這是用戶在 2025-7-28 16:38 為 https://app.immersivetranslate.com/word/ 保存的雙語快照頁面,由 沉浸式翻譯 提供雙語支持。了解如何保存?

電商訂閱

The Psychology of Surprise: How Subscription Type Moderates the Effects of Blind Box Models on Mental Accounting, Hope Utility, and Consumer Behavior (8150)
驚喜心理學:訂閱類型如何調節盲盒模式對心理帳戶、希望效用和消費者行為的影響 (8150)

Figure 1. Conceptual Research Model
圖 1. 概念性研究模型

Figure 2. Experimental Stimuli Examples
圖 2. 實驗刺激範例

Figure 3. Interaction Effects of Information Mode and Subscription Type on Hope Utility
圖 3. 資訊模式與訂閱類型對希望效用的交互作用

Figure 4. Moderating Effect of Sensation Seeking on Purchase Intention
圖 4. 感覺尋求對購買意圖的調節作用

Figure 5. Mental Accounting Categorization by Condition
圖 5. 心理帳戶依條件分類

Figure 6. Effects of Expectancy Violation on Cancel/Complaint Intentions
圖 6. 預期違背對取消/抱怨意圖的影響

Paying for Possibilities: Option Value, Regret Aversion, and Mental Accounting in Access-Based Subscriptions (7410)
為可能性付費:存取型訂閱中的選擇權價值、後悔規避與心理帳戶 (7410)

Figure 1. Conceptual Framework of Option Value, Regret, and Mental Accounting
圖 1. 選項價值、後悔與心理帳戶的概念框架

Figure 2. Experimental Flow and Scenario Example
圖 2. 實驗流程與情境範例

Figure 3. Interaction Effects of Benefit Framing on Regret and Intention
圖 3. 利益框架對後悔與意圖的交互作用

Figure 4. Mediation Model of Anticipated Regret
圖 4. 預期後悔的中介模型

Friction by Design: The Psychological and Behavioral Effects of Cancellation Barriers in Subscription Commerce (7864)
《摩擦設計:訂閱商務中取消障礙的心理與行為影響》(7864)

Figure 1. Conceptual Model: Cancellation Friction, Ownership, and Churn
圖 1. 概念模型:取消摩擦、所有權與流失

Figure 2. Experimental Flow and Sample Screenshots of Cancellation Process
圖 2. 取消流程的實驗流程與範例截圖

Figure 3. Main Effects and Mediation Model
圖 3. 主要效果與中介模型

Figure 4. Switching Cost and Churn Intention by Condition (Visualization)
圖 4. 各條件下的轉換成本與流失意圖(視覺化)

訂閱組合

Hiring for a Job, Paying from an Account: How Job-Based Framing and Mental Accounting Jointly Determine Subscription Value and Choice (8063)
為工作而聘,從帳戶支付:基於工作的框架和心理帳戶如何共同決定訂閱價值和選擇 (8063)

Figure 1:研究模型圖 (Research Model)
圖 1:研究模型圖 (Research Model)

Figure 2Study 1 任務框架操弄結果(WTP、競爭定位、心理帳戶分類)

Figure 3Study 2 任務框架×預算結構交互作用圖示(購買意願)

The Consumer as an Investor: Portfolio Diversification, Risk Management, and the Frictions of Mental Accounting in Subscription Decisions (5602)
消費者即投資者:訂閱決策中的投資組合多元化、風險管理與心理帳戶摩擦

Figure 1. Conceptual Model: Portfolio Diversification × Mental Account Friction
圖 1. 概念模型:投資組合多元化 × 心理帳戶摩擦

Figure 2. Experimental Design Flow (Study 1 and Study 2)
圖 2. 實驗設計流程(研究 1 和研究 2)

Figure 3. Portfolio Allocation Patterns across Risk/Account Conditions
圖 3. 不同風險/帳戶條件下的投資組合配置模式

Decoding Value Hierarchies and Bundle Disruption: A Consumption Values Perspective on Subscription Decision-Making (6159)
解讀價值層級與組合破壞:訂閱決策的消費價值觀點 (6159)

Figure 1. Conceptual Model: Value Hierarchy and Bundle Disruption
圖 1. 概念模型:價值層次與組合破壞

Figure 2. Experimental Flowchart for Study 1 and Study 2
圖 2. 研究 1 和研究 2 的實驗流程圖

Figure 3. Value Ranking Heatmap (Study 1)
圖 3. 價值排序熱度圖 (研究 1)

Figure 4. Bundle Selection and Value Disruption Visualization (Study 2)
圖 4. 組合選擇與價值破壞視覺化(研究 2)

AI訂閱

From Observers to Subscribers: The Role of Social Influence, Capability Assessment, and Psychological Friction in AI Subscription (5623)
從觀察者到訂閱者:社會影響、能力評估與心理摩擦在 AI 訂閱中的作用 (5623)

Figure

Figure 1
圖 1

Conceptual Framework: Psychological Barriers and Social Influence in AI Subscription
概念框架:AI 訂閱中的心理障礙與社會影響

AI訂閱心理障礙與社會影響整合模型)

以流程圖/結構圖方式,呈現社會影響、能力評估、學習焦慮/障礙等對訂閱意圖的路徑關係可參考Lim et al., 2025; Liu et al., 2025)。

Figure 2
圖 2

Interaction Effect of Capability Assessment and Learning Anxiety
能力評估與學習焦慮的交互作用

(能力評估×學習焦慮交互效果圖)

如有進行分群/調節分析,展示不同群體在行為意圖上的差異(可為柱狀圖/線圖)。

Figure 3
圖 3

Empirical Path Model Results
實證路徑模型結果

(實證結構模型路徑圖)

如採用PLS-SEMSEM,顯示各主要路徑係數(可合併於Figure 1,視篇幅而定)。

From FOMO to Fit: Testing Signal-Person Fit and Nudge Threshold Effects in AI Subscription Uptake (6440)
從錯失恐懼到契合:測試 AI 訂閱採用中的訊號-個人契合度與推力閾值效應 (6440)

Figure

Title
標題

內容概要

Figure 1
圖 1

Conceptual Model of Digital Nudging and Personalization
數位推力與個人化概念模型

全文架構圖,呈現多訊號、個人特質、交互與

Figure 2
圖 2

Experimental Procedure Flow
實驗流程圖

實驗設計與樣本流程圖

Figure 3
圖 3

Moderation Effect of Signal-Person Fit
訊號-個人契合度的調節效應

交互作用圖如分組折線圖:高/低特質 × 訊號強度

Figure 4
圖 4

Inverted U-shaped Nudge Threshold Effect
倒 U 型推力閾值效應

U型曲線:輕推強度與訂閱意圖的關係(主要理論貢獻圖)

Figure 5
圖 5

Segment-Strategy Matrix for Precision Nudging
精準推動的區隔策略矩陣

推動管理矩陣,行銷/設計應用工具

Learning, Trust, and Dependency: A Dynamic Ecosystem Theory of User Retention in AI-Powered Services (7617)
學習、信任與依賴:人工智慧服務中使用者留存的動態生態系統理論 (7617)

Figure

位置

Figure 1
圖 1

AI User Retention Lifecycle Framework
AI 使用者留存生命週期框架

Section 2
第二節

Figure 2
圖 2

Trust Evolution Patterns by Dependency Profile
依賴關係剖析下的信任演進模式

Section 4
第四節

Figure 3
圖 3

Integrated AI User Retention Ecosystem Framework (整合理論模型)
整合式 AI 使用者留存生態系統框架 (整合理論模型)

Section 6
第六節

遊戲

From Attention Economy to Subscription Economy: Decoding the Value Hierarchy and User Segmentation in Mobile Game Subscriptions (10656)
從注意力經濟到訂閱經濟:解讀手機遊戲訂閱中的價值層次與使用者區隔 (10656)

Figure No.
圖號

Title
標題

Section
章節

Figure 1
圖 1

Conceptual Research Model
概念性研究模型

2.7

Figure 2
圖 2

Thematic Map of User Value Perceptions
使用者價值感知主題圖

4.2

Figure 3
圖 3

Structural Model with Standardized Path Coefficients
標準化路徑係數的結構模型

4.4

Figure 4
圖 4

Moderation Effects Plot (Family, Diversity, Price Sensitivity)
調節效果圖(家庭、多樣性、價格敏感度)

4.5

數位失憶

Forgotten Flaws, Fabricated Trust? The Effect of Digital Dependency and AI-Whitewashed Narratives on Brand Perception and Purchase Intention (7048)
被遺忘的缺陷,被捏造的信任?數位依賴與 AI 美化敘事對品牌認知和購買意願的影響 (7048)

Figure 1: The Theoretical Moderation Model
圖 1:理論調節模型

(此圖應放置 2.4 節假說發展的結尾處)

程式碼片段

graph TD

A(AI Narrative <br><i>(Neutral vs. Whitewashed)</i>) -->|H1| D(Consumer Judgment <br><i>- Brand Trust <br> - Purchase Intention</i>);
A(AI 敘事 <br><i>(中立 vs. 美化)</i>) -->|H1| D(消費者判斷 <br><i>- 品牌信任 <br> - 購買意願</i>);

B(Digital Dependency <br><i>(High vs. Low)</i>) -->|H2 (Moderates)| A;
B(數位依賴性 <br><i>(高 vs. 低)</i>) -->|H2 (調節因子)| A;

subgraph "Hypothesized Relationship"
subgraph "假設關係"

A

B

D

end

style A fill:#dae8fc,stroke:#6c8ebf,stroke-width:2px

style B fill:#f8cecc,stroke:#b85450,stroke-width:2px

style D fill:#d5e8d4,stroke:#82b366,stroke-width:2px

Figure 1說明:本研究的理論模型。我們預期AI敘事類型會直接影響消費者判斷(H1),而此效果會受到消費者數位依賴程度的調節(H2)

Figure 2: Interaction Effect of AI Narrative and Digital Dependency on Brand Trust
圖 2:AI 敘事與數位依賴對品牌信任的交互作用

(此圖應放置 4.2.2 節描述Brand Trust交互作用的段落中)

Figure 3: 2x2 Experimental Design
圖 3:2x2 實驗設計

AI Narrative Type
AI 敘事類型

Neutral Narrative
中立敘事

Whitewashed Narrative
粉飾敘事

Digital Dependency
數位依賴

Low Dependency (n=39)
低度依賴 (n=39)

Low Dependency (n=38)
低度依賴 (n=38)

High Dependency (n=39)
高度依賴 (n=39)

High Dependency (n=40)
高度依賴 (n=40)

Figure 4: Interaction Effect on Brand Trust(A bar chart or line graph showing the four group means. The y-axis is Brand Trust. The x-axis has two clusters: Neutral and Whitewashed. Within each cluster, there are two bars/points for Low and High Dependency. The graph clearly shows a larger gap between the bars for the High Dependency group compared to the Low Dependency group, especially in the Whitewashed condition.)
圖 4:對品牌信任的交互作用(顯示四組平均值的長條圖或折線圖。Y 軸為品牌信任。X 軸有兩個群組:中立和粉飾。每個群組內有兩個長條/點,分別代表低依賴和高依賴。圖中清楚顯示,高依賴組的長條間距比低依賴組更大,尤其是在粉飾條件下。)

The Exhausted Consumer: Digital Dependency, Decision Fatigue, and Somatic Symptoms in the E-commerce Era (7460)
精疲力竭的消費者:電子商務時代的數位依賴、決策疲勞與身體症狀 (7460)

Figure 1: Proposed Mediation Model
圖 1:提出的中介模型

+---------------------+ (H1) +------------------+ (H2) +------------------+

| Digital | ---------------> | Decision | ---------------> | Somatic |
| 數位 | ---------------> | 決策 | ---------------> | 身體 |

| Dependency | | Fatigue | | Symptoms |
| 依賴 | | 疲勞 | | 症狀 |

+---------------------+ +------------------+ +------------------+

| ^

|-------------------------------------------------------------------------|

(H3: Mediated Path)
<h3>中介路徑</h3>

Figure 2: Results of the Mediation Analysis for Study A
圖 2:研究 A 的中介分析結果

Digital Dependency (X)
數位依賴 (X)

|

| Path a: B = 0.51***
| 路徑 a:B = 0.51***

v

Decision Fatigue (M)
決策疲勞 (M)

|

| Path b: B = 0.29***
| 路徑 b: B = 0.29***

v

Somatic Symptoms (Y)
身體症狀 (Y)

Direct Effect (Path c'): B = 0.13**
直接效應 (路徑 c'): B = 0.13**

Indirect Effect (a*b): B = 0.15, 95% CI [0.09, 0.22]
間接效應 (a*b): B = 0.15, 95% CI [0.09, 0.22]

Note: Standardized regression coefficients are shown. Covariates (age, gender, education) are not shown for visual clarity.
註:顯示標準化迴歸係數。為視覺清晰起見,未顯示共變數(年齡、性別、教育程度)。

**p < .01, ***p < .001

Algorithmic Forgetting and Consumer Memory: The Effects of AI-Curated Content on Brand Recall, Resonance, and Purchase Intentions(7773)
演算法遺忘與消費者記憶:AI 策展內容對品牌回憶、共鳴和購買意圖的影響(7773)

Figure 1. Study 1 Experimental Design Flowchart
圖 1. 研究 1 實驗設計流程圖

視覺化展示Study 1的分組流程與主要測量時間點,包括參與者分配、內容類型Comprehensive vs. AI-Filtered、即時測量與延遲測量節點。

Figure 2. Brand Recall and Emotional Resonance by Condition (Bar Chart)
圖 2. 各條件下的品牌回想度與情感共鳴度(長條圖)

狀圖比較ComprehensiveAI-Filtered組在品牌回憶分數與情感共鳴的平均值,直觀展現兩組間顯著差異。

Figure 3. Brand Trust, Attitude, and Perceived Credibility by Condition (Bar Chart)
圖 3. 各條件下的品牌信任度、態度與感知可信度(長條圖)

狀圖同時呈現兩組在品牌信任、品牌態度與資訊可信度三項指標上的均數與標準差。

Figure 4. Study 2 2×2 Experimental Design Structure
圖 4. 研究 2 2×2 實驗設計結構

實驗設計示意圖,清楚標示四組(AI-Assisted/High Complexity, AI-Assisted/Low Complexity, Independent/High, Independent/Low)及操弄流程。
實驗設計示意圖,清楚標示四組(AI 輔助/高複雜度、AI 輔助/低複雜度、獨立/高、獨立/低)及操弄流程。

Figure 5. Product Recall and System Dependence by Condition (Bar Chart)
圖 5. 各條件下的產品回想度與系統依賴度(長條圖)

兩組AI-Assisted vs. Independent在產品回憶分數與系統依賴度上的均數比較,標顯著性差異。

Figure 6. Interaction Effect: Perceived Value of Information Search by Search Mode and Product Complexity (Interaction Plot)
圖 6. 互動效果:資訊搜尋的知覺價值,依搜尋模式與產品複雜度區分(互動圖)

互動效應折線圖,顯示在高複雜度與低複雜度下,AI-AssistedIndependent組對資訊搜尋價值感知的交互作用。

Figure 7. Delayed Loyalty and Attitude Stability by Condition (Bar Chart)
圖 7. 延遲忠誠度與態度穩定性,依條件區分(長條圖)

一週延遲測試下,各組品牌忠誠與態度穩定性的平均比較。

Figure 8. Managerial and Policy Implications Matrix (Infographic or Summary Diagram)
圖 8. 管理與政策意涵矩陣(資訊圖或摘要圖)

Table 9的管理意涵矩陣視覺化,強調四類利害關係人的風險、行動與案例對應,方便一頁掌握研究啟示。

Managerial and Policy Implications Flowchart (建議圖形內容,若需正式圖檔請回覆)
管理與政策意涵流程圖(建議圖形內容,若需正式圖檔請回覆)

中央圓圈:AI-Driven Content Curation
中央圓圈:AI 驅動的內容策展

四個分支箭頭連接:

Platform Designers:標與內容選擇透明化
平台設計者:標註與內容選擇透明化

Brand Managers:平衡正/負面敘事、誠實溝通
品牌經理:平衡正/負面敘事、誠實溝通

Consumers:數位素養培育、主動懷疑

Policymakers:立法、標準化、第三方稽核
政策制定者:立法、標準化、第三方稽核

分支下附註主要行動建議與預期效益

數位游牧

Between Freedom and Loneliness: The Role of Virtual Companionship in Shaping Digital Nomad Intentions (9360)
自由與孤獨之間:虛擬陪伴在形塑數位遊民意圖中的作用 (9360)

Figure 1Integrated Conceptual Framework: Freedom, Loneliness, and Intervention Effects
圖 1 整合概念框架:自由、孤獨與干預效果

Figure 2Overview of Two-Study Research Design (Flowchart)
圖 2 兩階段研究設計概述(流程圖)

Figure 3Interaction Effect of Perceived Freedom and Anticipated Loneliness on Intention
圖 3 感知自由與預期孤獨對意圖的交互作用

Figure 4Pathways of Digital Social Support for Mobile Professionals
圖 4 行動專業人士數位社會支持路徑

Figure 5Group Differences in Loneliness and Nomad Intention (Experimental Results)
圖 5 孤獨感與遊牧意圖的群體差異(實驗結果)

Figure 6Mediation Model: Loneliness Reduction as Pathway from Intervention to Intention
圖 6 中介模型:孤獨感降低作為從干預到意圖的路徑

讀旅

More Than a Tool: How Anthropomorphic Digital Companions Foster Connection, Trust, and Loyalty Across Cultures and Traveler Profiles (9960)
不只是一個工具:擬人化數位夥伴如何跨文化和旅行者類型培養連結、信任和忠誠度 (9960)

Figure No.
圖號

Title
標題

Section
章節

Content Description
內容說明

Figure 1
圖 1

Integrative Research Model: Anthropomorphic Digital Companionship
整合性研究模型:擬人化數位陪伴

3.1 Research Model Overview
3.1 研究模型概述

Path diagram showing hypothesized relationships: Anthropomorphic Design → Emotional Connection → Trust → Loyalty, with user segmentation and self-construal as moderators
路徑圖顯示假設關係:擬人化設計 → 情感連結 → 信任 → 忠誠度,並以使用者區隔和自我建構作為調節變數

Figure 2
圖 2

Experimental Procedure Flowchart
實驗流程圖

4.1 Research Design
4.1 研究設計

Stepwise illustration of pre-survey, manipulation, and post-survey process
前測、操弄和後測過程的逐步說明

Figure 3
圖 3

Interaction Effects of Anthropomorphic Design and User Segmentation on Emotional Connection
擬人化設計和使用者區隔對情感連結的交互作用

5.3 Moderation Analysis
5.3 調節分析

Graph illustrating moderation effect across user segments (soloist, socializer, highly constrained)
圖表說明調節效果在不同使用者區隔(獨行者、社交者、高度受限者)中的表現

Figure 4
圖 4

Moderation by Self-Construal: Effects of Anthropomorphic Design on Trust
自我建構的調節作用:擬人化設計對信任的影響

5.3 Moderation Analysis
5.3 調節分析

Interaction plot depicting impact of self-construal (independent vs. interdependent)
描繪自我建構(獨立與互依)影響的交互作用圖

Figure 5
圖 5

Conditional Indirect Effects: Moderated Mediation Model
條件式間接效應:調節式中介模型

5.3 Moderated Mediation
5.3 調節式中介

Diagram or plot showing how indirect effects of anthropomorphic design on loyalty vary by segmentation/self-construal
顯示擬人化設計對忠誠度的間接影響如何因區隔/自我建構而異的圖表

From Emergent to Designed: Adaptive Personalization of Digital Travel Companions through Psychological Segmentation and Responsible AI (7452)
從應變到設計:透過心理區隔與負責任 AI 實現數位旅行夥伴的調適性個人化 (7452)

Figure No.
圖號

Title
標題

Description / Content Summary
說明 / 內容摘要

Referenced in
參考文獻

Figure 1
圖 1

Conceptual Research Model of Adaptive Digital Travel Companionship
適應性數位旅行伴侶概念研究模型

Visual diagram showing hypothesized relationships among DTC functionality, user segmentation, self-construal, emotional connection, and constraint reduction (main, mediating, moderating paths)
視覺圖表顯示 DTC 功能、使用者區隔、自我建構、情感連結和限制減少之間的假設關係(主要、中介、調節路徑)

3.3 Research Model
3.3 研究模型

Figure 2
圖 2

Experimental Design and Condition Flowchart
實驗設計與條件流程圖

Stepwise flow of experimental assignment, scenario exposure, and measurement sequence
實驗分配、情境暴露和測量順序的逐步流程

4.2 Procedure
4.2 程序

Figure 3
圖 3

Results: Main and Moderation Effects Visualization
結果:主要與調節效果視覺化

Bar/line charts or interaction plots for key ANOVA/PROCESS results (e.g., constraint reduction by DTC type and user segment/self-construal)
關鍵 ANOVA/PROCESS 結果的長條圖/線圖或交互作用圖(例如:依 DTC 類型與使用者區隔/自我建構分類的限制縮減)

5.2 Hypothesis Testing
5.2 假設檢定

Figure 4
圖 4

Model Fit and Robustness Summary Diagram
模型擬合與穩健性摘要圖

Visualization of CFA output, fit indices, and/or multi-group comparison (e.g., model fit tree or heatmap)
CFA 輸出、配適指標和/或多群組比較的視覺化(例如:模型配適樹狀圖或熱度圖)

5.2, Appendix D
5.2,附錄 D

Figure 5
圖 5

AI Persona Design Matrix Visualization
AI 人格設計矩陣視覺化

Matrix or quadrant chart mapping user segments × self-construal × optimal DTC features (可結合Table 7視覺化)
矩陣或象限圖,用於描繪使用者區隔 × 自我建構 × 最佳 DTC 功能(可結合表 7 視覺化)

6.2 Managerial Implic.
6.2 管理意涵

Figure 6
圖 6

Thematic Map of Qualitative Feedback
質性回饋的主題地圖

Visual summary (e.g., word cloud, theme network) of key participant themes and concerns
關鍵參與者主題和關注點的視覺化摘要(例如:文字雲、主題網絡)

5.3, Appendix E
5.3,附錄 E

Figure List 補充說明
圖表清單補充說明

Figure 1:理論架構圖,是審稿人首要關注,請確保箭頭、假說編號清晰標注。

Figure 2:實驗流程或受試者流程圖,展現研究設計嚴謹性。

Figure 3:可用 bar/interaction plot 呈現主調節/中介分析視覺結果。
圖 3:可用長條圖/互動圖呈現主調節/中介分析的視覺結果。

Figure 4:模型擬合與健檢摘要圖(可用 fit indices 走勢圖/熱區圖)。

Figure 5賣點圖,建議以六象限矩陣(user type × self-construal × 功能)強調應用價值。
圖 5:賣點圖,建議以六象限矩陣(使用者類型 × 自我建構 × 功能)強調應用價值。

Figure 6:質性回饋主題視覺化,展現 mixed-methods 深度。
圖 6:質性回饋主題視覺化,展現混合研究法深度。

數位孤獨

Soul Machines or Problem Solvers Experimental Evidence on How AI Companion Roles Affect Social Anxiety, Human-AI Bonding, and Social Displacement (9891)
Soul Machines 或 Problem Solvers 關於 AI 夥伴角色如何影響社交焦慮、人機連結和社會取代的實驗證據 (9891)

Figure No.
圖號

Title
標題

Description
說明

Related Section
相關章節

Figure 1
圖 1

Conceptual Framework of AI Companionship Roles and Psychological Outcomes
AI 陪伴角色與心理結果的概念框架

顯示本研究的理論模型,連結AI角色情感支持 vs. 問題解決對社交焦慮、人機連結的影響機制,含中介與調節效果。

2.5 Summary and Conceptual Model
2.5 總結與概念模型

Figure 2
圖 2

Experimental Flow of Study 1 and Study 2
研究一與研究二的實驗流程

示意兩項實驗之研究流程,包括壓力誘導、AI互動、行為選擇與問卷測量的時序安排。

3.1 Research Design and Overview
3.1 研究設計與概述

Figure 3
圖 3

Mediation Model: Emotional AI → Empathy / Support → Psychological Outcomes
中介模型:情感 AI → 同理心/支持 → 心理結果

呈現中介分析結果,說明情感支持型AI如何透過共情與支持感影響社交焦慮與人機連結。

4.3 Mediation and Moderation Analyses
4.3 中介與調節分析

Figure 4
圖 4

Moderation Effects of Trait Social Anxiety on AI Attachment and Displacement
特質社交焦慮對 AI 依戀與替代的調節作用

呈現社交焦慮特質在AI依戀與社會取代意圖之間的調節效果圖(斜率圖)。

4.3 Mediation and Moderation Analyses
4.3 中介與調節分析

Figure 5
圖 5

Behavioral Choice Distribution (AI vs. Human Supporter) in Study 2
研究二中行為選擇分佈(AI vs. 人類支持者)

長條圖顯示參與者在第二輪求助對象選擇中的偏好分布(依AI角色區分)。

The Cost of Perfection: How Ideal AI Companions May Erode Tolerance for Real-World Social Friction (10398)
完美的代價:理想 AI 夥伴如何侵蝕對現實社交摩擦的容忍度 (10398)

Figure 1. Experimental Flow Diagram
圖 1. 實驗流程圖

(Insert a flow chart with the following nodes: Random Assignment → [AI Habituation or Control Activity] → Social Friction Test with Confederate → Measurement of Outcomes)
(插入一個流程圖,包含以下節點:隨機分派 → [AI 習慣化或控制活動] → 與同盟者的社交摩擦測試 → 結果測量)

Figure 2. Mean Task Persistence by Group
圖 2. 各組平均任務持續時間

(Bar graph: AI habituation group vs. control; y-axis: persistence time in minutes)
(長條圖:AI 習慣化組與控制組;Y 軸:持續時間,單位為分鐘)

Figure 3. Frequency of Frustration Expressions by Group
圖 3. 各組挫折表達頻率

(Bar graph: AI habituation group vs. control; y-axis: mean number of coded frustration utterances)
(長條圖:AI 習慣化組與控制組;Y 軸:編碼挫折表達平均次數)

Figure 4. Mean Social Perception Ratings by Group
圖 4. 各組的平均社會觀感評分

(Bar graph: AI habituation group vs. control; y-axis: mean Likert score on likability, competence, and willingness to collaborate)
(長條圖:AI 習慣化組與對照組;Y 軸:喜好度、能力和合作意願的平均李克特分數)

Who Pays for Digital Companionship? Mapping Consumer Segments and Willingness to Pay for Generative versus Dedicated AI (11061)
誰來為數位陪伴買單?生成式 AI 與專用 AI 的消費者區隔與支付意願分析 (11061)

Figure 1. Conceptual Framework and Experimental Design
圖 1. 概念框架與實驗設計

論文整體研究架構圖,顯示自變項(AI產品類型 × 孤獨情境)、中介變項(擬人化、心理補償)、調節變項(分群特徵)與依變項(價值、信任、付費意願等)及資料流程。

Figure 2. Interaction Plots for Key Dependent Variables
圖 2. 關鍵依變數的交互作用圖

不同AI產品類型 × 孤獨情境之下,對WTP(付費意願)、情感依戀等關鍵結果的交互作用圖(Estimated Marginal Means Plot)。

Figure 3. Mediation and Moderation Path Diagrams
圖 3. 中介與調節路徑圖

展現AI產品類型經由擬人化、心理補償中介,及分群變項調節對主要結果的路徑圖(含顯著與非顯著路徑標)。

Figure 4. Management Matrix for Digital Companionship Strategies
圖 4. 數位陪伴策略管理矩陣

以二維矩陣或流程圖形式,對應「消費者分群 × 產品設計 × 商業模式」最佳配置與策略路徑,提供管理決策參考。

數位陪伴與教育

Beyond Helpfulness: Balancing Affective and Cognitive Scaffolding in AI Tutoring—Short-term Gains and Long-term Resilience (9862)
超越實用性:平衡 AI 輔導中的情感與認知鷹架——短期效益與長期韌性 (9862)

Figure .
圖。

Title
標題

Section
章節

Figure 1
圖 1

Research Model: Dual Pathways of AI Scaffolding on Learning Outcomes
研究模型:AI 鷹架對學習成果的雙重路徑

3

Figure 2
圖 2

Visual Summary of Research Hypotheses and Study Design
研究假設與研究設計的視覺化摘要

3.5

Figure 3
圖 3

Effects of AI Scaffolding Type on Student Persistence, Self-Efficacy, and Learning Outcomes
AI 鷹架類型對學生堅持度、自我效能和學習成果的影響

5.1/5.2

Figure 4
圖 4

Robustness and Subgroup Analyses: Persistence and Frustration Across Key Subpopulations
穩健性與次群體分析:關鍵次群體中的堅持度與挫折感

5.4

Digital Companionship for Transitional Support Experimental Evidence on the Compensatory Effects of Generative AI for Student Loneliness and Belonging (7991)
數位陪伴的轉銜支持:生成式 AI 對學生孤獨感與歸屬感補償效應的實驗證據 (7991)

Figure .
圖。

Title
標題

Description / Notes
說明/備註

Figure 1
圖 1

Conceptual Model of AI Companionship as Transitional Support
AI 陪伴作為轉銜支持的概念模型

Theoretical framework showing relationships among AI intervention, individual differences, and student outcomes.
AI 介入、個體差異與學生學習成果之間關係的理論架構

Figure 2
圖 2

Experimental Flowchart for Study 1 and Study 2
研究一與研究二的實驗流程圖

Stepwise illustration of participant assignment and research procedures for both studies.
兩項研究中參與者分配與研究程序的逐步說明

Figure 3A
圖 3A

Moderation Effect of Baseline Loneliness on AI Companionship Intervention Outcomes
基線孤獨感對 AI 陪伴介入結果的調節作用

Simple slopes plot depicting how the effect of AI intervention on loneliness differs by baseline loneliness.
簡單斜率圖,描繪 AI 介入對孤獨感的影響如何因基線孤獨感而異。

Figure 3B
圖 3B

Moderation Effect of Social Self-Efficacy on AI Companionship Intervention Outcomes
社交自我效能對 AI 陪伴介入結果的調節作用

Simple slopes plot showing the interaction between social self-efficacy and AI condition on social motivation.
簡單斜率圖,顯示社交自我效能與 AI 條件對社交動機的交互作用。

Figure 4
圖 4

AI Companionship Intervention Framework: Targeting High-Risk Student Groups
AI 陪伴介入框架:針對高風險學生群體

Matrix or schematic summarizing optimal AI features and intervention timing for different vulnerable student groups.
矩陣或圖表,總結針對不同弱勢學生群體的最佳人工智慧功能和介入時機。

From AI Prompts to Productive Teams: The Impact of AI-Powered Facilitation Framing on Collaborative Learning Outcomes (7970)
從人工智慧提示到高效團隊:人工智慧驅動的引導框架對協作學習成果的影響 (7970)

Figure 1.
圖 1.

Research Model: Effects of AI-Powered Facilitation Framing and Individual Differences on Collaborative Learning Outcomes
研究模型:人工智慧驅動的引導框架和個體差異對協作學習成果的影響

AI團隊促進者框架 × 個人差異對協作成果的假設模型示意圖)

Figure 2.
圖 2.

Experimental Procedure Flowchart
實驗流程圖

實驗流程圖:從招募、隨機分組、AI腳本、協作任務到後測各步驟

Figure 3A.
圖 3A.

Moderating Effect of Cooperative Motivation on Concept Map Quality by Condition
合作動機對概念圖品質的調節作用(依條件)

(合作動機 × AI framing 對團隊成果的調節斜率圖)

Figure 3B.
圖 3B.

Moderating Effect of Social Self-Efficacy on Peer Evaluation by Condition
社會自我效能對同儕評估的調節效果(依條件區分)

(社交自我效能 × AI framing 對同儕評價的調節斜率圖)