND

LA17_P_CC

LA17_N_CC

GND

LA23_P

LA23_N

GND

LA26_P

LA26_N

GND

TCK

TDI

TDO

3P3VAUX

TMS

TRST_L

GA1

3P3V

GND

3P3V

GND

3P3V

GND

CLK1_M2C_P

CLK1_M2C_N

GND

GND

LA00_P_CC

LA00_N_CC

GND

LA03_P

LA03_N

GND

LA08_P

LA08_N

GND

LA12_P

LA12_N

GND

LA16_P

LA16_N

GND

LA20_P

LA20_N

GND

LA22_P

LA22_N

GND

LA25_P

LA25_N

GND

LA29_P

LA29_N

GND

LA31_P

LA31_N

GND

LA33_P

LA33_N

GND

VADJ

GND

UG954_aB_01_100112

K

J

H

G

F

E

D

C

B

A

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

93

UG954 (v1.8) August 6, 2019

X-Ref Target - Figure B-2

Figure B-2: FMC HPC Connector Pinout

UG954_aB_02_100112

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

VREF_B_M2C

GND

GND

CLK2_M2C_P

CLK2_M2C_N

GND

HA02_P

HA02_N

GND

HA06_P

HA06_N

GND

HA10_P

HA10_N

GND

HA17_P_CC

HA17_N_CC

GND

HA21_P

HA21_N

GND

HA23_P

HA23_N

GND

HB00_P_CC

HB00_N_CC

GND

HB06_P_CC

HB06_N_CC

GND

HB10_P

HB10_N

GND

HB14_P

HB14_N

GND

HB17_P_CC

HB17_N_CC

GND

VIO_B_M2C

GND

CLK3_M2C_P

CLK3_M2C_N

GND

GND

HA03_P

HA03_N

GND

HA07_P

HA07_N

GND

HA11_P

HA11_N

GND

HA14_P

HA14_N

GND

HA18_P

HA18_N

GND

HA22_P

HA22_N

GND

HB01_P

HB01_N

GND

HB07_P

HB07_N

GND

HB11_P

HB11_N

GND

HB15_P

HB15_N

GND

HB18_P

HB18_N

GND

VIO_B_M2C

GND

VREF_A_M2C

PRSNT_M2C_L

GND

CLK0_M2C_P

CLK0_M2C_N

GND

LA02_P

LA02_N

GND

LA04_P

LA04_N

GND

LA07_P

LA07_N

GND

LA11_P

LA11_N

GND

LA15_P

LA15_N

GND

LA19_P

LA19_N

GND

LA21_P

LA21_N

GND

LA24_P

LA24_N

GND

LA28_P

LA28_N

GND

LA30_P

LA30_N

GND

LA32_P

LA32_N

GND

VADJ

GND

DP1_M2C_P

DP1_M2C_N

GND

GND

DP2_M2C_P

DP2_M2C_N

GND

GND

DP3_M2C_P

DP3_M2C_N

GND

GND

DP4_M2C_P

DP4_M2C_N

GND

GND

DP5_M2C_P

DP5_M2C_N

GND

GND

DP1_C2M_P

DP1_C2M_N

GND

GND

DP2_C2M_P

DP2_C2M_N

GND

GND

DP3_C2M_P

DP3_C2M_N

GND

GND

DP4_C2M_P

DP4_C2M_N

GND

GND

DP5_C2M_P

DP5_C2M_N

GND

RES1

GND

GND

DP9_M2C_P

DP9_M2C_N

GND

GND

DP8_M2C_P

DP8_M2C_N

GND

GND

DP7_M2C_P

DP7_M2C_N

GND

GND

DP6_M2C_P

DP6_M2C_N

GND

GND

GBTCLK1_M2C_P

GBTCLK1_M2C_N

GND

GND

DP9_C2M_P

DP9_C2M_N

GND

GND

DP8_C2M_P

DP8_C2M_N

GND

GND

DP7_C2M_P

DP7_C2M_N

GND

GND

DP6_C2M_P

DP6_C2M_N

GND

GND

RES0

GND

DP0_C2M_P

DP0_C2M_N

GND

GND

DP0_M2C_P

DP0_M2C_N

GND

GND

LA06_P

LA06_N

GND

GND

LA10_P

LA10_N

GND

GND

LA14_P

LA14_N

GND

GND

LA18_P_CC

LA18_N_CC

GND

GND

LA27_P

LA27_N

GND

GND

SCL

SDA

GND

GND

GA0

12P0V

GND

12P0V

GND

3P3V

GND

PG_C2M

GND

GND

GBTCLK0_M2C_P

GBTCLK0_M2C_N

GND

GND

LA01_P_CC

LA01_N_CC

GND

LA05_P

LA05_N

GND

LA09_P

LA09_N

GND

LA13_P

LA13_N

GND

LA17_P_CC

LA17_N_CC

GND

LA23_P

LA23_N

GND

LA26_P

LA26_N

GND

TCK

TDI

TDO

3P3VAUX

TMS

TRST_L

GA1

3P3V

GND

3P3V

GND

3P3V

GND

HA01_P_CC

HA01_N_CC

GND

GND

HA05_P

HA05_N

GND

HA09_P

HA09_N

GND

HA13_P

HA13_N

GND

HA16_P

HA16_N

GND

HA20_P

HA20_N

GND

HB03_P

HB03_N

GND

HB05_P

HB05_N

GND

HB09_P

HB09_N

GND

HB13_P

HB13_N

GND

HB19_P

HB19_N

GND

HB21_P

HB21_N

GND

VADJ

GND

PG_M2C

GND

GND

HA00_P_CC

HA00_N_CC

GND

HA04_P

HA04_N

GND

HA08_P

HA08_N

GND

HA12_P

HA12_N

GND

HA15_P

HA15_N

GND

HA19_P

HA19_N

GND

HB02_P

HB02_N

GND

HB04_P

HB04_N

GND

HB08_P

HB08_N

GND

HB12_P

HB12_N

GND

HB16_P

HB16_N

GND

HB20_P

HB20_N

GND

VADJ

GND

CLK1_M2C_P

CLK1_M2C_N

GND

GND

LA00_P_CC

LA00_N_CC

GND

LA03_P

LA03_N

GND

LA08_P

LA08_N

GND

LA12_P

LA12_N

GND

LA16_P

LA16_N

GND

LA20_P

LA20_N

GND

LA22_P

LA22_N

GND

LA25_P

LA25_N

GND

LA29_P

LA29_N

GND

LA31_P

LA31_N

GND

LA33_P

LA33_N

GND

VADJ

GND

K

J

H

G

F

E

D

C

B

A

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

94

UG954 (v1.8) August 6, 2019

Appendix C

Xilinx Constraints File

The Xilinx Design Constraints (XDC) template for the ZC706 board provides for designs targeting the ZC706 evaluation board. Net names in the constraints correlate with net names on the latest ZC706 evaluation board schematic. Users must identify the appropriate pins and replace the net names with net names in the user RTL. See Vivado Design Suite User Guide: Using Constraints (UG903) for more information.

The FMC connectors J37 and J5 are connected to 2.5V V ADJ banks. Because different FMC cards implement different circuitry, the FMC bank I/O standards must be uniquely defined by each customer.

Note: Refer to the Board Files area of the documentation tab on the Xilinx Zynq-7000 SoC ZC706 Evaluation Kit product page (www.xilinx.com/zc706) for the latest xdc constraints file.

Refer to the Zynq-7000 SoC ZC706 Evaluation Kit - Known Issues and Release Notes Master Answer Record concerning the CE requirements for the PC Test Environment:

Zynq-7000 SoC ZC706 Master Answer Record 51899

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

95

UG954 (v1.8) August 6, 2019

Appendix D

Board Setup

Installing the ZC706 Board in a PC Chassis

Installation of the ZC706 board inside a computer chassis is required when developing or testing PCI Express® functionality.

When the ZC706 board is used inside a computer chassis (that is, plugged in to the PCIe® slot), power is provided from the ATX power supply 4-pin peripheral connector through the ATX adapter cable shown in Figure D-1 to J22 on the ZC706 board. The Xilinx part number for this cable is 2600304, and is equivalent to Sourcegate Technologies part number

AZCBL-WH-1109-RA4. For information on ordering this cable, see [Ref 37].

To install the ZC706 board in a PC chassis:

1.

On the ZC706 board, remove all six rubber feet and standoffs and the PCIe bracket. The standoffs and feet are affixed to the board by screws on the top side of the board.

Remove all six screws.

2.

Re-attach the PCIe bracket to the ZC706 board using two of the previously removed screws.

3.

Power down the host computer and remove the power cord from the PC.

4.

Open the PC chassis following the instructions provided with the PC.

5.

Select a vacant PCIe expansion slot and remove the expansion cover (at the back of the chassis) by removing the screws on the top and bottom of the cover.

6.

Plug the ZC706 board into the PCIe connector at this slot and secure its PCIe bracket to the chassis with a screw at the top of the bracket.

X-Ref Target - Figure D-1

Figure D-1: ATX Power Supply Adapter Cable

UG954_aD_01_100212

To ATX 4-Pin Peripheral Power Connector

To J22 on ZC706 Board

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

96

UG954 (v1.8) August 6, 2019

Installing the ZC706 Board in a PC Chassis

7.

The ZC706 board is taller than standard PCIe cards. Ensure that the height of the card is free of obstructions.

8.

Connect the ATX power supply to the ZC706 board using the ATX power supply adapter cable as shown in Figure D-1:

a. Plug the 6-pin 2 x 3 Molex connector on the adapter cable into J22 on the ZC706 board.

b. Plug the 4-pin 1 x 4 peripheral power connector from the ATX power supply into the 4-pin adapter cable connector.

9.

Slide the ZC706 board power switch SW1 to the ON position. The PC can now be powered on.

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

97

UG954 (v1.8) August 6, 2019

Appendix E

Board Specifications

Dimensions

Height 5.5 inch (14.0 cm)

Length 10.5 inch (26.7 cm)

Note: The ZC706 board height exceeds the standard 4.376 inch (11.15 cm) height of a PCI Express card.

Environmental

Temperature

Operating: 0°C to +45°C

Storage: –25°C to +60°C

Humidity

10% to 90% non-condensing

Operating Voltage

+12 V DC

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

98

UG954 (v1.8) August 6, 2019

Appendix F

Regulatory and Compliance Information

Overview

This product is designed and tested to conform to the European Union directives and standards described in this section.

Refer to the Zynq-7000 SoC ZC706 Evaluation Kit - Known Issues and Release Notes Master Answer Record concerning the CE requirements for the PC Test Environment:

Zynq-7000 SoC ZC706 Master Answer Record 51899

Declaration of Conformity

The Zynq-7000 SoC ZC706 Evaluation Kit CE Declaration of Conformity is online.

CE Directives

2006/95/EC, Low Voltage Directive (LVD)

2004/108/EC, Electromagnetic Compatibility (EMC) Directive

CE Standards

EN standards are maintained by the European Committee for Electrotechnical Standardization (CENELEC). IEC standards are maintained by the International Electrotechnical Commission (IEC).

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

99

UG954 (v1.8) August 6, 2019

Markings

Electromagnetic Compatibility

EN 55022:2010, Information Technology Equipment Radio Disturbance Characteristics – Limits and Methods of Measurement

EN 55024:2010, Information Technology Equipment Immunity Characteristics – Limits and Methods of Measurement

This is a Class A product. In a domestic environment, this product can cause radio interference, in which case the user might be required to take adequate measures.

Safety

IEC 60950-1:2005, Information technology equipment – Safety, Part 1: General requirements

EN 60950-1:2006, Information technology equipment – Safety, Part 1: General requirements

Markings

In August of 2005, the European Union (EU) implemented the EU WEEE Directive 2002/96/EC and later the WEEE Recast Directive 2012/19/EU requiring Producers of electronic and electrical equipment (EEE) to manage and finance the collection, reuse, recycling and to appropriately treat WEEE that the Producer places on the EU market after August 13, 2005. The goal of this directive is to minimize the volume of electrical and electronic waste disposal and to encourage re-use and recycling at the end of life.

Xilinx has met its national obligations to the EU WEEE Directive by registering in those countries to which Xilinx is an importer. Xilinx has also elected to join WEEE Compliance Schemes in some countries to help manage customer returns at end-of-life.

If you have purchased Xilinx-branded electrical or electronic products in the EU and are intending to discard these products at the end of their useful life, please do not dispose of them with your other household or municipal waste. Xilinx has labeled its branded electronic products with the WEEE Symbol to alert our customers that products bearing this label should not be disposed of in a landfill or with municipal or household waste in the EU.

This product complies with Directive 2002/95/EC on the restriction of hazardous substances (RoHS) in electrical and electronic equipment.

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

100

UG954 (v1.8) August 6, 2019

Markings

This product complies with CE Directives 2006/95/EC, Low Voltage Directive (LVD) and 2004/108/EC, Electromagnetic Compatibility (EMC) Directive.

In August of 2005, the European Union (EU) implemented the EU WEEE Directive 2002/96/EC and later the WEEE Recast Directive 2012/19/EU requiring Producers of electronic and electrical equipment (EEE) to manage and finance the collection, reuse, recycling and to appropriately treat WEEE that the Producer places on the EU market after August 13, 2005. The goal of this directive is to minimize the volume of electrical and electronic waste disposal and to encourage re-use and recycling at the end of life.

Xilinx has met its national obligations to the EU WEEE Directive by registering in those countries to which Xilinx is an importer. Xilinx has also elected to join WEEE Compliance Schemes in some countries to help manage customer returns at end-of-life.

If you have purchased Xilinx-branded electrical or electronic products in the EU and are intending to discard these products at the end of their useful life, please do not dispose of them with your other household or municipal waste. Xilinx has labeled its branded electronic products with the WEEE Symbol to alert our customers that products bearing this label should not be disposed of in a landfill or with municipal or household waste in the EU.

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

101

UG954 (v1.8) August 6, 2019

Appendix G

Additional Resources

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see the Xilinx Support website.

For continual updates, add the Answer Record to your myAlerts.

Solution Centers

See the Xilinx Solution Centers for support on devices, software tools, and intellectual property at all stages of the design cycle. Topics include design assistance, advisories, and troubleshooting tips.

References

The most up to date information related to the ZC706 board, its documentation, and schematics, are available on the following websites.

The Xilinx Zynq-7000 SoC ZC706 Evaluation Kit product page:

www.xilinx.com/zc706

The Zynq-7000 SoC ZC706 Evaluation Kit - Known Issues and Release Notes Master Answer Record is Zynq-7000 SoC ZC706 Master Answer Record 51899.

These Xilinx documents provide supplemental material useful with this guide:

1.

Zynq-7000 SoC Overview (DS190)

2.

Zynq-7000 SoC (Z-7030, 035, 045, and Z-7100): DC and AC Switching Characteristics

(DS191)

3.

LogiCORE IP DisplayPort Product Guide for Vivado Design Suite (PG064)

Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

102

UG954 (v1.8) August 6, 2019

References

4.

LogiCORE IP Tri-Mode Ethernet MAC Product Guide for Vivado Design Suite (PG051)

5.

7 Series FPGAs Memory Resources User Guide (UG473)

6.

7 Series FPGAs Configuration User Guide (UG470)

7.

7 Series FPGAs GTX/GTH Transceivers User Guide (UG476)

8.

7 Series FPGAs Integrated Block for PCI Express Product Guide for Vivado Design Suite

(PG054)

9.

7 Series FPGAs and Zynq-7000 SoC XADC Dual 12-Bit 1 MSPS Analog-to-Digital Converter User Guide (UG480)

10.

Zynq-7000 SoC Technical Reference Manual (UG585)

11.

7 Series FPGAs Memory Interface Solutions User Guide (UG586)

12.

Zynq-7000 SoC Packaging and Pinout Product Specification (UG865)

13.

AMS101 Evaluation Card User Guide (UG886)

14.

Vivado Design Suite User Guide: Using Constraints (UG903)

15.

Zynq-7000 SoC PCB Design and Pin Planning Guide (UG933)

16.

Answer Record AR#61712

Other documents associated with Xilinx devices, design tools, intellectual property, boards, and kits are available at the Xilinx documentation website at:

www.xilinx.com/support/documentation/index

Documents associated with other devices used by the ZC706 evaluation board are available at these vendor websites:

17. Spansion Inc.: www.spansion.com (S25FL128SAGMFIR01)

18. Standard Microsystems Corporation: www.smsc.com/ (USB3320)

19. SanDisk: www.sandisk.com

20. SD Association: www.sdcard.org.

21. SiTime: www.sitime.com ( SiT9102 )

22. Silicon Labs: www.silabs.com ( Si570, Si5324C )

23. PCI Express® standard: www.pcisig.com/specifications

24. SFF-8431 specification: ftp.seagate.com/sff

25. Marvell Semiconductor: www.marvell.com, www.marvell.com/transceivers/alaska-gbe Send Feedback

ZC706 Evaluation Board User Guide www.xilinx.com

103

UG954 (v1.8) August 6, 2019

References

26. Analog Devices: www.analog.com/en/index.html (ADP 123, ADV7511KSTZ-P)

27. Texas Instruments: www.ti.com, www.ti.com/fusiondocs (UCD90120A, LMZ31506, LMZ31520, LMZ31710, LMZ31704, TPS54291PWP, TPS51200DR, PCA9548, TCA641APWR, TXS0108E)

28. Texas Instruments: www.ti.com/xilinx_usb (to order EVM USB-TO-GPIO)

29. Texas Instruments: www.ti.com/fusion-gui (to download FUSION_DIGITAL_POWER_DESIGNER)

30.

RTC-8564JE/NB Application Manual:

www.epsondevice.com/docs/qd/en/DownloadServlet?id=ID000498

31. Epson Electronics America: www.eea.epson.com. (RTC-8564JE)

32. Samtec: www.samtec.com. (SEAF series connectors)

33. Texas Instruments digital power: www.ti.com/ww/en/analog/digital-power/index.html

34. Maxim Integrated: www.maximintegrated.com (Maxim MAX13035E)

35. Micron Technology: www.micron.com (MT8JTF12864HZ-1G6G1, MT41J256M8HX-15E)

36. Digilent: www.digilentinc.com (Pmod Peripheral Modules)

37. Sourcegate Technologies: www.sourcegate.net. To order the custom Sourcegate cable, contact Sourcegate at, +65 6483 2878 for price and availability.

Note: The Xilinx ATX cable part number 2600304 is manufactured by Sourcegate Technologies and is equivalent to the Sourcegate Technologies part number AZCBL-WH-11009. Sourcegate only manufactures the latest revision. This is a custom cable and cannot be ordered from the Sourcegate website.

38. VITA FMC Marketing Alliance: www.vita.com (FPGA Mezzanine Card (FMC) VITA 57.1 specification)

Send Feedback

文件名:

-

文件大小:

-

标题:

-

作者:

-

主题:

-

关键词:

-

创建日期:

-

修改日期:

-

创建者:

-

PDF 生成器:

-

PDF 版本:

-

页数:

-

页面大小:

-

快速 Web 视图:

-

正在准备打印文档…
0%