碳化聚合物点 (CPD) 是一种新型的无金属纳米颗粒,其特点是碳化内核和聚合物外部结构,由于其制备简单、成本效益高、优异的光学性能、良好的生物相容性等,是上述目标的最佳选择。^([21]){ }^{[21]}更重要的是,CPD 总是表现出由多个发光中心引起的激发依赖性多色发射,这有利于 TDTP 的产生。例如,Qu 的小组、Lu 的小组、Peng 的小组和 Li 的小组通过将 CPD 限制在不同的刚性矩阵中,先后报道了 TDTP 现象。^([12,22-24]){ }^{[12,22-24]}然而,由于其固有的结构复杂性,所制备的 TDTP 复合材料存在几个缺点。首先,固体基质的存在阻碍了 CPD 纳米颗粒作为进行纳米技术相关应用和更深入地了解其光物理过程的平台的突出优势。其次,这些 TDTP 材料的余辉由于发射峰范围窄且寿命短,在室温下表现出较差的色彩对比度。第三,制备过程需要繁琐而严格的多步反应,导致制备难度增加,重现性降低,材料稳定性降低。因此,从实践和理论的角度来看,开发具有时间依赖性全彩可调 RTP 的自我保护 CPD 具有重要性和挑战性。这个问题的解决方案在于在室温下在纯 CPD 中同时引入和激活多种发光物质,这将提供足够的颜色区分和不同但可比的衰变率。^([25]){ }^{[25]} Encouragingly, by simple atom doping with nitrogen and oxygen, CPDs can generate additional clustered emissive species with panchromatic emission and tunable lifetime, while maintaining or even improving the suppression of nonirradiative decay upon their aggregation. ^([26-28]){ }^{[26-28]} Inspired by these findings, we could rationally modulate the luminescent species
of CPDs regarding triplet energy levels and lifetimes via a selfdoping strategy. It is therefore reasonable to conceive that the fine-tuning of time-dependent RTP colors across the visible spectrum can be achieved in pure CPDs by structural design and composition control, which is also important for elucidating their underlying emission mechanisms. 的 CPD 关于通过自掺杂策略的三重态能级和寿命。因此,可以合理地认为,在纯 CPD 中,可以通过结构设计和成分控制来实现跨可见光谱的时间依赖性 RTP 颜色的微调,这对于阐明其潜在的发射机制也很重要。
To validate our hypothesis, three types of organic molecules, namely, urea, 1, 8-naphthalimide, and quinacridone, were selected as carbon sources to prepare CPDs by heating them in a mixed solution of ethanol and water in a beaker. The resulting CPDs are endowed with a blue-emitting N-related triplet state and a long-wavelength-emitting surface oxide triplet state. These emission centers have different decay rates and can be activated simultaneously upon CPD aggregation due to the rigid conformation formed by hydrogen-bonded interactions, thus showing remarkable TDTP emission 0.1 s after irradiation with a 365 nm UV lamp. It is noteworthy that the emission wavelength of the surface oxide triplet state can be progressively red-shifted from green to red, which is achieved by increasing the surface C=\mathrm{C}= O content and aggregation degree of CPDs. Consequently, a series of self-protective TDTP CPDs with finely tunable colors from green to blue, yellow to green, orange to green, orange to yellow, and red to orange are obtained. To the best of our knowledge, this is the first report on pure CPDs with tunable TDTP over the entire visible range. Based on comprehensive experimental characterization and theoretical simulation calculations, a convincing model for the full-color TDTP mechanism of CPDs has been proposed. These CPDs have been successfully applied in multi-mode anti-counterfeiting and dynamic information encryption, as well as in optoelectronic devices. 为了验证我们的假设,选择三种类型的有机分子,即尿素、1,8-萘酰亚胺和喹吖啶酮作为碳源来制备 CPD,方法是在烧杯中的乙醇和水的混合溶液中加热它们。所得的 CPD 被赋予了蓝色发射的 N 相关三重态和长波长发射表面氧化物三重态。这些发射中心具有不同的衰变速率,并且由于氢键相互作用形成的刚性构象,可以在 CPD 聚集时同时激活,因此在用 365 nm 紫外灯照射 0.1 s 后显示出显着的 TDTP 发射。值得注意的是,表面氧化物三重态的发射波长可以从绿色逐渐红移到红色,这是通过增加 CPDs 的表面 C=\mathrm{C}= O 含量和聚集度来实现的。因此,获得了一系列具有从绿色到蓝色、黄色到绿色、橙色到绿色、橙色到黄色和红色到橙色的精细可调颜色的自我保护 TDTP CPD。据我们所知,这是关于在整个可见光范围内具有可调谐 TDTP 的纯 CPD 的首次报告。基于全面的实验表征和理论仿真计算,提出了一种令人信服的 CPD 全彩 TDTP 机制模型。这些 CPD 已成功应用于多模式防伪和动态信息加密以及光电器件。
2. Results and Discussion 2. 结果与讨论
The synthesis process is elaborated in the experimental section of the Supporting Information. Briefly, CPDs were synthesized by directly heating a mixed ethanol/water solution of urea, 1,8 naphthalimide, and quinacridone at 200^(@)C200^{\circ} \mathrm{C} for 5 h in an air atmosphere (Figure 1a). The key step in the preparation of CPDs is the selection of precursors rich in N and O atoms with lone pair electrons, as these heteroatoms can not only facilitate ISC to populate rich triplet excitons for RTP but also provide multiple emission species by forming various subluminophores. ^([26]){ }^{[26]} By optimizing the mass ratio and reaction time, five types of CPDs are obtained (Figure 1b), which emit TDTP lasted for more than 3.0 s under ambient conditions when the UV lamp casing off, with colors changing from green to blue, yellow to green, orange to green, orange to yellow, and red to orange, respectively. These CPDs are named GB-CPDs, YG-CPDs, OG-CPDs, OY-CPDs, and RO-CPDs, respectively, according to their respective afterglow colors (for example, Green-Blue color will be abbreviated as GB). Among them, GB-CPDs, YG-CPDs, and RO-CPDs are selected for further mechanistic investigations and various applications. 合成过程在支持信息的实验部分进行了详细说明。简而言之,通过在空气气氛中直接加热尿素、1,8 萘酰亚胺和喹吖啶酮的混合乙醇/水溶液 5 小时来合成 CPD(图 1a)。 200^(@)C200^{\circ} \mathrm{C} 制备 CPD 的关键步骤是选择富含 N 和 O 原子且具有孤对电子的前驱体,因为这些杂原子不仅可以促进 ISC 填充丰富的三重态激子以进行 RTP,还可以通过形成各种亚发光团来提供多种发射种类。 ^([26]){ }^{[26]} 通过优化质量比和反应时间,得到了五种类型的 CPD(图 1b),当紫外灯外壳关闭时,在环境条件下发射的 TDTP 持续超过 3.0 s,颜色分别从绿色变为蓝色、黄色变为绿色、橙色变为绿色、橙色变为黄色、红色变为橙色。这些 CPD 根据各自的余辉颜色分别命名为 GB-CPD、YG-CPD、OG-CPD、OY-CPD 和 RO-CPD(例如,绿蓝色将缩写为 GB)。其中,GGB-CPD、YG-CPD 和 RO-CPD 被选为进一步的机理研究和各种应用。
The photophysical properties of the three selected CPDs were first investigated. In the solution states, the UV/visible absorption spectra of the three CPDs dispersed in dimethyl sulfoxide (DMSO) exhibit an intense absorption peak at 255 nm due to the pi-pi^(**)\pi-\pi^{*} transition of C=C\mathrm{C}=\mathrm{C} in carbon cores (Figure S1, Supporting Information) ^([29]){ }^{[29]} In the visible region, these CPD solutions display an enhanced and red-shifted absorption from GB-CPDs to 首先研究了三种选定的 CPD 的光物理特性。在溶液状态下,由于碳核中的转变,分散在二甲基亚砜 (DMSO) 中的三种 CPD 的紫外/可见光吸收光谱在 255 nm 处表现出强烈的吸收峰 (图 S1,支持信息) ^([29]){ }^{[29]} 在可见光区域中,这些 CPD 溶液显示出从 GB-CPD 到 pi-pi^(**)\pi-\pi^{*}C=C\mathrm{C}=\mathrm{C}
Figure 1. a) Schematic of the preparation process of the as-prepared CPDs. b) Digital photographs of GB-CPDs, YG-CPDs, OG-CPDs, OY-CPDs, and RO-CPDs powders before and after turning off the UV lamp ( 365 nm ) under ambient conditions. 图 1.a) 制备的 CPD 制备过程示意图。b) 在环境条件下关闭紫外灯 (365 nm) 前后 GB-CPD、YG-CPD、OG-CPD、OY-CPD 和 RO-CPDs 粉末的数码照片。
RO-CPDs, indicating an increasing number of surface state transitions related to C=O\mathrm{C}=\mathrm{O} moieties, which is beneficial to promoting spin-orbit coupling via abundant n-pi^(**)\mathrm{n}-\pi^{*} transition. ^([30]){ }^{[30]} The fluorescence (FL) spectra of these CPD solutions reveal an excitationdependent emission with peak red-shifting from 378 to 516 nm (Figure S2, Supporting Information), implying the existence of multiple luminescent centers with decreased energy levels, similar to many previously reported heteroatom-doped CPDs. ^([31]){ }^{[31]} In comparison, the three CPD powders have almost no UV absorption due to the surrounding cross-linked polymer network on surfaces (Figure S3, Supporting Information), ^([32]){ }^{[32]} while displaying an enhanced absorption in the region of 410-600nm410-600 \mathrm{~nm} that is similar to their solution state counterparts. In Figure S4a-c (Supporting Information), the prompt (steady-state) emission spectra show that the three CPD powders have the same excitation-independent FL emission peaked at ~~386nm\approx 386 \mathrm{~nm}, but different shoulder peaks at 515 nm for GB-CDs, 555 nm for YGCDs, and 610 nm for RO-CPDs, reflecting an obvious emission red shift in the visible range. Moreover, the corresponding FL decay curves can be fitted by a tri-exponential function with an averaged lifetime of ~~6.67ns\approx 6.67 \mathrm{~ns} for the three selected CPDs (Figure S5 and Table S1, Supporting Information). These spectral results indicate that these CPDs possess multiple luminescent centers throughout the visible region, which are responsible for the observed white light emissions under UV irradiation (Figure 1b; Figure S4d-f, Supporting Information). RO-CPDs,表明与 C=O\mathrm{C}=\mathrm{O} 部分相关的表面态转变数量增加 ,这有利于通过丰富的 n-pi^(**)\mathrm{n}-\pi^{*} 转变促进自旋轨道耦合。 ^([30]){ }^{[30]} 这些 CPD 溶液的荧光 (FL) 光谱显示,激发依赖性发射,峰值红移从 378 nm 到 516 nm(图 S2,支持信息),这意味着存在多个能级降低的发光中心,类似于以前报道的许多杂原子掺杂 CPD。 ^([31]){ }^{[31]} 相比之下,由于表面周围有交联聚合物网络,三种 CPD 粉末几乎没有紫外线吸收(图 S3,支持信息), ^([32]){ }^{[32]} 同时在该区域 410-600nm410-600 \mathrm{~nm} 显示出与溶液态对应物相似的增强吸收。在图 S4a-c(支持信息)中,瞬发(稳态)发射光谱显示,三种 CPD 粉末具有相同的不依赖激发的 FL 发射峰, ~~386nm\approx 386 \mathrm{~nm} 但 GB-CDs 在 515 nm、YGCD 和 RO-CPD 在 515 nm 处具有不同的肩峰,反映可见光范围内明显的发射红移。此外,相应的 FL 衰减曲线可以通过三个选定 CPD 的平均寿命为 的 ~~6.67ns\approx 6.67 \mathrm{~ns} 三指数函数进行拟合 (图 S5 和表 S1,支持信息)。这些光谱结果表明,这些 CPD 在整个可见光区域具有多个发光中心,这是在紫外线照射下观察到的白光发射的原因(图 1b;图 S4d-f,支持信息)。
Subsequently, the phosphorescence emission spectra of the three selected CPDs were recorded with delay time at 0.1 s . 随后,以 0.1 s 的延迟时间记录了三个选定 CPD 的磷光发射光谱。
As shown in Figure 2a-c, these samples show an excitationdependent emission profile characterized by two well-separated phosphorescence peaks. The first one, located at 453 nm , corresponds to the blue afterglow and remains almost unchanged in emission peak position across different CPD types. ^([12]){ }^{[12]} In contrast, the second one in the 500-700nm500-700 \mathrm{~nm} region displays an increased emission width with the peak observed at 514 nm for GB-CPDs, 553 nm for YG-CPDs, and 609 nm for RO-CPDs, indicating increased surface states with phosphorescence red shift, which is consistent with the prompt emission spectra above (Figure S4a-c, Supporting Information). Under 365 nm excitation, the long-wavelength afterglow center emits more intensely than the short-wavelength afterglow center, accounting for the initial color change from green to yellow and red for GB-CPDs, YG-CPDs, and RO-CPDs, respectively. The optimal phosphorescence excitation peaks of the former and latter centers are close to the UV and visible region, respectively, indicating that each CPDs have both the high-energy carbon core triplet state and the low-energy surface triplet state (Figure S6, Supporting Information). In Figure 2d-f, the time-resolved phosphorescence spectra of these CPDs after 365 nm irradiation reveal that the green/yellow/red phosphorescence decays faster than the blue phosphorescence, leaving broad emission spectra over almost the entire visible range with a delay of 3.0 s . As a result, the dynamic phosphorescence color changes dramatically from green to blue for GB-CPDs, yellow to green for YG-CPDs, and red to orange for RO-CPDs (Figure S7, Supporting Information). ^([15]){ }^{[15]} These dynamic afterglow evolutions of these CPDs with the excitation 如图 2a-c 所示,这些样品显示出由两个分离良好的磷光峰组成的激发依赖性发射曲线。第一个位于 453 nm 处,对应于蓝色余辉,在不同 CPD 类型中发射峰位置几乎保持不变。 ^([12]){ }^{[12]} 相比之下,该 500-700nm500-700 \mathrm{~nm} 区域中的第二个显示发射宽度增加,GB-CPD 在 514 nm 处观察到峰值,YG-CPD 在 553 nm 处观察到,RO-CPD 在 609 nm 处观察到峰值,表明磷光红移表面状态增加,这与上面的瞬发发射光谱一致(图 S4a-c,支持信息)。在 365 nm 激发下,长波长余辉中心比短波长余辉中心发射更强,分别是 GB-CPD、YG-CPD 和 RO-CPD 的初始颜色从绿色变为黄色和红色的原因。前和后中心的最佳磷光激发峰分别靠近紫外和可见光区域,表明每个 CPD 同时具有高能碳核三重态和低能表面三重态(图 S6,支持信息)。在图 2d-f 中,这些 CPD 在 365 nm 照射后的时间分辨磷光光谱显示,绿色/黄色/红色磷光衰减速度比蓝色磷光快,几乎在整个可见光范围内留下较宽的发射光谱,延迟为 3.0 秒。因此,GB-CPD 的动态磷光颜色从绿色变为蓝色,YG-CPD 为黄色变为绿色,RO-CPD 为红色变为橙色(图 S7,支持信息)。 ^([15]){ }^{[15]} 这些动态余辉随着激发