这是用户在 2025-7-11 16:24 为 https://app.immersivetranslate.com/pdf-pro/2786e93e-f4bc-4d20-bd31-b452a4b8280d/ 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

EXPERIMENT 1  实验 1

TITLE: SAFETY ASPECT OF NUCLEAR LABORATORY
标题:核实验室的安全方面

This experiment is designed to inculcate the safety culture for the worker working in the nuclear laboratory or supervised area. The experiment will be carried out by the RPO in the form of lecture on code of practice and radiation emergency preparedness; and demonstration or hand-on experience on safe handling radioactive materials and radiation safety equipments.
该实验旨在为在核实验室或受监督区域工作的工人灌输安全文化。实验将由 RPO 以实务守则和辐射应急准备讲座的形式进行;以及安全处理放射性物质和辐射安全设备的演示或实践经验。

OBJECTIVE:  目的:

The experiment is designed with the following objectives:
该实验的设计目标如下:
  1. To inform the code of practice for nuclear laboratory (supervise area)
    告知核实验室作规范(监督区)
  2. To inform the basic safety for handling radioactive material
    告知处理放射性物质的基本安全
  3. To inform and demonstrate the usage of radiation safety equipments
    告知和演示辐射安全设备的使用
  4. To inform the radiation emergency preparedness
    通知辐射应急准备
  5. Declaration  声明
  6. Code of practice of nuclear laboratory (supervise area)
    核实验室业务守则(监督区)

    i. Everyone must put on lab coat and wear suitable shoes when working in the laboratory.
    我。在实验室工作时,每个人都必须穿上实验服并穿合适的鞋子。

    ii. Overcoat, briefcases, etc. must be left outside the laboratory (locker will be provided).
    ii. 大衣、公文包等必须留在实验室外(将提供储物柜)。

    iii. On entering the supervised area, everyone must completely undergo hand and foot monitoring before proceeding to the teaching or research laboratories.
    iii. 进入受监管区域时,每个人都必须完全接受手脚监测,然后才能进入教学或研究实验室。

    iv. Eating, smoking or drinking are absolutely forbidden due to the risk of ingestion or inhalation of radioactive material.
    iv. 绝对禁止饮食、吸烟或饮水,因为有摄入或吸入放射性物质的风险。

    v. No mouth operations are allowed. Pipettes, wash bottles and labels, etc., must on no account be put into the mouth.
    v.不允许进行口部作。切勿将移液管、洗瓶和标签等放入口中。

    vi. All work with unsealed radioactive materials must be carried out in the trays provided, the bottom of which should be covered with absorbent paper.
    vi. 所有使用未密封的放射性物质的工作必须在提供的托盘中进行,托盘底部应用吸水纸覆盖。

    vii. Protective gloves must be worn when instructed, and gloves and clothing must be monitored frequently when working with active material. When wearing gloves which may have become contaminated, care must be taken not to risk transfer of activity to door handles, taps, apparatus, etc. Therefore, handle taps
    vii. 按照指示必须戴上防护手套,并且在处理活性材料时必须经常监测手套和衣服。佩戴可能已被污染的手套时,必须注意不要冒险将活动转移到门把手、水龙头、设备等上。因此,手柄水龙头

    with wrist or elbow action, open swing doors without touching with the hand, etc. If an apparatus must be handled when wearing gloves always do it with a paper handkerchief. Damaged gloves must be discarded and replaced by a new pair.
    通过手腕或肘部动作,无需用手接触即可打开平开门等。如果必须戴手套处理设备,请始终使用纸手帕进行作。损坏的手套必须丢弃并更换一副新手套。

    viii. Any transfer of radioactive material from one location to another should be carried out using a suitable transfer vessel. When transferring liquids, the mouth of the container must be wrapped with absorbent paper to avoid any risk of a spill.
    viii. 放射性物质从一个地点到另一个地点的任何转移,都应使用合适的转移容器进行。转移液体时,必须用吸水纸包裹容器的口部,以避免任何溢出风险。

    ix. Solid waste materials should be put into the waste bins and waste active liquids into the marked Winchester provided. Used planchettes should be placed in the appropriate waste tin. On no account should radioactive liquid be poured down the sink. The estimated activity of isotope disposed of in solid, liquid or gaseous form must be recorded on the appropriate forms. Liquid scintillator waste must be disposed of into the appropriate Winchesters.
    ix. 固体废物应放入垃圾箱,并将废弃活性液体放入提供的标记温彻斯特。用过的木板应放入适当的废罐中。在任何情况下都不应将放射性液体倒入水槽中。以固体、液体或气体形式处理的同位素的估计活度必须记录在适当的表格上。液体闪烁体废料必须丢弃到适当的温彻斯特废料中。

    x. Radioactive materials when not actually required for experimental purposes should be stored in a suitable storeroom which can be locked. Appropriate radiation signs be displayed
    x.放射性物质在实际不需要用于实验目的时,应存放在合适的储藏室中,该储藏室可以上锁。显示适当的辐射标志

LABORATORY TECHNIQUES:  实验室技术:

Radioactive materials are by their very nature potentially dangerous. However when used correctly they pose no greater risk than any other activity. In general, laboratories should be set as far as possible for radioactive work and should not be used for other purposes. If in a large laboratory a section is used for radioactive work, this section should not be used for ordinary chemical work. The techniques adopted should aim not only at avoiding ingestion of radioactive materials into the body, but also at minimizing the spread of radioactive contamination from the site of operations. Control of contamination, either of personnel or of buildings and equipment, is achieved by scrupulous cleanliness and tidiness, coupled with the planning of procedures, which will cause the minimum of dust or spray. Persons handling active materials should wear protective clothing and should be provided with suitable equipment. Smoking, eating, drinking and the application of cosmetics is prohibited in any laboratory where radioactive work is carried out and is undesirable in any active area; neither may food, drink, cups, saucers etc. be brought into such areas. Also no mouth operations should be carried in the laboratory. The primary concern in the event of a spill of radioactive material must be the protection of laboratory personnel from harm. The secondary need is to confine the contamination to the area directly affected.
放射性物质就其本质而言具有潜在危险性。但是,如果使用得当,它们不会比任何其他活动带来更大的风险。一般来说,实验室应尽可能设置为放射性工作,不应用于其他目的。如果在大型实验室中,某个部分用于放射性工作,则该部分不应用于普通的化学工作。所采用的技术不仅应旨在避免放射性物质摄入体内,还应旨在最大限度地减少放射性污染从手术现场扩散。通过一丝不苟的清洁和整洁,再加上程序规划,可以控制人员或建筑物和设备的污染,从而最大限度地减少灰尘或喷雾。处理活性材料的人员应穿戴防护服,并应配备适当的设备。禁止在进行放射性工作的任何实验室吸烟、饮食和使用化妆品,在任何活动区域都是不可取的;食物、饮料、杯子、碟子等也不得带入这些区域。实验室也不应进行口腔手术。在发生放射性物质泄漏时,首要关注点必须是保护实验室人员免受伤害。次要需求是将污染限制在直接受影响的区域。

RADIATION MONITOR:  辐射监测仪:

A suitable radiation monitor in working order must be available for routine contamination monitoring of work surfaces and equipment and for the monitoring of personnel for possible contamination on leaving the laboratory.
必须提供正常工作状态的合适辐射监测仪,用于工作表面和设备的常规污染监测,以及监测人员离开实验室时是否可能受到污染。
To ensure that no individual is exposed to radiation risks that are judged to be unacceptable in any normal circumstances, it is imperative that individuals keep any exposures to themselves and members of the public, that arises from there work well below the dose limits set by the ICRP (in ICRP 60). These limits have been adopted by the Department of Health.
为确保没有个人暴露于在任何正常情况下被判断为不可接受的辐射风险,个人必须保持对自己和公众的任何暴露,由此产生的暴露远低于 ICRP 设定的剂量限制(在 ICRP 60 中)。这些限制已被卫生部采用。

GOLDEN RULES FOR HANDLING RADIOACTIVITY:
处理放射性的黄金法则:

For the safe handling of radioactivity, the golden rules is to avoid exposing oneself unnecessary to risk.
为了安全处理放射性,黄金法则是避免将自己暴露在不必要的风险中。
  • For protection against external radiation:
    防止外部辐射:

    rarr\rightarrow Time
    rarr\rightarrow 时间

    rarr\rightarrow Distance
    rarr\rightarrow 距离

    rarr\rightarrow Shielding  屏蔽
    are the main precautions.
    是主要的预防措施。
  • For protection from contamination:
    防止污染:

    rarr\rightarrow Containment
    rarr\rightarrow Protective clothing
    rarr\rightarrow Good work practices
    rarr\rightarrow 良好的工作实践

    rarr\rightarrow Monitoring  监测
    are the vital measures.
    是至关重要的措施。
  • Waste material should be separated and disposed of appropriately and immediately before leaving the work area.
    废料应在离开工作区域之前立即进行分离和适当处理。
  • Monitoring of oneself removing protective clothing
    监控自己脱下防护服
  • The safe handling of radioactive material require
    放射性物质的安全处理要求

    rarr\rightarrow Care
    rarr\rightarrow Concentration, and above all
    rarr\rightarrow Common sense: should always prevail.
    护理 专注,尤其是常识:应该永远占上风。

MAJOR SPILL:  重大泄漏:

In the case of a major spill both the Departmental Supervisor and the Radiation Protection Officer must be notified as soon as possible.
如果发生重大泄漏,必须尽快通知部门主管和辐射防护官员。

Immediate emergency action:
立即采取紧急行动:

i. Mark out the contaminated with radiation tape or suitable pen;
i. 用辐射胶带或合适的笔标出污染物;

ii. If skin is contaminated wash up with running tap;
ii. 如果皮肤被污染,请用流动的水龙头清洗;

iii. Remove all contaminated garments;
iii. 脱掉所有被污染的衣服;

iv. Turn off all laboratory services;
iv. 关闭所有实验室服务;

v. Close all windows and doors and shut off fume hood;
v.关闭所有门窗并关闭通风柜;

vi. Leave the room and
vi. 离开房间并

vii. Inform the supervisor.
vii. 通知主管。
Decontamination should be carried out only under supervision and work may only be resumed after clearance has been obtained from the Radiation Protection Officer.
消毒只能在监督下进行,并且只有在获得辐射防护官的许可后才能恢复工作。
It should be emphasized that in the case of an emergency the treatment of serious injuries and firefighting takes precedence over decontamination procedures.
应该强调的是,在紧急情况下,重伤和消防的治疗优先于净化程序。

RADIATION HAZARDS  辐射危害

EXTERNAL  外部

May be harmful, even if not in contact with source. Risks can be reduced by:
即使不与源头接触,也可能有害。可以通过以下方式降低风险:

rarr\rightarrow Reducing exposure time
rarr\rightarrow Increasing distance between source and individual
rarr\rightarrow Installing barrier between source and individual.
减少暴露时间 增加源头和个人之间的距离 在源头和个人之间安装屏障。

INTERNAL  内部

rarr\rightarrow Harmful when radiation source enters the body.
rarr\rightarrow No protection is possible once source has entered body
rarr\rightarrow Effect reduced as body eliminates by natural biological processes or by the physical decay process of the source.
当放射源进入体内时有害。 一旦源头进入身体,就不可能提供保护 ,因为身体被自然生物过程或源头的物理腐烂过程消除。

DEGREE OF DANGER DEPENDS ON PENETRATING POWER
危险程度取决于穿透力

EXTERNAL INTERNAL
Alpha particle  阿尔法粒子 Alpha particle  阿尔法粒子
rarr\rightarrow Least dangerous  危险性最低 rarr\rightarrow Most dangerous as most energy
最危险的能量
rarr\rightarrow Stopped by layers of dead skin.
被一层层的死皮阻止。
absorbed in small volume of
吸收于小体积
Beta particle  贝塔粒子 tissue  组织
rarr\rightarrow Effects outer tissue layers
影响外部组织层
Beta particle  贝塔粒子
Gamma/X-rays/neutrons  γ/X 射线/中子 rarr\rightarrow Effects larger volume internally
在内部产生更大的音量
rarr\rightarrow Highly penetrating  高穿透性 Gamma/X-rays/neutrons  γ/X 射线/中子
rarr\rightarrow Irradiates all tissues/organs.
照射所有组织/器官。
rarr\rightarrow Only part of energy absorbed
仅吸收部分能量
rarr\rightarrow Greatest external hazard.
最大的外部危险。
internally.  内部。
rarr\rightarrow Smallest internal hazard.
最小的内部危险。
EXTERNAL INTERNAL Alpha particle Alpha particle rarr Least dangerous rarr Most dangerous as most energy rarr Stopped by layers of dead skin. absorbed in small volume of Beta particle tissue rarr Effects outer tissue layers Beta particle Gamma/X-rays/neutrons rarr Effects larger volume internally rarr Highly penetrating Gamma/X-rays/neutrons rarr Irradiates all tissues/organs. rarr Only part of energy absorbed rarr Greatest external hazard. internally. rarr Smallest internal hazard.| EXTERNAL | INTERNAL | | :--- | :--- | | Alpha particle | Alpha particle | | $\rightarrow$ Least dangerous | $\rightarrow$ Most dangerous as most energy | | $\rightarrow$ Stopped by layers of dead skin. | absorbed in small volume of | | Beta particle | tissue | | $\rightarrow$ Effects outer tissue layers | Beta particle | | Gamma/X-rays/neutrons | $\rightarrow$ Effects larger volume internally | | $\rightarrow$ Highly penetrating | Gamma/X-rays/neutrons | | $\rightarrow$ Irradiates all tissues/organs. | $\rightarrow$ Only part of energy absorbed | | $\rightarrow$ Greatest external hazard. | internally. | | | $\rightarrow$ Smallest internal hazard. |

PROPERTIES OF HAZARD  危险的性质

EXTERNAL  外部

Radiations most likely to be an external radiation hazard are x x xx-rays, gamma rays and neutrons. These cannot be focused, may be scattered and obey the Inverse Square Law. Protection:
最有可能是外部辐射危害的辐射是 x x xx -射线、γ 射线和中子。这些不能聚焦,可能会分散并遵守平方反比定律。保护:

rarr\rightarrow Shielding
rarr\rightarrow 屏蔽

rarr\rightarrow Distance
rarr\rightarrow 距离

rarr\rightarrow Time   rarr\rightarrow 时间

INTERNAL  内部

Alpha and Beta most dangerous.
Alpha 和 Beta 最危险。

Concentrated in certain areas.
集中在某些地区。

e.g. Ra-226 in bones
例如骨骼中的 Ra-226
I-131 in thyroid tissue.  甲状腺组织中的 I-131。
Remains in the body for long period of time.
在体内停留时间长。

Routes of entry:  入境途径:

rarr\rightarrow Ingestion of particles that are surface contaminated.
rarr\rightarrow 摄入受表面污染的颗粒。

rarr\rightarrow Inhalation of contaminated air.
rarr\rightarrow 吸入受污染的空气。

Protection:  保护:

rarr\rightarrow Good work practices.
rarr\rightarrow 良好的工作实践。

MEASURING EXTERNAL HAZARD.
测量外部危害。

No instrument can be used to measure all radiation types.
没有仪器可用于测量所有辐射类型。

CHOOSING AN INSTRUMENT RANGE:
选择检测范围:

Decide between high/low levels.
在高/低级别之间做出决定。

RADLATION TYPE:  RADLATION 类型:

X/Gamma/Beta/Neutrons require specialist detectors. Sometimes, detector can handle more than one type of radiation.
X/γ/β/中子需要专业探测器。有时,探测器可以处理多种类型的辐射。

ENERGY DEPENDANCE:  能量依赖:

Detectors do not give the same reading for the same amount of radiation. They may overread or under-read. It is necessary to consult response curves of the instrument.
探测器不会对相同的辐射量给出相同的读数。他们可能会过度读取或读取不足。有必要查阅仪器的响应曲线。

RESPONSE TIME:  响应时间:

Refers to the time taken to obtain a reading. It is the delay before the needle settles down to final reading
指获取读数所花费的时间。这是指针稳定下来到最终读数之前的延迟

UNITS:  单位:

These may be in either dose or dose-rate units. To predict the amount of radiation one would get at a known position for a fixed time - use dose-rate. To determine the amount of radiation that the person has received - use dose. Variation in the amount of radiation, without making actual measurements, use Counts/second
这些可以是剂量或剂量率单位。要预测在固定时间内在已知位置会受到的辐射量 - 使用 dose-rate。要确定该人接受的辐射量 - 使用剂量。在不进行实际测量的情况下,辐射量的变化使用 Counts/second

CALIBRATION:  校准:

Calibrations are done at certain energies. This must be taken into account when making measurements
校准是在特定能量下完成的。在进行测量时必须考虑到这一点

HOW DO INSTRUMENTS WORK?
乐器是如何工作的?

Most measuring devices measure the ionization of gases. These gases are ionized, and by the use of a high Voltage the ions are counted as current. With high radiation levels, the number of ions is high and the measured current is high. The current value is then calibrated into a dose-rate value
大多数测量设备测量气体的电离。这些气体被电离,通过使用高压,离子被计为电流。在高辐射水平下,离子数量多,测得的电流高。然后将当前值校准为剂量率值

RADIOACTIVE WASTES:  放射性废物:

Definition  定义

The current legislation in Malaysia for the purpose of controlling atomic energy operation is the Atomic Energy Licensing Act of 1984. Under this act, radioactive waste is defined as follows:
马来西亚目前控制原子能运行的立法是 1984 年的《原子能许可法》。根据该法案,放射性废物的定义如下:

“Radioactive wastes means any waste which contains all or part of:
“放射性废物是指含有以下全部或部分内容的任何废物:

a) Substance or item which if it is not waste is considered as radioactive material: or
a) 如果不是废物,则被视为放射性物质的物质或物品:或

b) Substance or item which was contaminated during the production, storage or usage of radioactive material, nuclear material or prescribed substance, or was contaminated by means of contact or by being in the vicinity of any other waste in the context of paragraph (a) of this interpretation.”
b) 在生产、储存或使用放射性物质、核材料或规定物质的过程中受到污染的物质或物品,或因接触或在本解释 (a) 段中的任何其他废物附近而受到污染的物质或物品。

CLASSIFICATION RADIOACTIVE WASTE:
分类 放射性废物:

Radioactive wastes are generated in solid, liquid and gaseous forms and can be categorized in accordance to its nature, physical and chemical forms and its radioactivity.
放射性废物以固体、液体和气体形式产生,可根据其性质、物理和化学形式以及放射性进行分类。

Solid Waste  固体废物

Solid waste is classified based on radiation dose on its surface as shown in Table 1.
固体废物根据其表面的辐射剂量进行分类,如表 1 所示。

Table 1: Classification of Solid Waste.
表 1:固体废物的分类。
Category  类别 Surface Dose D (R/h)
表面剂量 D (R/h)
Remarks  言论
1
2
3
1 2 3| 1 | | :--- | | 2 | | 3 |

D < 0.2 D < 0.2 D < 0.2\mathrm{D}<0.2 0.2 < D < 2 0.2 < D < 2 0.2 < D < 20.2<\mathrm{D}<2 2 <D
D < 0.2 D < 0.2 D < 0.2\mathrm{D}<0.2
0.2 < D < 2 0.2 < D < 2 0.2 < D < 20.2<\mathrm{D}<2
2 <D
D < 0.2 0.2 < D < 2 2 <D| $\mathrm{D}<0.2$ | | :--- | | $0.2<\mathrm{D}<2$ | | 2 <D |

Beta-Gamma 发射器 Alpha 发射器 无关紧要
Beta-Gamma Emitters
Alpha Emitters
Insignificant
Beta-Gamma Emitters Alpha Emitters Insignificant| Beta-Gamma Emitters | | :--- | | Alpha Emitters | | Insignificant |
4 Alpha activity expressed in Bq / m 3 Bq / m 3 Bq//m^(3)\mathrm{Bq} / \mathrm{m}^{3}
α 活性以 Bq / m 3 Bq / m 3 Bq//m^(3)\mathrm{Bq} / \mathrm{m}^{3}
Alpha-emitters dominant, beta-gamma insignificant-not suspect from the points of view of criticality.
α 发射体占主导地位,β-γ 微不足道 - 从临界性的角度来看不值得怀疑。
Category Surface Dose D (R/h) Remarks "1 2 3" "D < 0.2 0.2 < D < 2 2 <D" "Beta-Gamma Emitters Alpha Emitters Insignificant" 4 Alpha activity expressed in Bq//m^(3) Alpha-emitters dominant, beta-gamma insignificant-not suspect from the points of view of criticality.| Category | Surface Dose D (R/h) | Remarks | | :--- | :--- | :--- | | 1 <br> 2 <br> 3 | $\mathrm{D}<0.2$ <br> $0.2<\mathrm{D}<2$ <br> 2 <D | Beta-Gamma Emitters <br> Alpha Emitters <br> Insignificant | | 4 | Alpha activity expressed in $\mathrm{Bq} / \mathrm{m}^{3}$ | Alpha-emitters dominant, beta-gamma insignificant-not suspect from the points of view of criticality. |
Solid waste can also be segregated in accordance to its physical form such as:
固体废物也可以根据其物理形式进行分类,例如:

a) Combustible  a) 可燃物
b) Non-combustible  b) 不燃
c) Compressible  c) 可压缩
d) Non-compressible  d) 不可压缩
e) Special wastes (e.g. filters, large equipment)
e) 特殊废物(例如过滤器、大型设备)

COLLECTION AND TRANSFER:
收集和传输:

The first step in radioactive waste management is generally the collection of the wastes at the point of origin. An important point at this stage is to segregate the waste into various categories as described in previous section. An efficient segregation at source would lead to a more efficient treatment.
放射性废物管理的第一步通常是在原产地收集废物。此阶段的一个重要点是将废物分为不同的类别,如上一节所述。从源头进行有效的分离将导致更有效的处理。

a) Solid Waste  a) 固体废物
Category I solid wastes are collected in plastic bags or drum and can be handled and transported without any special precautions. Simple containers shielded with a thin layer of concrete or lead are required for collection and transfer of category 2 wastes. Category 3 wastes can be handled and be taken too in handling and transport of category 4 wastes to prevent the release of the alpha-emitting radionuclides.
I 类固体废物收集在塑料袋或桶中,无需任何特殊预防措施即可处理和运输。收集和转移第 2 类废物需要用一层薄薄的混凝土或铅屏蔽的简单容器。第 3 类废物可以处理,也可以在处理和运输第 4 类废物时带走,以防止释放发射 α 的放射性核素。

b) Liquid Waste  b) 废液
Tanks or general service containers are usually provided for the collection of liquid wastes. For category I and 2 wastes, the simple containers would suffice while the containers for category 3 wastes may require some shielding. Shielding of the containers for the collection and transfer of category 4 wastes is necessary. Due to the heat dissipation from the high activity waste of category 5, it is necessary to provide cooling for its containers.
通常提供储罐或一般服务容器来收集液体废物。对于第一类和第二类废物,简单的容器就足够了,而第三类废物的容器可能需要一些屏蔽。收集和转移第 4 类废物的容器必须进行屏蔽。由于 5 类高活性废物的散热,有必要为其容器提供冷却。

c) Gaseous Waste  c) 气态废物
Gaseous wastes are usually collected in ventilation ducts which separate from the ducts carrying fresh and clear air.
气态废物通常收集在通风管道中,该通风管道与输送新鲜和清洁空气的管道分开。

PRINCIPLES OF TREATMENT:
治疗原则:

The three main principles in the treatment of radioactive wastes are:
处理放射性废物的三个主要原则是:

a) Delay and Decay
a) 延迟和衰减
Applicable for wastes containing only short lived radionuclides. The wastes are stored for a period of time to allow reduction in its radioactivity to levels suitable for handling or disposal.
适用于仅含有短寿命放射性核素的废物。废物储存一段时间,以将其放射性降低到适合处理或处置的水平。

b) Dilute and Disperse
b) 稀释和分散
Applicable for liquid or gaseous waste where the radioactivity can be reduced to acceptable concentrations by dilution in the environment.
适用于液体或气体废物,其中放射性可以通过在环境中稀释降低到可接受的浓度。

c) Concentrate and Contain
c) 浓缩和包含
Implies reduction in volume of the waste and all the radioactive content is retained and confined.
意味着减少废物的体积,并且所有放射性物质含量都被保留和限制。

EXPERIMENT 2  实验 2

TITLE: DETERMINING THE PLATEU CHARACTERISTICS OF A GEIGER-MULLER TUBE.
标题:确定 GEIGER-MULLER 管的平台特性。

INTRODUCTION:  介绍:

After the discovery of radioactivity in 1898 by Henri Becquerel, a major problem was the development of instrumentation by which the different types of radiation emitted by radioactive material could be detected and quantified. The Geiger-Muller tube was one of the earliest detection systems developed to detect radiation by utilizing a fundamental characteristic of radiation, namely its ability to cause ionization in gases. This pulse counting instrument utilizes gas amplification which makes it very sensitive; however its simple construction makes it relatively inexpensive. The Geiger-Muller detector system is still widely used today to measure alpha, beta and gamma radiation both in the laboratory and in the field.
1898 年亨利·贝克勒尔 (Henri Becquerel) 发现放射性后,一个主要问题是仪器的发展,通过这些仪器可以检测和量化放射性物质发出的不同类型的辐射。Geiger-Muller 管是最早开发的检测系统之一,它利用辐射的基本特性(即它在气体中引起电离的能力)来检测辐射。该脉冲计数仪器利用气体放大,使其非常灵敏;然而,它简单的结构使其相对便宜。Geiger-Muller 探测器系统今天仍然广泛用于实验室和现场测量 α、β 和 γ 辐射。

1.1. Theoretical Background to the Experiment.
1.1. 实验的理论背景。

1.1.1. Geiger-Muller Detector.
1.1.1. Geiger-Muller 探测器。

1.1.1.1. Principle of Operation.
1.1.1.1. 工作原理。

G-M detectors are available in a wide variety of deigns, the most common being the end window type as used in this experiment.
G-M 探测器有多种设计,最常见的是本实验中使用的端窗类型。
G-M tube detectors comprise an anode and a cathode between which a voltage is applied. The cathode comprises a metal tube filled with a Nobel gas at reduced pressure, having a low electron attachment coefficient e.g. helium or argon. The anode comprises a thin wire running down the central horizontal axis of the tube. A high voltage is applied between the two electrodes, the response and sensitivity of the detector to ionizing radiation is critically dependent on this applied voltage between the anode and the cathode. For a constant radiation intensity the response characteristics of G-M tube shows a typical relationship between the number of pulses emitted per unit time and the applied voltage e.g. when the counts per unit time are plotted as a function of the voltage as shown in Figure 2 (Refer to attachment 1). When using G-M tube the optimal voltage must be applied to ensure that a measurable pulse (usually > 1 > 1 > 1>1 volt amplitude) is produced for each particle entering the tube. If the voltage is too low, particles will be missed, if the
G-M 射线管探测器包括一个阳极和一个阴极,两阴极之间施加电压。阴极包括一个充满减压诺贝尔气体的金属管,具有低电子附着系数,例如氦气或氩气。阳极包括一根沿着管子的中心水平轴向下延伸的细线。在两个电极之间施加高电压,探测器对电离辐射的响应和灵敏度在很大程度上取决于阳极和阴极之间施加的电压。对于恒定的辐射强度,G-M 管的响应特性显示了每单位时间发射的脉冲数与施加的电压之间的典型关系,例如,当每单位时间的计数绘制为电压的函数时,如图 2 所示(参见附件 1)。使用 G-M 管时,必须施加最佳电压,以确保为进入管的每个颗粒产生可测量的脉冲(通常 > 1 > 1 > 1>1 为伏特幅度)。如果电压太低,则会漏掉粒子,如果

voltage is too high, fall pulses will be generated and counted. The length and slope of the plateau are measures of the quality of the G-M tube. The axial sensitivity of G-M tubes is not constant but varies along their length due to field distortions at the end of the anode wire, variations in wall thickness and other design factors.
电压过高,将产生下降脉冲并对其进行计数。高原的长度和坡度是衡量 GM 管质量的指标。G-M 管的轴向灵敏度不是恒定的,而是由于阳极丝末端的场畸变、壁厚的变化和其他设计因素而沿其长度变化。
An ionizing particle or photon entering the tube ionizes the noble gas atoms and form primary ions pairs, which causes avalanching of electrons in the vicinity of the anode wire. This discharge produces a large voltage pulse at the anode; in addition the discharge produces positive ions which reduce the negative electric field around the anode. A new discharge cannot take place until these positive ions reach the cathode and are neutralized, restoring the electric field in tube.
进入管中的电离粒子或光子使惰性气体原子电离并形成初级离子对,这会导致阳极线附近的电子雪崩。这种放电在阳极产生一个大的电压脉冲;此外,放电会产生正离子,从而减少阳极周围的负电场。在这些正离子到达阴极并被中和,恢复管中的电场之前,不会发生新的放电。
This take from 100 500 μ s 100 500 μ s 100-500 mus100-500 \mu \mathrm{~s} depending on the size of the cylinder and the applied voltage during this time (referred to as the “dead time”), the detector will not respond to the ionizing radiation. The time required for the complete recovery of the pulse size after the end of the dead time interval is known as the “recovery time”. The sum of the dead time and the recovery time is referred to as the “resolving time”. This time can be minimized by using a sensitive voltage amplifier which results in resolving time only slightly longer than the dead time.
100 500 μ s 100 500 μ s 100-500 mus100-500 \mu \mathrm{~s} 这取决于圆柱体的大小和在此期间施加的电压(称为“死区时间”),探测器不会对电离辐射做出反应。死区时间间隔结束后完全恢复脉冲大小所需的时间称为“恢复时间”。死区时间和恢复时间之和称为“解决时间”。通过使用灵敏的电压放大器可以最大限度地减少此时间,这导致解析时间仅略长于死区时间。
Particles or photons intersecting the detector during the recovery time will not be registered by the counter; therefore the observed count rate is always less than the “true count rate” in a G-M detector and should be corrected for.
在恢复时间内与探测器相交的粒子或光子不会被计数器记录;因此,在 G-M 探测器中观察到的计数率始终小于“真实计数率”,应进行校正。
The charge produced in the tube is independent of the energy of the radiation and is recorded as a pulse by an electronic counter. An example of a circuit diagram for a G-M counting system is given in Figure 1 (Refer attachment 1).
管中产生的电荷与辐射能量无关,并由电子计数器记录为脉冲。图 1 给出了 G-M 计数系统的电路图示例(参见附件 1)。

1.1.1.2. Quenching.  1.1.1.2. 淬火。

The neutralization of the positive ions at the cathode produces UV radiation, which can set off new ionizations and a repeat discharge. In order to prevent this repeat discharge, a quenching gas is added to the tube, the gas absorbs quanta of UV light and becomes dissociated rather than ionize thereby rapidly quenching ionization and preventing the repeat discharge. As the result cascading (production of more than one pulse per particle) is entirely prevented. Alcohol vapour or a halogen gas are usually used as quenching
阴极正离子的中和会产生紫外线辐射,这会引发新的电离和重复放电。为了防止这种重复放电,在管中加入淬火气体,该气体吸收大量紫外线并解离而不是电离,从而迅速淬灭电离并防止重复放电。因此,完全防止了级联(每个颗粒产生多个脉冲)。通常使用酒精蒸气或卤素气体进行淬火

gases: balogen quenched counter require an HV of about
300 500 300 500 300-500300-500 volts, whereas organic quenched counters require an RV Of900-1100 volts
气体:Balogen 淬火计数器需要大约 300 500 300 500 300-500300-500 Volts 的 HV,而有机淬火计数器需要 900-1100 V 的 RV

1.1.1.3. Detection Capabilities and Efficiency
1.1.1.3. 检测能力和效率

The detector cannot differentiate between different kinds of particles or energies, in order to do this the end window must be physically shielded in order to discriminate between different types of radiation e.g. paper for alpha’s and steel for beta’s.
探测器无法区分不同种类的粒子或能量,为此,必须对末端窗口进行物理屏蔽,以便区分不同类型的辐射,例如,纸用于 alpha,钢用于 beta。
G-M tubes are capable of measuring alpha, beta and gamma radiation; however the efficiency of measurement varies widely with the different types of radiation. A G-M tube has a low sensitivity to alpha radiation and will only detect alpha particles when these are directly incident on the open mica window. The density thickness of the end windows in the G-M tube used in the experiments is of the order of 1.5 2 mg / cm 2 1.5 2 mg / cm 2 1.5-2mg//cm^(2)1.5-2 \mathrm{mg} / \mathrm{cm}^{2}. Although very thin and essentially transparent to beta and gamma radiation, this is sufficient thickness to ensure that alpha particles incident on the surface of the mica window with an energy of less than 2 3 MeV 2 3 MeV 2-3MeV2-3 \mathrm{MeV} will not be detected. When using G-M tube to detect and measure alpha particles it is essential that the end window is open (remove the protective cap) and is held close to the suspected source or surface. Scanning for alpha contamination should occur either on contact or within 0.5 cm of the surface under investigation
G-M 管能够测量 α、β 和 γ 辐射;但是,测量效率因辐射类型而异。G-M 管对 α 辐射的敏感性较低,只有当 α 粒子直接入射到打开的云母窗口时,才会检测到这些粒子。实验中使用的 G-M 管中端窗的密度厚度约为 1.5 2 mg / cm 2 1.5 2 mg / cm 2 1.5-2mg//cm^(2)1.5-2 \mathrm{mg} / \mathrm{cm}^{2} 。虽然非常薄并且对 β 和 γ 辐射基本上透明,但这个厚度足以确保不会检测到入射到云母窗口表面的能量 2 3 MeV 2 3 MeV 2-3MeV2-3 \mathrm{MeV} 小于 α 粒子 。使用 G-M 管检测和测量 α 颗粒时,必须打开端窗(取下保护盖)并靠近可疑源或表面。应在接触时或距离被调查表面 0.5 cm 范围内进行 α 污染扫描
Both beta and gamma radiation are detected with good efficiency by a G-M tube, in the case of gamma radiation the end window may be covered by the protective cap. When scanning for beta radiation it is best to remove the protective end cap, which will absorb low energy beta particles with a C max C max  C_("max ")\mathrm{C}_{\text {max }} of several hundred keV
β 和 γ 辐射都可以通过 G-M 管有效检测,在伽马辐射的情况下,端窗可能被保护帽覆盖。扫描 β 辐射时,最好取下保护端盖,它会吸收 几百 keV C max C max  C_("max ")\mathrm{C}_{\text {max }} 低能 β 粒子

AIMS:  目标:

The aim of the experiment is to determine the following:
实验的目的是确定以下内容:
  • The operating Characteristics of the Geiger-Muller tube
    Geiger-Muller 管的工作原理
  • The correct operating voltage for each G-M tube used in the course experiments.
    课程实验中使用的每个 G-M 管的正确工作电压。
  • To determine the background count rate at the correct operating voltage.
    确定正确工作电压下的背景计数率。
  • To determine the stability of the counter
    确定计数器的稳定性
  • To demonstrate the principle of shielding a detector from background radiation
    演示屏蔽探测器免受背景辐射的原理

APPARATUS:  装置:

1. Introduction  1. 引言

Prior to setting up the apparatus and operating the counting system the demonstrator will go through the experiment comprises the following:
在设置设备和作计数系统之前,演示者将进行以下实验:
  • Geiger Muller shielding  Geiger Muller 屏蔽
  • Counter and timer  计数器和计时器
  • NIM bin and power supply
    NIM 机箱和电源
  • High voltage power supply
    高压电源
  • G-M pulse inverter  G-M 脉冲逆变器
  • A gamma source  Gamma 源

2. Precautions  2. 注意事项

Make sure that the open window of the source is facing the G-M window.
确保源的打开窗口面向 G-M 窗口。
Do not touch the window of G-M tube
请勿触摸 GM 管的窗口
Connect the G-M tube to inverter and counter with the power switched off.
在关闭电源的情况下将 GM 管连接到逆变器和计数器。
Prior to switching on power ensure that the voltage switch off (turned fully anticlockwise).
在接通电源之前,确保音量 tage 关闭(完全逆时针转动)。
Extreme care must be used when increasing the voltage setting knob. Turn the knob slowly clockwise to increase the applied voltage in 20 volt intervals during experiment
增加音量时必须格外小心 tage 设置旋钮。在实验过程中,顺时针缓慢转动旋钮以 20 伏的间隔增加施加的电压

3. Setting up the apparatus
3. 设置设备

Set counter timer at 60 sec
将计数器计时器设置为 60 秒
Insert the gamma source into the slot of G-M Shielding at fixed distance, 2 cm from G-M windows,
将伽马源以固定距离插入 G-M Shielding 的插槽中,距离 G-M 窗口 2 厘米,
Press the start button and slowly increasing to high voltage until first count read. Stop and recount at this voltage interval. Take the first measurement and the high voltage.
按下开始按钮并缓慢增加到高电压 tage 直到第一次计数读数。在此电压间隔停止并重新计数。进行第一次测量和高压。
Increase high voltage 20 volt and get the second reading.
增加高压 20 伏并获得第二个读数。

A further measurement may be taken until 1100 volt.
可以进行进一步测量,直到 1100 伏。

4. Background Count Determination
4. 背景计数确定

After completing the main experiment, remove all sources and determine the background count at the “operating voltage” of the detector. Take five consecutive background counts of 60 seconds each.
完成主要实验后,移除所有源并确定检测器“工作电压”下的背景计数。连续进行 5 次背景计数,每次 60 秒。

RESULTS:  结果:

At the end of each count, record the total number of counts into the results data sheet provided.
在每个计数的末尾,将计数总数记录到提供的结果数据表中。
As each result is recorded plot the result on normal graph paper as a function of the operating voltage
记录每个结果后,将结果绘制在普通方格纸上作为工作电压的函数

1. Data Reduction and Analysis
1. 数据缩减和分析

Data Reduction and Analysis
数据缩减和分析
Calculate the slope of the plateau in cpm/volt
以 cpm/volt 为单位计算平台的斜率

Plateau slope (cpm per volt)
= ( R 2 R 1 ) / ( V 2 V 1 ) = R 2 R 1 / V 2 V 1 =(R_(2)-R_(1))//(V_(2)-V_(1))=\left(\mathrm{R}_{2}-\mathrm{R}_{1}\right) /\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)
平台斜率(cpm/Volt) = ( R 2 R 1 ) / ( V 2 V 1 ) = R 2 R 1 / V 2 V 1 =(R_(2)-R_(1))//(V_(2)-V_(1))=\left(\mathrm{R}_{2}-\mathrm{R}_{1}\right) /\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)

Operating voltage is taken to be at the midpoint of the plateau
工作电压取在平台的中点

2. Slope of the plateau
2. 高原的坡度

The slope S S SS of the plateau, which should be ( < 0.1 < 0.1 < 0.1<0.1 or 10 % 10 % 10%10 \% ) can be evaluated using the following alternative equation:
高原的坡度 S S SS 应为 ( < 0.1 < 0.1 < 0.1<0.1 10 % 10 % 10%10 \% ),可以使用以下替代方程进行评估:
S = N 2 N 1 N 1 100 V 2 V 1 % S = N 2 N 1 N 1 100 V 2 V 1 % S=(N_(2)-N_(1))/(N_(1))*(100)/(V_(2)-V_(1))%S=\frac{N_{2}-N_{1}}{N_{1}} \cdot \frac{100}{V_{2}-V_{1}} \%

3. Counter Stability  3. 计数器稳定性

A standard test, known as the X 2 X 2 X^(2)\mathrm{X}^{2} test (Chi squired test) is generally used to check the overall stability of the counter. It indicates whether the counter is operating satisfactorily by showing that the variation in a number of successive counts conforms to normal fluctuations.
一种标准测试,称为 X 2 X 2 X^(2)\mathrm{X}^{2} 测试(Chi squired test),通常用于检查计数器的整体稳定性。它通过显示多个连续计数的变化符合正常波动来指示计数器是否运行令人满意。
The formula used is:
使用的公式是:
X 2 = Σ x 2 ( Σ x ) 2 10 x ¯ X 2 = Σ x 2 ( Σ x ) 2 10 x ¯ X^(2)=(Sigmax^(2)*((Sigma x)^(2))/(10))/(( bar(x)))\mathrm{X}^{2}=\frac{\Sigma x^{2} \cdot \frac{(\Sigma x)^{2}}{10}}{\bar{x}}
Where,  哪里
Σ x 2 = Σ x 2 = Sigmax^(2)=\Sigma x^{2}= sum of squares of 10 readings
Σ x 2 = Σ x 2 = Sigmax^(2)=\Sigma x^{2}= 10 个读数的平方和

Σ x = Σ x = Sigmax=\Sigma \mathrm{x}= sum of 10 reading
Σ x = Σ x = Sigmax=\Sigma \mathrm{x}= 10 个读数的总和

x ¯ = x ¯ = bar(x)=\bar{x}= mean of the 10 readings
x ¯ = x ¯ = bar(x)=\bar{x}= 10 个读数的平均值

For stability
X 2 X 2 X^(2)\mathrm{X}^{2} must lie between 3.35 and 16.92
因为稳定性 X 2 X 2 X^(2)\mathrm{X}^{2} 必须在 3.35 和 16.92 之间

Insert gamma source and set the counter at the operating voltage take 10 reading.
插入伽马源并将计数器设置为工作电压,读数为 10。

Determine the stability of the counter.
确定计数器的稳定性。

QUESTIONS:  问题:

Using the graph answer the following questions.
使用该图回答以下问题。
What is:  什么:
  • The starting voltage of the G-M tube: qquad\qquad volts
    GM 管的启动电压: qquad\qquad 伏特
  • The threshold voltage of the G-M tube: qquad\qquad volts
    G-M 管的阈值电压: qquad\qquad 伏特
  • The operating range: qquad\qquad volts
    工作范围: qquad\qquad 伏特
  • The slope of the plateau region: qquad\qquad volts
    高原地区的坡度: qquad\qquad 伏特
  • The operating voltage: qquad\qquad volts
    工作电压: qquad\qquad 伏特
  • Calculate the net count per 60 seconds at the operating voltage: qquad\qquad
    计算在工作电压下每 60 秒的净计数: qquad\qquad
  • The stability of the GM counter: qquad\qquad
    GM 计数器的稳定性: qquad\qquad

    In addition answer the following questions.
    此外,请回答以下问题。
  • Briefly explain why quenching is required and state what type of quenching gas is used in the G-M tubes used in the experiment.
    简要说明为什么需要淬火,并说明实验中使用的 G-M 管中使用的淬火气体类型。
  • Briefly explain why G-M tubes are not very sensitive to alpha radiation.
    简要说明为什么 G-M 管对 α 辐射不是很敏感。
  • What factor is of critical importance in determining the response and sensitivity of a G-M tube?
    在决定 G-M 管的响应和灵敏度时,什么因素至关重要?

ATTACHMENT 1  附件 1

SOURCE  
FIG 1: BLOCK DIAGRAM OF A GEIGER MULLER COUNTER
图 1:GEIGER MULLER 计数器的框图

FIG 2: GEIGER TUBE PLATEAU
图 2:盖格管高原