Review of a Specialty Fiber for Distributed Acoustic Sensing Technology
用于分布式声传感技术的特种光纤综述
华中科技大学 光学与电子信息学院, 下一代互联网接入系统国家工程实验室 (NGIA), 武汉光电国家实验室 (WNLO), 中国 武汉 430074
通信应收件人的作者。
光子学 2022, 9(5), 277;https://doi.org/10.3390/photonics9050277
收到意见:2022 年 1 月 29 日 / 修订日期:2022 年 3 月 14 日 / 接受日期:2022 年 3 月 15 日 / 发布时间:2022 年 4 月 20 日
(本文属于特刊 新型特种光纤及应用)
Abstract 抽象
特种光纤在分布式光纤传感应用中引入了新的灵活性和可变性。特别是,分布式声学传感 (DAS) 系统利用特种光纤的独特功能来增强各种分布式传感应用的性能。本文概述了基于特种光纤的 DAS 系统及其传感应用的最新制备和发展。基于特种纤维的 DAS 系统根据散射增强和制备方法的差异进行分类和审查。还讨论了将特种纤维用于 DAS 系统的前景。
关键词:特种纤维;分布式声学传感;DAS;分布式光纤传感器;散射增强光纤
1. Introduction 1. 引言
识别介质的内部特性是了解自然和探索世界的重要方式,这可以通过直接和间接测量来获得。关于声波,声音的传输形式在环境中各种介质的帮助下向不同的方向传播。因此,可以通过测量和跟踪声场携带的信息来识别介质的内部特性 [ 1, 2, 3]。近年来,声学传感技术已广泛应用于不同尺度的材料性能分析,如地质结构检测 [ 4]、资源勘探 [ 5]、结构健康监测 [ 6] 和周界安全 [ 7]。
声学传感器允许人们通过声学信息分析媒体。随着声学检测范围和规模的增加,对分布式大容量声学传感器的需求也在不断扩大。此外,分布式声学传感 (DAS) 因其在抗电磁干扰、高灵敏度 [ 8] 以及系统体积小、重量轻等优点而成为研究热点。DAS 是一种新兴的声学传感技术,它同时使用无源光纤作为传输和传感介质,从光纤 Rayleigh 反向散射中挤压信息,以实现对周围环境的声学检测。大多数 DAS 系统都基于相位敏感光时域反射计 (φ-OTDR),因为瑞利背向散射光的相位变化与作用在光纤上的声波呈线性关系 [ 9]。
常见的 DAS 系统通常使用单模光纤 (SMF) 作为传感光纤。然而,使用这种光纤时,瑞利背向散射光非常弱,并且光传感信号的信噪比 (SNR) 很低,这导致在基于 φ-OTDR 的 DAS 系统中解调相位信号的 SNR 较差 [ 10]。此外,由于将线宽窄、相干性高的激光脉冲注入光纤中,一个脉冲中瑞利散射点之间的干涉会产生干涉抵消,导致背向散射光的相干衰落,在传感光纤上形成“死区” [ 11]。近年来,为了解决 SMF-DAS 系统中 SNR 值差和相位解调灵敏度高的缺陷,人们研究了许多噪声抑制技术,例如相干衰落,同时系统的复杂性和成本增加,导致响应频段和感应距离方面的牺牲 [ 12, 13, 14, 15, 16, 17, 18].此外,提高传感光纤本身的性能也很重要。用于 DAS 技术的特种纤维的开发将具有广阔的前景。
本文旨在全面回顾 DAS 系统中使用的特种光纤提供的不同传感特性和性能增强。第 2 节介绍了 DAS 技术的原理,随后在第 3 节中讨论了具有增强传感能力和性能的基于特种光纤的 DAS 系统。首先,介绍了两种类型的特种光纤,连续散射增强 (CSE) 光纤和离散散射增强 (DSE) 光纤,后者因其能够完全抑制相干衰落而得到更广泛的应用。其次,总结了几种在光纤中引入散射增强点 (SEP) 的制备技术,包括飞秒写入和 UWFBG 铭文。其次,综述了提高 DAS 系统离散散射性能的多种方法。第四,第 4 节回顾了特种纤维 DAS 系统的应用。最后,第 5 节讨论了将特种纤维用于 DAS 系统的前景。
2. Fundamental Principle
2. 基本原则
2.1. Principle of DAS Technology
2.1. 戴思 DAS 技术的原理
DAS 是通过测量由光纤的轴向应变变化引起的光学相位变化来实现的 [ 19]。当声波作用在光纤上时,光纤会产生轴向应变,从而改变光纤中瑞利背散射信号的相位。根据光弹性效应,轴向应变与光学相位变化呈线性关系:
其中 是光的传播常数, 是光纤的折射率, 是光纤的张量系数,∆L 是纤维长度与方程的变化 , 是光纤的轴向应变, 是光纤的长度。因此,如图 1 所示,只要能提取出探针光两点 A 和 B 之间的相位差变化,就可以知道轴向应变的变化,最终可以测量到声波或振动的定量感知。对于 DAS 来说,在光纤的所有位置实现无失真的相位解调至关重要。
由于瑞利散射是一种没有任何非线性效应的弹性散射方法,并且由于可以通过反射回光纤发射端的时间来区分不同位置的瑞利散射光,因此基于相位敏感光时域反射 (φ-OTDR) 的光纤相位提取技术在 DAS 系统中得到了广泛应用 [ 20, 2011 年,利用外差相干检测技术,首次成功解调了瑞利散射信号的相位 [ 22]。外差相干检测的方案如图 2 所示。本振光和点 A 处的瑞利散射信号可以表示为:
其中 和 是本振光的振幅和瑞利散射信号在点 A, 是探测光的频率, 是脉冲调制器的频移, 分别 是本振光和瑞利散射信号在点 A 的光相位。当这两个信号被 3 dB 耦合器耦合并干扰平衡光电检测器 (BPD) 的感光面后,BPD 检测到的光强度可以表示为:
其中 是两个信号之间的相位差。然后, 可以使用数字相干 IQ 解调算法进行计算。同样, 也可以使用相同的算法在 B 点计算。通过相位的空间差分计算,最终可以得到两点 A 和 B 之间的相位差 ,线性地显示光纤的轴向应变,最终允许对声波和振动进行定量感知。
图 2.典型的外差相干检测方案 [ 22]。
除了基于外差的相干检测方案外,研究人员还提出了其他相位解调方案,例如 3 × 3 耦合器方案 [ 23]、相位产生载波 (PGC) [ 24] 和线性频率扫描脉冲方法 [ 25]。一些代表性方案如图 3 所示,所有这些方案都可以实现分布式光相位解调。
图 3.单模光纤的瑞利散射模型 [ 26]。
2.2. Limitations of Single-Mode Fiber (SMF) DAS
2.2. 单模光纤 (SMF) DAS 的局限性
尽管 SMF DAS 技术已应用于地质监测、管道监测、石油勘探等多个领域,并具有分布式探测、高空间分辨率、高灵敏度等优点,但仍受到干扰衰落和信号一致性差的限制。原因分析如下。
特别是,当脉冲宽度足够窄时,可以根据瑞利背向散射光的到达时间获得第 2.1 节中讨论的点 A 和 B 点的瑞利反向散射信号。其实探测脉冲具有一定的脉冲宽度,由于探测光的高相干性,脉冲宽度中不同散射点的瑞利散射信号会相互干扰。瑞利散射的干涉结果只能代表靠近 A 点和 B 点的一段光纤。由于光纤制备过程中的掺杂不均匀,瑞利散射的干涉现象是随机的,必然会影响相位解调性能。为了准确描述 SMF 中的瑞利散射现象,研究人员建立了 SMF 散射模型 [ 26]。
瑞利散射模型如 所示。首先,将 SMF 离散化,将磁芯中杂质的不均匀分布视为一系列微米或亚微米大小的等效瑞利散射点 (ERSP),它们分别编号为 1、2、3、 、M。每个反向散射系数和散射点的位置可以表示为 ;也就是说,第 M 个散射点为 , 而反射率为 。由于 ERSP 可以看作是多个尺度较小的散射点的叠加,因此其位置可以表示为 ,其中 ∆服从均匀分布 并 服从瑞利分布。根据上述分析,在第 -次接收到的瑞利散射信号可以表示为一段光纤的瑞利散射信号的干涉叠加:其中 是光纤的折射率, z 与脉冲宽度有关,满足 , 是探测脉冲的脉冲宽度, 和 是真空中的光速。研究人员也验证了这个模型 [];当干扰信号涉及干扰消除时,信号强度 会变弱,导致光信噪比变差。此外,光强度下降到与采集噪声相同的水平,解调的相位信息将被淹没在噪声中,形成一个盲区检测区域,称为干扰衰落。此外,由于等效散射点反射率 的随机性,在不同时间接收到的信号的等效位置也不同。 以公式 (5) 中 time 接收到的信号为例。由于此时的散射信号是多个复数的叠加,它的强度 是复数的模式,而与位置 相关的相位 是复数的参数,所以方程(5)可以表示为多个向量的叠加。如图所示,当前端等效散射点的瑞利散射强度较强时,此时接收到的信号可视为该 位置附近的瑞利散射,而当后端等效散射点的瑞利散射强度较强时,同时接收到的信号可视为该 位置附近的瑞利散射。
图 4.脉冲干扰中等效散射位置的示意图。
一般来说,正是普通单模光纤瑞利散射强度和位置的随机性导致了 DAS 中存在干扰衰落和信号时间一致性差的问题,使得在分析介质的内部性质时难以进行高保真声波跟踪。
3. Reviews of Specialty-Fiber-Based DAS Technology
3. 基于特种纤维的 DAS 技术综述
为了解决 SMF DAS 中的干扰衰落和一致性差的问题,研究人员进行了一系列研究 [ 13, 27, 28, 29, 30]。其中,最有效的方法是改进纤维以增强纤维背散射,例如通过在纤维中刻入微结构而形成的连续散射增强纤维和离散散射增强纤维。此外,由于微结构光纤的特点,研究人员还设计并改进了匹配的光学方案,以提高 DAS 系统的性能。在本节中,全面回顾了具有增强传感能力和性能的基于特种光纤的 DAS。
3.1. Continuous Scattering-Enhanced Fiber-Based DAS
3.1. 基于连续散射增强光纤的 DAS
连续散射增强 (CSE) 允许通过增强整个光纤的瑞利散射来抑制相干衰落,其本质是通过在光纤中掺杂或写入连续光栅来增强第 2.2 节中描述的 ERSP 模型的散射强度 ,从而增强干涉叠加后的光强度,最终允许抑制干涉衰落。
2017 年,美国 OFS 实验室使用相位掩模方法,通过紫外线 (UV) 照射在多芯光纤中高效、连续地刻划布拉格光栅。光纤的背向散射强度增加了 14 dB,反射光谱如图 5a 所示。然后,与英国 Fotech 合作,在 DAS 系统中使用 CSE 光纤,1 km CSE 光纤的 SNR 提高了 15 dB [ 31, 32, 33, 34]。虽然该方法有效提高了信噪比,但布拉格光栅反射光谱的带宽较窄,反射波长会随着温度和应力的变化而漂移。当外部环境发生变化时,入射光和光栅反射的波长可能彼此不对应,从而导致散射增强效果的损失。因此,这种纤维的应用范围有限,不能用于现场需要高温高压的领域。除了刻划连续光栅外,改变光纤掺杂是增加瑞利散射强度的另一种方法。2018 年,Butov 等人使用氮掺杂光纤作为传感光纤,使声波检测的 SNR 提高了 3 dB [ 35]。同年,Feng S 等人使用掺铒光纤进行分布式光纤传感,采用了相位产生载波 (PGC) 光学方案,通过调制信号频率将零差干扰转换为外差干扰,将相位噪声降低了 14 dB,并在 1.9 km 光纤上实现了高信噪比声学测量 [ 36]。
图 5.连续散射增强光纤的典型方案 [ 33, 36]: (a) 典型连续散射增强光纤的背向散射信号分布;(b) 通过改变纤维掺杂实现的改进瑞利散射方案;(c) 高瑞利散射光纤的散射光谱。
对于 CSE 方案,虽然可以有效提高散射强度并抑制相干衰落噪声,但增强的光纤散射导致光损失加倍,极大地限制了探测距离。以光纤掺杂方案为例,如果前端信噪比提高 10 dB,则光纤的瑞利散射需要增加 10 倍,从而将可检测距离减少到 1/10。更重要的是,SCE 光纤并没有从根本上改变脉冲中光干涉的性质,仍然无法完全消除相干衰落现象。
3.2. Discrete Scattering-Enhanced Fiber Based DAS
3.2. 基于离散散射增强光纤的 DAS
除了连续散射增强外,越来越多的研究人员正在关注离散散射增强 (DSE) 光纤在 DAS 中的应用。如图 6 所示,这种光纤的本质是在第 2.2 节所示的模型中以一定的间隔提高单个 ERSP 的散射强度。散射增强点 (SEP) 的强度远大于普通 ERSP 的强度。这样,包含 SEP 的瑞利散射干涉光可以表示为:
其中 -th ERSP 是散射增强点。由于 SEP 的散射强度远大于普通 ERSP,因此可以忽略上述公式的第一项,由此可见瑞利散射信号仅由 SEP 决定。通过 2.1 节中的相位解调方法,可以准确获得两个 SEP 之间的相位差,并且由于其高散射强度和高 SNR,可以完全消除干扰衰落,保证了信号的良好一致性。
为了验证其有效性,我们从理论上分析了 DSE 模型和 SMF 散射模型。根据表 1 所示的参数,在光纤上的 3 m 、 7 m 和 11 m 处设置三个 SEP,间隔为 4 m。图 7a、b 显示了从模拟中获得的散射强度的分布结果。由此可见,DES 光纤完全抑制了信号幅度的随机变化和干扰衰落。为了进一步探究 DSE 光纤对相位噪声的抑制作用,我们分别解决了 SMF 和 DSE 光纤上 3 m 和 7 m 之间的相位差,其结果如图 7c 所示。与 SMF 相比,DSE 光纤不受普通 ERSP 随机分布的影响,而是由 SEP 的位置决定的,因此相位噪声受到很大抑制。
图 7.离散增强散射模型的仿真结果:(a) 离散增强光纤的反射分布;(b) 单模光纤的反射分布;(c) 相位解调结果。
3.3. Preparation and Implementation of DSE Fiber
3.3. DSE 纤维的准备和实施
目前,有两种方法可以制造离散散射增强光纤,一种是将周期性超弱布拉格光栅(UWFBG)阵列[ 29, 37] 刻入光纤中,另一种是在光纤中引入局部波长无关的弱反射阵列 [ 38, 39, 40]。
UWFBG 通常涉及使用紫外光 [ 41, 42, 43] 或飞秒激光 [ 44, 45] 在光纤的折射率上形成永久的周期性变化,从而允许特定光波长的反向反射。最经典的制备系统如图 8a [ 46] 所示。在拉丝光纤过程中,通过严格的动态控制,采用相位掩模法编写 UWFBG,利用±1 级衍射光的周期性干涉条纹照射感光光纤,周期性地改变纤芯的折射率。此外,在靠近第一涂层的牵伸塔上安装了一个 FBG 写入平台,以减弱光纤中的振动。制备结果如图 8b [ 47] 所示,散射增强阵列的散射率远高于单模光纤。然而,作为一种布拉格光栅方法,UWFBG 对温度和应力很敏感。当环境的温度和应变发生变化时,UWFBG 的反射波长会漂移。如图 8c 所示,UWFBG 的带宽通常小于 2 nm,中心波长根据具体实验中使用的光源确定。由于 UWFBG 的带宽有限,当 UWFBG 阵列光纤在特殊环境中工作时,例如大温度振动或高压,UWFBG 的反射光谱与检测光的波长可能会不匹配,同时光纤也会受到扭曲或拉力的影响,这意味着 UWFBG 的反射功率会退化为瑞利散射, 导致盲区感应区域。 UWFBG 的这一特性阻碍了其在地下、水下和其他特殊环境中的应用 [ 48, 49]。
近年来,局部消色差弱反射阵列的增强方案也被用于 DAS [ 50, 51]。为了制备更通用的离散散射增强阵列,Sun 等人提出了一种无色反射点微结构光纤的制备方法。微观结构的机理涉及通过紫外线照射的局部折射率变化,而无需相位掩模的帮助,以形成菲涅耳反射表面。制造系统如图 9a [ 52] 所示,而制备结果如图 9b-d [ 53] 所示。实现了间隔为 5 m 且强度增强为 15 dB 的离散散射增强阵列。当温度变化时,微观结构的散射强度非常稳定。此外,英国南安普敦大学和其他大学也使用飞秒激光器制备了弱反射阵列 [ 40]。制备系统、方案和结果如图 10 所示。与反射带宽有限的 UWFBG 相比,弱反射点直接刻在光纤中,没有波长选择性,避免了温度和应变的影响 [ 54]。
图 9.基于紫外曝光的无色微结构阵列制备方法:(a) 全自动无色微结构制备系统 [ 51];(b) 无色微结构阵列的 OTDR 测量结果 [ 53];(c) 无色微结构阵列的光谱 [ 51];(d) 无色微结构阵列的温度稳定性 [ 53]。
图 10.基于飞秒激光器的弱反射阵列制备方法 [ 40]:(a) 弱反射阵列制备系统;(b) 弱反射阵列制备方法示意图;(c) 弱反射阵列的 OTDR 测量结果;(d) 对包含 300 个反射器的单独光纤的削减测量结果。
3.4. Methods to Improve the Performance of Specialty Fiber DAS
3.4. 提高特种纤维 DAS 性能的方法
在早期阶段,研究人员主要集中在 UWFBG 在各种 DAS 方案中的使用。2015 年,Wang 等人在 DAS 中使用了基于 3 × 3 耦合器解调的 UWFBG 进行水声测试,可以检测到 0.112 Pa 的水压 [ 55]。随后,华中科技大学团队陆续将 DSE 光纤用于各种 DAS 方案,如双脉冲、相干检测和 PGC 解调方案[29,39,40,50,56,57,58]。这些方案如图 11 所示。近年来,人们越来越注重利用离散散射增强光纤的优势来提高 DAS 系统的性能,包括低频相移补偿、偏振衰落抑制、脉宽压缩和系统采样率扩展。
3.4.1. Low-Frequency Phase Drift Compensation Technology
3.4.1. 低频相位漂移补偿技术
DSE 光纤 DAS 具有良好的信号一致性和随机瑞利散射的干涉 lac,因此具有极低频检测的潜力。在 DAS 系统中,激光相位的低频漂移和外部温度的缓慢变化会给系统带来更大的低频噪声,限制了低频检测的精度 [ 59]。激光器的相位漂移可以通过辅助干涉仪进行补偿。如图 12a 所示,激光的相位噪声由辅助干涉仪实时测量,并对测量结果进行补偿以抑制低频噪声。通过这种方式,Fan 等人在 10 Hz 的频率下实现了 [ 60, 61] 的应变分辨率。华中科技大学团队通过对 UWFBG 的离散增强提出了一种参考光纤补偿方案。该方案如图 12b 所示,它可以同时补偿激光漂移和温度变化,实现 0.01 Hz 频率 和 10 Hz 频率 的分辨率 [ 62]。此外,该团队在解调过程中引入了 LS-SVM 算子来跟踪和补偿温度的磁滞效应,从而可以在 0.001 Hz 频段进行高精度的声学测量[63]。
3.4.2. Polarization Fading Suppression Technology
3.4.3. Pulse Width Compression Technology
3.4.4. Sampling Frequency Expansion Technology
4. Significant Application Progress
4.1. Geological and Resource Exploration
4.2. Structural Health Monitoring
4.2.1. Pipeline Monitoring
4.2.2. Track Defect Monitoring
4.2.3. Tunnel Safety Monitoring
4.2.4. Geological Structural Monitoring
4.3. Hydroacoustic Exploration
5. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yatman, G.; Üzumcü, S.; Pahsa, A.; Mert, A.A. Intrusion detection sensors used by electronic security systems for critical facilities and infrastructures: A review. Safe 2015, 151, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Shelef, E.; Oskin, M. Deformation processes adjacent to active faults: Examples from eastern California. J. Geophys. Res. Earth Surf. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Mu, D.; Lee, E.J.; Chen, P. Seismic Imaging, Fault Damage and Heal; De Gruyter: Berlin, Germany, 2014; ISBN 9787040390988. [Google Scholar]
- Thun, J.; Lokmer, I.; Bean, C.; Eibl, E.; Bergsson, B.H.; Braiden, A. Micrometre-scale deformation observations reveal fundamental controls on geological rifting. Sci. Rep. 2016, 6, 36676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartog, A.; Frignet, B.; Mackie, D.; Clark, M. Vertical seismic optical profiling on wireline logging cable. Geophys. Prospect. 2014, 62, 693–701. [Google Scholar] [CrossRef]
- Tejedor, J.; Ahlen, C.H.; Gonzalez-Herraez, M.; Macias-Guarasa, J.; Martins, H.F.; Pastor-Graells, J.; Martin-Lopez, S.; Guillen, P.C.; De Pauw, G.; De Smet, F.; et al. Real Field Deployment of a Smart Fiber-Optic Surveillance System for Pipeline Integrity Threat Detection: Architectural Issues and Blind Field Test Results. J. Light. Technol. 2017, 36, 1052–1062. [Google Scholar] [CrossRef]
- Lyu, C.; Huo, Z.; Cheng, X.; Jiang, J.; Alimasi, A.; Liu, H. Distributed Optical Fiber Sensing Intrusion Pattern Recognition Based on GAF and CNN. J. Light. Technol. 2020, 38, 4174–4182. [Google Scholar] [CrossRef]
- Masoudi, A.; Belal, M.; Newson, T.P. A distributed optical fibre dynamic strain sensor based on phase-OTDR. Meas. Sci. Technol. 2013, 24, 085204. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, F.; Wang, X.; Pan, Y.; Sun, Z.; Hua, J.; Zhang, X. Distributed Strain and Vibration Sensing System Based on Phase-Sensitive OTDR. IEEE Photon. Technol. Lett. 2015, 27, 1884–1887. [Google Scholar] [CrossRef]
- Gabai, H.; Eyal, A. On the sensitivity of distributed acoustic sensing. Opt. Lett. 2016, 41, 5648–5651. [Google Scholar] [CrossRef]
- Healey, P. Fading in heterodyne OTDR. Electron. Lett. 1984, 20, 30–32. [Google Scholar] [CrossRef]
- Zabihi, M.; Chen, Y.; Zhou, T.; Liu, J.; Shan, Y.; Meng, Z.; Wang, F.; Zhang, Y.; Zhang, X.; Chen, M. Continuous Fading Suppression Method for Φ-OTDR Systems Using Optimum Tracking Over Multiple Probe Frequencies. J. Light. Technol. 2019, 37, 3602–3610. [Google Scholar] [CrossRef]
- Zhou, J.; Pan, Z.; Ye, Q.; Cai, H.; Qu, R.; Fang, Z. Characteristics and Explanations of Interference Fading of a Φ-OTDR With a Multi-Frequency Source. J. Light. Technol. 2013, 31, 2947–2954. [Google Scholar] [CrossRef]
- Ren, M.; Lu, P.; Chen, L.; Bao, X. Theoretical and Experimental Analysis of O-OTDR Based on Polarization Diversity Detection. IEEE Photon. Technol. Lett. 2015, 28, 697–700. [Google Scholar] [CrossRef]
- Mompo, J.J.; Shiloh, L.; Arbel, N.; Levanon, N.; Loayssa, A.; Eyal, A. Distributed Dynamic Strain Sensing via Perfect Periodic Coherent Codes and a Polarization Diversity Receiver. J. Light. Technol. 2019, 37, 4597–4602. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Y.; Wei, T.; Zhang, Y.; Ji, W.; Zong, M.; Zhang, X. Polarization fading elimination for ultra-weak FBG array-based Φ-OTDR using a composite double probe pulse approach. Opt. Express 2019, 27, 20468–20478. [Google Scholar] [CrossRef]
- Qin, Z.; Zhu, T.; Chen, L.; Bao, X. High Sensitivity Distributed Vibration Sensor Based on Polarization-Maintaining Configurations of Phase-OTDR. IEEE Photon. Technol. Lett. 2011, 23, 1091–1093. [Google Scholar] [CrossRef]
- He, X.; Zhang, M.; Gu, L.; Xie, S.; Liu, F.; Lu, H. Performance Improvement of Dual-Pulse Heterodyne Distributed Acoustic Sensor for Sound Detection. Sensors 2020, 20, 999. [Google Scholar] [CrossRef] [Green Version]
- Juarez, J.C.; Maier, E.W.; Choi, K.N.; Taylor, H.F. Distributed fiber-optic intrusion sensor system. J. Lightwave Technol. 2005, 23, 2081–2087. [Google Scholar] [CrossRef]
- Rao, Y.-J.; Luo, J.; Ran, Z.-L.; Yue, J.-F.; Luo, X.-D.; Zhou, Z. Long-distance fiber-optic Φ-OTDR intrusion sensing system. In Proceedings of the Spie the International Society for Optical Engineering, San Diego, CA, USA, 3–4 August 2009; Volume 7503, p. 75031O. [Google Scholar] [CrossRef]
- Juarez, J.C.; Taylor, H.F. Polarization discrimination in a phase-sensitive optical time-domain reflectometer intrusion-sensor system. Opt. Lett. 2005, 30, 3284–3286. [Google Scholar] [CrossRef]
- Pan, Z.; Liang, K.; Ye, Q.; Cai, H.; Qu, R.; Fa Ng, Z. Phase-sensitive OTDR system based on digital coherent detection. In Proceedings of the SPIE Proceedings (SPIE SPIE/OSA/IEEE Asia Communications and Photonics-Shanghai, China), Shanghai China, 13–16 November 2011; Volume 8311, p. 83110S-2. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, Z.; Shan, Y.; Li, Y.; Wang, F.; Zeng, J.; Zhang, Y. A high performance distributed optical fiber sensor based on Φ-OTDR for dynamic strain measurement. IEEE Photon. J. 2017, 9, 1–12. [Google Scholar] [CrossRef]
- Fang, G.; Xu, T.; Feng, S.; Li, F. Phase-Sensitive Optical Time Domain Reflectometer Based on Phase-Generated Carrier Algorithm. J. Light. Technol. 2015, 33, 2811–2816. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Q.; Fan, X.; He, Z. Distributed Fiber-Optic Acoustic Sensor with Enhanced Response Bandwidth and High Signal-to-Noise Ratio. J. Light. Technol. 2017, 35, 2037–2043. [Google Scholar] [CrossRef]
- Liokumovich, L.; Ushakov, N.; Kotov, O.; Bisyarin, M.; Hartog, A.H. Fundamentals of Optical Fiber Sensing Schemes Based on Coherent Optical Time Domain Reflectometry: Signal Model Under Static Fiber Conditions. J. Light. Technol. 2015, 33, 3660–3671. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, H.; Zheng, H.; Huang, J.; Yin, G.; Zhu, T.; Qiu, F.; Huang, X.; Qu, D.; Bai, Y.; et al. 80 km Fading Free Phase-Sensitive Reflectometry Based on Multi-Carrier NLFM Pulse Without Distributed Amplification. J. Light. Technol. 2019, 37, 4748–4754. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; He, T.; Fan, C.; Liu, T.; Yan, Z.; Liu, D.; Sun, Q. Dual-pulse Complex Superposition Based Noise Suppression for Distributed Acoustic Sensing. In Proceedings of the CLEO: Applications and Technology, Washington, DC, USA, 10–15 May 2020; p. JW2E.28. [Google Scholar] [CrossRef]
- Ai, F.; Sun, Q.; Zhang, W.; Liu, T.; Yan, Z.; Liu, D. Wideband Fully-Distributed Vibration Sensing by Using UWFBG Based Coherent OTDR. In Proceedings of the Optical Fiber Communications Conference & Exhibition, Los Angeles, CA, USA, 19–23 March 2017; p. W2A.19. [Google Scholar] [CrossRef]
- Lin, S.T.; Wang, Z.N.; Xiong, J.; Wu, Y.; Rao, Y.J. Progresses of Anti-Interference-Fading Technologies for Ray-leigh-Scattering-Based Optical Fiber Sensing. Laser Optoelectron. Prog. 2021, 58, 1306008. [Google Scholar] [CrossRef]
- Westbrook, P.S.; Feder, K.S.; Ortiz, R.M.; Kremp, T.; Monberg, E.M.; Wu, H.; Simoff, D.A.; Shenk, S. Kilometer length low loss enhanced back scattering fiber for distributed sensing. In Proceedings of the 25th International Conference on Optical Fiber Sensors, Jeju, Korea, 24–28 April 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Handerek, V.A.; Karimi, M.; Nkansah, A.; Yau, A.; Westbrook, P.S.; Feder, K.S.; Ortiz, R.M.; Kremp, T.; Monberg, E.M.; Wu, H.; et al. Improved Optical Power Budget in Distributed Acoustic Sensing Using Enhanced Scattering Optical Fibre. In Proceedings of the 26th International Conference on Optical Fiber Sensors, Vaud, Switzerland, 24–28 September 2018; p. TuC5. [Google Scholar] [CrossRef]
- Westbrook, P.S.; Kremp, T.; Feder, K.S.; Ko, W.; Monberg, E.M.; Wu, H.; Simoff, D.A.; Ortiz, R.M. Improving distributed sensing with continuous gratings in single and multi-core fibers. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 11–15 March 2018; p. W1K.1. [Google Scholar] [CrossRef]
- Lalam, N.; Westbrook, P.S.; Li, J.; Lu, P.; Buric, M.P. Phase-Sensitive Optical Time Domain Reflectometry with Rayleigh Enhanced Optical Fiber. IEEE Access 2021, 9, 114428–114434. [Google Scholar] [CrossRef]
- Butov, O.V.; Chamorovskii, Y.K.; Golant, K.M.; Fotiadi, A.A.; Jason, J.; Popov, S.M.; Wuilpart, M. Sensitivity of high Rayleigh scattering fiber in acoustic/vibration sensing using phase-OTDR. In Proceedings of the Optical Sensing and Detection V, Strasbourg, France, 9 May 2018. [Google Scholar] [CrossRef]
- Feng, S.; Xu, T.; Huang, J.; Yang, Y.; Li, F.; Zhou, J.; Yu, H. Enhanced SNR phase-sensitive OTDR system with active fiber. In Proceedings of the Fiber Optic Sensing and Optical Communication, Beijing, China, 12 December 2018. [Google Scholar] [CrossRef]
- Huang, J.B.; Ding, P.; Tang, J.S. Progress in Fabrication, Demodulation and Application of Weak-Reflection Fiber Bragg Grating Array. Laser Optoelectron. Prog. 2021, 58, 1700005. [Google Scholar] [CrossRef]
- Wu, M.; Fan, X.; Zhang, X.; Yan, L.; He, Z. Frequency Response Enhancement of Phase-Sensitive OTDR for Interrogating Weak Reflector Array by Using OFDM and Vernier Effect. J. Light. Technol. 2020, 38, 4874–4882. [Google Scholar] [CrossRef]
- Hicke, K.; Eisermann, R.; Chruscicki, S. Enhanced Distributed Fiber Optic Vibration Sensing and Simultaneous Temperature Gradient Sensing Using Traditional C-OTDR and Structured Fiber with Scattering Dots. Sensors 2019, 19, 4114. [Google Scholar] [CrossRef] [Green Version]
- Redding, B.; Murray, M.J.; Donko, A.; Beresna, M.; Masoudi, A.; Brambilla, G. Low-noise distributed acoustic sensing using enhanced backscattering fiber with ultra-low-loss point reflectors. Opt. Express 2020, 28, 14638–14647. [Google Scholar] [CrossRef]
- Hill, K.O.; Fujii, Y.; Johnson, D.C.; Kawasaki, B.S. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Appl. Phys. Lett. 1978, 32, 647–649. [Google Scholar] [CrossRef]
- Meltz, G.; Morey, W.W.; Glenn, W.H. Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett. 1989, 14, 823–825. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yu, H.; Guo, H.; Li, X.; Jiang, D. Analysis of the Spectrum Distortions of Weak Fiber Bragg Gratings Fabricated In-Line on a Draw Tower by the Phase Mask Technique. J. Light. Technol. 2014, 33, 2670–2673. [Google Scholar] [CrossRef]
- Martinez, A.; Dubov, M.; Khrushchev, I.; Bennion, I. Direct writing of fibre Bragg gratings by femtosecond laser. Electron. Lett. 2004, 40, 1170–1172. [Google Scholar] [CrossRef]
- Chen, Z.; He, J.; Xu, X.; He, J.; Xu, B.; Du, B.; Liao, C.; Wang, Y. High-Temperature Sensor Array Based on Fiber Bragg Gratings Fabricated by Femtosecond Laser Point-by-Point Method. Acta Opt. Sin. 2021, 41, 1306002. [Google Scholar] [CrossRef]
- Yang, M.; Bai, W.; Guo, H.; Wen, H.; Yu, H.; Jiang, D. Huge capacity fiber-optic sensing network based on ultra-weak draw tower gratings. Photon. Sens. 2016, 6, 26–41. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Cai, L.; Li, C.; Yang, M.; Guo, H.; Gan, W. Distributed acoustic sensors with wide frequency response based on UWFBG array utilizing dual-pulse detection. Opt. Fiber Technol. 2021, 61, 102452. [Google Scholar] [CrossRef]
- Ai, F.; Li, H.; He, T.; Yan, Z.; Liu, D.; Sun, Q. Simultaneous Distributed Temperature and Vibration Measurement with UWFBG based Coherent OTDR. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 11–15 March 2018; p. W2A.12. [Google Scholar] [CrossRef]
- Yang, M.; Li, C.; Mei, Z.; Tang, J.; Guo, H.; Jiang, D. Thousand of fiber grating sensor array based on draw tower: A new platform for fiber-optic sensing. In Proceedings of the Optical Fiber Sensors, OFS 2018, Lausanne, Switzerland, 24–28 September 2018; p. FB6. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Jian, J.; Wen, H.; Wang, M.; Liu, H.; Jiang, D.; Mao, Z.; Chen, K.P. Fiber-optical distributed acoustic sensing signal enhancements using ultrafast laser and artificial intelligence for human movement detection and pipeline monitoring. Opt. Data Sci. II 2019, 10937, 109370J. [Google Scholar] [CrossRef]
- Liu, D.M.; He, T.; Xu, Z.J.; Sun, Q. New type of microstructure-fiber distributed acoustic sensing technology and its applications. J. Appl. Sci. 2020, 38, 296–309. [Google Scholar] [CrossRef]
- Ai, F. Investigation on Discrete Enhanced Fiber Based Distributed Sensing Technologies and Their Applications. Ph.D. Thesis, Huazhong University of Science and Technology, Wuhan, China, 2019. [Google Scholar]
- Li, H.; Sun, Q.; Liu, T.; Fan, C.; He, T.; Yan, Z.; Liu, D.; Shum, P.P. Ultra-High Sensitive Quasi-Distributed Acoustic Sensor Based on Coherent OTDR and Cylindrical Transducer. J. Light. Technol. 2019, 38, 929–938. [Google Scholar] [CrossRef]
- Wu, M.; Li, C.; Fan, X.; Liao, C.; He, Z. Large-scale multiplexed weak reflector array fabricated with a femtosecond laser for a fiber-optic quasi-distributed acoustic sensing system. Opt. Lett. 2020, 45, 3685. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Shang, Y.; Liu, X.-H.; Wang, C.; Yu, H.-H.; Jiang, D.-S.; Peng, G.-D. Distributed OTDR-interferometric sensing network with identical ultra-weak fiber Bragg gratings. Opt. Express 2015, 23, 29038–29046. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Ma, L.; Wang, W.; Hu, Z.; Hu, Y. Crosstalk Reduction and Demodulation Stability Promotion in Inline Fiber Fabry–Pérot Sensor Array Using Phase Generated Carrier Scheme. J. Light. Technol. 2015, 34, 1006–1014. [Google Scholar] [CrossRef]
- Peng, Z.; Wen, H.; Jian, J.; Gribok, A.; Wang, M.; Huang, S.; Liu, H.; Mao, Z.-H.; Chen, K.P. Identifications and classifications of human locomotion using Rayleigh-enhanced distributed fiber acoustic sensors with deep neural networks. Sci. Rep. 2020, 10, 21014. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Liu, Y.; Li, C.; Guo, H.; Yang, M. Distributed Vibration Sensing System with High Signal-to-Noise Ratio Based on Ultra-Weak Fiber Bragg Grating. Acta Opt. Sin. 2021, 41, 1306014. [Google Scholar] [CrossRef]
- Fan, X.; Yang, G.; Wang, S.; Liu, Q.; He, Z. Distributed Fiber-Optic Vibration Sensing Based on Phase Extraction from Optical Reflectometry. J. Light. Technol. 2016, 35, 3281–3288. [Google Scholar] [CrossRef]
- Wu, M.; Fan, X.; Liu, Q.; He, Z. Highly sensitive quasi-distributed fiber-optic acoustic sensing system by interrogating a weak reflector array. Opt. Lett. 2018, 43, 3594–3597. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Fan, X.; Liu, Q.; He, Z. Quasi-distributed Fiber-optic Acoustic Sensor using Ultra-weak Reflecting Point Array. In Proceedings of the 26th International Conference on Optical Fiber Sensors, Vaud, Switzerland, 24–28 September 2018; p. WF19. [Google Scholar] [CrossRef]
- Liu, T.; Li, H.; Ai, F.; Wang, J.; Fan, C.; Luo, Y.; Yan, Z.; Liu, D.; Sun, Q. Ultra-high Resolution Distributed Strain Sensing based on Phase-OTDR. In Proceedings of the Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 3–7 March 2019; p. Th2A.16. [Google Scholar] [CrossRef]
- He, T.; Liu, Y.; Zhang, S.; Yan, Z.; Liu, D.; Sun, Q. High Accuracy Intrusion Pattern Recognition using a Dual-Stage-Recognition Network for Fiber Optic Distributed Sensing System. In Proceedings of the Conference on Lasers and Electro-Optics, Munich, Germany, 21–25 June 2021; p. JW1A.119. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Zhang, X.; Zhang, Y.; Xu, W.; Zhang, L. High performance interrogation by a composite-double-probe-pulse for ultra-weak FBG array. In Proceedings of the 17th International Conference on Optical Communications and Networks (ICOCN2018), International Society for Optics and Photonics. Bellingham, WA, USA, 14 February 2019. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, H.; Liu, T.; Fan, C.; Yan, Z.; Liu, D.; Sun, Q. Polarization dependent noise suppression for fiber distributed acoustic sensor with birefringence estimation. In Proceedings of the Conference on Lasers and Electro-Optics: Applications and Technology, Washington, DC, USA, 10–15 May 2020; p. JW2E.18. [Google Scholar] [CrossRef]
- Liu, T.; Li, H.; He, T.; Fan, C.; Yan, Z.; Liu, D.; Sun, Q. Fading Noise Free Distributed Acoustic Sensor Assisted with Double Wavelength lasers. In Proceedings of the Conference on Lasers and Electro-Optics: Applications and Technology, Anaheim, CA, USA, 23–25 October 2020; p. JW2E.10. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, D.W.; Xia, X.X.; Wang, G.Y.; Wang, X.S. A countering technique for LFM PC radar against shift-frequency jamming. Mod. Radar 2006, 28, 84–86. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, C.; Wei, T.; Shangguan, M.; Xia, H. Simulation Research of Coherent Lidar Based on Golay Coding Technology. Chin. J. Lasers 2018, 45, 0810004. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Xiong, J.; Wang, Z.; Qiu, Z.; Liu, C.; Deng, Z.; Rao, Y.-J. Quasi-Distributed Fiber-Optic Acoustic Sensing with MIMO Technology. IEEE Internet Things J. 2021, 8, 15284–15291. [Google Scholar] [CrossRef]
- Wu, M.; Fan, X.; He, Z. Phase Noise Compensation for Ultra-highly Sensitive Fiber-optic Quasi-distributed Acoustic Sensing System. In Proceedings of the Conference on Lasers and Electro-Optics: Science and Innovations, San Jose, CA, USA, 5–10 May 2019. [Google Scholar] [CrossRef]
- Wu, M.; Fan, X.; Liu, Q.; He, Z. Quasi-distributed fiber-optic acoustic sensing system based on pulse compression technique and phase-noise compensation. Opt. Lett. 2019, 44, 5969–5972. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.T.; Jiang, J.L.; Xiong, J.; Wang, Z.N. Fiber-optic Quasi-distributed Acoustic Sensing System at Doubled Repetition Rate. In Proceedings of the Asia Communications and Photonics Conference (ACP), Chengdu, China, 2–5 November 2019; OSA Technical Digest (Optica Publishing Group). 2019; p. M4A.183. [Google Scholar]
- Zhang, Y.X.; Fu, S.Y.; Chen, Y.S.; Ding, Z.W.; Shan, Y.Y.; Wang, F.; Chen, M.M.; Zhang, X.P.; Meng, Z. A visibility enhanced broadband phase-sensitive OTDR based on the UWFBG array and frequency-division-multiplexing. Opt. Fiber Technol. 2019, 53, 101995. [Google Scholar] [CrossRef]
- Li, H.; Fan, C.; Liu, T.; Liu, Y.; Yan, Z.; Shum, P.; Sun, Q. Time-slot multiplexing based bandwidth enhancement for fiber distributed acoustic sensing. Sci. China Inf. Sci. 2021, 65, 119303. [Google Scholar] [CrossRef]
- Li, Y.P.; Karrenbach, M.; Ajo, J. Distributed Acoustic Sensing in Geophysics: Methods and Applications; American Geophysical Union: Washington, DC, USA, 2022. [Google Scholar]
- Li, C.; Mei, Z.; Cheng, C.; Tang, J.; Jiang, Y.; Yang, M. Draw Tower Grating-based Distributed Acoustic Sensing System and its Applications. In Proceedings of the Asia Communications and Photonics Conference, Chengdu, China, 2–5 November 2019; p. T2A.5. [Google Scholar] [CrossRef]
- Li, T.; Fan, C.; Li, H.; He, T.; Qiao, W.; Shi, Z.; Yan, Z.; Liu, C.; Liu, D.; Sun, Q. Nonintrusive Distributed Flow Rate Sensing System Based on Flow-Induced Vibrations Detection. IEEE Trans. Instrum. Meas. 2021, 70, 7001808. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, F.; Wang, H.; Li, S.; Gan, W.; Jiang, R. Lateral positioning of vibration source for underground pipeline monitoring based on ultra-weak fiber Bragg grating sensing array. Measurement 2020, 172, 108892. [Google Scholar] [CrossRef]
- Peng, Z.; Jian, J.; Wen, H.; Gribok, A.; Wang, M.; Liu, H.; Huang, S.; Mao, Z.-H.; Chen, K. Distributed Fiber Sensor and Machine Learning Data Analytics for Pipeline Protection against Extrinsic Intrusions and Intrinsic Corrosions. Opt. Express 2020, 28, 27277–27292. [Google Scholar] [CrossRef]
- Fan, C.; Ai, F.; Liu, Y.; Xu, Z.; Wu, G.; Zhang, W.; Liu, C.; Yan, Z.; Liu, D.; Sun, Q. Rail Crack Detection by Analyzing the Acoustic Transmission Process Based on Fiber Distributed Acoustic Sensor. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 3–7 March 2019; p. Th2A.17. [Google Scholar] [CrossRef]
- Hu, D.; Tian, B.; Li, H.; Fan, C.; Liu, T.; He, T.; Liu, Y.; Yan, Z.; Sun, Q. Intelligent Structure Monitoring for Tunnel Steel Loop Based on Distributed Acoustic Sensing. In Proceedings of the Conference on Lasers and Electro-Optics, Munich, Germany, 21–25 June 2021; p. ATh1S.4. [Google Scholar] [CrossRef]
- Min, R.; Liu, Z.; Pereira, L.; Yang, C.; Sui, Q.; Marques, C. Optical fiber sensing for marine environment and marine structural health monitoring: A review. Opt. Laser Technol. 2021, 140, 107082. [Google Scholar] [CrossRef]
- Lindsey, N.J.; Martin, E.R.; Dreger, D.S.; Freifeld, B.; Cole, S.; James, S.R.; Biondi, B.L.; Ajo-Franklin, J.B. Fiber-Optic Network Observations of Earthquake Wavefields. Geophys. Res. Lett. 2017, 44, 11792–11799. [Google Scholar] [CrossRef] [Green Version]
- Jousset, P.; Reinsch, T.; Ryberg, T.; Blanck, H.; Clarke, A.; Aghayev, R.; Hersir, G.P.; Henninges, J.; Weber, M.; Krawczyk, C.M. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nat. Commun. 2018, 9, 2509. [Google Scholar] [CrossRef]
- Sladen, A.; Rivet, D.; Ampuero, J.P.; De Barros, L.; Hello, Y.; Calbris, G.; Lamare, P. Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables. Nat. Commun. 2019, 10, 5777. [Google Scholar] [CrossRef] [Green Version]
- Lindsey, N.J.; Dawe, T.C.; Ajo-Franklin, J.B. Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing. Science 2019, 366, 1103–1107. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Pang, Y.; Qian, L.; Chen, X.; Xu, Q.; Zhao, C.; Zhang, H.; Tu, Z.; Huang, J.; Gu, H.; et al. Demodulation of a Hydroacoustic Sensor Array of Fiber Interferometers Based on Ultra-Weak Fiber Bragg Grating Reflectors Using a Self-Referencing Signal. J. Light. Technol. 2018, 37, 2568–2576. [Google Scholar] [CrossRef]
- Chen, J.F.; Li, H.; Liu, T.; Fan, C.Z.; Yan, Z.J.; Sun, Q.Z. Fully distributed hydroacoustic sensing based on lightweight optical cable assisted with scattering enhanced fiber. In Proceedings of the Optical Fiber Communication Conference (OFC), Washington, DC, USA, 6–11 June 2021; p. W7C.3. [Google Scholar] [CrossRef]
| Fiber Length | Spacing of SEP | Pulse Width | Spacing of ERSP d | Repeat Times |
|---|---|---|---|---|
| 13 m | 4 m | 20 ns | 1 um | 100 |
| Fabrication Method | SNR Enhancements | Sensing Distance | |
|---|---|---|---|
| CSE fiber | Continuously inscribe Bragg gratings [31,32,33,34] | 15 dB [31] | 1 km [31] |
| Highly doped fiber [35,36] | 14 dB [36] | 1.9 km [36] | |
| DSE fiber | UV exposure [41,42,43,47,51,52,53] | 5.5–21.1 dB [41,42,43,47,51] | 50 km [51] |
| Femtosecond laser inscription [40,44,45,54] | 13–15.8 dB [40,54] | 9.8 km [54] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Li, H.; Fan, C.; Yan, B.; Chen, J.; Yan, Z.; Sun, Q. Review of a Specialty Fiber for Distributed Acoustic Sensing Technology. Photonics 2022, 9, 277. https://doi.org/10.3390/photonics9050277
Sun Y, Li H, Fan C, Yan B, Chen J, Yan Z, Sun Q. Review of a Specialty Fiber for Distributed Acoustic Sensing Technology. Photonics. 2022; 9(5):277. https://doi.org/10.3390/photonics9050277
Chicago/Turabian StyleSun, Yixiang, Hao Li, Cunzheng Fan, Baoqiang Yan, Junfeng Chen, Zhijun Yan, and Qizhen Sun. 2022. "Review of a Specialty Fiber for Distributed Acoustic Sensing Technology" Photonics 9, no. 5: 277. https://doi.org/10.3390/photonics9050277
APA StyleSun, Y., Li, H., Fan, C., Yan, B., Chen, J., Yan, Z., & Sun, Q. (2022). Review of a Specialty Fiber for Distributed Acoustic Sensing Technology. Photonics, 9(5), 277. https://doi.org/10.3390/photonics9050277























