这是用户在 2025-6-25 15:16 为 https://ieeexplore.ieee.org/document/9415125/footnotes#footnotes 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
网格-图信号处理 (Grid-GSP):用于电网的图形信号处理框架 | IEEE 期刊与杂志 | IEEE Xplore --- Grid-Graph Signal Processing (Grid-GSP): A Graph Signal Processing Framework for the Power Grid | IEEE Journals & Magazine | IEEE Xplore

Grid-Graph Signal Processing (Grid-GSP): A Graph Signal Processing Framework for the Power Grid
网格图信号处理(Grid-GSP):用于电网的图形信号处理框架


Abstract:

The underlying theme of this paper is to explore the various facets of power systems data through the lens of graph signal processing (GSP), laying down the foundations o...Show More

Abstract:

The underlying theme of this paper is to explore the various facets of power systems data through the lens of graph signal processing (GSP), laying down the foundations of the Grid-GSP framework. Grid-GSP provides an interpretation for the spatio-temporal properties of voltage phasor measurements, by showing how the well-known power systems modeling supports a generative low-pass graph filter model for the state variables, namely the voltage phasors. Using the model we formalize the empirical observation that voltage phasor measurement data lie in a low-dimensional subspace and tie their spatio-temporal structure to generator voltage dynamics. The Grid-GSP generative model is then successfully employed to investigate the problems, pertaining to the grid, of data sampling and interpolation, network inference, detection of anomalies and data compression. Numerical results on a large synthetic grid that mimics the real-grid of the state of Texas, ACTIVSg2000, and on real-world measurements from ISO-New England verify the efficacy of applying Grid-GSP methods to electric grid data.
本文的核心主题是通过图信号处理 (GSP) 的视角探索电力系统数据的各个方面,并奠定 Grid-GSP 框架的基础。Grid-GSP 通过展示著名的电力系统建模如何支持状态变量(即电压相量)的生成式低通图滤波器模型,为电压相量测量的时空特性提供了一种解释。利用该模型,我们将电压相量测量数据位于低维子空间这一经验观察结果形式化,并将其时空结构与发电机电压动态联系起来。Grid-GSP 生成模型随后被成功应用于研究与电网相关的数据采样和插值、网络推理、异常检测和数据压缩等问题。在模拟德克萨斯州真实电网的大型合成电网 ACTIVSg2000 上以及来自 ISO-New England 的真实测量上的数值结果验证了将 Grid-GSP 方法应用于电网数据的有效性。
Published in: IEEE Transactions on Signal Processing ( Volume: 69)
发表于: IEEE 信号处理学报 第 69 卷
Page(s): 2725 - 2739
页数: 2725 - 2739
Date of Publication: 23 April 2021
出版日期: 2021 年 4 月 23 日

ISSN Information:   ISSN 信息:

Funding Agency:   资助机构:


SECTION I.  第一部分

Introduction  介绍

The power grid is one of the foremost examples of a large-scale man-made network. The nodes of the associated graph are the grid buses and its edges are its transmission lines. It is therefore natural to see measurements from the power grid as graph signals [3] and model power grid measurements using tools from the theory of graph signal processing (GSP) whose goal is to extend fundamental insights that come from the frequency analysis for time series to the domain of signals indexed by graphs [3]–​[5]. One of the factors that motivate the development of GSP for the power grid is the abundance of high-quality data that can be acquired using phasor measurement units (PMU), the sensors producing estimates of the voltage and current phasors [6]. With that, classical signal processing questions pertaining to sampling, interpolation, denoising and compression and questions that hinge on the underlying structure of the voltage phasors graph signal arise.
电网是大型人造网络的典型例子之一。相关图的节点是电网母线 ,其边是传输线 。因此,将电网测量结果视为图信号 [3] 并使用图信号处理 (GSP) 理论工具对电网测量结果进行建模是很自然的,GSP 的目标是将来自时间序列频率分析的基本见解扩展到图 [3] –​ [5] 索引的信号域。推动电网 GSP 发展的因素之一是使用相量测量单元 (PMU) 可以获取大量高质量数据,相量测量单元是产生电压和电流相量估计值的传感器 [6] 。随之而来的是与采样、插值、去噪和压缩有关的经典信号处理问题,以及取决于电压相量图信号底层结构的问题。

The overarching goal of this paper is to develop GSP based models for power systems from first principles by building upon the existing system-level knowledge of power systems to create a solid foundation to analyze power-grid measurements using tools from GSP. This is named the Grid-GSP framework. By identifying the correct graph shift operators (GSO), we extend well-known results in GSP to power system data without losing the associated physical interpretation.
本文的总体目标是,基于现有的电力系统系统级知识,从基本原理出发,开发基于 GSP 的电力系统模型,为使用 GSP 工具分析电网测量数据奠定坚实的基础。该框架被称为 Grid-GSP 框架。通过识别正确的图移位算子(GSO),我们将 GSP 中众所周知的结果扩展到电力系统数据,同时又不丢失相关的物理解释。

The core idea is to rewrite the differential algebraic equations (DAE) [7], in a way often done in transient stability analysis of power systems, to reveal that the inherent structure in voltage phasors can be explained using a linear low-pass graph filter as a generative model, whose inputs are the generator voltages. This input signal is the generators’ response to electric load in the grid. Through this model the paper shows also that the temporal dynamics of the input signal, i.e. the generator voltages, can be explained using a non-linear GSP model defined via another GSO derived from the generator-only Kron-reduced network. This is done utilizing the well-known classical swing equations [8], [9]. This spatio-temporal generative model supports the empirical observation that voltage data obtained using PMUs tend to be confined to a much smaller dimension compared to the size of the data record in both space and time [10], [11]. Many papers have leveraged the empirical observation of the low-rank of phasor data for the interpolation of missing data [11], correcting bad data [12] and to detect faulty events [10], [13]–​[15]. Importantly, our framework explicitly puts forth the structure of this low-dimensional subspace using our GSP-based generative model, directly tying this subspace to the graph Fourier domain of the GSO.
其核心思想是重写微分代数方程 (DAE) [7] ,这种方式在电力系统暂态稳定性分析中很常见,从而揭示电压相量的固有结构可以用线性低通图滤波器作为生成模型来解释,其输入是发电机电压。该输入信号是发电机对电网电负荷的响应。通过该模型,本文还表明,输入信号(即发电机电压)的时间动态可以用非线性 GSP 模型来解释,该模型通过另一个源自仅包含发电机的 Kron 约化网络的 GSO 定义。这是利用众所周知的经典摆动方程 [8][9] 来实现的。该时空生成模型支持以下经验观察:与空间和时间上的数据记录大小相比,使用 PMU 获得的电压数据往往被限制在小得多的维度上 [10][11] 。许多论文利用相量数据低秩的经验观测来插值缺失数据 [11] 、校正不良数据 [12] 以及检测故障事件 [10][13][15] 。重要的是,我们的框架使用基于 GSP 的生成模型明确地提出了该低维子空间的结构,并将该子空间直接绑定到 GSO 的图傅里叶域。

A. Literature Review  A. 文献综述

We review prior works by dividing the most relevant literature related to this paper into three categories: 1) a general survey of works that use concepts from graph theory and GSP in power systems in the areas of sensor placement, interpolation and network inference, 2) False Data Injection (FDI) attack detection and 3) literature pertaining to compression of PMU data.
我们通过将与本文最相关的文献分为三类来回顾先前的研究:1)在传感器放置、插值和网络推理等领域使用图论和 GSP 概念在电力系统中的研究的一般调查,2)虚假数据注入 (FDI) 攻击检测和 3) 与 PMU 数据压缩有关的文献。

Graph theory for power systems: Several papers have used insights from spectral and algebraic graph theory. A few applications include optimal placement [16], [17] and generating statistically accurate topologies [18]. Grid topology identification is a network inference problem and has been studied by several works such as in [19]–​[23]. GSP concepts have been leveraged in [24], [25] to detect FDI attacks. Prior work in [26] dealt with performance limits on fault localization with inadequate number of PMUs and connected it with graph signal sampling theory and optimal placement of PMUs for best possible resolution of fault localization in this under-sampled regime.
电力系统图论: 已有多篇论文运用了谱图论和代数图论的洞见。一些应用包括最优布局 [16][17] 和生成统计上准确的拓扑 [18] 。电网拓扑识别是一个网络推理问题,已有多项研究对其进行了研究,例如 [19][23][24][25] 中已利用 GSP 概念来检测 FDI 攻击。 [26] 中的先前研究探讨了在 PMU 数量不足的情况下故障定位的性能限制,并将其与图信号采样理论和 PMU 的最优布局相结合,以便在这种欠采样情况下获得最佳的故障定位分辨率。

The Kron-reduced network among the generator buses and the associated properties are used in [27], [28] to detect low-frequency oscillations as well as the resulting islanding patterns. In [29], the authors have shed light on the relationship that exists between graph Laplacian and modes in power systems. Recently, a comprehensive review of graph-theoretical concepts in power systems was presented in [7].
[27][28] 中,作者利用发电机母线之间的 Kron 约化网络及其相关特性来检测低频振荡以及由此产生的孤岛效应。在 [29] 中,作者阐明了图拉普拉斯算子与电力系统中模式之间的关系。最近,在 [7] 中,作者对电力系统中的图论概念进行了全面的回顾。

Additionally, there have been several papers adopting graphical models for state estimation [30], topology estimation [31] and optimal power flow [32]. While the modeling approach is valid, the graphical models capture correlation whereas our method models the underlying cause for that correlation structure thereby opening the door for statistical and non-statistical approaches.
此外,已有多篇论文采用图模型进行状态估计 [30] 、拓扑估计 [31] 和最优潮流 [32] 。虽然建模方法有效,但图模型捕捉的是相关性,而我们的方法则模拟了该相关性结构的根本原因,从而为统计和非统计方法打开了大门。

Note that with the exception of [24], [25], no other papers make the connection with GSP and even in the aforementioned work, GSP is used in an empirical manner. On the other hand our preliminary work in [1], [2] established a case for GSP in a more rigorous manner.
请注意,除 [24][25] 外,其他论文均未提及 GSP,即使在上述研究中,GSP 也以实证方式被运用。另一方面,我们在 [1][2] 中的前期工作以更严谨的方式为 GSP 提供了论据。

Detection of FDI attacks: While anomaly detection can be broadly applied to identify various events, a large body of prior research has focused on FDI attacks that can bypass classical bad data detection (BDD) mechanisms [33]–​[36] and trigger incorrect decisions or hide line overflows and contingencies [37]–​[39]). FDI attacks to PMUs can, for instance, exploit the vulnerability of GPS signals to spoofing attacks [40], [41].
检测 FDI 攻击: 虽然异常检测可广泛应用于识别各种事件,但之前大量的研究主要关注能够绕过经典不良数据检测 (BDD) 机制 [33][36] 并触发错误决策或隐藏线路溢出和意外事件 [37][39] 的 FDI 攻击。例如,针对 PMU 的 FDI 攻击可以利用 GPS 信号易受欺骗攻击的弱点 [40] , [41]

Recent papers on PMU data integrity have proposed leveraging the low rank spatio-temporal nature of PMU data not only to help with erasures but also to strengthen conventional BDD mechanisms [42]. In [38] the authors have suggested an FDI attack strategy that can pass the aforementioned BDD approach in [42] by generating false samples that approximately preserve the original subspace structure.
最近关于 PMU 数据完整性的论文提出,利用 PMU 数据的低秩时空特性,不仅可以辅助擦除,还可以增强传统的 BDD 机制 [42] 。在 [38] 中,作者提出了一种 FDI 攻击策略,该策略可以通过生成近似保留原始子空间结构的虚假样本来绕过 [42] 中提到的 BDD 方法。

Compression of PMU data: Due to their relatively high sampling rate and their wide deployment, PMU data have have called for compression. The performance of several off-the-shelf lossless encoding techniques applied to PMU data were investigated in [43]. In [44], a lossless compression called slack referenced encoding (SRE) method of PMU voltage measurements is introduced, by identifying a slack-bus and differentially encoding the difference between slack-bus measurements in time and all other buses. Similarly, in [45], phasor angle data is encoded in a lossless manner by preprocessing data using techniques from [44] and then using Golomb-Rice entropy encoding.
PMU 数据压缩: 由于 PMU 数据采样率相对较高且部署广泛,因此亟需对其进行压缩。 [43] 研究了几种应用于 PMU 数据的现成无损编码技术的性能。 [44] 介绍了一种称为松弛参考编码 (SRE) 的 PMU 电压测量无损压缩方法,该方法通过识别松弛母线 (slack-bus) 并对松弛母线测量值与所有其他母线测量值之间的时间差异进行差分编码。类似地, [45] 通过使用 [44] 中的技术对数据进行预处理,然后使用 Golomb-Rice 熵编码,对相量角数据进行无损编码。

The idea of slow-variation with time in PMU data such as phase angles is used in [46] to firstly transform data into frequency domain (in time) and then using a ‘reverse water-filling’ technique to encode frequency components in the difference measurements. Many lossy compression techniques utilize the low-rank structure inherent in voltage phasor data [47]–​[49]. Several other wavelet based compression algorithms exist in the literature as well [50].
[46] 中,利用 PMU 数据(例如相位角)随时间缓慢变化的原理,首先将数据变换到频域(时间域),然后使用“反向注水”技术对差分测量中的频率分量进行编码。许多有损压缩技术利用电压相量数据固有的低秩结构 [47][49] 。文献中也存在其他几种基于小波的压缩算法 [50]

B. Contributions  B. 贡献

The aim of this paper is to establish the framework of Grid-GSP and elucidate properties of power grid signals using tools from GSP. In particular, we:
本文旨在建立 Grid-GSP 框架,并利用 GSP 工具阐明电网信号的特性。具体而言,我们:

  1. Establish that PMU voltage measurements from the power grid are result of an excitation to a low-pass graph filter whose graph shift operator (GSO) is defined using a function of the system admittance matrix. This was partly explored in our previous work in [1], [2] and used for blind community detection.
    确定电网的 PMU 电压测量值是对低通图滤波器激励的结果,该滤波器的图移位算子 (GSO) 使用系统导纳矩阵的函数定义。我们之前在 [1][2] 中的工作中对此进行了部分探索,并将其用于盲社区检测。

  2. Study the spatio-temporal structure of the excitation that, at a fast time scale, is dominated by the generators dynamics. It is shown that this excitation can be modeled as an auto-regressive graph filter [51] (GF-AR (2)) for the input signals from the generator internal bus. The spatial properties in quasi-steady state are captured by defining another GSO using the ‘generator-only’ or Kron-reduced [9] network for the generator buses.
    研究在快速时间尺度上受发电机动态控制的激励的时空结构。结果表明,该激励可以建模为一个自回归图滤波器 [51] (GF-AR (2)),用于处理来自发电机内部母线的输入信号。通过为发电机母线定义另一个 GSO,并使用“仅发电机”或 Kron 约简 [9] 网络来捕捉准稳态下的空间特性。

These models set the foundations to revisit known GSP based algorithms for sampling and reconstruction, interpolation and denoising and network inference in the context of signal-processing PMU data. We harness the GFT for feature extraction, to detect anomalies (specifically, FDI attacks [2]) and to derive a lossy PMU voltage data compression algorithm, leveraging the sparsity of the GFT signal. By elucidating all the steps in modeling power systems data from graph construction, signal model, identification of the low-pass structure that is responsible for low-dimensional representation to signal denoising, network inference and anomaly detection, we illustrate how one can similarly develop GSP based models in other application domains especially data that can be modeled as the output of low-pass graph signals [52].
这些模型为在信号处理 PMU 数据环境中重新审视已知的基于 GSP 的采样和重构、插值和去噪以及网络推理算法奠定了基础。我们利用 GFT 进行特征提取,检测异常(具体来说,是 FDI 攻击 [2] ),并利用 GFT 信号的稀疏性,推导出一种有损 PMU 电压数据压缩算法。通过阐明电力系统数据建模的所有步骤,从图的构建、信号模型、识别负责低维表示的低通结构,到信号去噪、网络推理和异常检测,我们展示了如何在其他应用领域,尤其是那些可以建模为低通图信号输出的数据领域,类似地开发基于 GSP 的模型 [52]

C. Paper Organization  C. 论文组织

Section II reviews concepts from GSP focusing on complex-valued graph signals and applicable more broadly to bandpass signals whose signal models rely on complex envelopes or phasors. It also reviews measurements and parameters pertaining to the grid. Section III lays the foundation for Grid-GSP mapping the physical laws to a spatio-temporal generative model for voltage signals. Through these lens, in Section IV, the paper revisits algorithms and tools from GSP for PMU data pertaining to sampling and reconstruction along with optimal placement of PMUs, interpolation of missing samples and network inference. Section V highlights applications of Grid-GSP to detect FDI attacks and for sequential lossy voltage data compression. The algorithms and methods are tested numerically in Section VI. Section VII summarizes conclusions and future research directions.
Section II 回顾了 GSP 中的概念,这些概念侧重于复值图信号,更广泛地适用于信号模型依赖于复包络或相量的带通信号。此外,本文还回顾了与电网相关的测量和参数。 Section III 为 Grid-GSP 将物理定律映射到电压信号的时空生成模型奠定了基础。通过这些视角,在 Section IV 中,本文重新探讨了 GSP 中用于 PMU 数据的算法和工具,这些算法和工具涉及采样和重建、PMU 的最优放置、缺失样本的插值和网络推理。 Section V 重点介绍了 Grid-GSP 在检测 FDI 攻击和顺序有损电压数据压缩中的应用。 Section VI 对这些算法和方法进行了数值测试。 Section VII 总结了结论和未来的研究方向。

Notation: Boldfaced lowercase letters are used for vectors, x and uppercase for matrices, A. Transpose is x,A and conjugate transpose is AH. [x]M is the new vector that has elements of the vector indexed by the set M. The operation R{.},I{.} denote the real and imaginary parts of the argument. Pseudo-inverse of a matrix is A. The operation diag(x) creates a diagonal matrix with elements from a vector x and Diag(A) is the extraction of diagonal values of a matrix A.
符号 :粗体小写字母表示向量 x ,大写字母表示矩阵 A 。转置为 x,A ,共轭转置为 AH[x]M 是新向量,其元素由集合 M 索引。运算 R{.},I{.} 表示自变量的实部和虚部。矩阵的伪逆为 A 。运算 diag(x) 使用向量 x 中的元素创建一个对角矩阵, Diag(A) 是从矩阵 A 中提取对角线值。

SECTION II.  第二部分

Preliminaries  准备工作

A. Graph Signal Processing (GSP) in a Nutshell
图信号处理(GSP)简介

Consider an undirected graph G=(N,E) with nodes iN and edges (i,j)E. A graph signal xC|N| is a vector whose ith entry [x]i is associated to node iN. The set of nodes connected to node i is called the neighborhood of i and denoted as Ni. GSP generalizes the notion of discrete time shift for a time series by introducing the concept of graph shift operator (GSO):
考虑一个无向G=(N,E) ,其节点为 iN ,边为 (i,j)E 。图信号 xC|N| 是一个向量,其第 i 个元素 [x]i 与节点 iN 关联。连接到节点 i 的节点集称为 i邻域 ,记为 Ni 。GSP 通过引入图移位算子 (GSO) 的概念,推广了时间序列的离散时间移位概念:

Definition 1:

A graph shift operator (GSO) is a linear neighborhood operator, so that each entry of the shifted graph signal is a linear combination of the graph signal neighbors’ values [5].


定义 1:

图移位算子 (GSO) 是一个线性邻域算子,因此移位后的图信号的每个条目都是图信号邻居值 [5] 的线性组合。

The linear combinations can use complex-valued weights sijC,withsij=0,(i,j)E and the GSO can be defined as matrix multiplication, with a matrix SC|N|×|N|. Although not the only option, one common choice for the GSO, is that of the graph weighted Laplacian,1 i.e:

[S]i,j={kNisi,k,i=jsi,j,ij(1)
View SourceRight-click on figure for MathML and additional features.
线性组合可以使用复值权重 sijC,withsij=0,(i,j)E ,而 GSO 可以定义为矩阵乘法,矩阵为 SC|N|×|N| 。虽然这并非唯一选择,但 GSO 的一个常见选择是图加权拉普拉斯算子 1 ,即:
[S]i,j={kNisi,k,i=jsi,j,ij(1)
View SourceRight-click on figure for MathML and additional features.

In this work, we focus on complex symmetric GSOs, S=S as is applicable to the weighted graph Laplacian for the power grid. Having defined the notion of shift, one can introduce the notion of shift-invariance:
在本文中,我们重点研究复对称 GSO, S=S ,它适用于电网的加权图拉普拉斯算子。定义了移位的概念后,可以引入移位不变性的概念:

Definition 2:

Given a GSO S a shift invariant operator H acting on a graph signal is such that:

H:xv,H:SxSv.(2)
View SourceRight-click on figure for MathML and additional features.


定义 2:

给定一个 GSO S ,作用于图信号的平移不变算子 H 如下:

H x v H S x ↦S v (2)
查看源代码Right-click on figure for MathML and additional features. \开始{方程式*} {\mathcal H}:\boldsymbol{x}\mapsto\boldsymbol{v},\,\,\,\,\Longleftrightarrow\,\,\,\,{\mathcal H}:\mathbf {S}\boldsymbol{x}\mapsto\mathbf {S}\boldsymbol{v}.\tag
H:xv,H:SxSv.(2)
View SourceRight-click on figure for MathML and additional features. \end{方程*}

Linear shift-invariant operators must be matrix polynomials of the GSO S [53]. Therefore, a linear shift-invariant graph filter is a linear operator and can be defined as:

v=H(S)x,H(S)=k=0K1hkSk(3)
View SourceRight-click on figure for MathML and additional features.Additionally, linear shift-invariant graph filters satisfy the condition: SH(S)=H(S)S.
线性移位不变算子必须是 GSO S [53] 的矩阵多项式。因此,线性移位不变图滤波器是一个线性算子,可以定义为:
v=H(S)x,H(S)=k=0K1hkSk(3)
View SourceRight-click on figure for MathML and additional features. 此外,线性移位不变图过滤器满足条件: SH(S)=H(S)S

Consider the following eigenvalue decomposition of the complex symmetric GSO S, given by Theorem 4.4.13 in [54] for diagonalizable complex symmetric matrices:

S=UΛU,UU=UU=I.(4)
View SourceRight-click on figure for MathML and additional features.
考虑复对称 GSO S 的以下特征值分解,由 [54] 中的定理 4.4.13 给出,适用于可对角化的复对称矩阵:
S=UΛU,UU=UU=I.(4)
View SourceRight-click on figure for MathML and additional features.

Here Λ is the diagonal matrix with eigenvalues λ0,λ1,λ|N|1 on the principal diagonal and U are complex orthogonal eigenvectors. An equivalent concept of frequency domain in GSP is defined using eigenvalues and eigenvectors of the GSO.
这里, Λ 是对角矩阵,其特征值 λ0,λ1,λ|N|1 位于主对角线上, U复正交特征向量。GSP 中频域的等效概念是使用 GSO 的特征值和特征向量定义的。

Graph frequencies are the eigenvalues of the GSO and the order of frequencies is based on the total variation (TV) criterion [5], [55] defined using the discrete p Dirichlet form Sp(x) with p=1 as in [56] as:

S1(x)=Sx1S1(ui)=Sui1=|λi|ui1(5)
View SourceRight-click on figure for MathML and additional features.After normalizing the eigenvectors such that ui1=1i, it is clear that S1(ui)>S1(uj)|λi|>|λj|. Hence, the ascending order of eigenvalues corresponds to increase in frequency, |λ0|=0|λ1||λ2||λ|N||. This ordering is not unique since two distinct complex eigenvalues can have the same magnitude.
图频率是 GSO 的特征值,频率的顺序基于总变差 (TV) 标准 [5][55] ,使用离散 p 狄利克雷形式 Sp(x) 定义,其中 p=1[56] 中的一样:
S1(x)=Sx1S1(ui)=Sui1=|λi|ui1(5)
View SourceRight-click on figure for MathML and additional features. 对特征向量进行归一化,使得 ui1=1i ,显然 S1(ui)>S1(uj)|λi|>|λj|. 。因此,特征值的升序对应于频率的增加, |λ0|=0|λ1||λ2||λ|N|| 。这种排序并非唯一,因为两个不同的复特征值可以具有相同的幅度。

The Graph Fourier Transform (GFT) basis is the complex orthogonal basis U in (4). Hence, the GFT of a graph signal x denoted by x~ and the inverse GFT are given by x~=Ux and x=Ux~ respectively where [x~]m is the frequency component that corresponds to the m-th eigenvalue λm.2 Also, we can define the graph-frequency response of the graph filter, h~, by writing

H(S)[h~]i=k=0KhkSk=Udiag(h~)U,=H(λi),H(λ):=k=0Khkλk(6)(7)
View SourceRight-click on figure for MathML and additional features.hkC,i=1,2,|N|. The frequency response of the filter is given by elements in h~. Subsequently, the input and output of a graph filter in graph-frequency domain are related as
v=H(S)xv~=diag(h~)x~,(8)
View SourceRight-click on figure for MathML and additional features.
which is analogous to convolution theorem for time-domain signals. Naturally, this leads to the extension of notions such as low-pass, high-pass and band-pass filters and signals that are at the heart of sampling and interpolation schemes.
图傅里叶变换 (GFT) 基是 (4) 中的复正交基 U 。因此,图信号 x 的 GFT(表示为 x~ )及其逆 GFT 分别由 x~=Uxx=Ux~ 给出,其中 [x~]m 是与第 m 个特征值 λm 对应的频率分量。 2 此外,我们可以通过以下方式定义图滤波器 h~图频率响应
H(S)[h~]i=k=0KhkSk=Udiag(h~)U,=H(λi),H(λ):=k=0Khkλk(6)(7)
View SourceRight-click on figure for MathML and additional features. hkC,i=1,2,|N| 。滤波器的频率响应由 h~ 中的元素给出。因此,图频域中图滤波器的输入和输出关系如下:
v=H(S)xv~=diag(h~)x~,(8)
View SourceRight-click on figure for MathML and additional features. 这类似于时域信号的卷积定理。这自然而然地引出了诸如低通、高通和带通滤波器等概念的扩展,以及采样和插值方案的核心信号。

B. GSP for Time Series of Graph Signals
B. 图形信号时间序列的 GSP

So far, only the nodal index for the graph signal v was considered. However, one can also encounter graph signal processes i.e. temporal variations in a graph signal {vt}t0. Since we are interested in the temporal characterization of voltage graph signals, we revise GSP concepts that are applied to time series of graph signals [57], [58] in this subsection. Then, we utilize these concepts while modeling the temporal dynamics at generator buses in Section III-B.
到目前为止,我们仅考虑了图信号​​ v 的节点索引。然而,我们也可能遇到图信号过程,即图信号 {vt}t0 中的时间变化。由于我们对电压图信号的时间特性感兴趣,因此在本小节中,我们修改了应用于图信号时间序列 [57][58] 的 GSP 概念。然后,我们将在 Section III-B 中运用这些概念对发电机母线的时间动态进行建模。

In order to characterize graph signal process {vt}t0, a joint time-vertex domain is considered in the literature by defining filters whose response is shift invariant with respect to the time series shift operator z1 and an appropriately chosen GSO [59]. To study the same, map the time series of graph signal vt in both the graph frequency (GF) and zdomain by the application of z-transform to the GFT of the graph signal process:

V(z)=t=0+vtzt,V˜(z)=UTV(z),(9)
View SourceRight-click on figure for MathML and additional features.We refer to V˜(z) as the z-GFT. A graph temporal filter's [60] impulse response Ht(S) and output vt are
Ht(S)=k=0Khk,tSk,vt=τ=0tHtτ(S)xτ,(10)
View SourceRight-click on figure for MathML and additional features.
respectively. Graph filter output vt in the z-domain is:
V(z)=H(Sz)X(z),whereH(Sz):=t=0+Ht(S)zt(11)
View SourceRight-click on figure for MathML and additional features.
when the input is xt with z-transform X(z) and Ht(S) are matrix polynomials of the GSO operator:
Ht(S)=k=0Khk,tSkH(Sz)=k=0KHk(z)Sk.(12)
View SourceRight-click on figure for MathML and additional features.
Here Hk(z) is the z-transform of the filter coefficients hk,t. We can define also the following impulse response in the GF domain:
[h~t]i=Ht(λi),Ht(λ):=k=0Khk,tλk(13)
View SourceRight-click on figure for MathML and additional features.
and the graph-temporal joint transfer function in the z and GF domain as:
[h~(z)]i=H(λi,z),H(λ,z)=t=0+k=0Khk,tλkzt(14)
View SourceRight-click on figure for MathML and additional features.
With that, we obtain following input-output relationship:
V~(z)=diag(h~(z))X~(z),(15)
View SourceRight-click on figure for MathML and additional features.
by applying GFT to z-domain in (11).
为了表征图信号过程 {vt}t0 ,文献中考虑了一种联合时间-顶点域,即定义一些滤波器,这些滤波器的响应相对于时间序列移位算子 z1 和适当选择的广义函数优化器 (GSO) [59] 具有移位不变性。为了研究这一点,我们将 z 变换应用于图信号过程的广义函数谱 (GFT),将图信号 vt 的时间序列映射到图频率 (GF) 和 z 域中:
V(z)=t=0+vtzt,V˜(z)=UTV(z),(9)
View SourceRight-click on figure for MathML and additional features. 我们将 V˜(z) 称为 z -GFT。图时间滤波器的 [60] 脉冲响应 Ht(S) 和输出 vt
Ht(S)=k=0Khk,tSk,vt=τ=0tHtτ(S)xτ,(10)
View SourceRight-click on figure for MathML and additional features.z 域中的图形过滤器输出 vt 为:
V(z)=H(Sz)X(z),whereH(Sz):=t=0+Ht(S)zt(11)
View SourceRight-click on figure for MathML and additional features. 当输入为 xt 时,其 z -变换 X(z)Ht(S) 是 GSO 算子的矩阵多项式:
Ht(S)=k=0Khk,tSkH(Sz)=k=0KHk(z)Sk.(12)
View SourceRight-click on figure for MathML and additional features. 这里 Hk(z) 是滤波器系数 hk,tz 变换。我们还可以在 GF 域中定义以下脉冲响应:
[h~t]i=Ht(λi),Ht(λ):=k=0Khk,tλk(13)
View SourceRight-click on figure for MathML and additional features. 并且 z 和 GF 域中的图时间联合传递函数为:
[h~(z)]i=H(λi,z),H(λ,z)=t=0+k=0Khk,tλkzt(14)
View SourceRight-click on figure for MathML and additional features. 由此,我们得到以下输入输出关系:
V~(z)=diag(h~(z))X~(z),(15)
View SourceRight-click on figure for MathML and additional features. 通过将 GFT 应用于 (11) 中的 z -域。

In this work, we focus on a class of graph-temporal filters called GF-ARMA (q,r) filter [51], [60]. The input-output relation in both time and z-GFT domain are described below, respectively:

vtA1(S)vt1Aq(S)vtq=B0(S)xt++Br(S)xtr,diag(a~(z))V~(z)=diag(b~(z))X~(z),
View SourceRight-click on figure for MathML and additional features.where a˜(z)=1qt=1a˜tzt and b˜(z)=rt=0b˜tzt are the z-transform of the graph frequency responses of the graph filter taps {At(S)}qt=1, {Bt(S)}rt=0 for the GF-ARMA (q,r) filter. Particularly, the GF-AR (2) filter is used in Section III-B to describe generator temporal dynamics.
在本研究中,我们重点研究了一类图时域滤波器,称为 GF-ARMA (q,r) 滤波器 [51] , [60] 。时间和 z -GFT 域的输入输出关系分别描述如下:
vtA1(S)vt1Aq(S)vtq=B0(S)xt++Br(S)xtr,diag(a~(z))V~(z)=diag(b~(z))X~(z),
View SourceRight-click on figure for MathML and additional features. 其中 a˜(z)=1qt=1a˜tztb˜(z)=rt=0b˜tzt 分别是 GF-ARMA (q,r) 滤波器的图滤波器抽头 {At(S)}qt=1{Bt(S)}rt=0 的图频率响应的 z 变换。具体而言,GF-AR (2) 滤波器在 Section III-B 中用于描述生成器的时间动态。

C. Measurements and Parameters of the Electric Grid
C. 电网的测量和参数

The electric grid network can be represented by an undirected graph G=(N,E) where nodes are buses and its edges are its transmission lines. The vertex set is a union between set of generator, NG and non-generator/ load buses, NL, i{NGNL}=N and the edge set (i,j)E depicts electrical connections. To obtain Ohm's law for a network of transmission lines, one starts from the telegrapher equations for a single line to obtain the ABCD parameters that relate input-output currents and voltages in the Fourier domain. The equations are then rearranged and the so-called π-model is attained, which is an equivalent circuit containing a series impedance element and parallel susceptance elements. The π-model leads to the 2×2 branch admittance matrix that relates current and voltage injections at the from and to ends of a transmission line [61]. From the branch admittance matrix of the network, applying Kirchhoff's law, one can relate the current and voltage phasors for the entire network, introducing a system admittance matrix, YC|N|[61] thus obtaining the network version of Ohm's law (see (18)). The matrix Y is defined as:

[Y]i,j={kNiyi,k,i=jyi,j,ij(16)
View SourceRight-click on figure for MathML and additional features.where yi,j is the admittance of the branch between buses i and j if (i,j)E. The system admittance matrix Y is a complex symmetric matrix and it is equivalent to the complex-valued graph Laplacian matrix associated with the power grid. Next, we will partition the nodes or buses into generator and non-generators, so that:
Y=[YggYgYgY],(17)
View SourceRight-click on figure for MathML and additional features.
where Ygg is the generator buses-only network, Yg includes the portion connecting generators and loads and Y corresponds to the section of the grid connecting the loads buses among themselves. The shunt (fixed admittance to ground at a bus) elements at all generator buses are denoted by ygshC|NG| and at all load buses by yshC|NL|.
电网网络可以用无向图 G=(N,E) 表示,其中节点是母线 ,边是传输线 。顶点集是发电机集 NG 与非发电机/负载母线 NLi{NGNL}=N 的并集,边集 (i,j)E 描述电气连接。为了获得传输线网络的欧姆定律,首先从单条线路的电报方程开始,以获得与傅里叶域中的输入输出电流和电压相关的 ABCD 参数。然后重新排列方程,得到所谓的 π 模型,它是包含串联阻抗元件和并联电纳元件的等效电路。 π 模型导致 2×2 分支导纳矩阵,该矩阵与传输线 [61] 起始终止端的电流和电压注入相关。根据网络的支路导纳矩阵,应用基尔霍夫定律,可以关联整个网络的电流和电压相量,引入系统导纳矩阵 YC|N| [61] ,从而得到网络版的欧姆定律(参见 (18) )。矩阵 Y 定义为:
[Y]i,j={kNiyi,k,i=jyi,j,ij(16)
View SourceRight-click on figure for MathML and additional features. 其中, yi,j 为母线 ij 之间支路的导纳(若 (i,j)E 成立)。系统导纳矩阵 Y 是一个复对称矩阵,它等价于与电网相关的复值图拉普拉斯矩阵。接下来,我们将节点或母线划分为发电节点和非发电节点,从而:
Y=[YggYgYgY],(17)
View SourceRight-click on figure for MathML and additional features. 其中, Ygg 表示仅包含发电机母线的网络, Yg 包含连接发电机和负载的部分, Y 表示连接负载母线的电网部分。所有发电机母线的并联(母线对地固定导纳)元件用 ygshC|NG| 表示,所有负载母线的并联元件用 yshC|NL| 表示。

The state of the system, from which all other physical quantities of interest can be derived, are the voltage phasors at each bus. In the following we assume that a PMU installed on node/bus iN provides a noisy measurement of voltage and current phasors at time t where v(t,i)=|v(t,i)|ejθ(t,i). With some abuse of notation, we will refer to the PMU data as v(t,i) as well. Let the vector of voltage phasors collected at time t be vtC|N|. After vt is partitioned into voltages at generator and non-generator buses, let igtC|NG| be the generator current and itC|NL| the load current. Ohm's law for a network is:3

(Y+diag([ygshysh]))vt=it,wherevt=[vgtvt],it=[igtit](18)
View SourceRight-click on figure for MathML and additional features.To describe the operating conditions of the system we introduce a few more quantities. In power systems transient dynamic analysis the impact of generating units is modeled as an internal bus characterized by a generator impedance (or admittance) ygC|NG| for gNG connected to an ideal voltage source called internal voltage [61]; we denote its value at time t by E(t,i)=|E(t,i)|eδ(t,i),iNG and the corresponding vector as etC|NG| so that [et]i=E(t,i). The current at generator bus in (18), igt, is obtained as the multiplication of generator admittance and the difference in voltage at the internal bus and the generator bus [7] :
igt=diag(yg)(etvgt)(19)
View SourceRight-click on figure for MathML and additional features.
As mentioned in Section. I, the generators respond to electric load in the grid. In order to model the generators response, a commonly used approximation is that at the load buses NL, admittances are slowly varying over time [7]. We denote them as y(t)CN.
系统状态是每条母线的电压相量,所有其他感兴趣的物理量都可以从中推导出来。下面我们假设安装在节点/母线 iN 上的 PMU 在时间 t 提供电压和电流相量的噪声测量,其中 v(t,i)=|v(t,i)|ejθ(t,i) 。由于符号有些滥用,我们也将 PMU 数据称为 v(t,i) 。设在时间 t 收集的电压相量矢量为 vtC|N| 。将 vt 划分为发电机母线和非发电机母线的电压后,设 igtC|NG| 为发电机电流, itC|NL| 为负载电流。网络欧姆定律为: 3
(Y+diag([ygshysh]))vt=it,wherevt=[vgtvt],it=[igtit](18)
View SourceRight-click on figure for MathML and additional features. 为了描述系统的运行条件,我们引入了其他一些量。在电力系统暂态动态分析中,发电机组的影响被建模为内部母线,其特征是发电机阻抗(或导纳) ygC|NG| ,对于 gNG ,连接到一个称为内部电压 [61] 的理想电压源;我们将其在时间 t 的值表示为 E(t,i)=|E(t,i)|eδ(t,i),iNG ,相应的矢量表示为 etC|NG| ,从而得到 [et]i=E(t,i)(18)igt 中发电机母线的电流等于发电机导纳与内部母线和发电机母线电压差 [7] 的乘积:
igt=diag(yg)(etvgt)(19)
View SourceRight-click on figure for MathML and additional features. 如第 I 节所述,发电机响应电网中的电力负荷。为了模拟发电机的响应,一种常用的近似方法是,在负荷母线 NL 处,导纳随时间缓慢变化 [7] 。我们将其表示为 y(t)CN

SECTION III.  第三部分

Graph Signal Processing for the Grid
网格的图形信号处理

Having described the relevant GSP concepts and introduced grid quantities and parameters of interest, we are ready to introduce the Grid-GSP framework.4 Firstly, we define the GSO for the grid, then support the definition by introducing the graph-filter model for voltage phasors, and finally characterize the temporal dynamics. All of the above yields a GSP generative model for the voltage phasor measurements as a low-pass GSP model, as detailed next.
在描述了相关的 GSP 概念并介绍了感兴趣的电网量和参数之后,我们准备介绍 Grid-GSP 框架。 4 首先,我们定义电网的 GSO,然后通过引入电压相量的图滤波模型来支持该定义,最后表征其时间动态。以上所有步骤最终生成一个用于电压相量测量的 GSP 生成模型,即低通 GSP 模型,下文将详细介绍。

A. Grid Graph Generative Model
A.网格图生成模型

Grid-GSP for voltage phasors data relies on the following definitions:
电压相量数据的 Grid-GSP 依赖于以下定义:

Definition 3:

The grid graph shift operator (GSO) is a complex symmetric matrix equal to a diagonal perturbation of the system admittance matrix with generator admittance values,

SY+diag([yg+ygshysh])(20)
View SourceRight-click on figure for MathML and additional features.


定义 3:

网格图移位算子 (GSO) 是一个复对称矩阵,等于具有发电机导纳值的系统导纳矩阵的对角扰动,

S≜Y + 诊断 ( [ y + y y ] id=102> (20)
查看源代码Right-click on figure for MathML and additional features. \开始{对齐*} \mathbf {S} \triangleq \boldsymbol{Y} + \mathtt {diag} \left(\begin{bmatrix}\boldsymbol{y}_{g} + \boldsymbol{y}_{sh}^{g} \\ \boldsymbol{y}_{sh}^{\ell } \end{bmatrix}\right) \tag{20} \结束{对齐*}

From the definition of the GSO it follows that:
根据 GSO 的定义可以得出:

Definition 4:

The grid Graph Fourier Transform (GFT) basis for voltage phasors is the orthogonal matrix U given by the eigenvalue decomposition of the GSO in Definition 3:

S=UΛU,|λmin|>0(21)
View SourceRight-click on figure for MathML and additional features.


定义 4:

电压相量的网格图傅里叶变换 (GFT) 基是正交矩阵 U ,由定义 3 中 GSO 的特征值分解给出:

S = U Λ U | λ 分钟 | > 0 (21)
查看源代码Right-click on figure for MathML and additional features. \开始{对齐*} \mathbf {S} = \mathbf {U} \boldsymbol{\Lambda } \mathbf {U}^{\top }, \,\, \left|\lambda _{\text{min}}\right| > 0 \标签{21} \结束{对齐*}

Here, the GSO S is a complex-symmetric matrix that has the same support as the electric-grid graph Laplacian as Y with the diagonal addition of generator admittances. Note that unlike the graph Laplacian, this GSO is invertible, |λmin|>0. Even when shunt elements ygsh,ysh are ignored as conventionally done to solve power-flow problems in power systems, a diagonal term with the generator admittances yg that is added to the principal diagonal of Y, makes the GSO S invertible (see (20)).
这里,GSO S 是一个复对称矩阵,其支撑集与电网图拉普拉斯算子 Y 相同,但对角线上添加了发电机导纳。需要注意的是,与图拉普拉斯算子不同,此 GSO 是可逆的 |λmin|>0 。即使像解决电力系统潮流问题的常规方法一样忽略分流元件 ygsh,ysh ,在 Y 的主对角线上添加一个包含发电机导纳 yg 的对角项,也能使 GSO S 可逆(参见 (20) )。

With the GSO S is defined as in (20), one can rewrite (18) and substitute for igt from (19):

(Y+diag([ygshysh]))vt=[diag(yg)(etvgt)it](22)
View SourceRight-click on figure for MathML and additional features.From now on with slight abuse of notation we denote vt as voltage phasor measurements that are noisy therefore we add measurement noise ηt which yields the following equation,
vt=H(S)[diag(yg)etit]+ηt(23)
View SourceRight-click on figure for MathML and additional features.
The Grid-GSP generative model for voltage phasor measurements vt is given by (23). The linear shift-invariant graph filter is H(S)=S1.
由于 GSO S 的定义与 (20) 中相同,因此可以重写 (18) 并用 (19) 中的 igt 替代:
(Y+diag([ygshysh]))vt=[diag(yg)(etvgt)it](22)
View SourceRight-click on figure for MathML and additional features. 从现在开始,我们将 vt 表示为有噪声的电压相量测量,略微滥用符号,因此我们添加测量噪声 ηt ,得到以下等式,
vt=H(S)[diag(yg)etit]+ηt(23)
View SourceRight-click on figure for MathML and additional features. 电压相量测量的 Grid-GSP 生成模型 vt(23) 给出。线性移位不变图滤波器为 H(S)=S1

Remark 1:

Shift-invariance of H(S)=S1 can be directly verified from (2) i.e. H(S)S=SH(S)=I. Since H(S) is shift invariant, it can be expressed as a matrix polynomial in S (Theorem 1 in [53]). Also, H(S)=S1 can be written as in (3) where coefficients hk can be determined by the application of Cayley-Hamilton theorem for inverse matrices [62].


备注 1:

H(S)=S1 的移位不变性可以直接从 (2)H(S)S=SH(S)=I 得到验证。由于 H(S) 是移位不变的,它可以表示为 S 中的矩阵多项式( [53] 中的定理 1)。此外, H(S)=S1 可以写成 (3) 中的系数 hk ,其中系数 hk 可以通过应用逆矩阵的凯莱-哈密顿定理 [62] 来确定。

H(S) is approximately a low-pass graph filter [52] due to the inversion of GSO since the graph frequency response of the filter can be written from (7) as diag(h~)=Λ1. This implies that as the graph frequency decreases, the magnitude of the filter response declines. More importantly, since generic power grids tend to be organized as communities system admittance matrix Y tends to be sparse [63]. Therefore the GSO S has a high condition number and the graph frequency response of H(S) is such that it tapers off after a certain λk.
由于 GSO 的逆变换, H(S) 近似为低通图滤波器 [52] ,因为滤波器的图频率响应可以从 (7) 写成 diag(h~)=Λ1 。这意味着随着图频率的降低,滤波器响应的幅度会下降。更重要的是,由于通用电网往往以社区形式组织,系统导纳矩阵 Y 趋于稀疏 [63] 。因此,GSO S 具有较高的条件数,并且 H(S) 的图频率响应在某个 λk 之后逐渐减小。

To visualize this more explicitly, consider ΛK to be the diagonal matrix with entries λi,iK={1,,k}. Define a low-pass filter with k frequency components and consequently the voltage phasor measurements as

Hk(S)vtUdiag(h~k)U,[h~k]i={λ1i,iK0,elseHk(S)[diag(yg)etit]+ηt,(24)
View SourceRight-click on figure for MathML and additional features.where Hk(S) will represent the principal subspace of the voltage phasors whose dimensionality is the number of graph-frequencies |K|. Therefore (24) defines the low-dimensional generative model for quasi-steady state voltage phasor measurements. The error term ηt now also captures modeling approximation.’
为了更直观地理解这一点,假设 ΛK 为元素为 λi,iK={1,,k} 的对角矩阵。定义一个具有 k 个频率分量的低通滤波器,电压相量测量结果如下:
Hk(S)vtUdiag(h~k)U,[h~k]i={λ1i,iK0,elseHk(S)[diag(yg)etit]+ηt,(24)
View SourceRight-click on figure for MathML and additional features. 其中 Hk(S) 表示电压相量的主子空间,其维数为图频率的数量 |K| 。因此, (24) 定义了准稳态电压相量测量的低维生成模型。误差项 ηt 现在也捕获了建模近似值。

To provide insights on the temporal dynamics of the voltage phasors, we need to capture the structure of the excitation term. As a matter of fact, et and it, have different dynamics, as discussed in the subsequent subsections.
为了深入了解电压相量的时间动态,我们需要捕捉激励项的结构。事实上, etit 具有不同的动态,如后续小节所述。

B. A GSP Model for Generator Dynamics: et
B. 发电机动力学的 GSP 模型: et

The excitation term corresponding to generator currents has elements as [et]i coming from each generator iG. We illustrate a non-linear dynamical model for the generators internal voltages, namely etCNG utilizing a GF-AR(2) graph temporal filter from Section II-B. The model is inspired by the classical swing equations [8], [9] that describes the coupled dynamics of the generators phase angles, δi(t),iG and the resulting variation in frequency, ωi(t)δi˙ω0 where ω0=2πf0 with f0 being the grid frequency (50 or 60 Hz).
对应于发电机电流的励磁项包含来自每个发电机 iG 的元素 [et]i 。我们利用来自 Section II-B 的 GF-AR(2)图时间滤波器,阐述了发电机内部电压的非线性动力学模型 etCNG 。该模型的灵感来自经典的摆动方程 [8][9] ,这些方程描述了发电机相角 δi(t),iG 的耦合动力学以及由此产生的频率变化 ωi(t)δi˙ω0 ,其中 ω0=2πf0 为电网频率(50 Hz 或 60 Hz)。

Our model, relies on two steps. First, we model the dynamics of a signal xt obtained through the following non-linear transformation of the internal generator voltages:

xtδt(diag(m))12ln(et)=(diag(m))12I{xt},|e|t=(diag(m))12R{xt}(25)
View SourceRight-click on figure for MathML and additional features.where the vector m entries are the so-called generators masses, δt are the generators angles that appear in the swing equations and |e|t are internal generator voltage magnitudes. Second, like in the swing equations, to describe the generators interactions, we resort to a Kron-reduction [8], [9] of the network, in which generators are all adjacent. To define this generator-only network and the corresponding GSO, consider the following admittance matrix, Yall that describes the network topology consisting of the generator internal buses, generator buses and non-generator buses like done in [9]:
Yall=[diag(yg+ygsh)[diag(yg+ygsh)0][diag(yg+ygsh)0]Sci]SciS+diag([0y])
View SourceRight-click on figure for MathML and additional features.
In order to model Yall, it is assumed that the loads are varying very slowly in time i.e. y(t)yt. Then, let us denote by Sh(A,B) the Schur complement of block B of matrix A. We compute the Schur complement of block Sci of the matrix Yall which is nothing but Kron reduction. The Schur complement of the Sci in Yall has two contributions:
Sh(Yall,Sci)=jYred+Ered(26)
View SourceRight-click on figure for MathML and additional features.
where Ered is a real diagonal dominated matrix, and the imaginary part Yred has the structure of a graph Laplacian. The proposed dynamical model for the graph signal xt relies on the following definition for the GSO of the Kron-reduced generator-only graph:
我们的模型依赖于两个步骤。首先,我们对通过内部发电机电压进行以下非线性变换获得的信号 xt 的动态进行建模:
xtδt(diag(m))12ln(et)=(diag(m))12I{xt},|e|t=(diag(m))12R{xt}(25)
View SourceRight-click on figure for MathML and additional features. 其中,向量 m 项是所谓的发电机质量, δt 是摆动方程中出现的发电机角度, |e|t 是发电机内部电压幅值。其次,与摆动方程类似,为了描述发电机之间的相互作用,我们采用网络的 Kron 约简 [8] , [9] ,其中发电机均相邻。为了定义这个仅包含发电机的网络及其对应的 GSO,请考虑以下导纳矩阵 Yall ,该矩阵描述了由发电机内部母线、发电机母线和非发电机母线组成的网络拓扑,就像在 [9] 中所做的那样:
Yall=[diag(yg+ygsh)[diag(yg+ygsh)0][diag(yg+ygsh)0]Sci]SciS+diag([0y])
View SourceRight-click on figure for MathML and additional features. 为了对 Yall 进行建模,假设载荷随时间变化非常缓慢,即 y(t)yt 。然后,我们用 Sh(A,B) 表示矩阵 A 中块 B 的舒尔补。我们计算矩阵 Yall 中块 Sci 的舒尔补,这其实就是 Kron 约简。 YallSci 的舒尔补有两个贡献: 其中,
Sh(Yall,Sci)=jYred+Ered(26)
View SourceRight-click on figure for MathML and additional features. 为实数对角占优矩阵,虚部 Yred 具有图拉普拉斯算子的结构。针对图信号 xt 提出的动力学模型依赖于 Kron 约简仅生成器图的 GSO 的以下定义:

Definition 5:

A GSO is defined for the Kron-reduced generator only network as

Sred=(diag(m))12Yred(diag(m))12R|NG|(27)
View SourceRight-click on figure for MathML and additional features.with the following eigenvalue decomposition,
Sred=UredΛredUred(28)
View SourceRight-click on figure for MathML and additional features.
and the orthonormal GFT basis being Ured.


定义 5:

对于 Kron 简化的仅生成网络,GSO 定义为

红色的 = d i a g m 1 2红色的 1 2 id=104> ∈R || (27)
查看源代码Right-click on figure for MathML and additional features. \开始{方程式*} \mathbf {S}_{\text{red}}= (\mathtt {diag}(\boldsymbol m))^{-\frac
Sred=UredΛredUred(28)
View SourceRight-click on figure for MathML and additional features. Ured } \boldsymbol {Y}_{\text{red}}(\mathtt {diag}(\boldsymbol m))^{-\frac
Sred=UredΛredUred(28)
View SourceRight-click on figure for MathML and additional features. Ured } \in \mathbb {R}^{\left|\mathcal {N}_G\right|} \tag{27} \end{方程*} 通过以下特征值分解,
Sred=UredΛredUred(28)
View SourceRight-click on figure for MathML and additional features. 且正交 GFT 基为 Ured

We introduce the GSP based dynamical model for the complex-valued generator internal voltages et via graph temporal filter GF-AR (2) as follows,
我们通过图时间滤波器 GF-AR (2) 引入基于 GSP 的复值发电机内部电压 et 动态模型,如下所示,

GSP-based dynamics for generator internal voltages

et=exp((diag(m))12xt)(29)
View SourceRight-click on figure for MathML and additional features.where xt is a GF-AR (2) process, i.e. the z-GFT X~(z) satisfies the following:
diag(a~(z))X~(z)a~(z)=W~(z)=1a~1z1a~2z2(30)(31)
View SourceRight-click on figure for MathML and additional features.

基于 GSP 的发电机内部电压动力学
et=exp((diag(m))12xt)(29)
View SourceRight-click on figure for MathML and additional features. 其中 xt 是 GF-AR (2) 过程,即 z -GFT X~(z) 满足以下条件:
diag(a~(z))X~(z)a~(z)=W~(z)=1a~1z1a~2z2(30)(31)
View SourceRight-click on figure for MathML and additional features.

The GSP based dynamical model takes inspiration from swing equation for generator angles and we empirically choose to model generator internal voltage magnitude |e|t also using a GF-AR (2) model although in most power system models, the dynamics of the amplitudes of the generators internal voltages are typically ignored. The swing equation for the generators angles [64] are a key tool for power systems dynamical analysis:

diag(m)δ¨+diag(d)δ˙=w¯¯¯¯Yredδ,(32)
View SourceRight-click on figure for MathML and additional features.where m are the generators masses, introduced previously, d are the damping coefficients of generators (often neglected) and w¯¯¯¯Yredδ is the imbalance between the electrical and mechanical power that triggers the change in generator angular velocity and acceleration. Note that I{x}=(diag(m))12δ. We can manipulate (32) to prove the following:
基于 GSP 的动态模型灵感源自发电机角的摆动方程,我们根据经验选择也使用 GF-AR (2)模型来模拟发电机内部电压幅值 |e|t ,尽管在大多数电力系统模型中,发电机内部电压幅值的动态特性通常被忽略。发电机角的摆动方程 [64] 是电力系统动态分析的关键工具:
diag(m)δ¨+diag(d)δ˙=w¯¯¯¯Yredδ,(32)
View SourceRight-click on figure for MathML and additional features. 其中, m 是前面介绍过的发电机质量; d 是发电机的阻尼系数(通常忽略); w¯¯¯¯Yredδ 是触发发电机角速度和加速度变化的电力和机械功率之间的不平衡。注意 I{x}=(diag(m))12δ 。我们可以利用 (32) 来证明以下推论:

Proposition 1:

Let w be such that I{w}=(diag(m))12w¯¯¯¯. Using the approximation:

diag(d)diag(m)1χI,
View SourceRight-click on figure for MathML and additional features.i.e. the homogeneous simplification as in [64], [65], the dynamics of I{xt} can be justified with an GF-AR (2) model with GSO Sred:
I{xt}A1(Sred)I{xt1}A2(Sred)I{xt2}I{w},A1(Sred):=(2χ)ISred,A2(Sred):=(χ1)I(33)
View SourceRight-click on figure for MathML and additional features.


命题 1:

w 满足 I{w}=(diag(m))12w¯¯¯¯ 。使用近似值:

诊断 d d i a g m 1 ≈χ
查看源代码Right-click on figure for MathML and additional features. \开始{方程式*} \mathtt {diag}\left(\boldsymbol {d} \right)\mathtt {diag}\left(\boldsymbol {m} \right)^{-1}\approx \chi \mathbb {I}, \end{方程*} 即 [64][65] 中的均质简化, I{xt} 的动态可以用具有 GSO Sred 的 GF-AR(2)模型来证明:
I{xt}A1(Sred)I{xt1}A2(Sred)I{xt2}I{w},A1(Sred):=(2χ)ISred,A2(Sred):=(χ1)I(33)
View SourceRight-click on figure for MathML and additional features.

Proof:

Simple algebra on (32) allows us to recast the equations in the following form:

I{x¨}+χI{x˙}=diag(m)12w¯¯¯¯SredI{x}.(34)
View SourceRight-click on figure for MathML and additional features.


证明:

(32) 进行简单的代数运算,我们可以将方程重新表述为以下形式:

{ x ¨ } + χ I { x ˙ } = d i a g ( m ) 1 2 西 ¯ ¯ ¯ ¯ id=102> S 红色的{ x } (34)
查看源代码Right-click on figure for MathML and additional features. \开始{对齐*} \Im \lbrace \ddot{\boldsymbol x}\rbrace + \chi \Im \lbrace \dot{\boldsymbol x}\rbrace = \mathtt {diag}\left(\boldsymbol {m} \right)^{-\frac
I{x¨}+χI{x˙}=diag(m)12w¯¯¯¯SredI{x}.(34)
View SourceRight-click on figure for MathML and additional features. {2}}\overline{\boldsymbol {w}} - \mathbf {S}_{\text{red}} \Im \lbrace \boldsymbol x\rbrace .\tag{34} \结束{对齐*}

Assuming that the sampling rate is fast enough, and normalizing it to 1, the finite difference approximations for the derivatives are x˙xtxt1,x¨xt+12xt+xt1 and can be used to obtain AR (2) GF equations for the samples I{xt} in (33).
假设采样率足够快,并将其归一化为 1,则导数的有限差分近似值为 x˙xtxt1,x¨xt+12xt+xt1 ,可用于获得 (33) 中样本 I{xt} 的 AR (2) GF 方程。

The model that we introduce is simply extending the GF-AR (2) model to capture both the real and imaginary part of xt i.e. internal generator voltage magnitudes|e|t and angles δt respectively and suggesting to search the 2|NG| parameters to fit the model with a~1,a~2 rather than exploring a general MIMO filter response. For simplicity of representation, we write the dynamical equation for xt in the GF domain,

x~t=diag(a~1)x~t1+diag(a~2)x~t2+w~t(35)
View SourceRight-click on figure for MathML and additional features.such that the impulse response of the filter at graph-frequency λred,i is defined by [a~1]i,[a~2]i. Note from (13) that [a~1]i,[a~2]i can be written as polynomials in graph frequency λred,i,
[a~1]i=k=0K11ak,1λkred,i,[a~2]i=k=0K21ak,2λkred,i,(36)
View SourceRight-click on figure for MathML and additional features.
which characterizes the poles of the AR system using graph frequencies. From (33), a first order polynomial may suffice to characterize [a~1]i,[a~2]i in most cases.
我们引入的模型只是对 GF-AR (2) 模型进行了简单的扩展,使其能够同时捕捉 xt 的实部和虚部,即内部发电机电压幅值 |e|t 和角度 δt ,并建议搜索 2|NG| 参数以拟合具有 a~1,a~2 的模型,而不是探索通用的 MIMO 滤波器响应。为了简化表示,我们在 GF 域中写出 xt 的动力学方程,
x~t=diag(a~1)x~t1+diag(a~2)x~t2+w~t(35)
View SourceRight-click on figure for MathML and additional features. 使得滤波器在图频率 λred,i 处的脉冲响应由 [a~1]i,[a~2]i 定义。 从 (13) 注意到, [a~1]i,[a~2]i 可以写成图频率 λred,i 中的多项式,
[a~1]i=k=0K11ak,1λkred,i,[a~2]i=k=0K21ak,2λkred,i,(36)
View SourceRight-click on figure for MathML and additional features. 使用图频率来表征 AR 系统的极点。从 (33) 可知,在大多数情况下,一阶多项式足以表征 [a~1]i,[a~2]i

C. Load Dynamics: it  C. 负载动态: it

There are several papers in the literature that deal with load forecasting and modeling [66]. We adopt a simple AR-2 model per node or load bus to describe the dynamics of the load,

it=diag(b1)it1+diag(b2)it2+ϵt(37)
View SourceRight-click on figure for MathML and additional features.where parameters b1,b2 are estimated load data time series. The block diagram in Fig. 1 summarize our modeling efforts.
文献中已有多篇论文探讨了负荷预测和建模 [66] 。我们采用简单的 AR-2 模型(每个节点或负荷母线)来描述负荷的动态变化。
it=diag(b1)it1+diag(b2)it2+ϵt(37)
View SourceRight-click on figure for MathML and additional features. 其中参数 b1,b2 是估算的负载数据时间序列。 Fig. 1 中的框图总结了我们的建模工作。

Fig. 1. - Block diagram showing generative model for voltage phasor measurements.
Fig. 1.   图 1.

Block diagram showing generative model for voltage phasor measurements.
显示电压相量测量生成模型的框图。

The unique nature of voltage phasor measurements allows us to describe a similar model for any subset of measurements on a graph. This is discussed next.
电压相量测量的独特性质使我们能够在图表上为任何测量子集描述类似的模型。下文将对此进行讨论。

D. Low-Pass Property of Down-Sampled Voltage Graph Signal
D. 下采样电压图信号的低通特性

Let vM (time index t is ignored for simplicity) be the down-sampled voltage graph signal where MN is the set of node indices at which measurements are available. It can be shown that any down-sampled graph signal with arbitrary graph frequency response is low-pass in the reduced-graph frequency domain. It suggests that one can utilize all the methods for low-pass graph signals onto down-sampled versions of the graph signal as well. This is summarized in Lemma 1 below.
vM (为简单起见,忽略时间索引 t )为下采样电压图信号,其中 MN 为可进行测量的节点索引集合。可以证明, 任何具有任意图频率响应的下采样图信号在简化图频域中均为低通信号。这表明,所有用于低通图信号的方法都可以应用于下采样版本的图信号。下文引理 1 对此进行了总结。

Lemma 1:

Let vM be any graph signal down-sampled in the vertex-domain with |M| samples. Let the GSO defined with respect to the full graph S be invertible. Then, with the GSO defined with respect to the reduced-graph of M vertices as Sred,M, graph signal vM is the output of low-pass graph filter H(Sred,M)S1red,M

vM=H(Sred,M)φ(38)
View SourceRight-click on figure for MathML and additional features.where the GSO for the reduced-graph is given by Kron-reduction of S, Sred,M=Sh(S,SMcMc).


引理 1:

vM 为任意在顶点域中以 |M| 个样本进行下采样的图信号。令相对于完整图 S 定义的 GSO 为可逆。然后,令相对于顶点 M 的简化图定义的 GSO 为 Sred,M ,图信号 vM 为低通图滤波器 H(Sred,M)S1red,M 的输出

= H S 红色 M ) φ (38)
查看源代码Right-click on figure for MathML and additional features. \开始{对齐*} \boldsymbol {v}_{\mathcal {M}} = \mathcal {H}\left(\mathbf {S}_{\text{red},\mathcal {M}} \right) \boldsymbol {\varphi } \tag{38} \结束{对齐*} 其中,简化图的 GSO 由 SSred,M=Sh(S,SMcMc) 的 Kron 简化给出。

Proof:

Consider a graph signal v with arbitrary graph frequency response with respect to GSO S,

v=H(S)x=S1(SH(S)x)(39)
View SourceRight-click on figure for MathML and additional features.The GSO S is rewritten in a 2×2 block form
S=[SMMSMMcSMMcSMcMc],(40)
View SourceRight-click on figure for MathML and additional features.
and S1 can be written using inverse formula for block matrices. When graph signal v is down-sampled, only M rows are considered on both sides of (39). Thus we have,
vM=S1red,M[I|M|SMMcS1McMc](SH(S)x)φ(41)
View SourceRight-click on figure for MathML and additional features.
where Sred,M is the Schur complement of the block SMcMc in the GSO S i.e.,
Sred,M=Sh(S,SMcMc)=SMMSMMcS1McMcSMMc
View SourceRight-click on figure for MathML and additional features.


证明:

考虑图形信号 v 具有关于 GSO 的任意图形频率响应 S , v=H(S)x= S −1 (SH(S)x) (39) 查看源代码 GSO S 被重写为 2×2 块状形式 S=[ S 毫米 S ⊤ M M c S M M c S M c M c ], (40) 查看源代码 和 S −1 可以用分块矩阵的逆公式来表示。当图像信号 v 是下采样的,仅 M 在(39)的两边都考虑行。因此,我们有 v M = S −1 红色,M [ I |中| − S M M c S −1 M c M c ](SH(S)x)                                        φ (41) 查看源代码 在哪里 S 红色,M 是块的 Schur 补 S M c M c 在 GSO S IE, S 红色,M =Sh(S, S M c M c )= S 毫米 − S M M c S −1 M c M c S ⊤ M M c 查看源代码 ■

Lemma 1 translates to an interesting self-similarity/fractional property for voltage graph signals in that the down-sampled version vM is still a low-pass graph signal. The self-similarity is due to SH(S)=I in (39). In summary, for voltage graph signals,

v=S1i,vM=S1red,M(iMSMMcS1McMciMc)(42)
View SourceRight-click on figure for MathML and additional features.In the power grid, this property has been illustrated empirically in several papers [12], [67] that highlight low-dimensionality of measurements from a subset of buses. Although the reduced-graph is denser compared to the original graph, it still helps to infer faults or events that occurred in a subset of nodes where sensors are not installed as long as correct placement strategies are devised i.e. that of choosing the subset M. Work in [26] explored the optimal placement for fault localization in the under-sampled regime and also made connections with GSP theory.
引理 1 转化为电压图信号一个有趣的自相似/分数特性,即下采样版本 vM 仍然是一个低通图信号 。自相似性源于 (39) 中的 SH(S)=I 。总而言之,对于电压图信号,
v=S1i,vM=S1red,M(iMSMMcS1McMciMc)(42)
View SourceRight-click on figure for MathML and additional features. 在电网中,多篇论文 [12][67] 已通过实证研究证明了这一特性,这些论文强调了母线子集测量值的低维性。尽管简化后的图比原始图更密集,但只要设计出正确的放置策略(例如选择子集),它仍然有助于推断未安装传感器的节点子集中发生的故障或事件 M[26] 中的研究探索了欠采样条件下故障定位的最佳放置位置,并与 GSP 理论建立了联系。

SECTION IV.  第四部分

Revisiting Algorithms From GSP for PMU Data
重新审视 GSP 中针对 PMU 数据的算法

In this section we study some of the implications Grid-GSP has while understanding sampling, optimal placement of measurement devices in power systems, interpolation of missing samples and network inference. The underlying generative model responsible for low-rank nature of data that has been established in the previous section helps explaining the success that many past works, such as [12], [68], [69], have attained in recovering missing PMU data using matrix completion methods. The low-pass nature of the voltage graph signals discussed in Section III provides the theoretical underpinning that support the arguments made in the literature.
在本节中,我们将探讨 Grid-GSP 在理解采样、电力系统中测量设备的最佳配置、缺失样本的插值以及网络推断方面的一些意义。上一节中建立的、用于解释数据低秩特性的底层生成模型,有助于解释许多以往的研究(例如 [12][68][69] )在使用矩阵补全方法恢复缺失的 PMU 数据方面所取得的成功。 Section III 中讨论的电压图信号的低通特性,为文献中的论证提供了理论基础。

A. Sampling and Recovery of Grid-Graph Signals
A. 网格图信号的采样和恢复

From the approximation in (24) we see that voltage graph signals have graph frequency content that drops as λk grows. This characteristic renders the signal approximately band-limited in the GFT domain [70] which means that there is a cut-off frequency λk such that frequency content corresponding to λk+1 and higher is negligible. Let the GFT basis corresponding to the first dominant k graph frequecies be UK. The bandlimiting operator is, BK=UKUKC|N|×K and the low frequency component of vt is:

BKvt=UKUKvt(43)
View SourceRight-click on figure for MathML and additional features.Similarly, a vertex limiting operator (with |M|) vertices is DM=PMPM where PM has columns that are coordinate vectors such that each column chooses a vertex/node. When the voltage measurements on the electrical network are from a few nodes, iM at time t, it can be written as [vt]M=PMvt. For reconstruction, results in [70] dictate the necessary condition be that |M||K|. In the presence of modeling error relative to the perfect band-limited definition, optimal sampling pattern i.e. the best placement for PMUs on the grid to minimize the worst-case reconstruction error is closely tied to the grid topology and the model mismatch relative to a strictly band-limited graph signal [71]. An optimal placement strategy of PMUs that minimizes the worst-case reconstruction error in the presence of model mismatch due to imperfect band-limited nature of the voltage graph signal, also known as the E-optimal design [71], is sought by maximizing the smallest singular value, σmin(DMUK), i.e. choose rows of UK such that they are as uncorrelated as possible and the resulting matrix has the highest condition number [70], [71]. Consider then the spatial sampling mask DM=diag(1M) that selects M locations.
(24) 中的近似可以看出,电压图信号的图频率成分会随着 λk 的增大而下降。这一特性使得信号在 GFT 域 [70] 中近似于带限,这意味着存在一个截止频率 λk ,使得对应于 λk+1 及更高频率成分的频率成分可以忽略不计。设对应于第一个主要 k 图频率的 GFT 基为 UK 带限算子BK=UKUKC|N|×Kvt 的低频分量为:
BKvt=UKUKvt(43)
View SourceRight-click on figure for MathML and additional features. 类似地,顶点限制算子(具有 |M| )的顶点为 DM=PMPM ,其中 PM 的列是坐标向量,每列选择一个顶点/节点。当电网上的电压测量值来自几个节点 iM 在时间 t 时,可以写成 [vt]M=PMvt 。对于重构, [70] 中的结果决定必要条件为 |M||K| 。在存在相对于完美带限定义的建模误差的情况下,最佳采样模式(即 PMU 在电网上的最佳位置,以最小化最坏情况的重构误差)与电网拓扑和相对于严格带限图信号 [71] 的模型不匹配密切相关。 PMU 的最优布局策略,在电压图信号带限特性不完美导致模型失配的情况下,最小化最坏情况的重构误差,也称为 E 最优设计 [71] ,其通过最大化最小奇异值 σmin(DMUK) 来实现,即选择 UK 的行,使它们尽可能不相关,并使生成的矩阵具有最高的条件数 [70][71] 。然后考虑选择 M 个位置的空间采样掩模 DM=diag(1M)

1) Sampling  1)采样

The optimal placement of M PMUs maximizes σmin(DMUK) which amounts to choosing the rows of UK with the smallest possible coherence (as close as possible to being orthogonal). In [70] and references therein, a greedy method is employed to find M rows from UK so that the least singular value is maximized.
M PMU 的最佳放置位置可最大化 σmin(DMUK) ,这相当于选择 UK 中具有最小相干性(尽可能接近正交)的行。在 [70] 及其参考文献中,采用贪婪方法从 UK 中查找 M 行,以使最小奇异值最大化。

Power systems topologies exhibit naturally a community structure that is reflected in the system admittance matrix Y [1] due to population density or clusters of loads. It is known that a method to determine k communities in a graph is to minimize the Ratio Cut [72] and spectral clustering performs a relaxed Ratio Cut minimization via kmeans algorithm on rows of the eigenvectors UK [73]. Thus, choosing rows of UK to be uncorrelated is intuitively putting PMUs in different graph-clusters or communities. This fact was also discussed in [26] in the context of sensor placements for fault localization. The PMUs sampling rate in time exceeds the needs for reconstructions in a quasi-steady state conditions by a significant margin and it is designed to help detect sharp transients in the system.
电力系统拓扑自然地表现出一种社群结构 ,由于人口密度或负载集群,这种结构反映在系统导纳矩阵 Y [1] 中。已知确定图中 k 社群的方法是最小化比率切割 [72] ,而谱聚类通过对特征向量 UK [73] 的行进行 k 均值算法执行宽松的比率切割最小化。因此,选择 UK 的行不相关直观地将 PMU 置于不同的图集群或社群中。这一事实也在 [26] 中关于故障定位的传感器放置的背景下进行了讨论。PMU 的时间采样率远远超过准稳态条件下重建的需求,它旨在帮助检测系统中的急剧瞬变。

2) Reconstruction  2)重建

Voltage data samples are obtained down-sampling in space after the optimal placement of PMUs. At time t when |M| samples, [vt]M are available, the following model applies

[vt]MPMUKv~t(44)
View SourceRight-click on figure for MathML and additional features.where v~t is the GFT of graph signal vt Therefore, reconstruction in spatial domain is done via GFT basis as
v^t=UK(PMUK)[vt]M(45)
View SourceRight-click on figure for MathML and additional features.

在 PMU 实现最优放置后,电压数据样本在空间中通过下采样获得。在时间 t ,当有 |M| 个样本 [vt]M 可用时,适用以下模型
[vt]MPMUKv~t(44)
View SourceRight-click on figure for MathML and additional features. 其中 v~t 是图形信号的 GFT vt 因此,空间域中的重建是通过 GFT 基础完成的,如下所示
v^t=UK(PMUK)[vt]M(45)
View SourceRight-click on figure for MathML and additional features.

B. Interpolation of Missing Samples
B.缺失样本的插值

When voltage measurements are missing or corrupted, denoising and interpolation of such data can be cast as a graph signal recovery problem by regularizing the total variation, (TV). Overall, the problem resembles time-vertex graph signal recovery [59]. Let V=[v1v2vT] represent the voltage phasor measurements matrix collected over T time instants. Let PΩ(V^) be the set of available measurements that have samples in entries of set Ω and are noisy,

minVPΩ(V^V)2F+cgt=1TSvt1+ctt=2Tvtvt122(46)
View SourceRight-click on figure for MathML and additional features.where the two regularizing terms measure the variation in the graph and time domain and cg,ct are the corresponding regularization constants. Importantly, one can use the GSO of the reduced graph, Sred,M if we only have access to a subset of measurements on the grid, M and employ the same formulation as in (46) for interpolation of missing samples.
当电压测量值缺失或损坏时,此类数据的去噪和插值可以通过正则化总变分 (TV) 转化为图信号恢复问题。总体而言,该问题类似于时间顶点图信号恢复 [59] 。令 V=[v1v2vT] 表示在 T 个时间点收集的电压相量测量值矩阵。令 PΩ(V^) 表示可用测量值的集合,这些测量值的样本属于集合 Ω 中的元素,且含有噪声。
minVPΩ(V^V)2F+cgt=1TSvt1+ctt=2Tvtvt122(46)
View SourceRight-click on figure for MathML and additional features. 其中两个正则项测量图和时域中的变化, cg,ct 是相应的正则化常数。重要的是,如果我们只能访问网格上的部分测量值,则可以使用简化图的广义序列优化 (GSO); Sred,MM 并采用与 (46) 相同的公式进行缺失样本的插值。

C. Network Inference as Graph Laplacian Learning
C. 网络推理作为图拉普拉斯学习

The problem of estimation of GSO S from voltage phasor measurements can be cast as a solving a problem similar to graph Laplacian learning [74] which seeks the GSO that minimizes the total variation of the observed voltage phasors. If current measurements it are available, then another regularization term Svtit22 can be added such that Ohm's law is satisfied. Therefore, estimation of GSO can be accomplished by solving the following problem:

minSt=1TSvt1+γSdiag(Diag(S))2F+t=1TSvtit22subject toR[S]i,j=R[S]j,i,I[S]i,j=I[S]j,i,ij,RTr(S)=α|N|,ITr(S)=β|N|(47)(48)(49)
View SourceRight-click on figure for MathML and additional features.Additional constraints on the GSO can be imposed based on the properties of complex-symmetry (see (48)), sparse off-diagonal entries via the term Sdiag(Diag(S))2F and dominant diagonal values (see (49)). Also, S tends to have larger imaginary values than real especially on the diagonal. and α,β>1 control the amplitude of real and imaginary values on the diagonal. As before, the problem above can be recast with down-sampled voltage graph signals to infer the Kron-reduced GSO Sred,M with the approximation that the term SMMcS1McMciMc in (41) is treated as additive Gaussian noise. Simulation results for network inference can be found in Section VI.
根据电压相量测量值估计 GSO S 的问题可以转化为求解一个类似于图拉普拉斯学习 [74] 的问题,即寻求最小化观测电压相量总变差的 GSO。如果有电流测量值 it ,则可以添加另一个正则化项 Svtit22 ,以满足欧姆定律。因此,GSO 的估计可以通过求解以下问题来完成:
minSt=1TSvt1+γSdiag(Diag(S))2F+t=1TSvtit22subject toR[S]i,j=R[S]j,i,I[S]i,j=I[S]j,i,ij,RTr(S)=α|N|,ITr(S)=β|N|(47)(48)(49)
View SourceRight-click on figure for MathML and additional features. 可以基于复对称性(参见 (48) )、通过项 Sdiag(Diag(S))2F 实现的稀疏非对角线项以及占主导地位的对角线值(参见 (49) )等特性,对 GSO 施加额外约束。此外, S 的虚值往往大于实值,尤其是在对角线上。 α,β>1 控制对角线上实值和虚值的幅度。与之前一样,上述问题可以用下采样电压图信号重新表述,以推断出 Kron 约化 GSO Sred,M ,其中将 (41) 中的项 SMMcS1McMciMc 近似地视为加性高斯噪声。网络推理的仿真结果可以在 Section VI 中找到。

SECTION V.  第五部分

Applications of Grid-GSP  Grid-GSP 的应用

The goal of this section is to showcase the benefits of casting problems in the Grid-GSP framework through two exemplary applications, namely anomaly detection and data compression. The common thread between them is the use of the Grid-GFT as a tool to extract informative features from PMU data.
本节旨在通过两个示例应用(异常检测和数据压缩)展示在 Grid-GSP 框架中处理铸造问题的优势。这两个应用的共同点在于都使用 Grid-GFT 作为工具,从 PMU 数据中提取信息特征。

A. Detection of FDI Attacks on PMU Measurements
A. 检测针对 PMU 测量的 FDI 攻击

This application is based on our preliminary work in [2]. Note that, even though we cast the problem as that of FDI attacks detection, the idea can be easily extended to unveil sudden changes due to physical events (like fault-currents, or topology changes) that similarly excite high GF content. We assume that we have access to PMU measurements of voltage and current from the buses they are installed on. Let A be the set of available measurements where PMUs are installed and U be set of unavailable ones. A measurement model can be written using ‘state’ to be the voltage as

[i^Av^A]zt=[YAAI|A|YAU0]H[vAvU]v+εt(50)
View SourceRight-click on figure for MathML and additional features.The attacker follows the strategy of FDI attack to manipulate both current and voltage on the set of malicious buses, iCA by introducing a perturbation
δvTt=[δvTC0T|P|+|U|],such thatYPCδvC=0(51)
View SourceRight-click on figure for MathML and additional features.
where P is the set of honest nodes. This requires special conditions and placement, since YPC is tall. Nonetheless, since the system admittance matrix Y is generally sparse [63], YPC does not have full column-rank for a sufficient number of attackers C even when all the measurements are available with A=N. Our detection problem entails deciding between the hypotheses of attack H1 and no attack H0. To this end, we can leverage the low-dimensional generative model for the voltage graph signal that comes from (24), which imposes additional constraint on the perturbation along with that in (51). In short, for the attacker to be successful and undetected, she needs to have knowledge of system parameters and the graph filter with k frequency components Hk(S). However, since the attacker does not have all this knowledge, a typical FDI attack as studied in literature is launched using (51). Using the generative model in (24), we know that under normal operating conditions in quasi-steady state, the received data zt under the no-attack and attack hypotheses H0,H1 respectively have the structure:
zt=H0:HHk(S)[(diag(yg)et) (it)]+εtH1:HHk(S)[(diag(yg)et) (it)]+Hδvt+εt(52)
View SourceRight-click on figure for MathML and additional features.
Therefore, we project zt onto the subspace orthogonal to columnspace of HHk(S) to get a test statistic, d(z). The projector is:
ΠHHk(S)I(HHk(S))(HHk(S))(53)
View SourceRight-click on figure for MathML and additional features.
and under the no attack hypothesis H0, energy in the orthogonal subspace is less than when there is an attack, H1. This can be converted to the following test,
d(zt)ΠHHk(S)zt22H0H1τ(54)
View SourceRight-click on figure for MathML and additional features.
where τ is a threshold that can be chosen based on an empirical receiver operator characteristics (ROC) curve. Note that, since Hk(S) is a low pass filter, the projector ΠHHk(S) in (53) is filtering high graph frequencies and the detection measures the energy on such frequencies as a signature for anomalies.
此应用基于我们在 [2] 中的初步工作。需要注意的是,即使我们将问题定义为 FDI 攻击检测,该思路也可以轻松扩展,以揭示由类似地激发高 GF 含量的物理事件(例如故障电流或拓扑变化)引起的突变。我们假设我们可以访问安装 PMU 的母线的电压和电流 PMU 测量值。令 A 为安装 PMU 的可用测量值集合, U 为不可用测量值集合。可以使用“状态”表示电压,并写出一个测量模型,如下所示
[i^Av^A]zt=[YAAI|A|YAU0]H[vAvU]v+εt(50)
View SourceRight-click on figure for MathML and additional features. 攻击者遵循 FDI 攻击策略,通过引入扰动来操纵恶意总线上的电流和电压, iCA
δvTt=[δvTC0T|P|+|U|],such thatYPCδvC=0(51)
View SourceRight-click on figure for MathML and additional features. 其中 P 是诚实节点集。这需要特殊条件和位置,因为 YPC 很高。但是,由于系统导纳矩阵 Y 通常是稀疏的 [63] ,因此即使所有测量值都可用 A=NYPC 对于足够数量的攻击者 C 也不具有满列秩。我们的检测问题需要在攻击 H1 和无攻击 H0 的假设之间做出判断。为此,我们可以利用来自 (24) 的电压图信号的低维生成模型,该模型对 (51) 中的扰动以及扰动施加了额外的约束。简而言之,为了使攻击者成功且不被发现,她需要了解系统参数和具有 k 频率分量 Hk(S) 的图滤波器。然而,由于攻击者并不具备所有这些知识,因此文献中研究的典型 FDI 攻击是使用 (51) 发起的。利用 (24) 中的生成模型,我们知道在准稳态正常运行条件下,无攻击和攻击假设 H0,H1 下接收的数据 zt 分别具有如下结构:
zt=H0:HHk(S)[(diag(yg)et) (it)]+εtH1:HHk(S)[(diag(yg)et) (it)]+Hδvt+εt(52)
View SourceRight-click on figure for MathML and additional features. 因此,我们将 zt 投影到与 HHk(S) 的列空间正交的子空间上,以获得检验统计量 d(z) 。投影式为:
ΠHHk(S)I(HHk(S))(HHk(S))(53)
View SourceRight-click on figure for MathML and additional features. 并且在无攻击假设 H0 下,正交子空间中的能量小于发生攻击时 H1 。这可以转换为以下测试,
d(zt)ΠHHk(S)zt22H0H1τ(54)
View SourceRight-click on figure for MathML and additional features. 其中 τ 是一个阈值,可根据经验受试者工作特征 (ROC) 曲线进行选择。需要注意的是,由于 Hk(S) 是一个低通滤波器, (53) 中的投影器 ΠHHk(S) 会过滤掉图中的高频率,而检测会测量这些频率上的能量,作为异常的信号。

Isolation of compromised buses or estimate of δv can also be undertaken with a similar logic. Firstly, using the assumptions in the previous section we can solve the following regression problem to recover δvt, formulating a LASSO relaxation of the sparse support recovery problem:

minδvtΠHHk(S)(zHδv)22subject toδvt1μ(55)
View SourceRight-click on figure for MathML and additional features.Constraint on the 1 norm is used to incorporate the prior knowledge that the attacker has access to a few measurement buses, CN. Note that the performance of the algorithm is also dependent on the number of graph-frequency components i.e. k considered.
隔离受损公交车或估算 δv 也可以采用类似的逻辑。首先,利用上一节中的假设,我们可以求解以下回归问题来恢复 δvt ,从而构建稀疏支持恢复问题的 LASSO 松弛模型:
minδvtΠHHk(S)(zHδv)22subject toδvt1μ(55)
View SourceRight-click on figure for MathML and additional features.1 范数的约束用于整合攻击者可以访问少量测量总线的先验知识, CN 。请注意,该算法的性能还取决于所考虑的图频率分量的数量,即 k

B. Compression of PMU Measurements
B. PMU 测量的压缩

The proposed compression algorithm leverages both (23) and (35). The measure of distortion we use is the mean-squared error (MSE):

d(v,v^)(|N|T)1t=0Tvtv^t22(56)
View SourceRight-click on figure for MathML and additional features.where T denotes the time instant at which samples are stopped collecting. Since we have a temporal dynamical model for the evolution of voltage in time, we use differential encoding [75] to quantize the residuals in both generator and load dynamics, w~t and ϵt respectively. The voltage at time t is:
建议的压缩算法同时利用了 (23)(35) 。我们使用的失真度量是均方误差 (MSE):
d(v,v^)(|N|T)1t=0Tvtv^t22(56)
View SourceRight-click on figure for MathML and additional features. 其中 T 表示停止采集样本的时刻。由于我们有一个电压随时间演变的时间动力学模型,因此我们使用差分编码 [75] 来量化发电机和负载动态中的残差,分别为 w~tϵt 。时刻 t 的电压为:

Algorithm 1: Encoding Algorithm for Compression.
算法1:压缩的编码算法。

Input: x~0,x~1,i0,i1,{vt}Tt=2  输入 x~0,x~1,i0,i1,{vt}Tt=2

1:

for t=2:T do
对于 t=2:T 执行

2:

States x~^t,i^t from (59) and (60) respectively.
状态 x~^t,i^t 分别来自 (59)(60)

3:

Voltage estimate:

v^0t=H(S)diag(yg)exp{diag(m)12Uredx~^t}i^t(57)
View SourceRight-click on figure for MathML and additional features.
电压估算:
v^0t=H(S)diag(yg)exp{diag(m)12Uredx~^t}i^t(57)
View SourceRight-click on figure for MathML and additional features.

4:

Compute GFT of modeling error: ξ~t=U(vtv^0t)
计算建模误差的 GFT: ξ~t=U(vtv^0t)

5:

Quantize: ξ~^t=Q{ξ~t},v^t=v^0t+Uξ~^t  量化: ξ~^t=Q{ξ~t},v^t=v^0t+Uξ~^t

6:

Update states,

x~^tUreddiag(m)12ln(e^t),i^t[Sv^t]NLwheree^t=(diag(yg))1[Sv^t]NG(58)
View SourceRight-click on figure for MathML and additional features.
更新状态,
x~^tUreddiag(m)12ln(e^t),i^t[Sv^t]NLwheree^t=(diag(yg))1[Sv^t]NG(58)
View SourceRight-click on figure for MathML and additional features.

7:

end for  结束于

Output: {ξ~^t}Tt=2  输出 {ξ~^t}Tt=2

vt=H(S)diag(yg)exp{diag(m)12Ured(x~0t+w~t)}i,0t+ϵtwherex~0t=diag(a1)x~t1+diag(a2)x~t2i,0t=diag(b1)i^t1+diag(b2)i^t2(59)(60)
View SourceRight-click on figure for MathML and additional features.

Thus, vt can be approximated as:

vtH(S)diag(yg)exp{diag(m)12Uredx~0t}i,0t+ξt(61)
View SourceRight-click on figure for MathML and additional features.Note that, the vector ξt GFT, Uξt has energy mostly in lower frequency components and is therefore an appropriate term to quantize using an optimal rate allocation. Specifically, we allocate bits to each component by setting a desired level of total distortion, applying the reverse water-filling result [76] which is optimum for a random vector Uξt whose entries are circularly symmetric complex independent Gaussian random variables and then quantize the components accordingly.5 Then, we use the quantized vector Uξt to update the state i.e. to estimate x~t and it. Algorithms 1 and 2 describe the encoding and decoding algorithms respectively.
因此, vt 可以近似为:
vtH(S)diag(yg)exp{diag(m)12Uredx~0t}i,0t+ξt(61)
View SourceRight-click on figure for MathML and additional features. 请注意,向量 ξt GFT, Uξt 的能量主要集中在低频分量中,因此适合使用最优码率分配进行量化。具体来说,我们通过设定所需的总失真度为每个分量分配比特,并应用逆向注水算法的结果 [76] (该结果对于一个随机向量 Uξt 而言是最优的,该向量的元素是循环对称的复独立高斯随机变量),然后相应地量化各个分量。 5 然后,我们使用量化向量 Uξt更新状态,即估计 x~tit 。算法 12 分别描述了编码和解码算法。

Algorithm 2: Decoding Algorithm for Reconstruction.
算法2:重构的解码算法。

Input: x~0,x~1,i0,i1, {ξ~^t}Tt=2
输入 x~0,x~1,i0,i1, {ξ~^t}Tt=2

1:

for t=2:T do
对于 t=2:T 执行

2:

States x~^t,i^t from (59) and (60) respectively.
状态 x~^t,i^t 分别来自 (59)(60)

3:

Reconstruction of voltage from (57) v^t=v^0t+Uξ~^t
(57) v^t=v^0t+Uξ~^t 重建电压

4:

Update states x~^t,i^t from (58)
(58) 更新状态 x~^t,i^t

5:

end for  结束于

Output: {v^t}Tt=2  输出 {v^t}Tt=2

Note that the proposed scheme of compression is sequential unlike others in literature. Several corrections can be made as data is collected in time such as the update of parameters a~1,a~2,b1,b2.
需要注意的是,与文献中的其他方案不同,本文提出的压缩方案是顺序的。随着数据的及时收集,可以进行一些修正,例如参数 a~1,a~2,b1,b2 的更新。

SECTION VI.  第六部分

Numerical Results  数值结果

The numerical results in this section are mostly obtained using data from the synthetic ACTIVSg2000 case [77], a realistic model emulating the ERCOT system, which includes 2,000 buses-with 432 generators and the rest non-generator buses. The ACTIVSg2000 case data include a realistic PMU data time series, in which 392 generators are dispatched to meet variable load demand. The sampling rate, as for real PMUs, is 30 samples per second. As all the system related parameters are known, it is easier to verify the proposed modeling strategy through the ACTIVSg2000 PMU data set. Fig. 2 shows the support of the graph Laplacian or the Y matrix when ordered into generator and non-generator buses. The block-diagonal structure is notable, and is the result of the population distribution in the state of Texas, which is concentrated in 8 metropolitan areas.
本节中的数值结果主要基于合成的 ACTIVSg2000 案例 [77] 的数据获得。该案例是一个模拟 ERCOT 系统的真实模型,包含 2000 辆公交车(其中 432 辆为发电机组公交车),其余为非发电机组公交车。ACTIVSg2000 案例数据包含真实的 PMU 数据时间序列,其中调度 392 辆发电机以满足可变的负载需求。采样率为每秒 30 次,与真实 PMU 相同。由于所有系统相关参数均为已知,因此更容易通过 ACTIVSg2000 PMU 数据集验证所提出的建模策略。 Fig. 2 显示了按发电机组和非发电机组公交车排序时对图拉普拉斯算子或 Y 矩阵的支持。块对角结构非常显著,这是德克萨斯州人口分布的结果,该州人口集中在 8 个大都市区。

Fig. 2. - Support of the GSO $\mathbf {S}$ of the ACTIVSg2000 network.
Fig. 2.   图 2.

Support of the GSO S of the ACTIVSg2000 network.
支持 ACTIVSg2000 网络的 GSO S

Grid-GSP model: In Fig. 3, magnitude of GFT of voltage graph signal vt and the input xt are plotted for a single time instant with respect to their corresponding normalized graph frequencies |λi|/maxi|λi| and shown in log-scale. From the linear decay, it is evident that the magnitude of GFT coefficients |v~t| corresponding to lower frequencies are more significant as compared to higher frequencies. Similarly, the GFT of the exponent in the input, x~t=Uredxt with the generator GSO Sred, is plotted with respect to the graph frequencies in Fig. 3. The decay in GFT coefficients with respect to frequency is less pronounced confirming that graph signal xt is not necessarily low-pass and in general depends on the topology of the generator only network.
电网-GSP 模型:Fig. 3 中,电压图信号 vt 和输入 xt 的 GFT 幅值相对于其对应的归一化图频率 |λi|/maxi|λi| 绘制了某一时刻的曲线,并以对数刻度显示。从线性衰减可以看出,与高频相比,对应于低频的 GFT 系数 |v~t| 的幅值更为显著。类似地,在 Fig. 3 中,绘制了输入中指数 x~t=Uredxt 的 GFT,其生成器 GSO Sred 对应于图频率。GFT 系数相对于频率的衰减不太明显,这证实了图信号 xt 不一定是低通的,并且通常取决于仅生成器网络的拓扑结构。

Fig. 3. - Magnitude of Graph Fourier Transform (GFT) for voltage graph signal, $| \tilde{\boldsymbol {v}_{t}} |$ (left) and input to generator-only network $| \tilde{\boldsymbol {x}_{t}} |$ (right) plotted with respect to normalized graph frequency and shown in log scale.
Fig. 3.   图 3.

Magnitude of Graph Fourier Transform (GFT) for voltage graph signal, |vt~| (left) and input to generator-only network |xt~| (right) plotted with respect to normalized graph frequency and shown in log scale.
电压图信号 |vt~| (左)的图傅里叶变换 (GFT) 幅度以及仅发电机网络 |xt~| (右)的输入根据标准化图频率绘制,并以对数尺度显示。

In Fig. 4, magnitude of GFT of the down-sampled voltage graph signal, v~M=Ured,MvM for |M|=867 and |M|=261 with two different down-sampling strategies: with PMUs placed at buses in few communities within the GSO S and the other being optimal placement for graph signal reconstruction. The placement strategy has an effect on the low-pass nature of the down-sampled signal. The steeper attenuation of GFT magnitude with placement strategy being community-wise is a result of loss in spatial-resolution.
Fig. 4 中,下采样电压图信号的 GFT 幅度, v~M=Ured,MvM 用于 |M|=867|M|=261 ,具有两种不同的下采样策略:PMU 放置在 GSO 内少数社区的总线上 S ,另一种是图形信号重建的最佳放置。 放置策略会影响下采样信号的低通特性。当放置策略以社区为单位时,GFT 幅度的衰减更剧烈,这是由于空间分辨率的损失造成的。

Fig. 4. - Magnitude of GFT for spatially down-sampled voltage graph signal, $| \tilde{\boldsymbol {v}}_{\mathcal {M}} |$ plotted with respect to normalized graph frequency for different placement strategies that show the effect on the low-pass nature. Steeper attenuation means loss of spatial resolution.
Fig. 4.   图4.

Magnitude of GFT for spatially down-sampled voltage graph signal, |v~M| plotted with respect to normalized graph frequency for different placement strategies that show the effect on the low-pass nature. Steeper attenuation means loss of spatial resolution.
空间下采样电压图信号的 GFT 幅度, |v~M| 相对于不同放置策略的归一化图频率绘制,以显示对低通特性的影响。衰减越陡,空间分辨率越低。

To highlight the temporal variation in the GFT domain of input exponent, x~t, a short time-series of the real and imaginary parts along with the fit of the AR model are shown in Fig. 5. As expected, the AR model fits well. Fig. 6 shows the similar AR-2 model fit to the load current at a bus that had the highest absolute value of load.
为了突出输入指数 x~t 在 GFT 域中的时间变化, Fig. 5 中展示了实部和虚部的短时间序列以及 AR 模型的拟合结果。正如预期的那样,AR 模型拟合效果良好。 Fig. 6 显示了类似的 AR-2 模型拟合结果,该模型拟合了负载绝对值最高的母线的负载电流。

Fig. 5. - AR model fit to the GFT of $\boldsymbol {x}_{t}$. Component corresponding to smallest graph frequency, $\lambda _{\text{red},1}$, $[\tilde{\boldsymbol {x}}_{t}]_1$ shown.
Fig. 5.   图 5.

AR model fit to the GFT of xt. Component corresponding to smallest graph frequency, λred,1, [x~t]1 shown.
AR 模型拟合了 xt 的 GFT。图中显示了与最小图频率 λred,1[x~t]1 对应的分量。

Fig. 6. - AR model for load bus, $j=1312$, i.e. bus with highest absolute value of load.
Fig. 6.   图 6.

AR model for load bus, j=1312, i.e. bus with highest absolute value of load.
负载母线的 AR 模型, j=1312 ,即负载绝对值最高的母线。

To emphasize the temporal nature of the input, the 2-dimensional frequency response (in both graph and time domains) is plotted for the input x~t in Fig. 7. The figure provides evidence of the coupling between the graph frequencies and time series Fourier power spectrum, and the variability of the temporal response depending on what GFT frequency mode is excited with Fourier spectra that are more or less concentrated towards low frequencies depending on the GFT mode. Hence, temporal dynamics can inform about what is happening in space (i.e. the trends are coupled).
为了强调输入的时间特性,绘制了 Fig. 7 中输入 x~t 的二维频率响应(图域和时域)。该图证明了图频率与时间序列傅里叶功率谱之间的耦合,以及时间响应随 GFT 频率模式激发而变化的特性,其中傅里叶谱的多少取决于 GFT 模式,而这些傅里叶谱或多或少地向低频集中。因此,时间动态可以反映空间中正在发生的事情(即趋势是耦合的)。

Fig. 7. - $2-$D frequency response (in both graph and time domains) of $\tilde{\boldsymbol {x}}_{t}$. It shows coupling between temporal and spatial trends.
Fig. 7.   图 7.

2D frequency response (in both graph and time domains) of x~t. It shows coupling between temporal and spatial trends.
2 x~t 的三维频率响应(图形和时间域)。它显示了时间和空间趋势之间的耦合。

Revising GSP tools: sampling and optimal placement Fig. 8 shows the placement of |M|=100 PMUs super-imposed on the support of the ordered Grid-GSO, S when |K|=100 graph frequency components are considered. Note the distribution of PMUs to different communities as well as on the generator buses as they belong to different graph communities. Fig. 9 exhibits the performance of the GSP based reconstruction method on optimally placed |M| PMUs that provide down-sampled measurements, vM. The number of graph frequencies considered for reconstruction are |K|=|M|. Even with just 5% of measurements (100 PMUs), the reconstruction error is extremely low. For random placement, |M| PMUs are chosen at random and |K|=100 graph frequencies are used for reconstruction. The trial of random placement is repeated 1,000 times and the most frequently occuring error (estimate of mode of the error distribution) is plotted. As expected, the reconstruction error for random placement is orders of magnitude higher than optimal placement.
修订 GSP 工具: 采样和最优放置 Fig. 8 显示了在有序 Grid-GSO 的支持上叠加 |M|=100 PMU 的放置, S 考虑了 |K|=100 图频率分量。注意 PMU 在不同社群以及发电机母线上的分布,因为它们属于不同的图社群。 Fig. 9 展示了基于 GSP 的重建方法对提供下采样测量的最优放置的 |M| PMU 的性能, vM 。考虑用于重建的图频率数量为 |K|=|M| 。即使只有 5% 的测量值(100 个 PMU),重建误差也非常低。对于随机放置,随机选择 |M| PMU 并使用 |K|=100 图频率进行重建。随机放置试验重复 1,000 次,并绘制出最常出现的误差(误差分布众数的估计值)。正如预期的那样,随机放置的重建误差比最优放置高出几个数量级。

Fig. 8. - Optimal placement of $|\mathcal {M}| = 100$ PMUs. $|\mathcal {K}|=100$. The strategy places PMUs in different graph communities.
Fig. 8.   图8。

Optimal placement of |M|=100 PMUs. |K|=100. The strategy places PMUs in different graph communities.
|M|=100 个 PMU 的最佳放置。 |K|=100 。该策略将 PMU 放置在不同的图社区中。

Fig. 9. - Reconstruction performance after optimal placement [70] of $|\mathcal {M}|$ PMUs. Number of frequencies used: $|\mathcal {K}|=|\mathcal {M}|$. For random placement, $|\mathcal {K}| =100$ used.
Fig. 9.   图9。

Reconstruction performance after optimal placement [70] of |M| PMUs. Number of frequencies used: |K|=|M|. For random placement, |K|=100 used.
|M| 个 PMU 中的 [70] 个进行优化布局后的重建性能。已使用频率数量: |K|=|M| 。对于随机布局,已使用 |K|=100 个。

To illustrate that the proposed modeling holds and algorithms work well also for real PMU data, in the next numerical experiments we used a real-world dataset of measurements from 35 PMUs placed in ISO New-England grid (ISO-NE) [78]. The data corresponds to a period of 180 seconds when a large generator near Ln:2 and Ln:4 introduces oscillations in the system. We decimated in time the PMU signals down to sampling frequency 1 sample/s.
为了说明所提出的模型成立且算法也适用于真实的 PMU 数据,在接下来的数值实验中,我们使用了来自 ISO 新英格兰电网(ISO-NE) [78] 中 35 个 PMU 的真实测量数据集。该数据对应于 Ln:2 和 Ln:4 附近的大型发电机在系统中引入振荡的 180 秒周期。我们及时将 PMU 信号抽取至采样频率 1 样本/秒。

Network inference: As the underlying GSO is unknown, it is estimated via (47) with the goal of recovering the underlying reduced-GSO. Since admittance values are not given, we only compare the support of the estimated GSO with the community of PMUs in the network. Fig. 10 shows the support of the estimated GSO and compares it with the map of PMUs highlighting a few clusters of correspondence. From Fig. 10 we see that the block-diagonal nature of the estimated GSO captures the community structure in the map.
网络推断: 由于底层 GSO 未知,我们通过 (47) 进行估计,目的是恢复底层的简化 GSO。由于未给出导纳值,我们仅将估计的 GSO 的支持度与网络中的 PMU 社群进行比较。 Fig. 10 显示了估计的 GSO 的支持度,并将其与 PMU 图进行比较,突出显示了一些对应关系聚类。从 Fig. 10 中我们可以看出,估计的 GSO 的块对角线特性能够捕捉到图中的社群结构。

Fig. 10. - The map of PMUs placed in ISO-NE test case 3 [78] (left) and the support of estimated GSO via (47) (right) shown. Note that the community structure corresponds to groups of PMUs in the actual system as highlighted in the figure for a few clusters.
Fig. 10.   图 10。

The map of PMUs placed in ISO-NE test case 3 [78] (left) and the support of estimated GSO via (47) (right) shown. Note that the community structure corresponds to groups of PMUs in the actual system as highlighted in the figure for a few clusters.
图中显示了 ISO-NE 测试用例 3 [78] 中的 PMU 分布图(左),以及通过 (47) 估算的 GSO 支持度(右)。请注意,社区结构与实际系统中的 PMU 组相对应,如图中突出显示的几个集群所示。

Interpolation of missing measurements: Once the GSO is estimated, we consider the interpolation problem in (46) for the same ISO-NE dataset. We delete data at random and add noise. We solve the problem in (46) to recover missing measurements. In Fig. 11 we compare the original, corrupted and recovered measurements. Corrupted measurements have missing samples not just at random but also contiguous in time. The normalized MSE, VV^2F/V2F is the metric used to gauge the reconstruction performance. As a comparison, on the same data, we tested the accelerated multichannel fast iterative hard thresholding (AM-FIHT) algorithm proposed in [79], which regularizes the reconstruction task assuming that the Hankel matrix formed with the columns of V, i.e. H(V), has low rank r,

minVPΩ(V^V)2Fsubject torank(H(V))=r(62)
View SourceRight-click on figure for MathML and additional features.The plot comparing the two methods is shown in Fig. 12. As seen, the GSO based method outperforms the AM-FIHT for this dataset, indicating that the regularization using the GSO is more effective at capturing the low-rank nature of the data, compared to seeking an arbitrary low rank structure in the the Hankel matrix of the data.
缺失测量值的插值: 估算出 GSO 后,我们考虑 (46) 中针对相同 ISO-NE 数据集的插值问题。我们随机删除数据并添加噪声。我们解决 (46) 中的问题以恢复缺失的测量值。在 Fig. 11 中,我们比较了原始测量值、损坏的测量值和恢复的测量值。损坏的测量值不仅随机地缺失样本,而且在时间上是连续的。归一化 MSE VV^2F/V2F 是用于衡量重建性能的指标。作为比较,在相同的数据上,我们测试了 [79] 中提出的加速多通道快速迭代硬阈值 (AM-FIHT) 算法,该算法对重建任务进行正则化,假设由 V 的列(即 H(V) )形成的 Hankel 矩阵具有较低的秩 r
minVPΩ(V^V)2Fsubject torank(H(V))=r(62)
View SourceRight-click on figure for MathML and additional features. 两种方法的比较图如 Fig. 12 所示。可以看出,基于 GSO 的方法在此数据集上的表现优于 AM-FIHT,这表明使用 GSO 进行正则化能够更有效地捕捉数据的低秩特性,而不是在数据的 Hankel 矩阵中寻找任意的低秩结构。

Fig. 11. - Interpolation of missing measurements for an ISO-NE case [78] using GSO based regularization. Note the contiguous missing of samples and our ability to interpolate. The relative noise level used is, $(|\mathcal {M}|T)\sigma ^2/\Vert \mathbf {V} \Vert _{F}^{2} = 10^{-4}$ Normalized MSE for this run is $6.22 \times 10^{-4}$.
Fig. 11.   图 11。

Interpolation of missing measurements for an ISO-NE case [78] using GSO based regularization. Note the contiguous missing of samples and our ability to interpolate. The relative noise level used is, (|M|T)σ2/V2F=104 Normalized MSE for this run is 6.22×104.
使用基于 GSO 的正则化对 ISO-NE 案例 [78] 的缺失测量值进行插值。请注意样本的连续缺失以及我们的插值能力。使用的相对噪声水平为 (|M|T)σ2/V2F=104 ,本次运行的归一化 MSE 为 6.22×104

Fig. 12. - Comparison of AM-FIHT algorithm in [79] ($r=10, n1=3, \beta =0$) and the proposed GSO based interpolation with 50% of missing measurements in the ISO-NE dataset [78].
Fig. 12.   图 12。

Comparison of AM-FIHT algorithm in [79] (r=10,n1=3,β=0) and the proposed GSO based interpolation with 50% of missing measurements in the ISO-NE dataset [78].
[79] ( r=10,n1=3,β=0 ) 中的 AM-FIHT 算法与 ISO-NE 数据集 [78] 中缺失 50% 测量值的所提议的基于 GSO 的插值进行比较。

Detection of FDI attacks: Fig. 13 shows the magnitude of the projection of the received measurement z on the orthogonal subspace ΠHHk(S). From Fig. 13 it is evident that when there is no attack, the magnitude of the projected component is orders of magnitude lower than when the measurements are under the FDI attack. This validates the idea of using high GFT frequency activity as an indicator of anomalies. Fig. 14 shows the empirical receiver operator characteristics (ROC) curve highlighting the detection performance of the proposed FDI attack detection scheme. The detection performance remains good, even when very few buses are attacked. We compare the performance of the proposed FDI attack detection with that of the method in [25] when the full state i.e. when all voltage measurements are available, |A|=2,000. The underlying principle to detect the attack in [25] is to look at the magnitude of graph frequency components at higher graph frequencies which is similar in principle to the detection test we undertake. They use the real and imaginary parts of the system admittance matrix as 2 GSOs, R{Y} and I{Y} respectively. Their test statistic is comprised of four components that are the frequency response of high-pass filtered real and imaginary voltage measurements (see Algorithm.2 in [25]). Fig. 16 shows the empirical ROC curves that compare the performance of the proposed method and the one in [25] when all voltage measurements are available and are noisy. The relative noise level used is 102. As evident from the curves, the proposed method performs better than the method in [25]. This is because our test statistic is more robust to noise and also significantly more sensitive in detecting the attack vectors, even when only few buses are attacked.
FDI 攻击检测: Fig. 13 显示了接收到的测量值 z 在正交子空间 ΠHHk(S) 上的投影幅度。从 Fig. 13 可以看出,当没有攻击时,投影分量的幅度比测量值受到 FDI 攻击时低几个数量级。这验证了使用高 GFT 频率活动作为异常指标的想法。 Fig. 14 显示了经验接收器操作特性 (ROC) 曲线,突出显示了所提出的 FDI 攻击检测方案的检测性能。即使在极少数母线受到攻击的情况下,检测性能仍然良好。我们将所提出的 FDI 攻击检测性能与 [25] 中的方法在完整状态(即所有电压测量值都可用时)下的性能进行了比较, |A|=2,000 。检测 [25] 中攻击的基本原理是查看较高图频率下图频率分量的幅度,这在原理上与我们进行的检测测试类似。它们分别使用系统导纳矩阵的实部和虚部作为 2 个 GSO, R{Y}I{Y} 。他们的检验统计量由四个部分组成,它们是高通滤波实部和虚部电压测量的频率响应(参见 [25] 中的算法 2)。 Fig. 16 展示了经验 ROC 曲线,该曲线比较了在所有电压测量值可用且存在噪声的情况下,所提出方法与 [25] 中方法的性能。使用的相对噪声水平为 102 。从曲线可以看出,所提出方法的性能优于 [25] 中的方法。这是因为我们的检验统计量对噪声的鲁棒性更强,并且在检测攻击向量方面也更加灵敏,即使只有少数总线受到攻击也是如此。

Fig. 13. - Components of projection of received measurement $\boldsymbol {z}$ onto the orthogonal subspace, $\boldsymbol {\Pi }_{\perp \boldsymbol {H} \mathcal {H}_{k} (\mathbf {S}) } {\boldsymbol z}$, $ |{\mathcal {A}}| = 500, |\mathcal {K}| = 200, |{\mathcal {C}}| = 250$.
Fig. 13.   图 13。

Components of projection of received measurement z onto the orthogonal subspace, ΠHHk(S)z, |A|=500,|K|=200,|C|=250.
将接收到的测量结果 z 投影到正交子空间 ΠHHk(S)z|A|=500,|K|=200,|C|=250 上的分量。

Fig. 14. - Empirical ROC curve for different $|{\mathcal {C}}|$ with different percentage of malicious measurements, $|{\mathcal {C}}|/|{\mathcal {A}}| \times 100$ with $|{\mathcal {A}}| = 500$ (out of 2,000) available measurements.
Fig. 14.   图 14.

Empirical ROC curve for different |C| with different percentage of malicious measurements, |C|/|A|×100 with |A|=500 (out of 2,000) available measurements.
不同 |C| 具有不同百分比的恶意测量值、 |C|/|A|×100 具有 |A|=500 (共 2,000 个)可用测量值的经验 ROC 曲线。

Fig. 15. - Reconstruction of attack vector.
Fig. 15.   图 15。

Reconstruction of attack vector.
攻击向量的重建。

Fig. 16. - Empirical ROC curve for methods proposed here and by Drayer & Routtenberg [25] when all voltage measurements are available, $|\mathcal {A}| = 2,000$. A percent of the measurements, $|{\mathcal {C}}|/|{\mathcal {A}}| \!\times \! 100$ are malicious. The relative noise level is $10^{-2}$.
Fig. 16.   图 16.

Empirical ROC curve for methods proposed here and by Drayer & Routtenberg [25] when all voltage measurements are available, |A|=2,000. A percent of the measurements, |C|/|A|×100 are malicious. The relative noise level is 102.
当所有电压测量值均可用时,本文提出的方法以及 Drayer & Routtenberg 提出的方法的经验 ROC 曲线为 [25]|A|=2,000 。其中一定比例的测量值 |C|/|A|×100 是恶意的。相对噪声水平为 102

Fig. 15 shows the reconstruction of magnitude of the attack vector δv when 500 measurements are available and number of attacked buses |C|=50.
Fig. 15 显示了当有 500 个测量值可用时攻击向量的幅度 δv 的重建,以及受攻击的公交车数量 |C|=50

Compression based results: For voltage data compression, we compared with two schemes: scalar quantization and singular value thresholding (SVT) from [49]. Fig. 17 plots the empirical rate-distortion (RD) curve and shows the comparison between all 3 schemes. As expected, scalar quantization does poorly compared to the other schemes. The SVT scheme simply uses few of the largest singular vectors for data reconstruction. Considering that it is indicative of voltage graph signal lying in a low-dimensional subspace, it is not surprising that the SVT scheme does well. However, the SVT curve rate-distortion curve eventually saturates. Note that the performance of the proposed method are comparable to those of the SVT. However, the latter is a batch method, while the proposed method is sequential, which has important implication for the online communications of PMU data.
基于压缩的结果: 对于电压数据压缩,我们与两种方案进行了比较:来自 [49] 的标量量化和奇异值阈值 (SVT)。 Fig. 17 绘制了经验率失真 (RD) 曲线并显示了这 3 种方案之间的比较。正如预期的那样,标量量化与其他方案相比表现不佳。SVT 方案仅使用少数最大的奇异向量进行数据重建。考虑到它表明电压图信号位于低维子空间中,SVT 方案表现良好也就不足为奇了。然而,SVT 曲线率失真曲线最终会饱和。请注意,所提出方法的性能与 SVT 相当。然而,后者是一种批处理方法,而所提出的方法是顺序的,这对 PMU 数据的在线通信具有重要意义。

Fig. 17. - Empirical rate distortion (RD) curve for the proposed compression method compared with singular value thresholding and quantization.
Fig. 17.   图 17。

Empirical rate distortion (RD) curve for the proposed compression method compared with singular value thresholding and quantization.
与奇异值阈值和量化相比,所提出的压缩方法的经验率失真(RD)曲线。

SECTION VII.  第七部分

Conclusion  结论

In this paper, we proposed the framework of Grid-GSP for the power grid that highlights the inherent spatio-temporal structure in the voltage phasors by employing concepts from GSP. Grid-GSP revisits the concepts of sampling and reconstruction, interpolation, network inference and applications, to detection of FDI attacks and a lossy sequential data compression, were introduced using the lens of GSP. The resulting algorithms were tested on data from both synthetic and real-world datasets. The paper opens the door to leverage the GSP foundations for all types of grid data analytical tasks.
本文提出了适用于电网的 Grid-GSP 框架,该框架运用 GSP 的概念,突出了电​​压相量的固有时空结构。Grid-GSP 重新审视了采样和重构、插值、网络推理及应用等概念,并结合 GSP 的视角介绍了 FDI 攻击检测和有损顺序数据压缩。最终的算法已在来自合成数据集和真实数据集的数据上进行了测试。本文为利用 GSP 基础进行各种类型的电网数据分析任务打开了大门。

ACKNOWLEDGMENT  致谢

The authors would like to thank the anonymous reviewers and the editor for their comments to improve the quality of the paper. The views expressed in the material are those of the authors and do not necessarily reflect those of the sponsors.
作者谨感谢匿名审稿人和编辑提出的改进论文质量的建议。文中表达的观点仅代表作者本人,并不一定反映资助方的观点。

1.   1 .
In truth, the Laplacian should be considered a graph differential operator as opposed to a shift operator, but we use the conventional name nonetheless in the rest of the paper to be consistent with the literature.
事实上,拉普拉斯算子应该被视为图微分算子,而不是移位算子,但为了与文献保持一致,我们在本文的其余部分仍然使用常规名称。
2.   2 .
It is worth noting that the graph shift operator and Fourier transforms do not have in general important properties that are found in their conventional counterparts for time series. One notable fact is that the spectrum of Sx does not have the same amplitude as the spectrum of x . In fact, the GSO effect is closer to that of a derivative, since each of the GFT coefficients is rescaled by the corresponding frequency. For complex symmetric non-Hermitian operators, unfortunately Parseval theorem is also not valid.
3.   3 .
Note that the admittances values are frequency responses evaluated at 60 Hz (for the US) and the voltage and current signals are the corresponding envelopes at the same frequency; Hence the assumption is the voltage and currents are narrowband and the convolution can be approximated by gain and phase rotation equal to the Fourier response at 60 Hz.
请注意,导纳值是在 60 Hz(对于美国)下评估的频率响应,并且电压和电流信号是相同频率下的相应包络;因此假设电压和电流是窄带,并且卷积可以通过等于 60 Hz 下的傅里叶响应的增益和相位旋转来近似。
4.   4 .
Our preliminary GSP modeling effort can be found in  [1]
我们的初步 GSP 建模成果可以在 [1]
5.   5 .
The covariance matrix is not diagonal and ideally one would first whiten the vector Uξt and then quantize the individual components with bit-allocation akin to reverse water-filling. Since the statistics of Uξt are time-varying, one has to perform the whitening transform at each time instant which is a cumbersome operation. Therefore we make the assumption of a diagonal covariance matrix while sacrificing the benefit of modeling the underlying correlations among the random variables.
协方差矩阵不是对角的,理想情况下应该先白化向量 Uξt 然后用类似于反向注水的比特分配方法对各个分量进行量化。由于 Uξt 由于随机变量是时变的,因此必须在每个时间点进行白化变换,这是一个繁琐的操作。因此,我们假设协方差矩阵为对角矩阵,但牺牲了对随机变量之间潜在相关性进行建模的优势。

References

References is not available for this document.