Diabetic nephropathy (DN) exhibits profound spatial metabolic heterogeneity across kidney regions, yet how compartmentalized pathways drive disease progression remains poorly defined. A deeper understanding of the organizational spatial environment and metabolic pathways of diabetic kidney damage will provide new insights to develop new therapies. By integrating high-resolution spatial multi-omics and single-cell transcriptomics, we mapped region-specific metabolic dysregulation in diabetic kidneys, identifying glutathione metabolism, pentose phosphate, and glycolytic pathways as zonally disrupted in cortical and medullary regions. Spatial metabolomics revealed distinct anatomical clustering of ten clinically associated metabolites, while spatial proteomic profiling uncovered sixty-four region-enriched proteins linked to these pathways. Specifically, depending on anatomic location, spatial protein signatures across multiple regions of diabetic mouse kidneys were enriched in each segmentation, respectively. Cross-species integration identified GPX3 as a fibroblast-enriched biomarker strongly correlated with kidney dysfunction and closely related to clinical indicators. Notably, astragaloside IV (ASIV) treatment reversed spatial metabolic perturbations in diabetic mice, restoring glutathione and glycolytic pathway 糖尿病肾病 (DN) 在肾脏区域表现出深刻的空间代谢异质性,但分室途径如何驱动疾病进展仍不清楚。对糖尿病肾损伤的组织空间环境和代谢途径的深入了解将为开发新疗法提供新的见解。通过整合高分辨率空间多组学和单细胞转录组学,我们绘制了糖尿病肾脏中区域特异性代谢失调的图谱,确定了谷胱甘肽代谢、磷酸戊糖和糖酵解途径在皮质和髓质区域中被区域性破坏。空间代谢组学揭示了 10 种临床相关代谢物的不同解剖学聚类,而空间蛋白质组学分析发现了与这些途径相关的 64 种区域富集蛋白质。具体来说,根据解剖位置,糖尿病小鼠肾脏多个区域的空间蛋白质特征分别在每个分割中富集。跨物种整合鉴定出 GPX3 是一种富含成纤维细胞的生物标志物,与肾功能障碍密切相关,与临床指标密切相关。值得注意的是,黄芪甲苷 IV (ASIV) 治疗逆转了糖尿病小鼠的空间代谢紊乱,恢复了谷胱甘肽和糖酵解途径
activity in a compartment-specific manner. Single-cell analyses identified five cell types-endothelial cells, fibroblasts, epithelial cells, macrophages and neutrophils-and further revealed fibroblasts as key contributors to regulatory effects via GPX3 overexpression. Importantly, the higher expression of Gpx3 in fibroblasts compared to other cell types, Gpx3 (AUC = 0.995), was further validated, demonstrating the high sensitivity and specificity for DN patients. This multimodal atlas establishes the spatially resolved metabolic blueprint of DN, bridging molecular zoning with anatomical localization of renal tissue to unveil actionable therapeutic targets for metabolic disorders in kidney disease. 以特定于隔间的方式进行活动。单细胞分析确定了五种细胞类型——内皮细胞、成纤维细胞、上皮细胞、巨噬细胞和中性粒细胞——并进一步揭示了成纤维细胞是通过 GPX3 过表达调节作用的关键贡献者。重要的是,与其他细胞类型 Gpx3 (AUC = 0.995) 相比,成纤维细胞中 Gpx3 的表达更高,进一步验证了对 DN 患者的高敏感性和特异性。该多模态图谱建立了 DN 的空间分辨代谢蓝图,将分子分区与肾组织的解剖定位联系起来,从而揭示了肾脏疾病代谢紊乱的可行治疗靶点。
1. Introduction 1. 简介
Diabetic nephropathy (DN), a metabolic disorder-driven complication of diabetes characterized by progressive kidney damage (Cefalu et al., 2024; Chai et al., 2025; Suzuki et al., 2024), arises from spatially heterogeneous dysfunction across renal subregions with distinct metabolic roles (Guo, Dong, et al., 2024; Lees et al., 2019). The structural complexity of the kidney and multifaceted injury mechanisms underlie current therapeutic limitations, necessitating multidimensional approaches to unravel its pathology. Recent advances in high-resolution spatial mapping integrate omics and imaging to decode the molecular networks governing disease progression (Asowata et al., 2024; Govind et al., 2022; Li & Humphreys, 2024b), offering dual promise and challenge to analyzing the comprehensive molecular profile of kidney tissue across mechanism and treatment. 糖尿病肾病 (DN) 是一种代谢紊乱驱动的糖尿病并发症,其特征是进行性肾损伤(Cefalu 等人,2024 年;Chai 等人,2025 年;Suzuki 等人,2024 年),源于具有不同代谢作用的肾亚区域的空间异质性功能障碍(Guo, Dong, et al., 2024;Lees 等人,2019 年)。肾脏的结构复杂性和多方面的损伤机制是当前治疗局限性的基础,需要多维方法来揭示其病理。高分辨率空间映射的最新进展整合了组学和成像来解码控制疾病进展的分子网络(Asowata 等人,2024 年;Govind 等人,2022 年;Li & Humphreys,2024b),为分析肾组织跨机制和治疗的综合分子谱提供了双重希望和挑战。
Spatial organization of metabolites within the kidney’s 3D architecture critically governs DN progression, as compartmentalized metabolic activity directly shapes renal function and pathology (Addario et al., 2024; Kadotani et al., 2024; Lee et al., 2024). This spatial regulation integrates multi-omic networks with tissue morphology, where metabolomics serves as the functional endpoint, synthesizing transcriptomics and proteomics to define disease-associated cellular states (Cai et al., 2023; Qiu et al., 2023). While spatially resolved metabolomics enables systematic mapping of metabolic perturbations and pathway dysregulation, current analyses remain fragmented across renal subregions, limiting mechanistic insights and therapeutic target identification. Single-cell transcriptomics has unveiled cell-type-specific injury mechanisms (Juliar et al., 2024; Li & Humphreys, 2024b; Polonsky et al., 2024; Zhang et al., 2024), yet its lack of spatial context obscured microenvironmental interactions. Recent advances in spatial multi-omics now enable multimodal reconstruction of regulatory networks across anatomical zones (Cao et al., 2024; Gopee et al., 2024; Iglesia et al., 2024; Ounadjela et al., 2024; Qian et al., 2024). Nevertheless, the interplay between zonal metabolic reprogramming, cellular pathophysiology, and drug-responsive pathways in DN remains poorly resolved, highlighting the need for integrative frameworks to decode spatially targeted therapeutic opportunities. 肾脏 3D 结构内代谢物的空间组织对 DN 的进展至关重要,因为分室代谢活动直接影响肾功能和病理学(Addario 等人,2024 年;Kadotani 等人,2024 年;Lee 等人,2024 年)。这种空间调控将多组学网络与组织形态学相结合,其中代谢组学作为功能终点,合成转录组学和蛋白质组学来定义与疾病相关的细胞状态(Cai et al., 2023;Qiu 等人,2023 年)。虽然空间分辨代谢组学能够系统地绘制代谢扰动和通路失调的图谱,但目前的分析在肾脏亚区域仍然分散,限制了机制洞察力和治疗靶点识别。单细胞转录组学揭示了细胞类型特异性损伤机制(Juliar 等人,2024 年;Li & Humphreys,2024b;Polonsky 等人,2024 年;Zhang et al., 2024),但其缺乏空间背景掩盖了微环境相互作用。空间多组学的最新进展现在使得跨解剖区域的调控网络的多模态重建成为可能(Cao et al., 2024;Gopee 等人,2024 年;Iglesia 等人,2024 年;Ounadjela 等人,2024 年;Qian et al., 2024)。然而,DN 中区域代谢重编程、细胞病理生理学和药物反应途径之间的相互作用仍然没有得到很好的解决,这凸显了需要综合框架来解码空间靶向治疗机会。
While spatial omics resolves metabolite localization in 2D tissue sections, 3D functional zonation mapping remains unachieved. Mass spectrometry imaging-based spatial metabolomics (Vandergrift et al., 2025; Ponzoni et al., 2024) advances multiplexed metabolite profiling while retaining tissue architecture, enabling systematic characterization of injury-associated microenvironmental remodeling. Integrating single-cell RNA sequencing (scRNA-seq) with spatial multi-omics bridges molecular gradients to cellular behaviors, offering unprecedented resolution to decoding the kidney injury mechanisms. These multimodal frameworks not only uncover spatially defined therapeutic metabolites but also pioneer next-generation strategies for renal compartment-specific diagnosis and intervention. 虽然空间组学解决了 2D 组织切片中的代谢物定位,但 3D 功能分区图仍然无法实现。基于质谱成像的空间代谢组学(Vandergrift 等人,2025 年;Ponzoni 等人,2024 年)在保留组织结构的同时推进了多重代谢物分析,从而能够系统地表征与损伤相关的微环境重塑。将单细胞 RNA 测序 (scRNA-seq) 与空间多组学相结合,将分子梯度与细胞行为联系起来,为解码肾损伤机制提供了前所未有的分辨率。这些多模式框架不仅揭示了空间定义的治疗代谢物,而且还开创了肾室特异性诊断和干预的下一代策略。
Our current understanding of DN molecular mechanisms remains incomplete, necessitating integrative multi-omics and scRNA-seq approaches to elucidate disease progression pathways. Through spatial multi-omics mapping and renal zonation analysis, we systematically characterized protein-metabolic pathway enrichment patterns in diabetic murine kidneys. Crucially, spatial resolution of metabolic pathway localization within renal tissue compartments represents a pivotal advancement for deciphering DN pathogenesis. 我们目前对 DN 分子机制的了解仍然不完整,需要综合多组学和 scRNA-seq 方法来阐明疾病进展途径。通过空间多组学图谱和肾脏分区分析,系统地表征了糖尿病小鼠肾脏的蛋白质代谢途径富集模式。至关重要的是,肾组织隔室内代谢途径定位的空间分辨率代表了破译 DN 发病机制的关键进步。
2. Results 2. 结果
2.1. Machine learning-enhanced metabolomic profiling identifies diagnostic biomarkers and dysregulated metabolic pathways in diabetic nephropathy 2.1. 机器学习增强的代谢组学分析可识别糖尿病肾病的诊断生物标志物和失调的代谢途径