[1] H. Terrones and M. Terrones, "Curved nanostructured materials," New J. Phys., vol. 5, pp. 126–126, Oct. 2003, doi: 10.1088/1367-2630/5/1/126.
[2] H. Gong, J. Liu, K. Xu, J. Wu, and Y. Li, "Surface-topology-controlled mechanical characteristics of triply periodic carbon Schwarzite foams," Soft Matter, vol. 16, no. 17, pp. 4324–4338, 2020, doi: 10.1039/D0SM00136H.
[2] H. Gong、J. Liu、K. Xu、J. Wu 和 Y. Li,“三周期碳黑石泡沫的表面拓扑控制力学特性”,Soft Matter,第 16 卷,第 17 期,第 4324–4338 页,2020 年,doi: 10.1039/D0SM00136H。
[3] Q. Qin et al., "Adsorption and Diffusion of Hydrogen in Carbon Honeycomb," Nanomaterials, vol. 10, no. 2, p. 344, Feb. 2020, doi: 10.3390/nano10020344.
[3] Q. Qin 等,“碳蜂窝中氢的吸附和扩散”,Nanomaterials,第 10 卷,第 2 期,第 344 页,2020 年 2 月,doi: 10.3390/nano10020344。
[4] M. Pumera and Z. Sofer, "Towards stoichiometric analogues of graphene: graphane, fluorographene, graphol, graphene acid and others," Chem. Soc. Rev., vol. 46, no. 15, pp. 4450–4463, 2017, doi: 10.1039/C7CS00215G.
[4] M. Pumera 和 Z. Sofer,“迈向石墨烯的化学计量类似物:石墨烷、氟化石墨烯、石墨醇、石墨烯酸等”,Chem. Soc. Rev.,第 46 卷,第 15 期,第 4450–4463 页,2017 年,doi: 10.1039/C7CS00215G。
[5] Y. Li, H. Yang, G. Wang, B. Ma, and Z. Jin, "Distinctive Improved Synthesis and Application Extensions: Graphdiyne for Efficient Photocatalytic Hydrogen Evolution," ChemCatChem, vol. 12, no. 7, pp. 1985–1995, Apr. 2020, doi: 10.1002/cctc.201902405.
[5] Y. Li、H. Yang、G. Wang、B. Ma 和 Z. Jin,“独特的改进合成和应用扩展:石墨二炔用于高效光催化析氢”,ChemCatChem,第 12 卷,第 7 期,第 1985–1995 页,2020 年 4 月,doi: 10.1002/cctc.201902405。
[6] M. Pumera and Z. Sofer, "Towards stoichiometric analogues of graphene: graphane, fluorographene, graphol, graphene acid and others," Chem. Soc. Rev., vol. 46, no. 15, pp. 4450–4463, 2017, doi: 10.1039/C7CS00215G.
[6] M. Pumera 和 Z. Sofer,“迈向石墨烯的化学计量类似物:石墨烷、氟化石墨烯、石墨醇、石墨烯酸等”,Chem. Soc. Rev.,第 46 卷,第 15 期,第 4450–4463 页,2017 年,doi: 10.1039/C7CS00215G。
[7] L. C. Felix, C. F. Woellner, and D. S. Galvao, "Mechanical and energy-absorption properties of schwarzites," Carbon, vol. 157, pp. 670–680, Feb. 2020, doi: 10.1016/j.carbon.2019.10.066.
[7] L. C. Felix、C. F. Woellner 和 D. S. Galvao,“施瓦茨体的力学和能量吸收特性”,Carbon,第 157 卷,第 670–680 页,2020 年 2 月,doi: 10.1016/j.carbon.2019.10.066。
[8] Terrones H, Mackay A. "The geometry of hypothetical curved graphite structures." Carbon, 1992, 30(8): 1251–1260. doi: 10.1016/0008-6223(92)90066-6.
[8] Terrones H, Mackay A. “假设弯曲石墨结构的几何形状。” Carbon, 1992, 30(8): 1251–1260. doi: 10.1016/0008-6223(92)90066-6.
[9] T. Lenosky, X. Gonze, M. Teter, and V. Elser, "Energetics of negatively curved graphitic carbon," Nature, vol. 355, pp. 333–335, 1992, doi: 10.1038/355333a0.
[9] T. Lenosky、X. Gonze、M. Teter 和 V. Elser,“负弯曲石墨碳的能量学”,Nature,第 355 卷,第 333–335 页,1992 年,doi: 10.1038/355333a0。
[10] H. Terrones and M. Terrones, "Curved nanostructured materials," New J. Phys., vol. 5, 2003, doi: 10.1088/1367-2630/5/1/126.
[10] H. Terrones 和 M. Terrones,“弯曲的纳米结构材料”,New J. Phys.,卷。5,2003 年,doi:10.1088/1367-2630/5/1/126。
[11] H. Gong, J. Liu, K. Xu, J. Wu, and Y. Li, "Surface-topology-controlled mechanical characteristics of triply periodic carbon Schwarzite foams," Soft Matter, vol. 16, no. 17, pp. 4324–4338, 2020, doi: 10.1039/D0SM00136H.
[11] H. Gong、J. Liu、K. Xu、J. Wu 和 Y. Li,“三周期碳 Schwarzite 泡沫的表面拓扑控制力学特性”,Soft Matter,卷。16,no。17,第 4324–4338 页,2020 年,doi:10.1039/D0SM00136H。
[12] Y. Wu, N. Yi, L. Huang, T. Zhang, S. Fang, H. Chang, et al., "Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero poisson’s ratio," Nature Communications, vol. 6, p. 6141, 2015, doi: 10.1038/ncomms7141.
[12] Y. Wu、N. Yi、L. Huang、T. Zhang、S. Fang、H. Chang 等,“具有超压缩弹性和接近零泊松比的三维键合海绵状石墨烯材料”,Nature Communications,卷。6,p。6141,2015 年,doi:10.1038/ncomms7141。
[13] N. Park, M. Yoon, S. Berber, J. Ihm, E. Osawa, and D. Tománek, "Magnetism in all-carbon nanostructures with negative Gaussian curvature," Phys. Rev. Lett., vol. 91, p. 237204, 2003, doi: 10.1103/PhysRevLett.91.237204.
[13] N. Park、M. Yoon、S. Berber、J. Ihm、E. Osawa 和 D. Tománek,“具有负高斯曲率的全碳纳米结构的磁性”,Phys. Rev. Lett.,卷。91,p。237204,2003 年,doi:10.1103/PhysRevLett.91.237204。
[14] Q. Qin et al., "Adsorption and Diffusion of Hydrogen in Carbon Honeycomb," Nanomaterials, vol. 10, no. 2, p. 344, Feb. 2020, doi: 10.3390/nano10020344.
[14] Q. Qin 等,“碳蜂窝中氢的吸附和扩散”,《纳米材料》,第 10 卷,第 2 期,第 344 页,2020 年 2 月,doi: 10.3390/nano10020344。
[15] M. Terrones, A. R. Botello-Méndez, J. Campos-Delgado, F. López-Urías, Y. I. Vega-Cantú, F. J. Rodríguez-Macías, et al., "Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications," Nano Today, vol. 5, no. 4, pp. 351–372, 2010, doi: 10.1016/j.nantod.2010.06.010.
[15] M. Terrones, A. R. Botello-Méndez, J. Campos-Delgado, F. López-Urías, Y. I. Vega-Cantú, F. J. Rodríguez-Macías 等,“石墨烯和石墨纳米带:形态、性质、合成、缺陷和应用”,《今日纳米》,第 5 卷,第 4 期,第 351–372 页,2010 年,doi: 10.1016/j.nantod.2010.06.010。
[16] L. C. Felix, C. F. Woellner, and D. S. Galvao, "Mechanical and energy-absorption properties of schwarzites," Carbon, vol. 157, pp. 670–680, Feb. 2020, doi: 10.1016/j.carbon.2019.10.066.
[16] L. C. Felix, C. F. Woellner 和 D. S. Galvao,“施瓦茨石的机械和能量吸收特性”,《碳》,第 157 卷,第 670–680 页,2020 年 2 月,doi: 10.1016/j.carbon.2019.10.066。
[17] M. Z. Huang, W. Y. Ching, and T. Lenosky, "Electronic properties of negative-curvature periodic graphitic carbon surfaces," Phys. Rev. B, vol. 47, pp. 1593–1606, 1993.
[17] M. Z. Huang, W. Y. Ching 和 T. Lenosky,“负曲率周期性石墨碳表面的电子特性”,《物理评论 B》,第 47 卷,第 1593–1606 页,1993 年。
[18] S. H. Pun and Q. Miao, "Toward negatively curved carbons," Accounts of Chemical Research, vol. 51, no. 7, pp. 1630–1642, 2018.
[18] S. H. Pun 和 Q. Miao,“迈向负曲率碳材料”,《化学研究述评》,第 51 卷,第 7 期,第 1630–1642 页,2018 年。
[19] E. Braun, Y. Lee, S. M. Moosavi, et al., "Generating carbon schwarzites via zeolite-templating," Proceedings of the National Academy of Sciences, vol. 115, no. 35, pp. E8116–E8124, 2018.
[19] E. Braun, Y. Lee, S. M. Moosavi 等,“通过沸石模板生成碳黑石”,《美国国家科学院院刊》,第 115 卷,第 35 期,第 E8116–E8124 页,2018 年。
[20] H. Terrones and M. Terrones, "Curved nanostructured materials," New J. Phys., vol. 5, 2003, doi: 10.1088/1367-2630/5/1/126.
[20] H. Terrones 和 M. Terrones,“弯曲纳米结构材料”,《新物理学杂志》,第 5 卷,2003 年,doi: 10.1088/1367-2630/5/1/126。
[21] D. C. Miller, M. Terrones, and H. Terrones, "Mechanical properties of hypothetical graphene foams: giant Schwarzites," Carbon N Y, vol. 96, pp. 1191–1199, 2016, doi: 10.1016/j.carbon.2015.10.040.
[21] D. C. Miller, M. Terrones 和 H. Terrones,“假想石墨烯泡沫的力学性能:巨型黑石”,《纽约碳》,第 96 卷,第 1191–1199 页,2016 年,doi: 10.1016/j.carbon.2015.10.040。
[22] J. M. J. den Toonder, J. A. W. van Dommelen, and F. P. T. Baaijens, "The relation between single crystal elasticity and the effective elastic behaviour of polycrystalline materials: theory, measurement and computation," Modelling and Simulation in Materials Science and Engineering, vol. 7, no. 6, pp. 909–928, 1999, doi: 10.1088/0965-0393/7/6/301.
[22] J. M. J. den Toonder, J. A. W. van Dommelen, 和 F. P. T. Baaijens,“单晶弹性与多晶材料有效弹性行为之间的关系:理论、测量和计算”,《材料科学与工程建模与仿真》,第 7 卷,第 6 期,第 909–928 页,1999 年,doi: 10.1088/0965-0393/7/6/301。
[23] R. Gaillac, P. Pullumbi, and F.-X. Coudert, "ELATE: an open-source online application for analysis and visualization of elastic tensors," J. Phys.: Condens. Matter, vol. 28, no. 27, p. 275201, Jul. 2016, doi: 10.1088/0953-8984/28/27/275201.
[23] R. Gaillac, P. Pullumbi, 和 F.-X. Coudert,“ELATE:一个用于弹性张量分析和可视化的开源在线应用程序”,《凝聚态物理学杂志》,第 28 卷,第 27 期,第 275201 页,2016 年 7 月,doi: 10.1088/0953-8984/28/27/275201。
[24] H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, D. A. Keszler, Appl. Phys. Lett. 2005, 86, 013503.
[24] H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, D. A. Keszler, 应用物理快报 2005, 86, 013503。
[25] A. Delin, O. Eriksson, R. Ahuja, B. Johansson, M. S. S. Brooks, T. Gasche, S. Auluck, J. M. Wills, Phys. Rev. B 1996, 54, 1673.
[25] A. Delin, O. Eriksson, R. Ahuja, B. Johansson, M. S. S. Brooks, T. Gasche, S. Auluck, J. M. Wills, 物理评论 B 1996, 54, 1673。
[26] M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, F. Bechstedt, Phys. Rev. B 2006, 73, 045112.
[27] C. M. I. Okoye, J. Phys, Condens. Matter 2003, 15, 5945.
[28] M. Zhong, W. Zeng, F. S. Liu, D. H. Fan, B. Tang, Q. J. Liu, Mater. Today Phys. 2022, 22, 100583.
[29] M. Fox, Optical properties of solids, 2002