这是用户在 2025-6-27 17:35 为 https://www.mdpi.com/2071-1050/14/24/16471 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?










 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article  开放获取文章

Analysis of the Relationship between Vegetation and Radar Interferometric Coherence
植被与雷达干涉相干性的关系分析

by
Yuxi Cao
1,
  作者 Yuxi Cao
Peixian Li
1,*,

1 , 李佩贤
Dengcheng Hao
1,

1,* , 郝登成
Yong Lian
2,
   1 , 永琦
Yuanjian Wang
1 and

2 , 王元剑
Sihai Zhao
1
   1 和赵思海
1
School of Earth Science and Surveying and Mapping Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
中国矿业大学 (北京) 地球科学与测绘工程学院, 北京 100083
2
Dongqu Coal Mine, Shanxi Coking Coal Group Co., Ltd., Taiyuan 030024, China
Dongqu Coal Mine, 山西炼焦煤集团有限公司, 中国 太原 030024
*
Author to whom correspondence should be addressed.
通信应收件人的作者。
Sustainability 2022, 14(24), 16471; https://doi.org/10.3390/su142416471
可持续性 2022, 14(24), 16471;https://doi.org/10.3390/su142416471
Submission received: 11 October 2022 / Revised: 3 December 2022 / Accepted: 6 December 2022 / Published: 8 December 2022
收到意见:2022 年 10 月 11 日 / 修订:2022 年 12 月 3 日 / 接受日期:2022 年 12 月 6 日 / 发布时间:2022 年 12 月 8 日

Abstract  抽象

To effectively reduce the impact of vegetation cover on surface settlement monitoring, the relationship between normalized difference vegetation index (NDVI) and coherence coefficient was established. It provides a way to estimate coherence coefficient by NDVI. In the research, a new method is tried to make the time range coincident between NDVI results and coherence coefficient results. Using the coherence coefficient results and the NDVI results of each interference image pair in the study area, the mathematical relationship between NDVI and the coherent coefficient was established based on statistical analysis of the fitting results of the exponential model, logarithmic model, and linear model. Four indicators were selected to evaluate the fitting results, including root mean square error, determinant coefficient, prediction interval coverage probability, and prediction interval normalized average width. The fitting effect of the exponential model was better than that of the logarithmic model and linear model. The mean of error was −0.041 in study area ROI1 and −0.126 in study area ROI2.The standard deviation of error was 0.165 in study area ROI1 and 0.140 in study area ROI2. The fitting results are consistent with the coherence coefficient results. The research method used the NDVI results to estimate the InSAR coherence coefficient. This provides an easy and efficient way to indirectly evaluate the interferometric coherence and a basis in InSAR data processing. The results can provide pre-estimation of coherence information in Ningxia by optical images.
为有效降低植被覆盖对地表沉降监测的影响,建立了归一化差值植被指数 (NDVI) 与相干系数的关系。它提供了一种通过 NDVI 估计相干系数的方法。在研究中,尝试了一种新方法使 NDVI 结果和相干系数结果之间的时间范围重合。利用研究区各干涉图像对的相干系数结果和 NDVI 结果,在对指数模型、对数模型和线性模型的拟合结果进行统计分析的基础上,建立了 NDVI 与相干系数的数学关系。选取均方根误差、行列式系数、预测区间覆盖概率和预测区间归一化平均宽度 4 个指标对拟合结果进行评价。指数模型的拟合效果优于对数模型和线性模型。研究区域 ROI1 的误差平均值为 -0.041,研究区域 ROI2 的误差平均值为 -0.126。研究区 ROI1 的误差标准差为 0.165,研究区 ROI2 的误差标准差为 0.140。拟合结果与相干系数结果一致。该研究方法使用 NDVI 结果估计 InSAR 相干系数。这为间接评估干涉相干性和 InSAR 数据处理的基础提供了一种简单有效的方法。结果可为宁夏地区光学图像相干信息提供预估计。
Keywords:
interferometry; correlation; curve fitting; NDVI
关键词:干涉测量;相关;曲线拟合;NDVI

1. Introduction  1. 引言

Interferometric synthetic aperture radar (InSAR) is a useful technique in generating a digital elevation model and monitoring surface deformation [1,2,3,4]. It is based on the phase difference of the echoes received by a satellite or aircraft. It has the advantage of acquiring data over a site during day or night time under all weather conditions and not impeded by cloud cover.
干涉合成孔径雷达 (InSAR) 是生成数字高程模型和监测表面变形的一种有用技术 [ 1, 2, 3, 4]。它基于卫星或飞机接收到的回波的相位差。它的优势在于,在所有天气条件下,白天或黑夜都会在站点上采集数据,并且不受云层覆盖的阻碍。
Interferometric coherence is one of the most important parameters for measuring the quality of interferograms in data processing of InSAR. It is predominantly evaluated using the coherence coefficient. The main factors affecting the interferometric coherence are Doppler decorrelation, thermal noise decorrelation, spatial decorrelation, and temporal decorrelation. Doppler decorrelation refers to a decorrelation phenomenon due to the inconsistency of the Doppler center frequency for twice imaging, which can be suppressed by azimuth filtering and can be further reduced by estimating the Doppler function [5]. The thermal noise decorrelation generates in the radar system when transmitting, receiving electromagnetic wave signals, and recording ground echo information [2]. Radar systems mainly rely on hardware settings to reduce the impact of system thermal noise. Spatial decorrelation refers to a decorrelation phenomenon caused by the spatial baseline of two radar images being too long and the side looking angles observed on the same targets for two images being different, resulting in considerable changes in phase [6]. The critical baseline can be used to evaluate the spatial decorrelation. With the baseline increasing, the correlation decreases. When the baseline increases to critical baseline, the coherence coefficient is 0. To reduce the effect of spatial decorrelation, it is necessary to set a short spatial baseline. Temporal decorrelation refers to a decorrelation phenomenon caused by large changes in the scattering characteristics of the ground objects when imaging twice [2]. To reduce the effect of temporal decorrelation, it is necessary to set a short temporal baseline. Additionally, long wavelength has a good effect on temporal correlation [7].
干涉相干性是 InSAR 数据处理中衡量干涉图质量的最重要参数之一。它主要使用相干系数进行评估。影响干涉相干性的主要因素是多普勒去相关、热噪声去相关、空间去相关和时间去相关。多普勒去相关是指由于两次成像的多普勒中心频率不一致而产生的去相关现象,这种现象可以通过方位滤波来抑制,也可以通过估计多普勒函数来进一步降低 [ 5]。雷达系统中在发射、接收电磁波信号和记录地面回波信息时会产生热噪声去相关 [ 2]。雷达系统主要依靠硬件设置来减少系统热噪声的影响。空间去相关是指由于两幅雷达图像的空间基线过长,并且两幅图像在同一目标上观测到的侧视角度不同,导致相位发生较大变化而引起的去相关现象 [ 6]。临界基线可用于评估空间去相关。随着基线的增加,相关性降低。当基线增加到临界基线时,相干系数为 0。要减少空间去相关的影响,必须设置一个较短的空间基线。时间去相关是指在成像两次时,由于地面物体的散射特性发生较大变化而引起的去相关现象 [ 2]。为了减少时间去相关的影响,有必要设置一个较短的时间基线。此外,长波长对时间相关性有很好的影响 [ 7]。
The growth of surface vegetation is one of the main factors causing the decorrelation of radar images. It is difficult to reduce its impact through post-processing. The normalized difference vegetation index (NDVI) can be obtained through calculations based on optical imagery and it is often used to monitor vegetation cover and growth. The relationship between NDVI and the coherence coefficient of radar images can effectively reflect the influence of vegetation cover on the interferometric coherence. There has been research conducted on it [8,9,10,11,12,13,14,15]. Bai et al. (2020) built a liner relationship between interferometric coherence and NDVI and found that the months with low NDVI are suitable for deformation monitoring [10]. Chen et al. (2021) used Landsat and ALOS-1 data to establish the relationship between NDVI and coherence coefficient in Meitanba in Hunan Province [14]. Liu et al. (2021) studied the relationship between the coherence coefficient and NDVI in southern China using linear and power function models and determined that it has a negative correlation relationship, considering the accuracy of the power function model is higher than that of the linear function model [15]. The relationship can be used in simple estimating of coherence coefficient.
地表植被的生长是导致雷达图像脱切的主要因素之一。很难通过后处理来减少其影响。归一化差值植被指数 (NDVI) 可以通过基于光学影像的计算获得,通常用于监测植被覆盖和生长。NDVI 与雷达图像相干系数的关系可以有效反映植被覆盖对干涉相干性的影响。已经对它进行了研究 [ 8, 9, 10, 11, 12, 13, 14, 15]。Bai et al. (2020) 在干涉相干性和 NDVI 之间建立了线性关系,发现 NDVI 低的月份适合进行变形监测 [ 10]。Chen et al. (2021) 使用 Landsat 和 ALOS-1 数据建立了湖南省眉丹坝 NDVI 与相干系数之间的关系 [ 14]。Liu et al. (2021) 使用线性和幂函数模型研究了南方地区相干系数与 NDVI 之间的关系,并确定其具有负相关关系,考虑到幂函数模型的准确性高于线性函数模型 [ 15]。该关系可用于简单估计相干系数。
The function between NDVI and coherence coefficient can be effectively used to extract the decoherent area covered by vegetation in the radar image with accessible optical images. It may provide an easy way to get the decoherent area in SAR images and provide a basis in InSAR data processing. In this study, we got the Sentinel-1 and Sentinel-2 images acquired in Ningxia Hui Autonomous Region, China. We established three models to establish the relationship between NDVI and the coherent coefficient and selected four indicators to evaluate the fitting results. The results can provide pre-estimation of coherence information in Ningxia by optical images.
利用 NDVI 与相干系数之间的函数,可以有效地提取雷达图像中植被覆盖的退相干区域,并提供可访问的光学图像。该方法为获取 SAR 图像中的退相干面积提供了一种简便的方法,为 InSAR 数据处理提供了依据。在本研究中,我们获得了在中国宁夏回族自治区采集的 Sentinel-1 和 Sentinel-2 图像。我们建立了 3 个模型来建立 NDVI 与相干系数之间的关系,并选择了 4 个指标来评价拟合结果。结果可为宁夏地区光学图像相干信息提供预估计。
This paper is organized as follows. In the next section, the study area and the data information of Sentinel-1 and Sentinel-2 are described in detail. The critical method for establishing the model is introduced in Section 3. A new method is tried to make the time range of NDVI results and coherence coefficient results coincident. Section 4 is dedicated to the presentation of the obtained results. Finally, conclusions are addressed.
本文的组织结构如下。在下一节中,将详细介绍 Sentinel-1 和 Sentinel-2 的研究区域以及数据信息。第 3 节介绍了建立模型的关键方法。尝试了一种新的方法,使 NDVI 结果和相干系数结果的时间范围重合。第 4 节专门介绍获得的结果。最后,得出结论。

2. Overview of the Study Area and Data
2. 研究区域和数据概述

2.1. Overview of the Study Area
2.1. 研究区域概述

Located in the eastern part of Ningxia, the study area is in Yanchi County and is represented by red rectangles in Figure 1. ROI1 is used for model building and model accuracy validation. ROI2 is used for model feasibility analysis. The study area has a mid-temperate semi-arid continental monsoon climate. The climate is dry and hot, and the winter is severely cold and the summer is extremely hot with changeable conditions [16]. There are high diurnal fluctuations in temperature and the average annual temperature is approximately 9 °C, with the average annual precipitation being 205.2 mm [16]. The terrain of the study area is high in the south and low in the north, with a gentle terrain in the north.
研究区位于宁夏东部,位于盐池县,图 1 中用红色矩形表示。ROI1 用于模型构建和模型准确性验证。ROI2 用于模型可行性分析。研究区属中温带半干旱大陆性季风气候。气候干燥炎热,冬季严寒,夏季极热,条件多变 [ 16]。温度昼夜波动很大,年平均气温约为 9 °C,年平均降水量为 205.2 mm [ 16]。研究区地形南高北低,北平缓地形。
Figure 1. (a) is China map and (b) is the location of the study area and remote sensing image coverage. Two red angles represent the study areas. A purple rectangle represents Sentinel-1 image coverage. A blue rectangle represents Sentinel-2 image coverage. And basemap bases on SRTM 30 m digital elevation model (DEM) data. Note: Figure (a) is based on the standard map with the review number GS(2019) 1673 downloaded from the standard map service website of the National Administration of Surveying, Mapping and Geographic Information, and the basemap has not been modified.
图 1.(a) 是中国地图,(b) 是研究区域的位置和遥感影像覆盖范围。两个红色角表示研究区域。紫色矩形表示 Sentinel-1 影像覆盖范围。蓝色矩形表示 Sentinel-2 影像覆盖范围。底图基于 SRTM 30 m 数字高程模型 (DEM) 数据。注:图(a)基于从国家测绘地理信息局标准地图服务网站下载的审核编号为 GS(2019) 1673 的标准地图,底图未作修改。

2.2. Data  2.2. 数据

2.2.1. Radar Data  2.2.1. 雷达数据

Sentinel-l is a C-band radar satellite with a wavelength of approximately 5.6 cm, which has advantages of all-weather and day-and-night observation, a stable revisit time, and convenient access. Sentinel-1 has a 12-day revisit cycle and can be downloaded from the Earth Data website (https://asf.alaska.edu/ (accessed on 6 December 2021)). The time range of SAR images is from September 2017 to August 2018. The information of acquisition date is shown in Table A1. During the time range, study area ROI1 was stable without obvious deformation. It can reduce the impact of deformation on the model. Single look complex images were used in the research. The data scan mode is IW mode, with an ascending track mode. The Sentinel-1 image coverage is represented by a purple rectangle in Figure 1.
Sentinel-l 是一颗波长约为 5.6 cm 的 C 波段雷达卫星,具有全天候、昼夜观测、重访时间稳定、接入方便等优点。Sentinel-1 的重访周期为 12 天,可从 Earth Data 网站下载(https://asf.alaska.edu/(于 2021 年 12 月 6 日访问))。SAR 图像的时间范围为 2017 年 9 月至 2018 年 8 月。采集日期信息如表 A1 所示。在时间范围内,研究区域 ROI1 稳定,无明显变形。它可以减少变形对模型的影响。研究中使用了单视复杂图像。数据扫描模式为 IW 模式,具有升序跟踪模式。Sentinel-1 影像覆盖范围在图 1 中由紫色矩形表示。

2.2.2. Optical Image Data
2.2.2. 光学图像数据

Sentinel-2 is a high-resolution multispectral imaging satellite, which consists of two satellites, Sentinel-2A and Sentinel-2B. Under cloudless conditions, the single-satellite revisit cycle is 10 days and the double-satellite revisit cycle can reach 5 days. Sentinel-2 has 12 bands and three resolutions, with detailed information shown in Table 1. The red band and the near-infrared band are used for NDVI calculation, and the resolution is 10 m. The Sentinel-2 image coverage is represented by a blue rectangle in Figure 1. The Sentinel-2 data includes two product levels: the L1C product and the L2A product. The L2A product can be obtained using the L1C product and atmospheric correction processing. The L2A product was used in the research and the cloud coverage was less than 10%. The information of optical image data used in the research is shown in Table A2.
Sentinel-2 是一颗高分辨率多光谱成像卫星,由 Sentinel-2A 和 Sentinel-2B 两颗卫星组成。在无云条件下,单星重访周期为 10 d,双星重访周期可达 5 d。Sentinel-2 有 12 个波段和 3 个分辨率,详细信息如表 1 所示。红波段和近红外波段用于 NDVI 计算,分辨率为 10 m。Sentinel-2 影像覆盖范围在图 1 中由蓝色矩形表示。Sentinel-2 数据包括两个产品级别:L1C 产品和 L2A 产品。L2A 产品可以使用 L1C 产品和大气校正处理获得。研究中使用了 L2A 产品,云覆盖率不到 10%。研究中使用的光学图像数据信息如表 A2 所示。
Table 1. Band information of Sentinel-2.
表 1.Sentinel-2 的波段信息。

3. Modeling Processing  3. 建模处理

3.1. Preprocessing  3.1. 预处理

Critical steps in preprocessing include obtaining the coherence coefficient of the radar images and the NDVI from optical images of the study area, resampling the NDVI results, selecting images, and using the maximum value composite (MVC) algorithm to calculate the NDVI.
预处理的关键步骤包括从研究区域的光学图像中获取雷达图像和 NDVI 的相干系数、对 NDVI 结果进行重采样、选择图像以及使用最大值合成 (MVC) 算法计算 NDVI。

3.1.1. Coherence Coefficient Calculation
3.1.1. 相干系数计算

Interferometric coherence is one of the key parameters for measuring the quality of interferograms in the data processing of InSAR and is mainly evaluated using the coherence coefficient. The coherence coefficient value is between 0,1. The higher the value, the better the interferometric coherence. The coherence coefficient calculation equation is shown in (1) [17,18].
干涉相干性是 InSAR 数据处理中衡量干涉图质量的关键参数之一,主要使用相干系数进行评价。相干系数值介于 之间 0,1 。值越高,干涉相干性越好。相干系数计算方程如 (1) [ 17, 18] 所示。
γ=Ev1v2Ev1v1Ev2v2
where v1 and v2 represents the reference and secondary images, represents the conjugate complex number. The tool to calculate coherence coefficient is GMTSAR, an open source InSAR processing system [5,19], and the spatial resolution of the coherence coefficient results is 25 m. The DEM data is SRTM 30 m digital elevation model (DEM) data.
其中 v1v2 表示参考图像和辅助图像, 表示共轭复数。计算相干系数的工具是 GMTSAR,一个开源的 InSAR 处理系统 [ 5, 19],相干系数结果的空间分辨率为 25 m。DEM 数据是 SRTM 30 m 数字高程模型 (DEM) 数据。
The information about interferometric pairs is shown in Table A3, and the coherence coefficient results are shown in Figure A1. The temporal baseline threshold for the interferometric images was 24 days, and the vertical baseline threshold was 100 m. A short perpendicular baseline means the high baseline correlation, which represents the high spatial correlation [20]. The equation for calculating baseline correlation is shown in (2) [21].
有关干涉对的信息如表 A3 所示,相干系数结果如图 A1 所示。干涉图像的时间基线阈值为 24 d,垂直基线阈值为 100 m。较短的垂直基线意味着高基线相关性,这代表了高空间相关性 [ 20]。计算基线相关性的方程式如 (2) [ 21] 所示。
γbaseline=1BB,crit
where B represents perpendicular baseline and B,crit represents critical perpendicular baseline. The equation for calculating critical baseline is shown in (3) [21].
其中 B ,表示垂直基线, B,crit 表示临界垂直基线。计算临界基线的方程式如 (3) [ 21] 所示。
B,crit=λRtanθα2dR
where λ is the wavelength, R is the slant range, θ is the incident angle, α is the slope, dR is the range resolution. Set Sentinel-1 as an example. R is 90 km, θ is 44 degrees. We can get the critical perpendicular baseline is about 5 km by using (3) in the flat range. When the perpendicular baseline is 100 m, baseline correlation is about 0.98.
其中 λ 是波长, R 是倾斜范围, θ 是入射角, α 是斜率, dR 是距离分辨率。以 Sentinel-1 为例。 R 是 90 公里, θ 是 44 度。我们可以通过在平坦范围内使用 (3) 得到临界垂直基线约为 5 公里。当垂直基线为 100 m 时,基线相关性约为 0.98。

3.1.2. NDVI Calculation  3.1.2. NDVI 计算

The NDVI value is between [−1,1] and a negative value indicates that the surface is covered with water, ice, or snow. Zero indicates bare soil, rock, or buildings. Positive values indicate the presence of vegetation, and the NDVI value increases as vegetation cover increases. The NDVI calculation equation is shown in (4) and the NDVI results are shown in Figure A2.
NDVI 值介于 [−1,1] 之间,负值表示表面被水、冰或雪覆盖。零表示裸露的土壤、岩石或建筑物。正值表示存在植被,NDVI 值随着植被覆盖率的增加而增加。NDVI 计算方程如图 (4) 所示,NDVI 结果如图 A2 所示。
NDVI=ρNIRρREDρNIR+ρRED
where ρNIR is the reflectance value of the near-infrared band and ρRED is the reflectivity value of the red band. The tool to calculate NDVI is SNAP, an open-source data processing software provided by the European Space Agency (ESA).
其中 ρNIR 是近红外波段的反射率值, ρRED 是红色波段的反射率值。计算 NDVI 的工具是 SNAP,这是欧洲航天局 (ESA) 提供的开源数据处理软件。

3.1.3. Resampling, Selecting Images, and Calculating the NDVI Using the MVC Algorithm
3.1.3. 使用 MVC 算法重新采样、选择图像和计算 NDVI

The resolution of the coherent coefficient images is equal to interferometric images. Because it is lower than the resolution of the NDVI images, the resolution of the NDVI images are resampled to the resolution of the coherent coefficient images so that there are same numbers of grids in the coherent coefficient and NDVI images.
相干系数图像的分辨率等于干涉图像。由于它低于 NDVI 影像的分辨率,因此 NDVI 影像的分辨率将重采样为相干系数影像的分辨率,以便相干系数和 NDVI 影像中的格网数量相同。
In ideal conditions, the SAR data have a 12-day revisit cycle, and optical data have a 5-day revisit cycle. The imaging time being inconsistent between the NDVI, and the interferometric pairs is the main problem. Chen et al. (2021) solved this problem by establishing the relationship between the time baselines and the coherence coefficient, and introducing the time variable t into the function of the NDVI and the coherence coefficient [14]. Liu et al. (2021) solved the inconsistency imaging problem between the NDVI and the interferometric pair based on the monthly NDVI dataset from 2016–2017 and by using the average coherence coefficient of the interferometric pairs for the months [15]. In this research, the MVC algorithm was used to calculate the NDVI images in the time range between the imaging time of the main and auxiliary images, so that the interferometric pair can correspond with the NDVI image. MVC refers to obtaining the maximum value of each grid in the NDVI images over a certain period, which is relatively easy to achieve. It can effectively reduce the influence of cloud, atmosphere, solar altitude angle, and other factors on remote sensing images and is widely used in the production of NDVI. The MVC results are shown in Figure A3.
在理想条件下,SAR 数据的重访周期为 12 天,光学数据的重访周期为 5 天。NDVI 和干涉对之间的成像时间不一致是主要问题。Chen et al. (2021) 通过建立时间基线和相干系数之间的关系,并将时间变量 t 引入 NDVI 和相干系数的函数中来解决这个问题 [ 14]。Liu et al. (2021) 基于 2016-2017 年的月度 NDVI 数据集,并使用干涉测量对在月份的平均相干系数 [ 15] 解决了 NDVI 和干涉对之间的不一致成像问题。本研究采用 MVC 算法计算主、副像成像时间之间时间范围内的 NDVI 图像,使干涉对与 NDVI 图像相对应。MVC 是指获取 NDVI 图像中每个网格在一定时间内的最大值,相对容易实现。能有效降低云、大气、太阳高度角等因素对遥感影像的影响,广泛应用于 NDVI 的制作中。MVC 结果如图 A3 所示。

3.2. Data Sampling  3.2. 数据采样

The images are sampled according to main parameter: the sample window size is 40×40 pixels. Although the NDVI images were processed using the MVC method, there is a considerable number of grids containing information from the cloud, with water also having a considerable influence on the experiment. Because compared with the images of coherence coefficient and the NDVI in water, some values of the coherence coefficient and the NDVI are smaller than 0.2, so the grid need be masked. The mean value and the correlation coefficients R are calculated for sampling and selecting. If the correlation coefficient was greater than 0.6, the mean value of the coherence coefficient and the NDVI are fitted. The correlation coefficient calculation formula is shown in (5).
根据 main 参数对图像进行采样:样本窗口大小为 40×40 像素。尽管 NDVI 图像是使用 MVC 方法处理的,但有相当数量的网格包含来自云的信息,其中水也对实验有相当大的影响。因为与水中相干系数和 NDVI 的图像相比,相干系数和 NDVI 的某些值小于 0.2,因此需要对网格进行遮罩。计算平均值和相关系数 R 以进行抽样和选择。如果相关系数大于 0.6,则拟合相干系数和 NDVI 的平均值。相关系数计算公式如 (5) 所示。
R=i=1Nxix¯yiy¯i=1Nxix¯2i=1Nyiy¯2
where xi and yi represent the value of each raster element, and x¯ and y¯ represent the mean value of the raster element being sampled.
其中 xi and yi 表示每个栅格元素的值, x¯ 而 and y¯ 表示正在采样的栅格元素的平均值。

3.3. Data Fitting Results Evaluation
3.3. 数据拟合结果评估

The fitting functions are evaluated using the root mean square error (RMSE) and determined coefficient (R2). Under the condition of a 99% confidence level, the prediction intervals coverage probability (PICP) and the prediction intervals normalized averaged width (PINAW) are used to evaluate the fitting functions.
拟合函数使用均方根误差 (RMSE) 和确定的系数 ( R2 ) 进行评估。在 99% 置信水平的条件下,预测区间覆盖率概率 (PICP) 和预测区间归一化平均宽度 (PINAW) 用于评估拟合函数。
RMSE is the deviation between the true value and the predicted value, which is calculated as shown in (6). The smaller the RMSE value, the smaller the gap between the true and predicted values.
RMSE 是真实值与预测值之间的偏差,计算方式如 (6) 所示。RMSE 值越小,真实值和预测值之间的差距就越小。
RMSE=1Ni=1Nyrealiy^predicti2
where yreali is the true value and y^predicti is the predictive value calculated by fitting function.
其中 yreali 是 true 值, y^predicti 是 Fitting 函数计算的预测值。
R2 is used to determine the fitting degree of the regression equation, which is calculated as shown in (7). The value field is [0,1]. The larger the R2 value, the better the degree of the model fitting.
R2 用于确定回归方程的拟合度,其计算方式如 (7) 所示。值字段为 [0,1]。 R2 值越大,模型拟合的程度越好。
R2=i=1Ny^predictiy¯real2i=1Nyrealiy¯real2=1i=1Nyrealiy^predicti2i=1Nyrealiy¯real2
where y^predicti is the predictive value calculated by fitting function, yreali is the true value, and y¯real is the average value.
其中 y^predicti 是 Fitting 函数计算的预测值, yreali 是 true 值, y¯real 是平均值。
TSS=i=1Ny^predictiy¯real2
RSS=i=1Nyrealiy^predicti2
ESS=i=1Nyrealiy¯real2
The relationship among the three is:
这三者之间的关系是:
TSS=RSS+ESS
where TSS is the total square sum, RSS is the residual square sum, and ESS is the explained square sum.
其中 TSS 是总平方和, RSS 是残差平方和, ESS 是解释的平方和。
PICP represents the actual frequency that observations fall within the prediction interval and is used to evaluate the reliability of the prediction interval, which is calculated as shown in (12) [22]. The higher the PICP value, the better the prediction result and the more reliable the model.
PICP 表示观测值落在预测区间内的实际频率,用于评估预测区间的可靠性,其计算方式如 (12) [ 22] 所示。PICP 值越高,预测结果越好,模型越可靠。
PICP=1Ni=1Nεi,εi=1,yiLi,Ui0,yiLi,Ui
where N is the sample size, εi is a Boolean variable that represents the relationship between the prediction interval and the observed value, yi is the sample truth value, and Li and Ui are the smallest and biggest bounds of the prediction interval, respectively.
其中 N 是样本量, εi 是表示预测区间和观察值之间关系的布尔变量, yi 是样本真值, LiUi 分别是预测区间的最小和最大边界。
The formula for calculating the PINAW is shown in (13). A smaller PINAW value means a more sensitive prediction interval and more reliable model [22].
计算公式 PINAW 如 (13) 所示。较小的 PINAW 值意味着更敏感的预测区间和更可靠的模型 [ 22]。
PINAW=1NRi=1NUiLi
where N is the sample size, R is the range of the sample target variable, and Li and Ui represent the smallest and biggest bounds of the prediction interval, respectively.
其中 N 是样本大小, R 是样本目标变量的范围, LiUi 分别表示预测区间的最小和最大边界。

3.4. The Method of Model Accuracy Validation
3.4. 模型准确性验证方法

Comparing the calculated coherence coefficient with the real coherence coefficient, the error can be obtained to evaluate the precision of the fitting function. The error calculation equation is shown in (14):
将计算出的相干系数与实际的相干系数进行比较,可以获得误差来评估拟合函数的精度。误差计算方程如 (14) 所示:
Error=γtrueγpredict
where γtrue represents the true coherence coefficient, and γpredict represents the predicted coherence coefficient calculated by γ1 and the NDVI image.
其中 γtrue 表示真正的相干系数, γpredict 表示由 γ1 和 NDVI 影像计算的预测相干系数。

4. Results and Discussion
4. 结果与讨论

4.1. Data Fitting Results
4.1. 数据拟合结果

The results from sampling are shown in Figure 2a. The range of the NDVI is 0.084717,0.709237 and the range of the coherence coefficient is 0.175292,0.88656. The NDVI and the coherence coefficient show a negative relationship. With the increase in NDVI, the interferometric coherence decreases. The exponential model, linear model, and logarithmic model are used to fit and the fitting results are shown in (15), (16), and (17), and four evaluation indicators in Section 3.3 are used to evaluate the fitting functions.
采样结果如图 2a 所示。NDVI 的范围是 0.084717,0.709237 ,相干系数的范围是 0.175292,0.88656 。NDVI 和相干系数呈负相关。随着 NDVI 的增加,干涉相干性降低。采用指数模型、线性模型和对数模型进行拟合,拟合结果如(15)、(16)、(17)所示,3.3 节中的四个评价指标用于评价拟合函数。
γ1=0.9259e3.982NDVI+0.1753,0.029NDVI1
γ2=1.226NDVI+0.8673,0NDVI0.7074
γ3=0.315lnNDVI+0.08049,0.054<NDVI1
Figure 2. Fitting result of exponential model γ1 (a) is the fitted curve graph, the red line is the fitted function curve, and the blue break line is the prediction interval curve. (b) is the residual graph.
图 2.指数模型 γ1 (a) 的拟合结果是拟合曲线图,红线是拟合函数曲线,蓝色折断线是预测区间曲线。(b) 是残差图。
As shown in Figure 2a, almost all the points are inside the prediction interval. Figure 2b is a residual distribution map, showing that that the residuals are roughly distributed 0.2,0.2 and the residual distribution is relatively uniform. According to the statistical results, RMSE is 0.06272 and R2 is 0.8767. Under the condition of a 99% confidence level, PICP is 99.52% and PINAW is 0.3249.
如图 2a 所示,几乎所有的点都在预测区间内。图 2b 是残差分布图,显示残差分布大致, 0.2,0.2 残差分布相对均匀。根据统计结果, RMSE 分别为 0.06272 和 R2 0.8767。在 99% 置信水平的情况下, PICP 为 99.52% 和 PINAW 0.3249。
As shown in Figure 3a, almost all the points are inside the prediction interval. Figure 3b is a residual distribution plot, showing that the residuals are roughly distributed [−0.3,0.3] and there is an anomaly in the residuals, which becomes larger when the NDVI value is higher than 0.6. According to the statistical results, RMSE is 0.07551 and R2 is 0.8207. Under the condition of a 99% confidence level, PICP is 99.36% and PINAW is 0.3908.
如图 3a 所示,几乎所有的点都在预测区间内。图 3b 是一个残差分布图,显示残差大致分布 [−0.3,0.3],残差中存在异常,当 NDVI 值高于 0.6 时,残差会变得更大。根据统计结果, RMSE 分别为 0.07551 和 R2 0.8207。在 99% 置信水平的条件下, PICP 为 99.36% 和 PINAW 0.3908。
Figure 3. Fitting result of linear model γ2 (a) is the fitted curve graph, the red line is the fitted function curve, and the blue break line is the prediction interval curve. (b) is the residual graph.
图 3.线性模型 γ2 (a) 的拟合结果是拟合曲线图,红线是拟合函数曲线,蓝色折断线是预测区间曲线。(b) 是残差图。
As shown in Figure 4a, almost all the points are inside the prediction interval. Figure 4b is a residual distribution plot, showing that the residuals are roughly distributed [−0.2,0.2] and the residual distribution is relatively uniform. According to the statistical results, RMSE is 0.06407 and R2 is 0.8711. Under the condition of a 99% confidence level, PICP is 99.36% and PINAW is 0.3316.
如图 4a 所示,几乎所有的点都在预测区间内。图 4b 是一个残差分布图,显示残差大致分布 [−0.2,0.2],残差分布相对均匀。根据统计结果, RMSE 分别为 0.06407 和 R2 0.8711。在 99% 置信水平的情况下, PICP 为 99.36% 和 PINAW 0.3316。
Figure 4. Fitting result of logarithmic model γ3 (a) is the fitted curve graph, the red line is the fitted function curve, and the blue break line is the prediction interval curve. (b) is the residual graph.
图 4.对数模型 γ3 (a) 的拟合结果是拟合曲线图,红线是拟合函数曲线,蓝色折断线是预测区间曲线。(b) 是残差图。
The results of the evaluation are shown in Table 2. Comparing the RMSE, it can be considered that the gap between the true value and the predicted value of γ1 is less those of than γ2 and γ3. Comparing R2, it can be seen that the model fits of γ1 is better than those of γ2 and γ3. Under the condition of a 99% confidence level, comparing PICP and PINAW, it can be seen that model reliability and prediction interval sensitivity of γ1 is higher than those of the others. In summary, the γ1 evaluation results are better than γ2 and γ3. Therefore, it is more reliable to choose γ1 as the fitting function.
评估结果如表 2 所示。比较 RMSE ,可以认为 的真实值和预测值之间的差距 γ1 小于 γ2 和 的 γ3 差距。比较 R2 ,可以看出 的 γ1 模型拟合值优于 γ2γ3 的模型拟合值。在 99% 置信水平的条件下,比较 PICPPINAW 可以看出,模型可靠性和预测区间敏感性 高于 γ1 其他模型。综上所述, γ1 评估结果优于 γ2γ3 。因此,选择 γ1 作为拟合函数更可靠。
Table 2. Evaluation results.
表 2.评估结果。

4.2. Model Accuracy Validation
4.2. 模型准确性验证

One of interferometric pairs is selected to verify the precision of the fitting function in ROI1. The reference imaging time is 15 August 2019, and the secondary imaging time is 27 August 2019. The results are shown in Figure 5. Figure 5a shows the ROI1 NDVI result in the study area. Figure 5b shows the ROI1 coherence coefficient result in the study area. Figure 5c shows the error between the true values and the prediction values of the coherence coefficient. The overall fitting effect of the study area is good, and the larger error values are concentrated in the south of the study area. Figure 5d represents the error distribution, and the error is approximately followed by a normal distribution. The mean of error is −0.041, and the standard deviation of error is 0.165, with the error mainly being concentrated 0.3,0.3. Figure 5e is the slope distribution in ROI1.
选择干涉对中的一个来验证 ROI1 中拟合函数的精度。参考成像时间为 2019 年 8 月 15 日,二次成像时间为 2019 年 8 月 27 日。结果如图 5 所示。图 5a 显示了研究区域的 ROI1 NDVI 结果。图 5b 显示了研究区域中的 ROI1 相干系数结果。图 5c 显示了相干系数的真实值和预测值之间的误差。研究区整体拟合效果较好,较大的误差值集中在研究区南部。图 5d 表示误差分布,误差大约后跟正态分布。误差均值为 −0.041,误差标准差为 0.165,误差主要集中 0.3,0.3 。图 5e 是 ROI1 中的斜率分布。
Figure 5. Fit function accuracy verification plot of interferometric pair 20190815–20190827 in ROI1, (a) is the NDVI result; (b) is the coherence coefficient map; (c) is the error result; (d) is the error distribution; (e) is the slope of ROI1.
图 5.ROI1 中干涉对 20190815–20190827 的拟合函数精度验证图,(a) 为 NDVI 结果;(b) 是相干系数映射;(c) 是错误结果;(d) 是误差分布;(e) 是 ROI1 的斜率。
It can be seen from Figure 5c that the error in the northern part of the study area is 0.2,0.2. However, the estimated values in some areas are higher than the true values. In the southern part of the study area, there are larger error values. The estimated values for this area are predominantly lower than the true values. From Figure 5c,e, the large error values and high slope degrees have roughly the same spatial distribution. The high relief maybe the main reason for larger error values [14].
从图 5c 中可以看出,研究区域北部的误差为 0.2,0.2 。但是,某些区域的估计值高于真实值。在研究区域的南部,存在较大的误差值。此区域的估计值主要低于真实值。从图 5c,e 中可以看出,较大的误差值和高坡度具有大致相同的空间分布。高浮雕可能是较大误差值的主要原因 [ 14]。
Then, another interferometric pair is selected, which has a temporal baseline of 24 days. The reference imaging time is 3 August 2019, and the secondary imaging time is 27 August 2019. The results are shown in Figure 6. Figure 6a shows the ROI1 NDVI result in the study area. Figure 6b shows the ROI1 coherence coefficient result in the study area. Figure 6c shows the error between the true values and the prediction values of the coherence coefficient. The overall fitting effect of the study area is good, and the larger error values are concentrated in the south of the study area. Figure 6d represents the error distribution and the error is approximately followed by a normal distribution. The mean of error is −0.069, and the standard deviation of error is 0.170, with the error mainly being concentrated 0.3,0.3. Figure 6e is the slope distribution in ROI1. The results shown in Figure 6 are consistent with the results shown in Figure 5. The mean and standard deviation of error show a small increase, and the large error values and high slope degrees show the same spatial distribution as Figure 5.
然后,选择另一个干涉测量对,其时间基线为 24 天。参考成像时间为 2019 年 8 月 3 日,二次成像时间为 2019 年 8 月 27 日。结果如图 6 所示。图 6a 显示了研究区域的 ROI1 NDVI 结果。图 6b 显示了研究区域中的 ROI1 相干系数结果。图 6c 显示了相干系数的真实值和预测值之间的误差。研究区整体拟合效果较好,较大的误差值集中在研究区南部。图 6d 表示误差分布,误差大约后跟正态分布。误差均值为 −0.069,误差标准差为 0.170,误差主要集中 0.3,0.3 。图 6e 是 ROI1 中的斜率分布。图 6 所示的结果与图 5 所示的结果一致。误差的平均值和标准差显示小幅增加,大误差值和高坡度数显示与图 5 相同的空间分布。
Figure 6. Fit function accuracy verification plot of interferometric pair 20190803–20190827 in ROI1, (a) is the NDVI result; (b) is the coherence coefficient map; (c) is the error result; (d) is the error distribution; (e) is the slope of ROI1.
图 6.ROI1 中干涉对 20190803–20190827 的拟合函数精度验证图,(a) 是 NDVI 结果;(b) 是相干系数映射;(c) 是错误结果;(d) 是误差分布;(e) 是 ROI1 的斜率。
The other study area, ROI2, is used to verify model feasibility. The results are shown in Figure 7. Figure 7a shows the NDVI result of ROI2 and Figure 7b shows the prediction result of coherence coefficient in ROI2 by Figure 7a and fitting model. Figure 7c shows the true value of coherence coefficient in ROI2. Figure 7d shows the error between the true values and the prediction values of the coherence coefficient, and the overall fitting effect of the study area is good. Figure 7e shows the error distribution, and the error is approximately followed by the normal distribution. The mean of error is −0.126, and the standard deviation of error is 0.140, with the error being mainly concentrated 0.4,0.2. Figure 7f is the map of DEM, and Figure 7g is the map of slope. Figure 7h is the map of land use type distribution in 2018.
另一个研究区域 ROI2 用于验证模型的可行性。结果如图 7 所示。图 7a 显示了 ROI2 的 NDVI 结果,图 7b 显示了图 7a 和拟合模型对 ROI2 中相干系数的预测结果。图 7c 显示了 ROI2 中相干系数的真实值。图 7d 显示了相干系数的真实值与预测值之间的误差,研究区域的整体拟合效果良好。图 7e 显示了误差分布,误差大致后跟正态分布。误差均值为 −0.126,误差标准差为 0.140,误差主要集中 0.4,0.2 。图 7f 是 DEM 的地图,图 7g 是斜率的地图。图 7h 是 2018 年土地利用类型分布图。
Figure 7. Fit function accuracy verification plot of interferometric pair 20190803–20190827 in ROI2, (a) is the NDVI result; (b) is the prediction result of coherence coefficient; (c) is the coherence coefficient map; (d) is the error result; (e) is the error distribution; (f) is the map of DEM; (g) is the map of slope; (h) is the map of land use type distribution in 2018 [23], and T represents the land use type. Among them, 1 represents cultivated land, 2 represents woodland, 3 represents grassland, 4 represents waters, 5 represents urban and rural, industrial and mining, and residential land, construction land, and 6 represents unused land. Note: (f) is provided by Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn(accessed on 20 July 2021)).
图 7.ROI2 中干涉对 20190803–20190827 的拟合函数精度验证图,(a) 是 NDVI 结果;(b) 是相干系数的预测结果;(c) 是相干系数图;(d) 是错误结果;(e) 是误差分布;(f) 是 DEM 的地图;(g) 是坡度地图;(h) 为 2018 年土地利用类型分布图 [ 23],T 表示土地利用类型。其中,1 表示耕地,2 表示林地,3 表示草地,4 表示水域,5 表示城乡、工矿、居住用地、建设用地,6 表示未利用地。注:(f) 由中国科学院资源与环境科学数据中心 ( http://www.resdc.cn(于 2021 年 7 月 20 日浏览)) 提供)。
Compared with Figure 7c, the prediction result of coherence coefficient in Figure 7b is consistent. The high NDVI value region in Figure 7a is the region with low coherence coefficient in Figure 7b,c. It can be seen from Figure 7d that the error is [−0.3,0.3], which is similar to the result showed in Figure 7e. Compared with the same interferometric pair result in ROI1, the absolute value of the mean error became larger and the standard deviation became smaller, with both following the normal distribution. Figure 7f,g shows ROI2 is flat area, and it is inconsistent between error distribution and slope degree. Figure 7d,h show that the larger error area distribution is generally in areas of urban and rural, industrial and mining and residential land, construction land, which are mostly misestimated. However, the results from ROI2 show that γ1 fits well for most of the area. Therefore, the model is effective.
与图 7c 相比,图 7b 中相干系数的预测结果是一致的。图 7a 中的高 NDVI 值区域是图 7b,c 中低相干系数的区域。从图 7d 中可以看出,误差为 [−0.3,0.3],这与图 7e 中显示的结果相似。与相同的干涉对结果 ROI1 相比,平均误差的绝对值变大,标准差变小,均服从正态分布。图 7f、g 显示 ROI2 是平坦区域,误差分布和斜率程度不一致。图 7d、h 显示较大的误差区域分布一般在城市和农村、工矿和住宅用地、建设用地等区域,这些区域大多被误估。然而,ROI2 的结果表明,这 γ1 非常适合大部分地区。因此,该模型是有效的。
In this paper, an empirical model for NDVI and the coherence coefficient is obtained for study area ROI1 and the model accuracy is verified in study areas ROI1 and ROI2. Research shows that the model is reliable. The research result is useful in DInSAR data processing of deformation monitoring:
本文获得了研究区 ROI1 的 NDVI 和相干系数的经验模型,并在研究区 ROI1 和 ROI2 中验证了模型的准确性。研究表明,该模型是可靠的。研究结果可用于形变监测的 DInSAR 数据处理:
(1) The NDVI value can be used as a standard for evaluating the usability in DInSAR. It would be good with lower NDVI and bad in higher NDVI area. It is not useful in area when NDVI higher than 0.4. In this condition, longer band SAR data or technology is better.
(1) NDVI 值可以作为评价 DInSAR 可用性的标准。NDVI 较低是好事,而 NDVI 较高地区则是坏事。当 NDVI 高于 0.4 时,它没有用。在这种情况下,较长的波段 SAR 数据或技术更好。
(2) It can be used to reduce the impact of vegetation in deformation monitor. The deformation got in DInSAR technology should be masked in higher NDVI to improve the deformation result reliable.
(2) 可用于减少植被对变形监测的影响。采用 DInSAR 技术得到的变形应在较高的 NDVI 中进行掩盖,以提高变形结果的可靠性。
(3) It also can used as a basis to evaluate the precision of InSAR monitoring results. The DInSAR deformation results and precision with different NDVI area should be discussed separately. It is an important basis to calculate the error of DInSAR deformation results.
(3) 也可以作为评价 InSAR 监测结果精度的依据。不同 NDVI 面积下的 DInSAR 变形结果和精度应单独讨论。它是计算 DInSAR 形变结果误差的重要依据。
In the future, the different types of land cover in the correlation between NDVI and interferometric coherence should be considered [24]. Also, introducing a time parameter to the model maybe a good idea [14]. In addition, the model connected among multi-band, multi-polarization, and multi-vegetation indexes can be built [9].
未来,应考虑 NDVI 和干涉相干性相关性中不同类型的土地覆盖 [ 24]。此外,在模型中引入 time 参数可能是一个好主意 [ 14]。此外,还可以构建多波段、多极化和多植被指数之间的连接模型 [ 9]。

5. Conclusions  5. 结论

The relationship between NDVI and interferometric coherence in Ningxia was studied using optical images and C-band SAR images and an empirical model between the NDVI and the coherence coefficient was constructed through fitting analysis. The main conclusions were as follows:
利用光学图像和 C 波段 SAR 图像研究了宁夏 NDVI 与干涉相干的关系,并通过拟合分析构建了 NDVI 与相干系数之间的经验模型。主要结论如下:
(1) In the research, a new way is used to make the time range of NDVI results and coherence coefficient results coincident. The good fitting results show that it may be a good way to study the relationship between NDVI and interferometric coherence.
(1)在研究中,采用了一种新的方法使 NDVI 结果和相干系数结果的时间范围重合。良好的拟合结果表明,这可能是研究 NDVI 与干涉相干性之间关系的好方法。
(2) Three statistical models between the coherence coefficient and the NDVI were constructed using the exponential model, logarithmic model, and linear model. The RMSE, determinant coefficient, PICP, and PINAW, under the condition of a 99% confidence level, are calculated, respectively. Results show that the fitting effect of the exponential model is better than the other models. Based on the exponential function, the calculation accuracy was analyzed in study areas ROI1 and ROI2. Results showed that the error of the calculation conformed to the normal distribution. The mean of error was −0.041 in ROI1 and −0.126 in ROI2. The standard deviation of error was 0.165 in ROI1 and 0.140 in ROI2, which showed good fitting results using the exponential function.
(2) 使用指数模型、对数模型和线性模型构建了相干系数和 NDVI 之间的三个统计模型。在 99% 置信水平的条件下,分别计算 RMSE 、行列式系数、PICP 和 PINAW。结果表明,指数模型的拟合效果优于其他模型。基于指数函数,分析研究区域 ROI1 和 ROI2 的计算精度。结果表明,计算误差符合正态分布。ROI1 的误差均值为 -0.041,ROI2 的误差均值为 -0.126。误差标准差在 ROI1 中为 0.165,在 ROI2 中为 0.140,使用指数函数显示出良好的拟合结果。
(3) The result shows that it is possible to evaluate the coherence coefficient values using optical remote sensing data. It can be the complementary content to the study of the relationship between NDVI and coherence and can guide the selection of incoherent areas in radar images due to excessive vegetation coverage, which can provide the basis for DInSAR data processing of deformation monitoring. The results can provide pre-estimation of coherence information in Ningxia by optical images.
(3) 结果表明,可以使用光学遥感数据评估相干系数值。它可以作为研究 NDVI 与相干性关系的补充内容,可以指导雷达图像中由于植被覆盖过大而出现的非相干区域的选择,可为 DInSAR 的变形监测数据处理提供依据。结果可为宁夏地区光学图像相干信息提供预估计。

Author Contributions  作者贡献

Methodology, Y.C.; software, D.H.; resources, Y.L. and S.Z.; writing—original draft, Y.C.; writing—review & editing, P.L. and Y.W.; project administration, P.L.; funding acquisition, P.L. All authors have read and agreed to the published version of the manuscript.
方法论,Y.C.;软件,DH;资源,Y.L. 和 S.Z.;写作——原稿,Y.C.;写作—审查和编辑,P.L. 和 Y.W.;项目管理,P.L.;资金收购,P.L.所有作者均已阅读并同意手稿的已发表版本。

Funding  资金

This study was funded by the Fundamental Research Funds for the Central Universities (Grant Nos. 2022YQDC01 and 2022YJSDC08), the Ecological-Smart Mines Joint Research Fund of the Natural Science Foundation of Hebei Province (Grant No. E2020402086), and open funds from the State Key Laboratory of Coal Mining and Clean Utilization (Granted No.2021-CMCU-KF014).
本研究由中央高校基本科研业务费业务费(批准号:2022YQDC01 和 2022YJSDC08)、河北省自然科学基金生态-智慧矿山联合研究基金(批准号:E2020402086)和煤炭开采与清洁利用国家重点实验室开放基金资助(批准号:2021-CMCU-KF014)。

Institutional Review Board Statement
机构审查委员会声明

Not applicable.  不適用。

Informed Consent Statement
知情同意书

Not applicable.  不適用。

Data Availability Statement
数据可用性声明

Not applicable.  不適用。

Acknowledgments  确认

The authors would like to acknowledge the open datasets of Sentinel-1 and Sentinel-2 and the data processing soft SNAP provided by the European Space Agency (ESA). The authors would like to acknowledge an InSAR processing system GMTSAR based on GMT.
作者要感谢 Sentinel-1 和 Sentinel-2 的开放数据集以及欧洲航天局 (ESA) 提供的数据处理软 SNAP。作者要感谢基于 GMT 的 InSAR 处理系统 GMTSAR。

Conflicts of Interest  利益冲突

The authors declare no conflict of interest.
作者声明没有利益冲突。

Appendix A  附录 A

Table A1. Sentinel-1 acquisition date information.
表 A1.Sentinel-1 采集日期信息。
Table A1. Sentinel-1 acquisition date information.
NumImaging TimeNumImaging TimeNumImaging Time
12018090112201901112220190511
22018091313201901232320190523
32018092514201902042420190604
42018100715201902162520190616
52018101916201902282620190628
62018103117201903122720190710
72018111218201903242820190722
82018112419201904052920190803
92018120620201904173020190815
102018121821201904293120190827
1120181230
Table A2. Sentinel-2 acquisition date information.
表 A2.Sentinel-2 采集日期信息。
Table A2. Sentinel-2 acquisition date information.
NumImaging TimeNumImaging TimeNumImaging Time
1201812187201903181320190522
2201901028201903231420190601
3201901079201903281520190606
42019011710201904171620190706
52019012211201905121720190731
62019021112201905171820190815
Table A3. Interferometric information.
表 A3.干涉信息。
Table A3. Interferometric information.
NumReference ImageSecondary ImageTemporal Baseline
/m
Perpendicular
Baseline
/m
Resolution
/m
120180901201809131287.048925
220180913201809251236.577425
320180913201810072427.86625
42018092520181007128.7113425
520181007201810191296.42125
62018101920181031124.1063125
720181019201811122454.699525
820181031201811121258.805825
920181112201811241278.513125
1020181112201812062420.32425
1120181124201812061258.189125
122018112420181218249.9746825
1320181206201812181248.214425
1420181206201812302439.646325
1520181218201812301287.860725
1620181218201901112466.760225
1720181230201901111221.100525
1820181230201901232410.622425
1920190111201901231210.478125
2020190123201902162440.783525
2120190204201902161296.554425
2220190216201902281274.718425
2320190216201903122475.87525
242019022820190312121.1565925
252019022820190324248.9481725
262019031220190324127.7915925
2720190312201904052436.062625
2820190324201904051243.854225
2920190324201904172444.476325
302019040520190417120.62210725
3120190405201904292496.184325
3220190417201904291296.806425
3320190417201905112423.940425
3420190429201905111272.86625
3520190429201905232496.021525
3620190511201905231223.155525
3720190511201906042438.330225
3820190523201906041215.174725
3920190523201906162459.17125
4020190604201906161243.996325
4120190604201906282430.937925
4220190616201906281274.934325
4320190616201907102456.868625
4420190628201907101218.065625
4520190628201907222432.968925
4620190710201907221251.034525
4720190710201908032432.278625
4820190722201908031283.313125
4920190722201908152456.361525
5020190803201908151226.951625
5120190803201908272468.189625
5220190815201908271241.237925
Figure A1. Result of γ.
图 A1.γ 的结果。
Figure A1. Result of γ.
Sustainability 14 16471 g0a1
Figure A2. The result of NDVI.
Figure A2. The result of NDVI.
Sustainability 14 16471 g0a2
Figure A3. Result of MVC.
Figure A3. Result of MVC.
Sustainability 14 16471 g0a3

References

  1. Rosenp, A.; Hensleys, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic aperture radar interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef]
  2. Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A Tutorial on Synthetic Aperture Radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef] [Green Version]
  3. Yufen, N.I.U. Applications of SAR interferometry for co-seismic, interseismic and volcano deformation monitoring, modeling and interpretation. Acta Geod. Cartogr. Sin. 2022, 51, 471. [Google Scholar]
  4. Meng, Z.; Shu, C.; Yang, Y.; Wu, C.; Dong, X.; Wang, D.; Zhang, Y. Time Series Surface Deformation of Changbaishan Volcano Based on Sentinel-1B SAR Data and Its Geological Significance. Remote Sens. 2022, 14, 1213. [Google Scholar] [CrossRef]
  5. Sandwell, D.; Mellors, R.; Tong, X.; Wei, M.; Wessel, P. GMTSAR: An InSAR Processing System Based on Generic Mapping Tools: LLNL-TR-481284, 1090004[R/OL]. 2016: LLNL-TR-481284, 1090004[2022-09-02]. Available online: https://www.osti.gov/servlets/purl/1090004/ (accessed on 1 June 2022).
  6. Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef] [Green Version]
  7. Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef] [Green Version]
  8. Arab-Sedze, M.; Heggy, E.; Bretar, F.; Berveiller, D.; Jacquemoud, S. Quantification of L-band InSAR coherence over volcanic areas using LiDAR and in situ measurements. Remote Sens. Environ. 2014, 152, 202–216. [Google Scholar] [CrossRef]
  9. Wang, C.; Fan, J.; Lin, S.; Rao, Y.; Huang, H. Study of the correlation between optical vegetation index and SAR data and the main affecting factors. Remote Sens. Land Resour. 2020, 32, 130–137. [Google Scholar]
  10. Bai, Z.; Fang, S.; Gao, J.; Zhang, Y.; Jin, G.; Wang, S.; Zhu, Y.; Xu, J. Could Vegetation Index be Derive from Synthetic Aperture Radar?—The Linear Relationship between Interferometric Coherence and NDVI. Sci. Rep. 2020, 10, 6749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  11. Liao, T.-H.; Simard, M.; Denbina, M.; Lamb, M.P. Monitoring Water Level Change and Seasonal Vegetation Change in the Coastal Wetlands of Louisiana Using L-Band Time-Series. Remote Sens. 2020, 12, 2351. [Google Scholar] [CrossRef]
  12. Pulella, A.; Aragão Santos, R.; Sica, F.; Posovszky, P.; Rizzoli, P. Multi-Temporal Sentinel-1 Backscatter and Coherence for Rainforest Mapping. Remote Sens. 2020, 12, 847. [Google Scholar] [CrossRef] [Green Version]
  13. Nikaein, T.; Iannini, L.; Molijn, R.A.; Lopez-Dekker, P. On the Value of Sentinel-1 InSAR Coherence Time-Series for Vegetation Classification. Remote Sens. 2021, 13, 3300. [Google Scholar] [CrossRef]
  14. Chen, Y.; Sun, Q.; Hu, J. Quantitatively Estimating of InSAR Decorrelation Based on Landsat-Derived NDVI. Remote Sens. 2021, 13, 2440. [Google Scholar] [CrossRef]
  15. Liu, Z.Y.; Zhang, C.; Liu, Z.K.; Yuan, J.J.; Qi, H.C.; Pan, Y.F.; Zhu, H.L.; Wu, X.W.; Wang, H. Empirical relationship between radar coherence and NDVI. Bull. Surv. Mapp. 2021, 4, 45–51+59. [Google Scholar] [CrossRef]
  16. Ningxia Provincial Bureau of Statistics; Nbs Survey of-Fice in Ningxia. Ning Xia Statistical Yearbook; China Statistics Press: Beijing, China, 2018. [Google Scholar]
  17. Bamler, R.; Hartl, P. Synthetic aperture radar interferometry. Inverse Problems 1998, 14, 1–54. [Google Scholar] [CrossRef]
  18. Touzi, R.; Lopes, A.; Bruniquel, J.; Vachon, P.W. Coherence estimation for S-AR imagery. IEEE Trans. Geosci. Remote Sens. 1999, 37, 15. [Google Scholar] [CrossRef] [Green Version]
  19. Sandwell, D.; Mellors, R.; Tong, X.; Wei, M.; Wessel, P. Open radar interferometry software for mapping surface Deformation. Eos Trans. Am. Geophys. Union 2011, 92, 234. [Google Scholar] [CrossRef] [Green Version]
  20. Wang, Z.; Tang, X.; Li, T. Impact Analysis of InSAR Spatio-temporal Baseline on DEM Accuracy. Bull. Surv. Mapp. 2018, 2, 61–66. [Google Scholar] [CrossRef]
  21. Liu, G.X.; Chen, Q.; Luo, X.J.; Cai, G.L. InSAR Principle and Application; Science Press: Beijing, China, 2019. [Google Scholar]
  22. Chen, X.; Lai, C.S.; Ng, W.W.Y.; Pan, K.; Lai, L.L.; Zhong, C. A stochastic sensitivity-based m-ulti-objective optimization method for short-term wind speed interval prediction. Int. J. Mach. Learn. Cybern. 2021, 12, 2579–2590. [Google Scholar] [CrossRef]
  23. Xu, X.; Liu, J.; Zhang, S.; Li, R.; Yan, C.; Wu, S. Remote Sensing Monitoring Dataset of Land Use and Land Cover in China over Multiple Periods(CNLUCC); Data Registration and Publication System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences: Beijing, China, 2018. [Google Scholar] [CrossRef]
  24. Villarroya-Carpio, A.; Lopez-Sanchez, J.M.; Engdahl, M.E. Sentinel-1 interferometric coherence as a vegetation index for agriculture. Remote Sens. Environ. 2022, 280, 113208. [Google Scholar] [CrossRef]
Figure 1. (a) is China map and (b) is the location of the study area and remote sensing image coverage. Two red angles represent the study areas. A purple rectangle represents Sentinel-1 image coverage. A blue rectangle represents Sentinel-2 image coverage. And basemap bases on SRTM 30 m digital elevation model (DEM) data. Note: Figure (a) is based on the standard map with the review number GS(2019) 1673 downloaded from the standard map service website of the National Administration of Surveying, Mapping and Geographic Information, and the basemap has not been modified.
Sustainability 14 16471 g001
Figure 2. Fitting result of exponential model γ1 (a) is the fitted curve graph, the red line is the fitted function curve, and the blue break line is the prediction interval curve. (b) is the residual graph.
Sustainability 14 16471 g002
Figure 3. Fitting result of linear model γ2 (a) is the fitted curve graph, the red line is the fitted function curve, and the blue break line is the prediction interval curve. (b) is the residual graph.
Sustainability 14 16471 g003
Figure 4. Fitting result of logarithmic model γ3 (a) is the fitted curve graph, the red line is the fitted function curve, and the blue break line is the prediction interval curve. (b) is the residual graph.
Sustainability 14 16471 g004
Figure 5. Fit function accuracy verification plot of interferometric pair 20190815–20190827 in ROI1, (a) is the NDVI result; (b) is the coherence coefficient map; (c) is the error result; (d) is the error distribution; (e) is the slope of ROI1.
Sustainability 14 16471 g005
Figure 6. Fit function accuracy verification plot of interferometric pair 20190803–20190827 in ROI1, (a) is the NDVI result; (b) is the coherence coefficient map; (c) is the error result; (d) is the error distribution; (e) is the slope of ROI1.
Sustainability 14 16471 g006
Figure 7. Fit function accuracy verification plot of interferometric pair 20190803–20190827 in ROI2, (a) is the NDVI result; (b) is the prediction result of coherence coefficient; (c) is the coherence coefficient map; (d) is the error result; (e) is the error distribution; (f) is the map of DEM; (g) is the map of slope; (h) is the map of land use type distribution in 2018 [23], and T represents the land use type. Among them, 1 represents cultivated land, 2 represents woodland, 3 represents grassland, 4 represents waters, 5 represents urban and rural, industrial and mining, and residential land, construction land, and 6 represents unused land. Note: (f) is provided by Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn(accessed on 20 July 2021)).
Sustainability 14 16471 g007
Table 1. Band information of Sentinel-2.
SensorBand NumberBand NameSentinel-2ASentinel-2BResolution (meters)
Central Wavelength (nm)Bandwidth (nm)Central Wavelength (nm)Bandwidth (nm)
MSI4Red664.5306653010
MSI8NIR835.111583311510
Table 2. Evaluation results.
Fitting CurveRMSER2PICP/%PINAW
γ10.062720.876799.520.3249
γ20.075510.820799.360.3908
γ30.064070.871199.360.3316
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Cao, Y.; Li, P.; Hao, D.; Lian, Y.; Wang, Y.; Zhao, S. Analysis of the Relationship between Vegetation and Radar Interferometric Coherence. Sustainability 2022, 14, 16471. https://doi.org/10.3390/su142416471

AMA Style

Cao Y, Li P, Hao D, Lian Y, Wang Y, Zhao S. Analysis of the Relationship between Vegetation and Radar Interferometric Coherence. Sustainability. 2022; 14(24):16471. https://doi.org/10.3390/su142416471

Chicago/Turabian Style

Cao, Yuxi, Peixian Li, Dengcheng Hao, Yong Lian, Yuanjian Wang, and Sihai Zhao. 2022. "Analysis of the Relationship between Vegetation and Radar Interferometric Coherence" Sustainability 14, no. 24: 16471. https://doi.org/10.3390/su142416471

APA Style

Cao, Y., Li, P., Hao, D., Lian, Y., Wang, Y., & Zhao, S. (2022). Analysis of the Relationship between Vegetation and Radar Interferometric Coherence. Sustainability, 14(24), 16471. https://doi.org/10.3390/su142416471

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Citations

Scopus
 
Crossref
 
Web of Science
 
Google Scholar

Article Access Statistics

Created with Highcharts 4.0.4Chart context menuArticle access statisticsArticle Views29. Mar30. Mar31. Mar1. Apr2. Apr3. Apr4. Apr5. Apr6. Apr7. Apr8. Apr9. Apr10. Apr11. Apr12. Apr13. Apr14. Apr15. Apr16. Apr17. Apr18. Apr19. Apr20. Apr21. Apr22. Apr23. Apr24. Apr25. Apr26. Apr27. Apr28. Apr29. Apr30. Apr1. May2. May3. May4. May5. May6. May7. May8. May9. May10. May11. May12. May13. May14. May15. May16. May17. May18. May19. May20. May21. May22. May23. May24. May25. May26. May27. May28. May29. May30. May31. May1. Jun2. Jun3. Jun4. Jun5. Jun6. Jun7. Jun8. Jun9. Jun10. Jun11. Jun12. Jun13. Jun14. Jun15. Jun16. Jun17. Jun18. Jun19. Jun20. Jun21. Jun22. Jun23. Jun24. Jun25. Jun26. Jun0500100015002000
For more information on the journal statistics, click here.
Multiple requests from the same IP address are counted as one view.
Back to Top  返回页首Top