The immeasurable value of plankton to humanity 浮游生物对人类的价值不可估量
Maria Grigoratou (D), Susanne Menden-Deuer (D), Abigail McQuatters-Gollop (D), George Arhonditsis (D), Luis Felipe Artigas (D), Sakina-Dorothée Ayata (D), Dalida Bedikoğlu (D), Beatrix E. Beisner (D), Bingzhang Chen (D), Claire Davies (D), Lillian Diarra, Owoyemi W. Elegbeleye (I), Jason D. Everett (ID, Tatiane M. Garcia (ID), Wendy C. Gentleman (ID, Rodrigo Javier Gonçalves (I), Tamar Guy-Haim (I), Svenja Halfter (ID), Jana Hinners (ID, Richard R. Horaeb (ID), Jenny A. Huggett (I), Catherine L. Johnson (ID), Maria T. Kavanaugh (D), Ana Lara-Lopez (D), Christian Lindemann (D), Celeste López-Abbate (D), Monique Messié (D), Klas Ove Möller (D), Enrique Montes (D), Frank E. Muller-Karger (D), Aimee Neeley (D), Yusuf Olaleye (D), Artur P. Palacz (D), Alex J. Poulton (iD, A. E. Friederike Prowe (D), Lavenia Ratnarajah (D), Luzmila Rodríguez (D), Clara Natalia Rodríguez-Flórez (D), Aurea Rodriquez-Santiago, Cecile S. Rousseaux (D), Juan Francisco Saad (D), Ioulia Santi (D), Alice Soccodato (D), Rowena Stern (D), Selina Våge (D), Ioanna Varkitzi (D) and Anthony Richardson (D) Maria Grigoratou (D)、Susanne Menden-Deuer (D)、Abigail McQuatters-Gollop (D)、George Arhonditsis (D)、Luis Felipe Artigas (D)、Sakina-Dorothée Ayata (D)、Dalida Bedikoğlu (D)、Beatrix E.Beisner (D), Bingzhang Chen (D), Claire Davies (D), Lillian Diarra, Owoyemi W. Elegbeleye (I).Elegbeleye (I), Jason D. Everett (ID), Tatiane M. Garcia (ID), Wendy C. Gentleman (ID), Rodrigo Javier Gonçalves (I), Tamar Guy-Haim (I), Svenja Halfter (ID), Jana Hinners (ID), Richard R. Horaeb (ID), Jenny A. Huggett (I), Catherine D. Beisner (D), Beatrix E. Beisner (D), Claire Dav.Huggett (I), Catherine L. Johnson (ID), Maria T. Kavanaugh (D), Ana Lara-Lopez (D), Christian Lindemann (D), Celeste López-Abbate (D), Monique Messié (D), Klas Ove Möller (D), Enrique Montes (D), Frank E. Muller-Karger (D).Muller-Karger (D), Aimee Neeley (D), Yusuf Olaleye (D), Artur P. Palacz (D), Alex J. Poulton (iD, A. E. Friederike Prowe (D), Lavenia Ratnarajah (D), Luzmila Rodríguez (D), Clara Natalia Rodríguez-Flórez (D), Aurea Rodriquez-Santiago, Cecile S. Rousseaux (D).Rousseaux (D)、Juan Francisco Saad (D)、Ioulia Santi (D)、Alice Soccodato (D)、Rowena Stern (D)、Selina Våge (D)、Ioanna Varkitzi (D) 和 Anthony Richardson (D)
Maria Grigoratou (maria.grigoratou1@gmail.com) was affiliated with the Gulf of Maine Research Institute, in Portland, Maine, in the United States, and with Mercator Ocean International, in Toulouse, France, when the manuscript was submitted; she is now affiliated with the European Polar Board, in Umeå, Sweden. Menden-Deuer is affiliated with the Graduate School of Oceanography at the University of Rhode Island, in Kingston, Rhode Island, in the United States. Abigail McQuatters-Gollop is affiliated with the School of Biological and Marine Scienceat the University of Plymouth, in Plymouth, England, in the United Kingdom. George Arhonditsis is affiliated with the University of Toronto Scarborough, in Toronto, Ontario, Canada. Luis Felipe Artigas is affiliated with the Université du Littoral Côte d’Opale, CNRS, at the Université de Lille, in Lille, France. Sakina-Dorothée Ayata is affiliated with the Sorbonne University, in Paris, France. Dalida Bedikoğlu is affiliated with the Institute of Marine Sciences and Management at Istanbul University, in Istanbul, Turkey. Beatrix E. Beisner is affiliated with the Département des Sciences Biologiques and GRIL, at the Université du Québec à Montréal, in Montréal, Québec, Canada. Bingzhang Chen is affiliated with the Department of Mathematics and Statistics at the University of Strathclyde, in Glasgow, Scotland, in the United Kingdom. Claire Davies is affiliated with the Commonwealth Scientific and Industrial Research Organisation, in Canberra, Australian Capital Territory, Australia. Lillian Diarra is affiliated with the Mercator Ocean International, in Toulouse, France. Owoyemi Wahab Elegbeleye is affiliated with the Department of Marine Sciences at the University of Lagos, in Lagos, Nigeria. Jason D. Everett is affiliated with the School of the Environment, Centre for Biodiversity and Conservation Science of the University of Queensland, in Brisbane, Queensland; with the Centre for Marine Science and Innovation at the University of New South Wales, in Sydney, New South Wales; and with the Commonwealth Scientific and Industrial Research Organization, Environment, Queensland Biosciences Precinct, in Brisbane, Queensland, in Australia. Tatiane M. Garcia is affiliated with the Universidade Federal do Ceará, in Fortaleza, Ceará, in Brazil. Wendy C. Gentleman is affiliated with the Department of Engineering Mathematics at Dalhousie University, in Halifax, Nova Scotia, Canada. Rodrigo Javier Gonçalves is affiliated with the Ecology Department and Modeling Nature Unit at the Universidad de Granada, in Granada, Andalousia, Spain. Tamar Guy-Haim is affiliated with the Israel Oceanographic and Limnological Research Institute and with the Department of Life Sciences at Ben-Gurion University of the Negev, in Eilat, Israel. Svenja Halfter is affiliated with the National Institute of Water and Atmospheric Research, in Auckland, New Zealand. Jana Hinners is affiliated with the Institute of Carbon Cycles, Helmholtz Zentrum Hereon, in Geesthacht, Germany. Richard R. Horaeb is affiliated with the National Marine Information and Research Centre, in the Ministry of Fisheries and Marine Resources, and with the the Sam Nujoma Marine and Coastal Resources Centre, at the University of Namibia, in Windhoek, Namibia. Jenny A. Huggett is affiliated with the Department of Forestry, Fisheries, and the Environment, Ocean and Coasts, and with the Department of Biological Sciences at the University of Cape Town, in Cape Town, South Africa. Catherine L. Johnson is affiliated with Fisheries and Oceans Canada, Bedford Institute of Oceanography, in Dartmouth, Nova Scotia, Canada. Maria T. Kavanaugh is affiliated with Oregon State University, in Corvallis, Oregon, in the United States. Ana Lara-Lopez is affiliated with the Institute for Marine and Antarctic Studies at the University of Tasmania, in Hobart, Tasmania, Australia. Christian Lindemann is affiliated with the Norwegian Institute for Water Research and with the Department of Biological Sciences at the University of Bergen, in Bergen, Norway. Celeste López-Abbate is affiliated with the Instituto Argentino de Oceanografía, in Bahía Blanca, Argentina. Monique Messié is affiliated with the Monterey Bay Aquarium Research Institute, in Monterey, California, in the United states. Klas Ove Möller is affiliated with the Institute of Carbon Cycles, Helmholtz Zentrum Hereon, in Geesthacht, Germany. Enrique Montes is affiliated with the Cooperative Institute for Marine and Atmospheric Studies, in the Rosenstiel School of Marine, Atmospheric, and Earth Science, at the University of Miami and with the Atlantic Oceanographic and Meteorological Laboratory, in the National Oceanic and Atmospheric Administration, in Miami, Florida, in the United States. Frank E. Muller-Karger is affiliated with the College of Marine Science at the University of South Florida, in Tampa, Florida, in the United States. Aimee Neeley is affiliated with NASA, in Washington, DC, in the United States. Yusuf Olaleye is affiliated with the Department of Marine Sciences at the University of Lagos, in Lagos, Nigeria. Artur P. Palacz is affiliated with the Institute of Oceanology of the Polish Academy of Sciences, in Warsaw, Poland. Alex J. Poulton is affiliated with the Lyell Centre for Earth and Marine Sciences, at Heriot-Watt University, in Edinburgh, Scotland, in the United Kingdom. A. E. Friederike Prowe is affiliated with GEOMAR Helmholtz Centre for Ocean Research Kiel, in Kiel, Germany. Lavenia Ratnarajah is affiliated with the Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, at the University of Tasmania, in Hobart, Tasmania, in Australia. Luzmila Rodríguez is affiliated with the Universidad Científica del Sur, Carrera de Biologia Marina, in Villa, Peru. Clara Natalia Rodríguez-Flórez is affiliated with the Secretariat of Environment and Sustainable Development, in Boyacá, Colombia. Aurea Rodriquez-Santiago is affiliated with the Taller Ecológico de Puerto Rico and with the Caribbean Coastal Ocean Observing System, in Boquerón, Puerto Rico, in the United States. Cecile S. Rousseaux is affiliated with the Ocean Ecology Laboratory at NASA, in Washington, DC, in the United States. Juan Francisco Saad is affiliated with the Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos Almirante Storni and with the Facultad de Ciencias Marinas at Universidad Nacional del Comahue, In Rio Negro, Argentina. Ioulia Santi is affiliated with the European Marine Biological Resource Centre and with the Hellenic Center for Marine Research at the Institute of Marine Biology Biotechnology and Aquaculture, in Crete, Greece. Alice Soccodato is affiliated with the European Marine Biological Resource Centre, in Paris, France. Rowena Stern is affiliated with the Marine Biological Association of the United Kingdom, in Plymouth, England, in the United Kingdom. Selina Våge is affiliated with the Department of Biological Sciences at the University of Bergen, in Bergen, Norway. Ioanna Varkitzi is affiliated with the Hellenic Centre for Marine Research, in Crete, Greece. Anthony Richardson is affiliated with the School of the Environment and the Centre for Biodiversity and Conservation Science of the University of Queensland and with the Commonwealth Scientific and Industrial Research Organization, Environment, in Brisbane, Queensland, Austalia. Maria Grigoratou ( maria.grigoratou1@gmail.com) 提交手稿时隶属于美国缅因州波特兰的缅因湾研究所和法国图卢兹的墨卡托海洋国际组织;她现在隶属于瑞典于默奥的欧洲极地委员会。Menden-Deuer 隶属于美国罗德岛州金斯敦的罗德岛大学海洋学研究生院。Abigail McQuatters-Gollop 隶属于英国普利茅斯大学生物与海洋科学学院。George Arhonditsis 隶属于加拿大安大略省多伦多市的多伦多大学斯卡伯勒分校。路易斯-费利佩-阿蒂加斯(Luis Felipe Artigas)隶属于法国里尔的里尔大学滨海科普大学(Université du Littoral Côte d'Opale)、国家科学研究中心(CNRS)。Sakina-Dorothée Ayata 隶属于法国巴黎索邦大学。Dalida Bedikoğlu 隶属于土耳其伊斯坦布尔伊斯坦布尔大学海洋科学与管理研究所。Beatrix E.Beisner 隶属于加拿大魁北克省蒙特利尔市魁北克大学生物科学和地球资源研究所。陈炳章隶属于英国苏格兰格拉斯哥斯特拉思克莱德大学数学与统计系。克莱尔-戴维斯(Claire Davies)隶属于澳大利亚联邦科学与工业研究组织(Commonwealth Scientific and Industrial Research Organisation),位于澳大利亚首都领地堪培拉。Lillian Diarra 隶属于位于法国图卢兹的墨卡托海洋国际组织。Owoyemi Wahab Elegbeleye 隶属于尼日利亚拉各斯的拉各斯大学海洋科学系。Jason D. 埃弗雷特隶属于位于昆士兰州布里斯班的昆士兰大学环境学院生物多样性与保护科学中心、位于新南威尔士州悉尼的新南威尔士大学海洋科学与创新中心以及位于澳大利亚昆士兰州布里斯班的英联邦科学与工业研究组织环境部昆士兰生物科学区。Tatiane M. Garcia 隶属于巴西塞阿拉州福塔莱萨的塞阿拉联邦大学。Wendy C. Gentleman 隶属于加拿大新斯科舍省哈利法克斯达尔豪西大学工程数学系。罗德里戈-哈维尔-贡萨尔维斯(Rodrigo Javier Gonçalves)隶属于西班牙安达卢西亚格拉纳达大学(Universidad de Granada)生态系和自然建模小组。Tamar Guy-Haim 隶属于以色列海洋和湖泊研究所以及以色列埃拉特内盖夫本古里安大学生命科学系。Svenja Halfter 隶属于新西兰奥克兰国家水和大气研究所。Jana Hinners 隶属于德国 Geesthacht 的 Helmholtz Zentrum Hereon 碳循环研究所。Richard R. Horaeb 隶属于纳米比亚渔业和海洋资源部国家海洋信息和研究中心,以及纳米比亚温得和克纳米比亚大学 Sam Nujoma 海洋和沿海资源中心。珍妮-A-休格特(Jenny A. Huggett)隶属于南非开普敦大学林业、渔业、环境、海洋和海岸系以及生物科学系。凯瑟琳 L. 约翰逊隶属于加拿大新斯科舍省达特茅斯的加拿大渔业和海洋部贝德福德海洋研究所。Maria T. Kavanaugh 隶属于美国俄勒冈州科瓦利斯的俄勒冈州立大学。安娜-拉拉-洛佩斯(Ana Lara-Lopez)隶属于澳大利亚塔斯马尼亚霍巴特的塔斯马尼亚大学海洋与南极研究所。Christian Lindemann 隶属于挪威卑尔根的挪威水研究所和卑尔根大学生物科学系。Celeste López-Abbate 隶属于阿根廷海洋研究所(位于阿根廷巴伊亚布兰卡)。Monique Messié 隶属于美国加利福尼亚州蒙特雷市的蒙特雷湾水族馆研究所。Klas Ove Möller 隶属于德国 Geesthacht 的 Helmholtz Zentrum Hereon 碳循环研究所。恩里克-蒙特斯(Enrique Montes)隶属于迈阿密大学罗森斯蒂尔海洋、大气和地球科学学院海洋和大气研究合作研究所,以及位于美国佛罗里达州迈阿密的国家海洋和大气管理局大西洋海洋学和气象学实验室。Frank E. Muller-Karger 隶属于美国佛罗里达州坦帕市南佛罗里达大学海洋科学学院。Aimee Neeley 隶属于美国华盛顿特区的美国国家航空航天局。Yusuf Olaleye 隶属于尼日利亚拉各斯的拉各斯大学海洋科学系。Artur P. Palacz 隶属于波兰华沙的波兰科学院海洋学研究所。Alex J. Poulton 隶属于英国苏格兰爱丁堡赫瑞瓦特大学莱尔地球和海洋科学中心。A. E. Friederike Prowe 隶属于德国基尔的 GEOMAR Helmholtz Centre for Ocean Research Kiel。Lavenia Ratnarajah 隶属于位于澳大利亚塔斯马尼亚州霍巴特的塔斯马尼亚大学海洋与南极研究所澳大利亚南极项目合作伙伴。卢兹米拉-罗德里格斯(Luzmila Rodríguez)隶属于秘鲁比利亚的南方科学大学滨海生物学院(Universidad Científica del Sur, Carrera de Biologia Marina)。克拉拉-纳塔利娅-罗德里格斯-弗洛雷斯(Clara Natalia Rodríguez-Flórez)隶属于哥伦比亚博亚卡环境与可持续发展秘书处。Aurea Rodriquez-Santiago 隶属于美国波多黎各博克龙的 Taller Ecológico de Puerto Rico 和加勒比海沿海海洋观测系统。Cecile S. Rousseaux 隶属于美国华盛顿特区的美国国家航空航天局海洋生态实验室。胡安-弗朗西斯科-萨阿德(Juan Francisco Saad)隶属于阿根廷里奥内格罗的阿尔米兰特-斯托尼海洋资源应用研究与技术转移中心(Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos Almirante Storni)和科马胡国立大学海洋科学系。Ioulia Santi 隶属于欧洲海洋生物资源中心(European Marine Biological Resource Centre)和希腊克里特岛海洋生物生物技术和水产养殖研究所希腊海洋研究中心(Hellenic Center for Marine Research at the Institute of Marine Biology Biotechnology and Aquaculture)。Alice Soccodato 隶属于位于法国巴黎的欧洲海洋生物资源中心。Rowena Stern 隶属于位于英国普利茅斯的英国海洋生物协会。 Selina Våge 隶属于挪威卑尔根的卑尔根大学生物科学系。Ioanna Varkitzi 隶属于希腊克里特岛的希腊海洋研究中心。Anthony Richardson 隶属于昆士兰大学环境学院和生物多样性与保护科学中心,以及位于澳大利亚昆士兰州布里斯班的英联邦科学与工业研究组织环境部。
Abstract 摘要
and anyone interested in plankton. We present the value of plankton across six themes of human interest: biogeochemistry; ecology; climate; the evolution of science; economy; and culture, recreation, and well-being. Guided by the 2022 Intergovernmental SciencePolicy Platform on Biodiversity and Ecosystem Services values assessment, we introduce the six themes under the Life Framework of Values to offer a comprehensive summary of the significance of plankton to humanity. In addition, we provide examples of plankton variables used in policy frameworks and recommendations for enhancing understanding of their value through long-term sustainable research and monitoring. 以及任何对浮游生物感兴趣的人。我们从生物地球化学、生态学、气候、科学演变、经济以及文化、娱乐和福祉这六个人类关心的主题来介绍浮游生物的价值。在 2022 年生物多样性和生态系统服务政府间科学政策平台价值评估的指导下,我们介绍了生命价值框架下的六个主题,全面总结了浮游生物对人类的意义。此外,我们还举例说明了浮游生物变量在政策框架中的应用,并建议通过长期可持续的研究和监测来提高对浮游生物价值的认识。
Plankton consist of diverse communities suspended in aquatic environments, including thousands of species from all kingdoms (de Vargas et al. 2015, Ruggiero et al. 2015). They exhibit a wide array of shapes and colors, with lifespans of a few hours to more than 5 years (e.g., krill; Nicol 2006). Plankton produce oxygen, store atmospheric carbon, and affect water quality. They support the aquatic ecosystems humans rely on for livelihood and food (Suthers et al. 2019) and are identified as Essential Ocean and Climate Variables (Miloslavich et al. 2018, GCOS 2022). Plankton have a high adaptive capacity that can help buffer against climate-driven changes and external disturbances. However, their distribution, biomass, and traits remain vulnerable to climate change, pollution, and human pressures, potentially affecting ecosystems. Beyond their ecological and biogeochemical importance, plankton research has influenced fields such as medicine, engineering, art, and cultural heritage. Unfortunately, the significant ecological and societal benefits of plankton are often overlooked because of the relative visibility, familiarity, and charisma of larger organisms to the general public and, to some extent, because of the focus on economic losses and restrictions on human aquatic activities caused by some harmful plankton blooms. This can lead to an underappreciation of the essential role of plankton in aquatic ecosystems and life on Earth. 浮游生物由悬浮在水生环境中的各种群落组成,包括来自各个界的数千种物种(de Vargas 等人,2015 年;Ruggiero 等人,2015 年)。它们的形状和颜色多种多样,寿命从几小时到 5 年以上不等(例如磷虾;Nicol,2006 年)。浮游生物产生氧气、储存大气中的碳并影响水质。它们支撑着人类赖以生存和获取食物的水生生态系统(Suthers 等,2019 年),并被确定为基本海洋和气候变量(Miloslavich 等,2018 年;GCOS,2022 年)。浮游生物具有很强的适应能力,可帮助缓冲气候驱动的变化和外部干扰。然而,浮游生物的分布、生物量和性状仍然容易受到气候变化、污染和人类压力的影响,从而对生态系统造成潜在影响。除了在生态和生物地球化学方面的重要性,浮游生物研究还对医学、工程学、艺术和文化遗产等领域产生了影响。遗憾的是,浮游生物的重大生态和社会效益往往被忽视,这是因为大型生物对普通公众来说相对醒目、熟悉和有魅力,在某种程度上也是因为人们只关注一些有害浮游生物藻华造成的经济损失和对人类水上活动的限制。这可能导致人们对浮游生物在水生生态系统和地球生命中的重要作用认识不足。
The term plankton comes from the ancient Greek word pi lambda alpha gamma kappa tau ónu\pi \lambda \alpha \gamma \kappa \tau o ́ \nu, meaning “drifter,” which references their difficulty in controlling their horizontal movement against currents. Being such a diverse group, planktonic organisms can obtain their energy from the sun and/or consumption of other organisms, from their host’s metabolic processes, and even from inorganic matter (box 1). Plankton have a vast size spectrum (figure 1), from microscopic 0.02-micrometer viruses to some of the world’s longest creatures such as the 35-meter-long jellyfish Cyanea capillata and 50-meter colonial siphonophore Praya dubia (Sardet 2015). However, most plankton are less than a millimeter in size and are invisible to the unaided human eye (figure 1). Despite their small size, plankton exhibit complex behaviors for growth and survival. Some can expand their size or volume (e.g., the freshwater ciliate Lacrymaria olor), whereas others release toxins (e.g., the freshwater cyanobacteria Planktothrix agardhii, marine dinoflagelates of the Alexandrium genus) or build shells and spines (e.g., marine radiolarians and planktonic foraminifera; Vaughn and Allen 2010, Flaum and Prakash 2024). Some have lightning-quick reactions to chemical changes and predators (e.g., dinoflagellates and copepods), and many undertake daily or seasonal vertical migrations (e.g., freshwater and marine copepods, euphausiids, chaetognaths; Takenaka et al. 2017, Bandara et al. 2021, Timsit et al. 2021). Zooplankton vertical migrations span from a few to a thousand meters and are likely the largest animal migrations on Earth in terms of biomass (Hays 2003). A few species can enter a dormancy phase via diapause (e.g., arctic marine copepods of the genera Calanus and Neocalanus) or the production of resting cysts (e.g., marine diatoms Thalassiosira) and eggs (e.g., freshwater and marine cladocerans such as Daphnia and Podon; box 1). 浮游生物一词源于古希腊语 pi lambda alpha gamma kappa tau ónu\pi \lambda \alpha \gamma \kappa \tau o ́ \nu ,意为 "漂流者",指它们难以控制自己的水平运动,无法逆流而上。浮游生物种类繁多,它们可以从太阳和/或其他生物的消耗中获取能量,也可以从宿主的新陈代谢过程中获取能量,甚至可以从无机物中获取能量(方框 1)。浮游生物的大小范围很广(图 1),从 0.02 微米的微小病毒到一些世界上最长的生物,如 35 米长的霞水母(Cyanea capillata)和 50 米长的虹吸殖虫 Praya dubia(Sardet,2015 年)。然而,大多数浮游生物的大小不足一毫米,肉眼无法看到(图 1)。尽管浮游生物体积小,但为了生长和生存,它们表现出复杂的行为。有些浮游生物可以扩大体型或体积(如淡水纤毛虫 Lacrymaria olor),有些则会释放毒素(如淡水蓝藻 Planktothrix agardhii、海洋甲藻 Alexandrium 属)或形成外壳和刺(如海洋放射虫和浮游有孔虫;Vaughn 和 Allen,2010 年;Flaum 和 Prakash,2024 年)。有些浮游动物对化学变化和捕食者的反应快如闪电(如甲藻和桡足类),许多浮游动物每天或每季都会进行垂直洄游(如淡水和海洋桡足类、裙带菜类、栉水母类;Takenaka 等人,2017 年;Bandara 等人,2021 年;Timsit 等人,2021 年)。浮游动物的垂直洄游距离从几米到一千米不等,就生物量而言,可能是地球上最大的动物洄游(Hays,2003 年)。 少数物种可通过休眠(如北极海洋桡足类 Calanus 属和 Neocalanus 属)或产生休眠囊(如海洋硅藻 Thalassiosira)和卵(如淡水和海洋桡足类,如 Daphnia 和 Podon;方框 1)进入休眠期。
Dormancy helps them to persist through unfavorable conditions (e.g., low temperatures, a lack of sunlight and food in polar regions during winter, starvation, eutrophication, pollution, evaporation in deserts) and recolonize ecosystems once conditions improve (Alekseev and Pinel-Alloul 2019). Many taxa remain planktonic throughout their entire lives (holoplankton), whereas a few others such as fish, sea stars, shellfish, corals, squids, and octopuses have a planktonic stage for only a portion of their lives (meroplankton; box 1, figure 2). Because humans tend to relate to organisms that they can directly observe, hear, taste, smell, or touch, it can be hard to perceive the magnitude and impact of plankton diversity in space and time. 休眠有助于它们在不利条件下(如低温、极地地区冬季缺乏阳光和食物、饥饿、富营养化、污染、沙漠蒸发)存活下来,并在条件改善后重新定居生态系统(Alekseev 和 Pinel-Alloul 2019)。许多类群终生都处于浮游状态(全浮游生物),而鱼类、海星、贝类、珊瑚、鱿鱼和章鱼等少数类群则只有部分生命处于浮游阶段(经浮游生物;方框 1,图 2)。由于人类倾向于直接观察、聆听、品尝、嗅闻或触摸生物,因此很难感知浮游生物多样性在空间和时间上的规模和影响。
This Viewpoint aims to raise awareness and provide a comprehensive understanding of the value of plankton to humanity. It covers all aquatic environments and plankton groups with an emphasis on marine phytoplankton, mixoplankton, and zooplankton (box 1). We highlight the value of plankton in the context of six broad themes of human interest: biogeochemistry; ecology; climate; the evolution of science; economy; and culture, recreation, and well-being. We provide examples of plankton variables used in national and international policy frameworks and propose key priorities for enhancing plankton research to advance our understanding of the mechanisms and functionality of plankton. Guided by the 2022 Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services’ (IPBES) values assessment, we introduce the six themes of the value of plankton under the Life Framework of Values (living with, from, in, and as nature; figure 3) by which we aim to offer a comprehensive view of the human-nature interactions, addressing coexistence, resource use, and interconnectedness (O’Neill 1992, O’Connor and Kenter 2019). This article is intended for aquatic ecosystem professionals, policymakers, plankton enthusiasts, and anyone curious about this extraordinary realm of life. 本视点旨在提高人们对浮游生物对人类价值的认识和全面了解。它涵盖所有水生环境和浮游生物群,重点关注海洋浮游植物、混合浮游生物和浮游动物(方框 1)。我们强调了浮游生物在以下六大人类关注主题中的价值:生物地球化学;生态学;气候;科学演变;经济;以及文化、娱乐和福祉。我们举例说明了浮游生物变量在国家和国际政策框架中的应用,并提出了加强浮游生物研究的主要优先事项,以促进我们对浮游生物机制和功能的了解。在 2022 年生物多样性和生态系统服务政府间科学政策平台(IPBES)价值评估的指导下,我们介绍了生命价值框架下浮游生物价值的六个主题(与自然共生、源于自然、生活于自然和作为自然;图 3),我们旨在通过这些主题提供人类与自然互动的全面视角,解决共存、资源利用和相互关联等问题(O'Neill,1992 年;O'Connor 和 Kenter,2019 年)。本文面向水生生态系统专业人士、政策制定者、浮游生物爱好者以及任何对这一非凡生命领域充满好奇的人。
The value of plankton 浮游生物的价值
1. Plankton and ecology 1.浮游生物和生态学
Plankton have a vital role in sustaining and regulating life in aquatic environments by influencing nutrition, food webs, organism dispersal, and bioinvasion. Fueled by the sun in sunlit ecosystems, phytoplankton transfer energy throughout the water column and sediments via sinking and to higher predators via the food web (figure 4; Siegel et al. 2023). Planktonic primary producers can also synthesize de novo n-3 polyunsaturated fatty acids, which can be critical for maintaining high growth, survival, and reproductive rates and for realizing high food conversion efficiencies for a wide range of freshwater and marine organisms (Perhar et al. 2012). 浮游植物通过影响营养、食物网、生物扩散和生物入侵,在维持和调节水生环境中的生命方面发挥着至关重要的作用。在阳光充足的生态系统中,浮游植物以太阳为燃料,通过下沉将能量传递到整个水体和沉积物中,并通过食物网将能量传递给高级捕食者(图 4;Siegel 等,2023 年)。浮游初级生产者还能从头合成 n-3 多不饱和脂肪酸,这对于各种淡水和海洋生物保持高生长率、高存活率和高繁殖率以及实现高食物转化效率至关重要(Perhar 等,2012 年)。
Plankton species play a vital role in nutrient transfer through bioaccumulation, supporting ecosystems by moving essential nutrients through the food web. However, they can also absorb and pass harmful substances, such as pollutants and toxins, which 浮游生物物种通过生物积累在营养物质转移方面发挥着重要作用,它们通过食物网转移必需的营养物质,为生态系统提供支持。不过,浮游生物也能吸收和传递有害物质,如污染物和毒素。
Box 1. Glossary of plankton terminologies mentioned in the article. 方框 1.文章中提到的浮游生物术语表。
Detritivores: Organisms that consume detritus or decomposing organic matter. 食腐动物:食腐动物:以残渣或分解有机物为食的生物。
Diapause: A physiological state of low metabolic activity that allows some plankton species to survive during seasonal unfavorable environmental conditions (e.g., low temperature, nutrient depletion) at the cost of suspended development and reproduction. 休眠:新陈代谢活动低下的一种生理状态,使一些浮游生物物种在季节性不利环境条件(如低温、营养枯竭)下能够以暂停发育和繁殖为代价存活下来。
Eukaryotes: Organisms with a nucleus and other membrane-bound organelles in their cells. 真核生物:细胞内有细胞核和其他膜结合细胞器的生物。
Holoplankton: Organisms that spend their entire life cycle as plankton. 全浮游生物:以浮游生物形式度过整个生命周期的生物。
Meroplankton: Organisms that have a planktonic stage in their life cycle. 浮游生物:浮游生物:生命周期中具有浮游阶段的生物。
Metazoans (planktonic): multicellular zooplankton (as opposed to protozoans, single-cell zooplankton). 元虫(浮游动物):多细胞浮游动物(与原生动物、单细胞浮游动物相对)。
Microplankton: Planktonic organisms between 20 and 200 mum200 \mu \mathrm{~m} in size. 微型浮游生物:浮游生物:大小在 20 到 200 mum200 \mu \mathrm{~m} 之间的浮游生物。
Mixoplankton: Planktonic organisms that can obtain their energy using a mixture of phagotrophy and photosynthesis. 混合浮游生物:浮游生物:可通过吞噬作用和光合作用混合获取能量的浮游生物。
Phagotrophy: feeding mechanism by which an organism can consume other organisms or particles by ingesting and internalizing them within its cells 噬菌体:一种摄食机制,生物通过摄取其他生物或微粒并将其内化到细胞中,从而将其吃掉
Phytoplankton: traditionally, photosynthetic planktonic organisms (microalgae and cyanobacteria). Nowadays it is considered that many of these species are actually mixoplankton. 浮游植物:传统意义上的光合浮游生物(微藻和蓝藻)。如今,人们认为其中许多物种实际上是混合浮游生物。
Plankton vertical migration: the upward and downward active movement of plankton in the water column. This daily or seasonal movement is influenced by environmental factors (e.g., light, nutrient availability, predation) and plays a significant role in biogeochemical cycles. 浮游生物垂直洄游:浮游生物在水体中向上和向下的主动运动。这种每日或季节性的运动受环境因素(如光照、营养供应、捕食)的影响,在生物地球化学循环中发挥着重要作用。
Plankton: a diverse group of aquatic organisms (thousands of species from all kingdoms) that live suspended in the water column, whose horizontal distribution is mostly dictated by water currents. 浮游生物:悬浮在水体中的多种水生生物(来自各个界的数千种生物),其水平分布主要由水流决定。
Prokaryotes: Single-celled organisms that lack a nucleus and membrane-bound organelles. 原核生物:缺乏细胞核和膜细胞器的单细胞生物。
Resting cysts or eggs: The planktonic resting cysts and eggs have thick outer layers that allow them to persist in sediments during harsh environmental conditions or seasonal changes. They can stay in a dormant stage for weeks to decades. They hatch when the environmental conditions become favorable for the organism to resume growth and reproduction. 静止孢囊或卵:浮游静止孢囊和虫卵的外层很厚,这使它们能够在恶劣的环境条件或季节变化时继续留在沉积物中。它们的休眠期可长达数周至数十年。当环境条件有利于生物恢复生长和繁殖时,它们就会孵化。
Zooplankton: Planktonic heterotrophic organisms that gain energy and nutrients through the consumption of other organisms or organic sources (e.g., detritus, decomposing organic matter). 浮游动物:浮游异养生物:通过消耗其他生物或有机物(如残渣、分解有机物)获得能量和营养的浮游异养生物。
may affect the health and lifespan of species that consume them (Ravera 2001). 可能会影响食用它们的物种的健康和寿命(Ravera,2001 年)。
Many aquatic animals begin their life cycles as meroplankton (box 1), preying on their fellow plankton for growth while undergoing remarkable transformations (figure 2). Even nonplanktonic species (e.g., sharks, mammals, reptiles) depend on plankton directly or indirectly for their prey. For example, planktivorous fishes (e.g., sardines, hilsa) are key prey for larger predators such as fish (e.g., trout, bass, salmon, tuna, marlin, which represent an important source of food for humans), birds (e.g., puffins), and mammals (e.g., whales; Carpenter et al. 2001, Kotterba et al. 2024). Plankton blooms in surface waters serve as important feeding hotspots for migratory and nonmigratory species and contribute to the overall productivity and biodiversity in both marine and freshwater ecosystems (Behrenfeld and Boss 2014, Huisman et al. 2018). However, some plankton blooms, particularly excessive ones, can have negative effects on the environment, leading to toxic blooms, mass mortality events, and, in some cases, deoxygenation, all of which can occur before the blooms collapse. (García-Mendoza et al. 2018). Bottom-living organisms such as corals and mussels also benefit from the consumption of living plankton and sinking planktonic material. Conversely, excessive plankton concentrations can negatively affect shallow habitats, such as seagrass meadows and coral reefs, by increasing water turbidity and reducing light penetration vital for their survival (Toro-Farmer et al. 2016). 许多水生动物的生命周期都是从浮游生物开始的(方框 1),它们捕食同类浮游生物以获得生长,同时经历着非凡的转变(图 2)。即使是非浮游生物(如鲨鱼、哺乳动物、爬行动物)也直接或间接地依赖浮游生物捕食。例如,浮游鱼类(如沙丁鱼、鲥鱼)是鱼类(如鳟鱼、鲈鱼、鲑鱼、金枪鱼、枪鱼,它们是人类的重要食物来源)、鸟类(如海鹦)和哺乳动物(如鲸鱼;卡彭特等人,2001 年;Kotterba 等人,2024 年)等大型捕食者的主要猎物。表层水域的浮游生物藻华是迁徙和非迁徙物种的重要觅食热点,有助于提高海洋和淡水生态系统的整体生产力和生物多样性(Behrenfeld 和 Boss,2014 年;Huisman 等,2018 年)。然而,一些浮游生物藻华,尤其是过量的浮游生物藻华,会对环境产生负面影响,导致有毒藻华、大规模死亡事件,在某些情况下还会导致脱氧,所有这些都可能在藻华崩溃之前发生。(García-Mendoza 等人,2018 年)。珊瑚和贻贝等底层生物也会从食用活浮游生物和下沉浮游物质中获益。相反,浮游生物浓度过高会增加水体浑浊度,降低对其生存至关重要的光穿透力,从而对海草草甸和珊瑚礁等浅层生境产生负面影响(Toro-Farmer 等,2016 年)。
In deep-water habitats where sunlight is absent and photosynthetic plankton are scarce, plankton still influence trophic dynamics and diversity. Through buoyancy and swimming, plankton can adjust their vertical position, facilitating daily or seasonal vertical 在缺乏阳光和光合浮游生物稀少的深水栖息地,浮游生物仍然影响着营养动态和多样性。通过浮力和游动,浮游生物可以调整其垂直位置,从而促进每日或每季的垂直运动。
migrations that span several meters in lakes to thousands of meters in marine environments (Bandara et al. 2021). The vertical migration of living plankton and the passive sinking of marine snow (box 2) transport stored carbon and nutrients from the surface to deeper waters, providing energy for deep-water organisms (figure 4; Turner 2015). These migrations also contribute to the long-term carbon sequestration in the sediments for decades to millennia, helping to mitigate climate change. 从湖泊中几米到海洋环境中数千米的迁移(Bandara 等,2021 年)。活浮游生物的垂直迁移和海雪的被动下沉(方框 2)将储存的碳和营养物质从表层输送到深层水域,为深水生物提供能量(图 4;Turner,2015 年)。这些迁移还有助于沉积物中长期固碳,时间长达数十年至数千年,有助于减缓气候变化。
Planktonic life stages are also critical for dispersal, enabling organisms to travel long distances via ocean currents, colonize new habitats, and maintain genetic diversity within populations. Human activities such as aquaculture, shipping, and the release of ballast water also transfer plankton species to new environments. This bioinvasion can disrupt food webs when nonnative species outcompete native plankton because of faster growth rates, a lack of natural predators, or other competitive advantages (e.g., Bollens et al. 2002). Over the past six decades, planktonic invasions have resulted in an estimated global economic impact of approximately US$5.8 billion, largely driven by the spread of viruses and invasive zooplankton (Macêdo et al. 2022). Therefore, understanding and monitoring plankton ecology is essential to anticipate potential impacts on biodiversity, human health, and welfare. 浮游生物的生命阶段对于传播也至关重要,它使生物能够通过洋流进行远距离迁移,在新的栖息地定居,并保持种群内部的遗传多样性。水产养殖、航运和压舱水排放等人类活动也会将浮游生物物种转移到新的环境中。这种生物入侵会破坏食物网,因为非本地物种生长速度更快、缺乏天敌或其他竞争优势,从而超过本地浮游生物(如 Bollens 等,2002 年)。在过去六十年中,浮游生物入侵对全球经济造成的影响估计约为 58 亿美元,这主要是由病毒和入侵浮游动物的传播造成的(Macêdo 等,2022 年)。因此,了解和监测浮游生物生态对于预测对生物多样性、人类健康和福祉的潜在影响至关重要。
2. Plankton and biogeochemistry 2.浮游生物和生物地球化学
Photosynthesis, the process of converting light energy to chemical energy, is a fundamentally important chemical reaction to life as it has evolved on Earth. It powers much of Earth’s life and produces the oxygen that is critical for the survival of many species on Earth. In aquatic ecosystems, photosynthesis provides 光合作用是将光能转化为化学能的过程,它是地球上生命进化过程中一个极其重要的化学反应。它为地球上的许多生命提供动力,并产生对地球上许多物种的生存至关重要的氧气。在水生生态系统中,光合作用提供了
Figure 1. A showcase of plankton size and species diversity, accompanied by fascinating facts highlighting their significance in research and impact on Earth and humanity. 图 1.展示了浮游生物的大小和物种多样性,并附有引人入胜的事实,突出了浮游生物在研究方面的意义以及对地球和人类的影响。
the energetic basis to produce organic matter in most food webs that sustains aquatic organisms, from microbes to top-level predators. As photosynthesis is light dependent, it is restricted to sunlit surface waters where a myriad of mostly microbial photosynthetic pro- and eukaryotic species, or phytoplankton (box 1), use diverse pigments and physiological pathways to generate organic matter that feeds higher trophic levels (Falkowski 2002). Note that although thousands of phytoplankton species have been described, the discovery of new species continues (de Vargas et al. 2015). 在大多数食物网中,光合作用是产生有机物质的能量基础,维持着从微生物到顶级捕食者等水生生物的生存。由于光合作用依赖于光照,因此它仅限于有阳光的表层水域,在那里,大量的原核和真核微生物光合物种或浮游植物(方框 1)利用不同的色素和生理途径产生有机物,为更高营养级提供食物(Falkowski,2002 年)。请注意,尽管已经描述了数千种浮游植物,但新物种的发现仍在继续(de Vargas 等,2015 年)。
The amount and flow of energy in marine ecosystems from tiny photosynthetic plankton to top predators is the key to many global processes, including fisheries production and cycles of carbon, nitrogen, phosphorous, silica and other, often limiting, elements. Plankton have an immense biogeochemical footprint because of their roles as producers, consumers, and recyclers in waters globally. Most, if not all, global elemental cycles are facili- 海洋生态系统中从微小的光合浮游生物到顶级捕食者的能量数量和流动是许多全球过程的关键,包括渔业生产和碳、氮、磷、硅及其他通常是限制性元素的循环。由于浮游生物在全球水域中扮演着生产者、消费者和回收者的角色,因此它们留下了巨大的生物地球化学足迹。大多数(如果不是全部的话)全球元素循环都是通过浮游生物来实现的。
The Beautiful Transformations of Plankton Life 浮游生物的美丽变化
Figure 2. Morphological transformations that occur in holoplanktonic and meroplanktonic organisms during their development from juvenile to adult forms. 图 2.全浮游生物和合浮游生物在从幼体到成体的发育过程中发生的形态转变。
tated in key steps by microbes, including plankton (Falkowski et al. 2008). Plankton transform and use elements in specific ratios that reflect requirements for building carbohydrates, lipids, proteins, and other building blocks of life (Moreno and Martiny 2018). Nutrients can be limiting in ways that affect global patterns of plankton biodiversity. Some species thrive in the low-latitude Atlantic Ocean because the deposition of Saharan dust delivers iron that would otherwise limit photosynthesis (Mills et al. 2004), whereas requirements by other plankton result in the Great Calcite Belt of the Southern Ocean (Balch et al. 2016). The global biogeochemical footprint of plankton also extends to the atmosphere. Plankton produce dimethyl sulfide that enters the atmosphere and affects cloud formation and climate regulation. Fossilized diatoms from paleolakes drift as airborne particles during massive Saharan dust storms, and are carried over from Africa to South America thanks to the trade winds, fertilizing the Amazon rainforests and the equatorial Atlantic Ocean with iron minerals (Barkley et al. 2021). 包括浮游生物在内的微生物在关键步骤中转化这些元素(Falkowski 等人,2008 年)。浮游生物以特定比例转化和利用元素,这些比例反映了构建碳水化合物、脂类、蛋白质和其他生命基石的要求(Moreno 和 Martiny,2018 年)。养分的限制方式会影响浮游生物多样性的全球模式。一些物种在低纬度大西洋茁壮成长,因为撒哈拉尘埃的沉积提供了铁,否则光合作用将受到限制(Mills 等,2004 年),而其他浮游生物的需求则导致了南大洋大方解石带的形成(Balch 等,2016 年)。浮游生物的全球生物地球化学足迹还延伸到大气中。浮游生物产生的二甲基硫化物进入大气,影响云的形成和气候调节。在撒哈拉沙漠的大规模沙尘暴中,古湖泊中的硅藻化石作为空气中的颗粒漂移,并被信风从非洲带到南美洲,为亚马逊雨林和赤道大西洋提供铁矿物肥料(Barkley 等,2021 年)。
Figure 3. An illustrative overview of the significance of plankton to humanity, contextualised within the Life Framework of Values. The value of plankton is presented across six broad themes of human interest: biogeochemistry; ecology; culture, recreation, and well-being; the evolution of science; economy; and climate. 图 3.浮游生物对人类的意义概览,以生命价值框架为背景。浮游生物的价值体现在人类关心的六大主题中:生物地球化学;生态学;文化、娱乐和福祉;科学的演变;经济;以及气候。
Global elemental cycles are linked through planktonic metabolism and ecological interactions that move nutrients through the biosphere; that is, elements are moved by the processes that make up life and death (Steinberg and Landry 2017, Tanioka et al. 2022). Atmospheric concentrations of major elements are regulated by surface ocean production and subsequent export of organic matter to ocean depths. A vertical gradient in major elements is maintained via biologically mediated and enhanced transport through vertical migration, sinking, egestion, and excretion of organic matter, a process collectively called the biological pump (figure 5, box 2; Siegel et al. 2023). Over time, a scientific consensus has emerged that resolves discrepancies in fossil fuel-derived carbon dioxide emissions by identifying the ocean as a significant absorber of the excess carbon dioxide released into the atmosphere. By some estimates, current atmospheric carbon dioxide concentrations could be up twice as high without this flux mediated by plankton (Friedlingstein et al. 2022). The biological pump is but one example of how important 全球元素循环是通过浮游生物新陈代谢和生态互动联系在一起的,这些新陈代谢和生态互动使营养物质在生物圈中移动;也就是说,元素是通过生与死的过程移动的(Steinberg 和 Landry,2017 年;Tanioka 等,2022 年)。大气中主要元素的浓度受表层海洋生产和随后向海洋深处输出有机物的调节。主要元素的垂直梯度是通过有机物的垂直迁移、下沉、蒸发和排泄等生物介导和增强的传输来维持的,这一过程统称为生物泵(图 5,方框 2;Siegel 等,2023 年)。随着时间的推移,科学界已达成共识,认为海洋是释放到大气中的过量二氧化碳的重要吸收体,从而解决了化石燃料产生的二氧化碳排放量的差异问题。据估计,如果没有浮游生物的这种通量,目前大气中的二氧化碳浓度可能会比现在高出一倍(Friedlingstein 等,2022 年)。生物泵仅仅是一个例子,就能说明它的重要性。
Figure 4. A graphical illustration highlighting the essential role of plankton as the foundation of aquatic food webs. 图 4.图解说明浮游生物作为水生食物网基础的重要作用。
microscopic plankton are in mediating global biogeochemical processes. Therefore, plankton clearly have a remarkable role in making Earth habitable for humans. Their ecology and diversity, yet to be fully understood, are as complex and fascinating as examples from the macroscopic world. 微观浮游生物在全球生物地球化学过程中起着中介作用。因此,浮游生物在使地球适合人类居住方面显然发挥着重要作用。浮游生物的生态学和多样性尚待充分了解,但其复杂性和迷人程度不亚于宏观世界的例子。
3. Plankton and climate 3.浮游生物与气候
Plankton have been recognized as an Essential Climate Variable (GCOS 2022) because of their short lifespan, strong reliance on the physical properties of their habitats, and critical role in the global carbon cycle and other biogeochemical processes (for more details, see the “Plankton and biogeochemistry” section; Hays et al. 2005). Over geological timescales, plankton play a significant role in climate regulation through carbon capture via photosynthesis and export via the biological pump (box 2), ultimately leading to long-term carbon sequestration in ocean sediments (Siegel et al. 2023). Modern and fossilized species, including resting cysts and eggs (box 1), allow scientists to reconstruct Earth’s climate history and evaluate the effects of climate change on ecosystems through time (Gray et al. 2012, Trubovitz et al. 2020, Benedetti et al. 2021). 浮游生物被认为是基本气候变量(GCOS 2022),因为它们的寿命很短、对其栖息地物理特性的依赖性很强,而且在全球碳循环和其他生物地球化学过程中发挥着关键作用(详见 "浮游生物与生物地球化学 "部分;Hays 等,2005 年)。在地质时间尺度上,浮游生物通过光合作用捕获碳并通过生物泵输出碳(方框 2),在气候调节中发挥着重要作用,最终导致碳在海洋沉积物中长期固存(Siegel 等,2023 年)。现代物种和化石物种,包括静止的孢囊和卵(方框 1),使科学家能够重建地球的气候历史,并评估气候变化对生态系统的长期影响(Gray 等人,2012 年;Trubovitz 等人,2020 年;Benedetti 等人,2021 年)。
Temperature is one of the main climate factors that influences various aspects of plankton life, including metabolism, growth, reproduction, morphology, and survival rates (Zohary et al. 2021, Ratnarajah et al. 2023). Warming can also affect plankton indirectly via changes in the water cycle because ocean circulation, 温度是影响浮游生物生活各个方面的主要气候因素之一,包括新陈代谢、生长、繁殖、形态和存活率(Zohary 等,2021 年;Ratnarajah 等,2023 年)。由于海洋环流的原因,气候变暖也会通过水循环的变化间接影响浮游生物、
Box 2. Glossary of terminologies related to aquatic ecosystems mentioned in the article. 方框 2.文章中提到的与水生生态系统有关的术语表。
Acidification: The process of becoming more acidic which can occur in all aquatic ecosystems. Acidification is often used in reference to a decline in the pH of the ocean owing to the absorption of excess atmospheric carbon dioxide, which can impact marine life, especially calcifying organisms. 酸化:酸化:所有水生生态系统中都可能出现的酸性增强过程。酸化通常指海洋的 pH 值因吸收大气中过量的二氧化碳而下降,这会影响海洋生物,尤其是钙化生物。
Bioaccumulation: The accumulation of substances, such as toxins or pollutants, within an organism over time. 生物累积:毒素或污染物等物质在生物体内的长期积累。
Biological pump: A set of interconnected processes that result in the net transport of atmospheric carbon from surface waters to the ocean interior/sediments. It is driven by the activities of marine organisms, and includes the fixation of carbon by aquatic plants, phytoplankton and mixoplankton through photosynthesis, the release of carbon dioxide via respiration, the storage of carbon by animals via prey consumption, and the vertical grantient of organic matter from sunlit to deeper layers of the water colum through vertical migration, sinking, egestion, and excretion. The biological carbon pump has a critical role in regulating Earth’s climate, maintaining ocean chemistry, and supporting the productivity and resilience of marine Ecosystems. 生物泵:一系列相互关联的过程,导致大气中的碳从表层水净迁移到海洋内部/沉积物。它由海洋生物的活动驱动,包括水生植物、浮游植物和混合浮游生物通过光合作用固定碳,通过呼吸作用释放二氧化碳,动物通过消耗猎物储存碳,以及有机物通过垂直迁移、下沉、蒸发和排泄从阳光照射到水柱的深层。生物碳泵在调节地球气候、维持海洋化学性质以及支持海洋生态系统的生产力和恢复力方面发挥着至关重要的作用。
Bioluminescence: The emission of light by living organisms, such as some planktonic species, through a series of chemical reactions, often used for communication, prey attraction, or predator defence. 生物发光:生物发光:生物(如一些浮游生物)通过一系列化学反应发出的光,通常用于交流、吸引猎物或防御捕食者。
Brownification: The darkening of surface aquatic waters, usually lakes, fjords and coastal areas due to the increased input of terrestrial organic matter. 褐化:地表水体(通常是湖泊、峡湾和沿海地区)因陆地有机物的增加而变黑。
Calcification: The formation of calcite or aragonite shells and/or spines in many aquatic species, including plankton (e.g., coccolithophores, planktonic foraminifera). 钙化:钙化: 包括浮游生物在内的许多水生物种形成方解石或文石外壳和/或棘刺(如嗜钙藻类、浮游有孔虫)。
Eutrophication: A perturbation process of some aquatic ecosystems that includes a rapid growth of planktonic autotrophs, fuelled by an increased availability nitrogen and phosphorus, along with high temperatures. This process can occur naturally or be caused/accelerated by human activities, such as agricultural runoff and global warming. When nutrient levels become excessive, eutrophication can degrade water quality, leading to hypoxia (oxygen depletion) and the death of various aquatic species. 富营养化:一些水生生态系统的扰动过程,包括浮游自养生物在氮和磷供应量增加以及高温的推动下快速生长。这一过程可能是自然发生的,也可能是人类活动(如农业径流和全球变暖)引起或加速的。当营养水平过高时,富营养化会导致水质恶化,导致缺氧(氧气耗尽)和各种水生物种的死亡。
Marine snow: A continuous shower of organic and inorganic material (e.g., CaCO3, opal), including dead and decaying plankton, faecal pellets, and other debris, that sinks from sunlit to deeper waters. Marine snow ends up as food for different organisms (while it sinks through the water column) or it reaches the seafloor where it may remain ‘sequestered’ for thousands of years. 海雪:海雪:由有机和无机物质(如 CaCO3、蛋白石)组成的连续雪雨,包括死亡和腐烂的浮游生物、粪便颗粒和其他碎屑,从阳光照射的水域沉入深海。海雪最终会成为不同生物的食物(在水柱中下沉时),或者到达海底,在那里可能会被 "封存 "数千年。
precipitation patterns, sea ice dynamics, and water column stratification lead to changes in nutrient and light availability needed for plankton growth (figure 6; Winder and Sommer 2012, Woolway et al. 2020). For example, drought conditions can reduce water availability and habitat connectivity in freshwater and estuarine ecosystem-fragmenting plankton populations and limiting dispersal (Rojo et al. 2012, Campos et al. 2022). On the other hand, rainfall and runoff may increase terrestrial input and nutrient concentrations and contribute to a brownification effect in lakes and coastal regions (box 2). This phenomenon may provide zooplankton with protection against ultraviolet radiation (Wolf and Heuschele 2018) and visual predators such as fish (Jönsson et al. 2011) but also may cause shifts in phytoplankton composition, concentration, and blooms (Opdal et al. 2019). Reduced ice coverage in polar habitats influences light penetration and nutrient cycling, affecting the phenology (i.e., life-cycle timing), functionality, and the blooms of various plankton species (Deppeler and Davidson 2017, Ardyna and Arrigo 2020). Aquatic acidification (box 2) challenges the ability of calcifying plankton such as foraminifera, coccolithophores, pteropods, and the larvae of echinoderms and mollusks to form and maintain shells, potentially affecting their role in carbon cycling and marine food webs (Tyrrell 2008, Martins Medeiros and Souza 2023). Observations and modeling studies have shown that ongoing climate change has altered the distribution of plankton in aquatic ecosystems. For example, 20 years of satellite data have recorded a color change in the ocean with equatorial regions becoming noticeably greener because of the distribution shifts of photosynthetic plankton species (figure 6; Cael et al. 2023). 降水模式、海冰动态和水体分层会导致浮游生物生长所需的营养和光照供应发生变化(图 6;Winder 和 Sommer,2012 年;Woolway 等,2020 年)。例如,干旱条件会减少淡水和河口生态系统的水供应和生境连通性--使浮游生物种群分散并限制其扩散(Rojo 等,2012 年;Campos 等,2022 年)。另一方面,降雨和径流可能会增加陆地输入量和营养浓度,并导致湖泊和沿海地区的褐色化效应(方框 2)。这种现象可为浮游动物提供抵御紫外线辐射(Wolf 和 Heuschele,2018 年)和鱼类等视觉捕食者(Jönsson 等,2011 年)的保护,但也可能导致浮游植物组成、浓度和藻华的变化(Opdal 等,2019 年)。极地栖息地冰覆盖率降低会影响光的穿透和营养循环,从而影响各种浮游生物物种的物候(即生命周期的时间)、功能和繁殖(Deppeler 和 Davidson,2017 年;Ardyna 和 Arrigo,2020 年)。水生酸化(方框 2)对有孔虫、茧石、翼足类等钙化浮游生物以及棘皮动物和软体动物幼体形成和维持外壳的能力构成挑战,可能会影响它们在碳循环和海洋食物网中的作用(Tyrrell,2008 年;Martins Medeiros 和 Souza,2023 年)。观测和建模研究表明,持续的气候变化改变了浮游生物在水生生态系统中的分布。 例如,20 年的卫星数据记录了海洋颜色的变化,由于光合浮游生物物种的分布变化,赤道地区的海洋颜色明显变绿(图 6;Cael 等人,2023 年)。
Field observations have also demonstrated changes in the distribution of marine plankton populations including poleward shifts (Poloczanska et al. 2013). These trends are expected to continue, with models predicting additional distribution changes and 实地观测还表明,海洋浮游生物种群的分布发生了变化,包括向极地移动(Poloczanska 等人,2013 年)。预计这些趋势将继续下去,模型预测会出现更多的分布变化和
plankton biomass declines by 2100 (Benedetti et al. 2021, Cooley et al. 2022, Heneghan et al. 2024). Warming and stratification caused by climate change are also connected to plankton population changes in freshwater alpine, temperate and tropical lakes (Shimoda et al. 2011, Michelutti et al. 2015, Ogutu-Ohwayo et al. 2016). 到 2100 年,浮游生物生物量将下降(Benedetti 等,2021 年;Cooley 等,2022 年;Heneghan 等,2024 年)。气候变化引起的变暖和分层也与淡水高山湖泊、温带湖泊和热带湖泊中浮游生物数量的变化有关(Shimoda 等,2011 年;Michelutti 等,2015 年;Ogutu-Ohwayo 等,2016 年)。
The consequences of climate-driven changes in plankton communities extend far beyond the plankton themselves. They can significantly affect both marine and terrestrial ecosystems, affecting key processes such as nutrient cycling, carbon sequestration, and food web dynamics (Hays et al. 2005). Therefore, studying the plankton responses to climate change is critical in understanding, predicting, and addressing the broader implications of climate change on Earth and the well-being of our societies. 气候驱动的浮游生物群落变化的后果远不止浮游生物本身。它们会严重影响海洋和陆地生态系统,影响营养循环、碳固存和食物网动态等关键过程(Hays 等,2005 年)。因此,研究浮游生物对气候变化的反应对于了解、预测和解决气候变化对地球和我们社会福祉的广泛影响至关重要。
4. Plankton and the evolution of science 4.浮游生物与科学的发展
From the intricate structures and astonishing colors to the remarkable adaptations of single-celled organisms and the complex life cycles of planktonic metazoans (box 1), human curiosity and amusement have been fueled by plankton. Repeatedly, knowledge gained by studying plankton has been applied to many other organisms and ecosystems in water and on land. Plankton research has advanced ecological concepts such as the paradox of plankton (Hutchinson 1961) and competition theory (Tilman 1982), with plankton-driven models enhancing ecosystem understanding, hypothesis testing, and experimental design. Plankton data inspired the hypothesis of equal biomass distribution in logarithmic size classes, forming the basis of size-spectrum theory (Platt and Denman 1977), validated across diverse organisms (Hatton et al. 2022). Studying plankton continues to yield insights into allometry and scaling relationships between size and biological traits. 从浮游生物错综复杂的结构和令人惊叹的色彩,到单细胞生物非凡的适应能力和浮游类元动物复杂的生命周期(方框 1),浮游生物激发了人类的好奇心和乐趣。研究浮游生物所获得的知识一再被应用于水上和陆地上的许多其他生物和生态系统。浮游生物研究推动了生态学概念的发展,如浮游生物悖论(Hutchinson,1961 年)和竞争理论(Tilman,1982 年),浮游生物驱动的模型增强了对生态系统的理解、假设检验和实验设计。浮游生物数据启发了生物量按对数大小等级平均分布的假设,形成了大小谱理论(Platt 和 Denman,1977 年)的基础,并在多种生物中得到验证(Hatton 等,2022 年)。对浮游生物的研究将继续深入揭示大小与生物特征之间的异构和比例关系。
Our understanding of the diversity and limits of life is broadened by plankton. Extremophilic plankton thriving in harsh 浮游生物拓宽了我们对生命多样性和极限的认识。嗜极浮游生物在严酷的环境中茁壮成长
Figure 5. A schematic diagram illustrating the intricate influence of plankton on carbon cycling within aquatic ecosystems. 图 5.浮游生物对水生生态系统碳循环的复杂影响示意图。
environments (e.g., deep-sea hydrothermal vents, polar regions) provide insights into adaptability, evolution, and extraterrestrial habitability (Calbet 2024). Fossilized plankton have advanced paleoceanography and the reconstruction of Earth’s history, revealing climate changes and life evolution (Rigby and Milsom 2000, Falkowski et al. 2004). Plankton colonies (e.g., Volvox, choanoflagellates, siphonophores) enhance our understanding of multicellularity and individuality in nature (Miller 2010), and the chordate bodies of salps and larvaceans help us study vertebrate and human evolutionary processes. 环境(如深海热液喷口、极地)提供了对适应性、进化和地外宜居性的洞察力(Calbet,2024 年)。浮游生物化石推动了古海洋学和地球历史的重建,揭示了气候变化和生命进化(Rigby 和 Milsom,2000 年;Falkowski 等,2004 年)。浮游生物群落(如伏流星体、绒毛鞭毛虫、虹吸虫)加深了我们对自然界中多细胞性和个体性的理解(米勒,2010 年),盐类和幼虫的脊索动物躯体有助于我们研究脊椎动物和人类的进化过程。
Fields beyond biological sciences, such as physics, mathematics, medicine, socioeconomics, forensics, engineering, and citizen science have been inspired by planktonic organisms. The competitive exclusion principle derived from plankton has applications in socioeconomics (Gause 1934), and plankton species have been used as model organisms to study nonlocal reaction-diffusion equations in mathematics (e.g., Du and Hsu 2010). Planktoninspired research has developed theories and tools for understanding concepts such as buoyancy and gravity underwater (Kiørboe et al. 2018, Krishnamurthy et al. 2019). Mixoplankton enables research in phagotrophy (box 1) and endosymbiotic plastid acquisition (Millette et al. 2023) with potential implications for organ transplants. The notable discoveries of anaphylaxis from the Portuguese man o’ war (Physalia physalis), the telomeres from the freshwater ciliate Tetrahymena thermophila, and the green fluorescent protein from the jellyfish Aequorea victoria have revolutionized allergology, ageing, and cancer research, earning Nobel Prizes in medicine (1913,2009)(1913,2009) and chemistry (2008;(2008 ; Blackburn 2010 , Botterell et al. 2023). Freshwater plankton species such as rotifers and cladocerans (e.g., Moina macrocopa, Daphnia magna) are used as 浮游生物启发了生物科学以外的领域,如物理学、数学、医学、社会经济学、法医学、工程学和公民科学。从浮游生物中得出的竞争排斥原理在社会经济学中得到了应用(Gause,1934 年),浮游生物物种被用作数学中研究非局部反应-扩散方程的模式生物(例如,Du 和 Hsu,2010 年)。受浮游生物启发的研究为理解水下浮力和重力等概念开发了理论和工具(Kiørboe 等人,2018 年;Krishnamurthy 等人,2019 年)。混合浮游生物促进了吞噬作用(方框 1)和内共生质体获取(Millette 等,2023 年)方面的研究,对器官移植具有潜在影响。葡萄牙战人(Physalia physalis)的过敏性休克、淡水纤毛虫嗜热四膜虫(Tetrahymena thermophila)的端粒以及维多利亚水母(Aequorea victoria)的绿色荧光蛋白等重大发现彻底改变了过敏学、老龄化和癌症研究,并获得了诺贝尔医学 (1913,2009)(1913,2009) 和化学 (2008;(2008 ; 奖(Blackburn,2010 年;Botterell 等,2023 年)。淡水浮游生物物种,如轮虫和甲壳动物(如大栉水母和大型蚤)被用作
role models in biomedical and ecotoxicological research (Dahms et al. 2011, Siciliano et al. 2015). In forensic science, diatoms are used as diagnostic tools for determining deaths by drowning (Saini and Rohilla 2020). Dahms 等人,2011 年;Siciliano 等人,2015 年)。在法医学中,硅藻被用作确定溺水死亡的诊断工具(Saini 和 Rohilla,2020 年)。
Phytoplankton communities are so dense in the sunlit waters that they can be seen from space. The launch of the Coastal Zone Color Scanner by NASA in 1979 proved the concept that phytoplankton biomass can be estimated from space by measuring an important trait of these organisms: color. This advancement in space-based plankton observation has greatly influenced ecology and led to the development of numerous satellite and airborne sensors from space agencies worldwide. The new generation of satellite sensors will be able to measure even more colors to help us better understand the diversity of phytoplankton functional groups in aquatic systems. Moreover, plankton-inspired frugal science aims to develop low-cost, high-quality tools to democratize science access (de Vargas et al. 2022). Frugal science has already led to groundbreaking discoveries related to the rapid expansion of plankton size for survival, including cellular origami techniques (Flaum and Prakash 2024) and hydrodynamic trigger waves (Mathijssen et al. 2019). Citizen science and outreach activities provide unique opportunities for individuals of all ages to engage in scientific research, enhance their knowledge of plankton and aquatic ecosystems, and inspire future generations of scientists (supplemental table S1; Kirby et al. 2021). 浮游植物群落在阳光照射的水域中非常密集,从太空中都能看到它们。美国国家航空航天局(NASA)于 1979 年发射的海岸带彩色扫描仪证明了这样一个概念,即浮游植物的生物量可以通过测量这些生物的一个重要特征--颜色--从太空中估算出来。天基浮游生物观测的这一进步极大地影响了生态学,并促使世界各地的航天机构开发了大量卫星和机载传感器。新一代卫星传感器将能够测量更多的颜色,帮助我们更好地了解水生系统中浮游植物功能群的多样性。此外,浮游生物启发的节俭科学旨在开发低成本、高质量的工具,实现科学获取的民主化(de Vargas 等,2022 年)。节俭科学已经带来了与浮游生物为生存而迅速扩大体积有关的突破性发现,包括细胞折纸技术(Flaum 和 Prakash,2024 年)和水动力触发波(Mathijssen 等,2019 年)。公民科学和外联活动为各年龄段的个人参与科学研究提供了独特的机会,增强了他们对浮游生物和水生生态系统的了解,并激励了后代科学家(补充表 S1;Kirby 等人,2021 年)。
5. Plankton and the economy 5.浮游生物与经济
Plankton are an often underestimated part of various economic sectors, including food supply, access to water, tourism, energy supply, and biotechnology. Plankton fisheries harvest jellyfish, 浮游生物在食品供应、用水、旅游、能源供应和生物技术等各个经济领域的作用往往被低估。浮游生物渔业捕捞水母、
Plankton and Climate 浮游生物与气候
Figure 6. A map with local, regional, and global examples where temperature-driven climate phenomena, such as monsoons, oceanic oscillations, stratification, drought, and hypersalination, have affected plankton communities across various aquatic systems, including lakes, estuaries, and coastal and open ocean environments. 图 6 气候变化对浮游生物群落的影响图中展示了由温度驱动的气候现象(如季风、海洋振荡、分层、干旱和高盐度化)影响各种水生系统(包括湖泊、河口、沿海和公海环境)浮游生物群落的地方、区域和全球实例。
krill, and copepods. The most common cultured plankton organisms are the cyanobacterium Spirulina, the shrimp Artemia, and rotifers of the genus Brachionus (Suthers et al. 2019, Araujo et al. 2022). Harvested and farmed plankton are used as food and supplements for species cultured for both commercial and recreational aquaculture, such as fish, shellfish, and shrimp, as well as for humans (e.g., krill quesadillas, Calanus soups, jelly dishes, Spirulina powder, plankton oils, polyunsaturated fatty acids). As the regulator of aquatic life, plankton also affect the populations and distributions of many organisms with socioeconomic importance. Upwelling systems worldwide, such as those off the coasts 磷虾和桡足类。最常见的养殖浮游生物是蓝藻、对虾和轮虫(Suthers 等,2019 年;Araujo 等,2022 年)。捕捞和养殖的浮游生物被用作鱼类、贝类和虾等商业和休闲水产养殖物种以及人类的食物和补充剂(如磷虾饼、菖蒲汤、果冻菜、螺旋藻粉、浮游生物油、多不饱和脂肪酸)。作为水生生物的调节器,浮游生物还影响着许多具有重要社会经济意义的生物的数量和分布。全球的上升流系统,如沿海地区的上升流系统
of Peru, West Africa, Western North America, and Venezuela, demonstrate the economic significance of plankton. The Peruvian upwelling system, for instance, is an example of how nutrient-rich waters from ocean depths fuel high productivity and plankton growth which in turn sustains nearly 10%10 \% of the global fish catch (Chavez et al. 2008). Some countries, however, might see economic losses when environmental conditions trigger blooms of harmful algae or jellyfish (Richardson et al. 2009, Griffith and Gobler 2020). As an example, the 2017-2019 Red Tide event in Southwest Florida resulted in over US$184 million in local monetary losses and nearly 3000 job-years lost (Court et al. 2021). Open and controlled aquacultures can also be affected by unregulated plankton blooms, which may deplete oxygen levels and elevate concentrations of toxins and parasites, thereby threatening the health of cultured species and posing risks to their consumers. 在秘鲁、西非、北美西部和委内瑞拉,浮游生物的经济意义不言而喻。例如,秘鲁的上升流系统就是一个例子,它说明了海洋深处富含营养物质的水域如何促进高生产力和浮游生物的生长,进而维持全球近 10%10 \% 的渔获量(Chavez 等,2008 年)。然而,当环境条件引发有害藻类或水母大量繁殖时,一些国家可能会蒙受经济损失(Richardson 等,2009 年;Griffith 和 Gobler,2020 年)。例如,佛罗里达州西南部 2017-2019 年的赤潮事件导致当地经济损失超过 1.84 亿美元,损失近 3000 个工作年(Court 等,2021 年)。开放式和受控水产养殖也会受到不受监管的浮游生物大量繁殖的影响,这可能会耗尽氧气水平并提高毒素和寄生虫的浓度,从而威胁养殖物种的健康并对其消费者构成风险。
Plankton support economic sectors beyond food supply. By acting as natural biofilters, some plankton contribute to the removal of excess nutrients and pollutants from water bodies. This contributes to clean water provision and benefits sectors related to human water consumption and use, agriculture, and industrial manufacturing and cooling. Plankton populations also help maintain diverse aquatic habitats, promoting recreational activities that generate substantial revenue for industry and employment opportunities in communities close to water. 浮游生物支持食物供应以外的经济部门。作为天然生物过滤器,一些浮游生物有助于清除水体中过量的营养物质和污染物。这有助于提供清洁水源,并使与人类用水和用水、农业、工业制造和冷却相关的行业受益。浮游生物的数量还有助于维持多样化的水生生境,促进娱乐活动,为工业创造大量收入,并为临近水域的社区创造就业机会。
In addition to these benefits, plankton also have a broader economic impact through their exploitation in various sectors such as medicine, cosmetics, construction, and energy supply. For example, the freshwater mixoplankton Haematococcus pluvialis is farmed for its astaxanthin, which is widely used in pharmaceuticals, cosmetics, and food colorants (e.g., salmon, Régnier et al. 2015). Plankton-derived bioactive compounds, such as bioluminescent proteins and toxins, are increasingly used in medicine and the pharmaceutical industry. Applications include nonpolluting fluorescent markers and products with therapeutic potential, such as antibiotics, antivirals, anticancer agents, and immunomodulatory drugs (Abida et al. 2013, Riccio and Lauritano 2019). Estimates indicate that marine bacteria may account for up to 64% of the US$563 billion to US$5.69 trillion market value in undiscovered marine-derived anticancer drugs (Erwin et al. 2010). Researchers have also explored the use of selected plankton algae as more environmentally friendly alternatives to pesticides for controlling the planktonic stages of vectorial mosquitoes through toxicity or indigestibility (Marten 2007). Calcite shells of certain plankton species (e.g., foraminifera, coccolithophores) are part of limestone, a material used in the steel industry and for the production of chalk, construction materials, agricultural lime, and toothpaste. Fossil oil and natural gas include thousands on thousands of dead plankton organisms that were buried on the sea floor millions of years ago (Suthers et al. 2019), whereas planktonic microalgae such as Dunaliella are used for biodiesel and bioethanol production (Amoozegar et al. 2019, Calbet 2024). Innovative marine carbon dioxide removal strategies, such as ocean alkalinity enhancement and artificial upwelling, are being developed to use plankton in actions toward net-zero emissions by 2050 (Zhang et al. 2022). For successful implementation, these strategies must provide evidence of minimal negative impacts on ocean ecosystems and biodiversity (GESAMP 2019, Zhang et al. 2022) 除了这些益处,浮游生物还通过在医药、化妆品、建筑和能源供应等各个领域的开发利用,产生了更广泛的经济影响。例如,养殖淡水混合浮游生物 Haematococcus pluvialis 是为了获取虾青素,虾青素被广泛用于制药、化妆品和食品着色剂(如鲑鱼,Régnier 等,2015 年)。浮游生物衍生的生物活性化合物,如生物发光蛋白和毒素,正越来越多地用于医学和制药业。其应用包括无污染的荧光标记和具有治疗潜力的产品,如抗生素、抗病毒药物、抗癌剂和免疫调节药物(Abida 等,2013 年;Riccio 和 Lauritano,2019 年)。据估计,在 5,630 亿至 5.69 万亿美元的未发现海洋衍生抗癌药物市场价值中,海洋细菌可能占 64%(Erwin 等,2010 年)。研究人员还探讨了如何利用特定浮游藻类作为杀虫剂的更环保替代品,通过毒性或难消化性控制病媒蚊子的浮游阶段(Marten,2007 年)。某些浮游生物物种(如有孔虫、茧石藻)的方解石外壳是石灰石的一部分,石灰石是一种用于钢铁工业和生产白垩、建筑材料、农用石灰和牙膏的材料。化石石油和天然气包括数百万年前埋在海底的成千上万的浮游生物尸体(Suthers 等人,2019 年),而浮游微藻(如盾藻)则被用于生物柴油和生物乙醇的生产(Amoozegar 等人,2019 年;Calbet,2024 年)。 目前正在开发创新的海洋二氧化碳去除战略,如海洋碱度增强和人工上升流,以利用浮游生物采取行动,实现 2050 年的净零排放(Zhang 等,2022 年)。要成功实施这些战略,必须证明其对海洋生态系统和生物多样性的负面影响最小(GESAMP,2019 年;Zhang 等,2022 年)
6. Plankton, human culture, recreation, and well-being 6.浮游生物、人类文化、娱乐和福祉
Human culture, recreation, and well-being are being supported by plankton in various ways. Communities close to water bodies use 浮游生物以各种方式支持着人类的文化、娱乐和福祉。水体附近的社区利用
Figure 7. Examples of how plankton organisms have been used as an inspiration in human art and culture. 图 7.浮游生物在人类艺术和文化中的应用实例。
plankton as a food source both indirectly, by supporting smaller fish species that contribute to their cultural practices and diets, and directly. For example, in China and Japan, jellyfish feature prominently in traditional dishes as a high nutrition-low calorie culinary delicacy with various health benefits such as aiding digestion and treatment of high blood pressure and bone pain (Leone et al. 2015). The freshwater cyanobacterium Spirulina has been part of traditional diets in African communities such as the Kanembu around Lake Chad and Central American communities such as the Aztecs, and its popularity continues to expand globally as a health food supplement. 浮游生物既是一种间接的食物来源,通过支持有助于其文化习俗和饮食的小型鱼类物种,也是一种直接的食物来源。例如,在中国和日本,海蜇作为一种高营养、低热量的美食在传统菜肴中占有重要地位,具有多种保健功效,如帮助消化、治疗高血压和骨痛(Leone 等,2015 年)。淡水蓝藻螺旋藻一直是非洲社区(如乍得湖周围的卡内布人)和中美洲社区(如阿兹特克人)传统饮食的一部分,作为一种健康食品补充剂,其受欢迎程度在全球范围内不断扩大。
As key indicators of water quality, plankton modulate access to recreational experiences in aquatic environments such as swimming, surfing, recreational fishing, and underwater exploration. For instance, in high latitudes, recreational activities such as fishing and whale watching are closely tied to the timing of plankton blooms. These blooms create hotspots for marine life and attract migratory and charismatic species that follow them. Authorities and local communities often use plankton blooms to inform decisions about whether or not to engage in aquatic recreational activities or enter aquatic areas. Bioluminescent marine dinoflagellates create stunning displays of light, enhancing nighttime aquatic experiences. They are part of cultural events (e.g., the Redhan lun, “Sea of Stars” phenomenon on Vaadhoo Island in the Maldives) and tourist attractions for many countries. Records of bioluminescent plankton can be found in documentaries, the film The Beach, and in many videos and photos online. Fossilized 作为水质的关键指标,浮游生物调节着游泳、冲浪、休闲垂钓和水下探险等水生环境中的娱乐体验。例如,在高纬度地区,钓鱼和观鲸等娱乐活动与浮游生物大量繁殖的时间密切相关。浮游生物的大量繁殖为海洋生物创造了热点,并吸引着洄游物种和有魅力的物种随之而来。当局和当地社区经常利用浮游生物藻华来决定是否进行水上娱乐活动或进入水域。海洋双鞭毛藻生物发光体会发出令人惊叹的光,增强夜间的水生体验。它们是许多国家文化活动(如马尔代夫瓦杜岛的红汉伦 "星海 "现象)和旅游景点的一部分。关于生物发光浮游生物的记录可以在纪录片、电影《海滩》以及许多在线视频和照片中找到。化石
plankton create the chalk landscapes that have attracted people for recreation (e.g., the White Cliffs of Dover, in the United Kingdom) and the creation of huge works of art in the landscape, such as the Uffington White Horse in the United Kingdom. 浮游生物创造了白垩地貌,吸引人们前来休闲(如英国的多佛尔白悬崖),并在地貌中创造出巨大的艺术品,如英国的乌芬顿白马。
Throughout history, plankton-derived materials have influenced human societies and cultural heritage. The silica-rich skeletons of diatoms and radiolarians have provided valuable resources, such as flint for tools and weapons during the Stone Age and opal for use in jewelry and religious symbols from civilizations, such as the Mesoamericans, the Arabs, the Romans, and the Greeks (Eckert 1997, Suthers et al. 2019). Today, the structural properties of plankton inspire advancements in architecture, engineering, and biomimetics (Jungck et al. 2019). Architects have been inspired by planktonic forms to design iconic buildings, such as Milan’s Galleria Vittorio Emmanuele and the former Monumental Gate (Porte Binet) of Paris. In addition, they have influenced the design of systems for renewable energy technologies such as wind turbines, solar panels, and lightweight cars (Pohl and Nachtigall 2015, Sharma et al. 2021). 纵观历史,浮游生物衍生的物质对人类社会和文化遗产产生了影响。硅藻和放射虫富含二氧化硅的骨骼提供了宝贵的资源,例如石器时代用于工具和武器的燧石,以及中美洲人、阿拉伯人、罗马人和希腊人等文明用于珠宝和宗教象征的蛋白石(Eckert,1997 年;Suthers 等,2019 年)。如今,浮游生物的结构特性激发了建筑、工程和生物仿生学的进步(Jungck 等,2019 年)。建筑师受到浮游生物形态的启发,设计出了标志性建筑,如米兰的维托里奥-埃马努埃莱大街(Galleria Vittorio Emmanuele)和巴黎的前纪念碑门(Porte Binet)。此外,浮游生物还影响了风力涡轮机、太阳能电池板和轻型汽车等可再生能源技术系统的设计(Pohl 和 Nachtigall,2015 年;Sharma 等,2021 年)。
The intricate forms and vibrant colors of plankton have inspired artists across media, from paintings and sculptures to music, photography, choreography, fashion, and animation (figure 7, supplemental table S2). The detailed plankton illustrations of the nineteenth-century scientist and artist Ernst Haeckel are a remarkable example. The drawings not only introduced the beauty of plankton to a wider audience, they also have inspired many artists over time. Plankton-influenced artworks are displayed in 浮游生物错综复杂的形态和鲜艳的色彩激发了各种媒体艺术家的创作灵感,从绘画和雕塑到音乐、摄影、舞蹈、时装和动画(图 7,补充表 S2)。十九世纪科学家和艺术家恩斯特-海克尔(Ernst Haeckel)的浮游生物插图就是一个杰出的例子。这些图画不仅让更多的人认识到浮游生物的美丽,而且长期以来启发了许多艺术家。受浮游生物影响的艺术作品展示在
museums, universities, and exhibitions (e.g., 2017 “Wildlife and La Mer” at the Philadelphia Airport), offering an engaging platform for natural history education (Jungck et al. 2019). Plankton have been commemorated on postage stamps globally, with countries raising awareness of their diversity and ecological importance. They have also made their way into popular culture, with characters such as the antihero Sheldon J (a copepod restaurateur) from the children’s show Spongebob Squarepants. Although this cartoon has helped raise awareness of plankton and although an antihero is not always a negative element in pop culture, its portrayal of plankton as a villain can contribute to a negative perception of plankton among some audiences. 博物馆、大学和展览(如 2017 年费城机场的 "野生动物与海洋"),为自然历史教育提供了一个引人入胜的平台(Jungck 等,2019 年)。浮游生物已被印在全球邮票上作为纪念,提高了各国对其多样性和生态重要性的认识。浮游生物还进入了大众文化,如儿童节目《海绵宝宝》中的反英雄谢尔顿-J(桡足类动物餐馆老板)。虽然这部动画片有助于提高人们对浮游生物的认识,虽然反英雄并不总是流行文化中的负面元素,但它将浮游生物描绘成反派人物,可能会导致一些观众对浮游生物产生负面看法。
Plankton and policy 浮游生物与政策
Recent policy initiatives, such as the United Nations Sustainable Development Goal 14 (Life Below Water) and the KunmingMontreal Global Biodiversity Framework, take a holistic approach to biodiversity management, considering all ecosystem servicesupporting species and habitats (Scharlemann et al. 2020). Because of their fundamental role in aquatic ecosystems, plankton biomass and diversity have been identified as Essential Ocean and Climate Variables to be monitored locally in a way that data can be aggregated to evaluate regional and global changes (Miloslavich et al. 2018). Still, despite existing efforts from many nations to monitor plankton communities as indicators of ecosystem health (supplemental table S3), their relevance for ecosystem dynamics and functioning is oftentimes still neither monitored nor assessed. The underrepresentation of plankton in policy mechanisms, discussions on biodiversity loss, and conservation efforts persists, highlighting opportunities to integrate plankton into initiatives such as the Aichi Biodiversity Targets and the KunmingMontreal Global Biodiversity Framework (Chiba et al. 2018). 最近的政策倡议,如联合国可持续发展目标 14(水下生命)和昆明-蒙特利尔全球生物多样性框架,对生物多样性管理采取了整体方法,考虑了支持物种和栖息地的所有生态系统服务(Scharlemann 等,2020 年)。浮游生物的生物量和多样性在水生生态系统中发挥着重要作用,因此被确定为 "基本海洋和气候变量",需要在当地进行监测,以便汇总数据,评估区域和全球变化(Miloslavich 等,2018 年)。然而,尽管许多国家都在努力监测浮游生物群落,将其作为生态系统健康的指标(补充表 S3),但它们与生态系统动态和功能的相关性往往仍未得到监测或评估。浮游生物在政策机制、生物多样性丧失讨论和保护工作中的代表性仍然不足,这凸显了将浮游生物纳入爱知生物多样性目标和昆明-蒙特利尔全球生物多样性框架等倡议的机会(千叶等人,2018 年)。
The purpose of this policy section is to briefly introduce how the most common plankton variables are used in policy frameworks, with examples from Africa, the Americas, Australia, Europe, and Japan (table S3). Chlorophyll a (a variable that reflects phytoplankton biomass) is the most frequently measured variable, followed by primary productivity, community composition (often based on taxonomy and detailed phytoplankton pigment analyses), abundance, and biomass. Some policy frameworks also include monitoring the presence of invasive species (e.g., the International Convention for the Control and Management of Ships’ Ballast Water and Sediments requires the measurement of viable phytoplankton and Vibrio cholera in ballast waters) or traits such as size (e.g., the EU Marine Strategy Framework Directive) and toxins (e.g., Australia’s Water Quality Improvement Plans). 本政策章节的目的是简要介绍政策框架中如何使用最常见的浮游生物变量,并列举非洲、美洲、澳大利亚、欧洲和日本的例子(表 S3)。叶绿素 a(反映浮游植物生物量的变量)是最常用的测量变量,其次是初级生产力、群落组成(通常基于分类学和详细的浮游植物色素分析)、丰度和生物量。一些政策框架还包括监测是否存在入侵物种(例如,《控制和管理船舶压载水和沉积物国际公约》要求测量压载水中的浮游植物和霍乱弧菌)或大小(例如,《欧盟海洋战略框架指令》)和毒素(例如,澳大利亚的水质改善计划)等特征。
Plankton variables serve a wide range of users across legislative mandates (figure 8). They enable government agencies to monitor environmental status and water quality (e.g., microbial pathogens, harmful algae, eutrophication, pollution) and establish protective measures for aquatic ecosystems such as water quality standards (e.g., the Programa de Vigilancia de Playas del Rio, the Periodic Beach Surveillance Programme, of the River Uruguay Administrative Commission; the South African Water Quality Guidelines for Domestic Water Use; the European Water Framework Directive), and marine protected areas (e.g., Canada’s Ocean Act, Canada 1996; Japan’s Marine Biodiversity Conservation Strategy, Nature Conservation Bureau 2011). Public and private sectors also use plankton variables to monitor the environmental conditions and impacts of their operations (e.g., aquaculture, activities related to tourism), to develop sustainable practices, and to make informed decisions for accessing aquatic ecosystems on 浮游生物变量服务于各种法定任务的广泛用户(图 8)。政府机构可利用浮游生物变量监测环境状况和水质(如微生物病原体、有害藻类、富营养化、污染),并制定水质标准等水生生态系统保护措施(如乌拉圭河委员会的 "Programa de Vigilancia de Playas del Rio"、"定期海滩监测计划")、例如,乌拉圭河行政委员会的 "Programa de Vigilancia de Playas del Rio"、"定期海滩监测计划";南非的 "生活用水水质指南";"欧洲水框架指令")以及海洋保护区(例如,加拿大的 "海洋法案",加拿大,1996 年;日本的 "海洋生物多样性保护战略",日本自然保护局,2011 年)。公共和私营部门也利用浮游生物变量来监测环境状况及其运营(如水产养殖、与旅游业相关的活动)的影响,制定可持续的做法,并就如何利用水生生态系统做出明智的决策。
Figure 8. 10 examples showcasing the use of common plankton variables (chlorophyll a, primary production, community composition, abundance, biomass, and traits) in scientific research, policy, and environmental management. 图 8.10 个例子展示了浮游生物常见变量(叶绿素 a、初级产量、群落组成、丰度、生物量和性状)在科学研究、政策和环境管理中的应用。
the basis of their overall health and quality. Moreover, they are used for monitoring and projecting habitat suitability for the population of fish and charismatic species, ultimately contributing to decisions about sustainable fishing yields. This includes the management of commercially important planktonic species, such as krill (Convention on the Conservation and of Antarctic Marine Living Resources 2023) and the copepod Calanus finmarchicus (Nærings og fiskeridepartementet, commercial copepod trawling licenses with total allowable catch). 其整体健康和质量的基础。此外,它们还用于监测和预测鱼类和魅力物种的栖息地适宜性,最终有助于做出关于可持续捕捞产量的决定。这包括对具有重要商业价值的浮游生物的管理,如磷虾(《南极海洋生物资源保护和公约 2023》)和桡足类动物 Calanus finmarchicus(Nærings og fiskeridepartementet,具有总可捕量的商业桡足类拖网许可证)。
Despite the use of common plankton variables by various nations, the discrepancies in data collection, analysis, and accessibility both within and among countries pose challenges to the successful implementation of policy frameworks. Establishing a transnational consensus on measurement and analysis standardization, as well as the development of robust methods to compare patterns of change across programs with different 尽管各国使用共同的浮游生物变量,但各国内部和各国之间在数据收集、分析和获取方面存在的差异对政策框架的成功实施构成了挑战。就测量和分析的标准化达成跨国共识,并开发可靠的方法来比较不同计划的变化模式,这对政策框架的成功实施提出了挑战。
sampling methods, would enable more effective data use and facilitate the compilation of information for further research and analysis. In addition, including more ecologically and functionally relevant plankton variables in policy frameworks, such as Essential Biological Variables (Brummitt et al. 2017), would enhance effective ecosystem-based monitoring and forecasting approaches for well-informed decisions on the basis of causality as opposed to just correlational interpretations. This is important, especially when considering disruptive local impacts (e.g., pollution) and climate change on ecosystem stability and the crucial role of plankton in numerous carbon dioxide removal initiatives under development. The creation of an international plankton policy working group has the potential to enhance global awareness and integration of plankton-related issues in high-level policies while still acknowledging that regional policies are important to address specific local needs. 采样方法,将能更有效地利用数据,并促进信息的汇集,以便进一步研究和分析。此外,将更多与生态和功能相关的浮游生物变量纳入政策框架,如基本生物变量(Brummitt 等,2017 年),将加强基于生态系统的有效监测和预测方法,以便在因果关系而非相关解释的基础上做出明智决策。这一点非常重要,尤其是考虑到对生态系统稳定性的破坏性局部影响(如污染)和气候变化,以及浮游生物在正在制定的众多二氧化碳清除计划中的关键作用。建立国际浮游生物政策工作组有可能提高全球意识,将浮游生物相关问题纳入高层政策,同时也承认地区政策对于满足当地具体需求的重要性。
Essential actions for enhancing our understanding of the value of plankton 提高我们对浮游生物价值认识的基本行动
Even if plankton have fascinated observers for centuries, it was not until 1887 that Hensen introduced the definition of plankton and that the rise of organized plankton research started (Dolan 2021). Since then, scientists have developed a plethora of tools and methods to study plankton from space, in water, in the laboratory, and with mathematical models (Lombard et al. 2019). In this section, we suggest four key actions to advance and sustain plankton research needed for understanding the values of plankton to humanity and our planet. 尽管几个世纪以来浮游生物一直吸引着观察者,但直到 1887 年,Hensen 才提出浮游生物的定义,并开始兴起有组织的浮游生物研究(Dolan 2021)。从那时起,科学家们开发了大量的工具和方法,从太空、水中、实验室以及数学模型来研究浮游生物(Lombard 等人,2019 年)。在本节中,我们将提出四项关键行动,以推进和维持浮游生物研究,从而了解浮游生物对人类和地球的价值。
1. Expanded sustained plankton research 1.扩大浮游生物的持续研究
Despite the vital role of plankton observations in ecological studies and policy frameworks, many observing and monitoring programs suffer from underfunding and data accessibility limitations that jeopardize their vital contributions to recording environmental status and understanding aquatic ecosystems (Batten et al. 2019, Ratnarajah et al. 2023). Sustained plankton research requires investments in long-term observing or monitoring programs that measure various plankton groups simultaneously by using different tools (e.g., bottles, nets, omics, imaging, continuous recording systems, optical bulk and singlecell or organism sensors) and can be integrated with satellite and modeling methods (Pierella Karlusich et al. 2022, Ratnarajah et al. 2023). The development of low-cost, high-quality observing tools (e.g., PlanktoScope) and advancements in remote sensing (e.g., satellites, underwater gliders, moorings) can democratize science and expand global data coverage, particularly in undersampled regions across different aquatic environments (Spanbauer et al. 2020). For example, automated technical sensors can be applied on most research vessels, as well of ships of opportunity (e.g., the Continuous Plankton Recorder, FerryBox, GoShip), whereas OneArgo and moorings with imagining tools can collect important information about the biogeography and characteristics of species (Spanbauer et al. 2020, Picheral et al. 2022). Laboratory experiments and mesocosm studies are crucial for understanding plankton ecophysiology. Models consolidate our conceptual understanding and interpolate in time, space, and ecology, making them powerful tools for facilitating hypothesis testing, advancing knowledge, and informing observing systems about critical data needs (Skogen et al. 2021, 2024). For example, plankton digital twins, akin to weather forecasts, can provide projections related to human actions and policy decisions (Flynn et al. 2022). Despite 尽管浮游生物观测在生态研究和政策框架中发挥着重要作用,但许多观测和监测计 划受到资金不足和数据可获取性的限制,这危及它们在记录环境状况和了解水生生态系 统方面的重要贡献(Batten 等,2019 年;Ratnarajah 等,2023 年)。持续的浮游生物研究需要对长期观测或监测计划进行投资,利用不同工具(如瓶子、网、海洋学、成像、连续记录系统、光学散装和单细胞或生物体传感器)同时测量各种浮游生物群,并与卫星和建模方法相结合(Pierella Karlusich 等,2022 年;Ratnarajah 等,2023 年)。低成本、高质量观测工具(如 PlanktoScope)的开发和遥感技术(如卫星、水下滑翔机、系泊设备)的进步可使科学民主化并扩大全球数据覆盖范围,尤其是在不同水生环境中取样不足的区域(Spanbauer 等,2020 年)。例如,自动技术传感器可应用于大多数研究船和机会船(如浮游生物连续记录仪、FerryBox、GoShip),而带有成像工具的 OneArgo 和系泊设备可收集有关生物地理学和物种特征的重要信息(Spanbauer 等,2020 年;Picheral 等,2022 年)。实验室实验和中观宇宙研究对了解浮游生物生态生理学至关重要。模型可巩固我们的概念理解,并在时间、空间和生态学上进行插值,是促进假设检验、增进知识和告知观测系统关键数据需求的强大工具(Skogen 等,2021 年,2024 年)。 例如,浮游生物数字双胞胎与天气预报类似,可以提供与人类行动和政策决定相关的预测(Flynn 等,2022 年)。尽管
ongoing technological advancements, the continuous investment in educating and supporting plankton experts is vital for sustaining research and enhancing our understanding of the value of plankton to humanity and Earth. 随着技术的不断进步,对浮游生物专家的教育和支持的持续投资对于维持研究和提高我们对浮游生物对人类和地球价值的认识至关重要。
2. Harmonized, standardized, and accessible data 2.统一、标准化和可获取的数据
Sustainable plankton research can only be guaranteed if observational and modeling data are accessible in almost real time and in a format that can be employed by various users. Ensuring compliance with FAIR (Findable, Accessible, Interoperable, and Reusable) and CARE (Collective Benefit, Authority to Control, Responsibility, and Ethics; Carroll et al. 2021) data principles, along with implementing data standardization protocols such as Darwin Core, significantly enhances interoperability and facilitates seamless data sharing across various platforms (e.g., OBIS, GBIF, COPEPOD). Modeling and forecasting not only synthesize existing data but also generate new data that is important for enhancing our ecological and ecosystem knowledge. Therefore, a standardization of model outputs is needed for increasing their utility. Harmonized data aggregation is key for ensuring accessibility to humans and computational agents that retrieve and integrate diverse data sources for downstream investigations (Wilkinson et al. 2016) and support large-scale research and conservation efforts aligned with international agreements and the UN Sustainable Development Goals. 只有观测数据和建模数据几乎可以实时获取,并且格式可供不同用户使用,才能保证浮游生物研究的可持续发展。确保遵守 FAIR(可查找、可访问、可互操作和可重复使用)和 CARE(集体利益、控制权、责任和道德;Carroll 等,2021 年)数据原则,同时实施达尔文核心等数据标准化协议,可大大提高互操作性,促进各种平台(如 OBIS、GBIF、COPEPOD)之间的无缝数据共享。建模和预测不仅能综合现有数据,还能生成新数据,这些数据对增强我们的生态和生态系统知识非常重要。因此,需要对模型输出进行标准化,以提高其实用性。统一的数据汇总是确保人类和计算代理可访问数据的关键,这些代理可检索和整合不同的数据源进行下游调查(Wilkinson 等人,2016 年),并支持与国际协议和联合国可持续发展目标相一致的大规模研究和保护工作。
Multidisciplinary collaborations are crucial for understanding plankton and their ecosystem services. Enhancing cooperation among data providers, scientists, model developers and users is necessary for the optimal use of observational and modeling approaches to forecast plankton as effectively as weather (Lombard et al. 2019, Flynn et al. 2022). Including empiricists in the modeling process from the outset not only enhances model evaluation and calibration but also introduces fresh insights, contextual knowledge, and critical feedback that can refine conceptual models and assumptions. Model developers can offer important directions on field and experimental observational data needs. Effective collaboration ensures that modeling and data collection occur in tandem, leading to more accurate interpretations and practical recommendations that better reflect real-world conditions. In addition, because plankton is part of many social interests (e.g., see the “Plankton and ecology” and “Plankton, human culture, recreation, and well-being” sections), collaborations with experts in socioeconomics, communication, marketing, law, policy, and representatives from Indigenous communities are essential for science-based solutions and conservation efforts, especially in areas at critical risk to anthropogenic activities. 多学科合作对于了解浮游生物及其生态系统服务至关重要。加强数据提供者、科学家、模型开发者和用户之间的合作,对于优化利用观测和建模方法像预测天气一样有效地预测浮游生物十分必要(Lombard 等,2019 年;Flynn 等,2022 年)。从一开始就将经验主义者纳入建模过程,不仅能加强模型评估和校准,还能引入新的见解、背景知识和关键反馈,从而完善概念模型和假设。模型开发人员可以为实地和实验观测数据需求提供重要指导。有效的合作可确保建模和数据收集同步进行,从而得出更准确的解释和更实用的建议,更好地反映现实世界的状况。此外,由于浮游生物是许多社会利益的一部分(例如,见 "浮游生物与生态学 "和 "浮游生物、人类文化、娱乐和福祉 "部分),因此与社会经济学、传播、营销、法律、政策方面的专家以及土著社区的代表合作,对于以科学为基础的解决方案和保护工作至关重要,尤其是在面临人为活动严重威胁的地区。
4. Advocacy for science education and plankton literacy 4.宣传科学教育和浮游生物知识
By fostering an appreciation for plankton’s importance, diversity, and beauty via science education and plankton literacy, we can inspire future generations to sustain planktonic and aquatic ecosystems. Joined actions with artists, citizen scientists, and educators introduce different perspectives and ways of providing observations, communicating, and educating the public (e.g., Garcia-Soto et al. 2017, Garcia et al. 2022). Citizen science and communitydriven initiatives offer valuable data and raise awareness. At the same time, outreach efforts that consider local needs and values can deepen community appreciation for plankton and nature, fostering locally tailored sustainable actions (Varanasi et al. 2021). 通过科学教育和浮游生物扫盲培养人们对浮游生物的重要性、多样性和美丽的欣赏,我们可以激励后代保护浮游生物和水生生态系统。与艺术家、公民科学家和教育工作者的联合行动引入了提供观察、交流和教育公众的不同视角和方式(例如,Garcia-Soto 等人,2017 年;Garcia 等人,2022 年)。公民科学和社区倡议提供了宝贵的数据并提高了人们的认识。同时,考虑到当地需求和价值的外联工作可加深社区对浮游生物和自然的欣赏,促进因地制宜的可持续行动(Varanasi 等,2021 年)。
Plankton in the Life Framework of Values 价值观生命框架中的浮游生物
The Life Framework of Values (living from, with, in, and as nature) conceptualizes the importance of nature and the ethical responsibilities toward it (figure 3; O’Neill 1992, O’Connor and Kenter 2019). The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) adopts this framework to holistically evaluate the value of nature and help inform policymaking for the sustainable management of biodiversity and ecosystem services (IPBES 2022, Pascual et al. 2023). In the present article, we present how the six themes outlining the value of plankton are integrated within the Life Framework of Values to offer a comprehensive summary of plankton’s significance to humanity (figure 3). 生命价值框架(源于自然、与自然共生、生活在自然中、作为自然)将自然的重要性和对自然的道德责任概念化(图 3;O'Neill,1992 年;O'Connor 和 Kenter,2019 年)。生物多样性和生态系统服务政府间科学政策平台(IPBES)采用这一框架来全面评估自然的价值,并为生物多样性和生态系统服务的可持续管理提供决策依据(IPBES,2022 年;Pascual 等,2023 年)。在本文中,我们介绍了如何将概述浮游生物价值的六个主题整合到生命价值框架中,以全面总结浮游生物对人类的意义(图 3)。
Living from nature focuses on the capacity of nature to provide resources. Plankton support the biogeochemical stability of aquatic ecosystems, particularly of oxygen, carbon, nitrogen, and phosphorus. By absorbing and storing carbon, plankton contributes to Earth’s climate regulation in geological time scales (hundreds to thousands of years). They have a vital role in maintaining aquatic life and high water quality, thereby ensuring global food security and access to water. Plankton deposits are mined for energy (oil, gas, biofuel, flint), agriculture (lime, phosphate), and construction (chalk). Their physiology and ecology contribute to advancements in science including medicine, biotechnology and biomimetics. 靠天吃饭注重大自然提供资源的能力。浮游生物支持水生生态系统的生物地球化学稳定性,尤其是氧、碳、氮和磷。通过吸收和储存碳,浮游生物在地质时间尺度上(数百至数千年)为地球气候调节做出了贡献。浮游生物在维持水生生物和高水质方面发挥着至关重要的作用,从而确保全球粮食安全和用水安全。浮游生物矿藏被开采用于能源(石油、天然气、生物燃料、燧石)、农业(石灰、磷酸盐)和建筑(白垩)。浮游生物的生理学和生态学为医学、生物技术和生物仿生学等科学领域的进步做出了贡献。
Living with nature centers on a more harmonious relationship, where humans live in coexistence with nature, respecting its processes and limits including the right of organisms to exist independently of human needs and presence. The myriad of planktonic organisms make Earth livable and diverse by supporting the ecological stability of aquatic ecosystems as well as many terrestrial organisms, and ensuring the continuous link of populations over time and space. A vast number of plankton species’ characteristics, life cycles, and interactions have not yet been described, which puts the focus on this amazing and mysterious realm of life. 与自然共生的核心是一种更加和谐的关系,即人类与自然共存,尊重自然的进程和限制,包括生物独立于人类需求和存在而存在的权利。无数的浮游生物支撑着水生生态系统和许多陆地生物的生态稳定,并确保种群在时间和空间上的持续联系,从而使地球变得宜居和多样化。大量浮游生物的特征、生命周期和相互作用尚未被描述,这使人们开始关注这一神奇而神秘的生命领域。
Living in nature emphasizes the vital role of nature in humans’ identity, lifestyles, and culture. By sustaining healthy and diverse aquatic ecosystems, plankton have a profound impact on culture and recreational activities, especially for communities near water. In addition, plankton inspire creativity in art, literature, and design which fosters a deeper appreciation for these organisms and can promote public awareness about their importance and conservation. 生活在大自然中强调大自然在人类身份、生活方式和文化中的重要作用。浮游生物维持着健康和多样化的水生生态系统,对文化和娱乐活动有着深远的影响,尤其是对水域附近的社区而言。此外,浮游生物还能激发艺术、文学和设计方面的创造力,从而加深对这些生物的欣赏,并提高公众对其重要性和保护的认识。
Finally, living as nature highlights our physical, mental, and spiritual interconnectedness with the natural world. Recognizing the intrinsic value of plankton not solely as a resource but as an essential part of the Earth’s status is pivotal. Cultivating a deep respect for plankton and embracing sustainable practices that ensure their continued abundance and diversity serves as a testament to our commitment to coexist harmoniously with the natural world. 最后,"像大自然一样生活 "强调了我们在身体、心理和精神上与自然世界的相互联系。认识到浮游生物的内在价值至关重要,它不仅是一种资源,也是地球状况的重要组成部分。培养对浮游生物的深厚敬意,采用可持续的方式确保浮游生物的持续丰富和多样性,是我们致力于与自然世界和谐共处的最好证明。
Acknowledgments 致谢
This article stems from the discussions during the four online plankton workshops organized by the Marine Biodiversity Observation Network in 2020 and 2021 (Grigoratou et al. 2022). We thank all workshop participants for their valuable contributions and insights shared during the workshops. We thank Erica J. H. Head, Kristian Curran, and the two anonymous reviewers for their valuable feedback and insightful comments that enhanced the quality of our article. We dedicate this work to all plankton researchers: those who have gone before, those who are currently engaged, 本文源自海洋生物多样性观测网络于 2020 年和 2021 年组织的四次浮游生物在线研讨会的讨论(Grigoratou 等,2022 年)。我们感谢所有研讨会参与者在研讨会期间所做的宝贵贡献和分享的真知灼见。我们感谢 Erica J. H. Head、Kristian Curran 和两位匿名审稿人的宝贵反馈和独到见解,他们的意见提高了我们文章的质量。我们将这部作品献给所有浮游生物研究人员:那些曾经的研究人员,那些现在的研究人员、
and those who will contribute in the future. We would also like to dedicate the article to all those passionate about plankton and inspire them to continue exploring and creating awareness for the magical world of these important organisms. This article has been supported by the NSF project WARMEM (grant no. OCE1851866) and the HORIZON Europe projects EU4OceanObs2.0 and BioEcoOcean (grant no. 101136748) to MG. SMD was funded by the NSF Long-Term Ecological Research grant no. OCE-2322676. AM-G was funded by the Department for Environment, Food and Rural Affairs as part of the marine arm of the Natural Capital and Ecosystem Assessment program (NC34 Pelagic program PelCap) and United Kingdom National Environmental Research Council (NERC) for support through the NERC Knowledge Exchange Fellowship Scheme (grant no. NE/R002738/1). GA was funded by the National Sciences and Engineering Council of Canada grant no. 04728. S-DA was funded by the French Agence Nationale de la Recherche under grant no. ANR-22-CE02-0023-1 (project TRAITZOO) and Horizon Europe RIA under grant no. 101081273. DB was funded by the TC Ministry of Environment, Urbanization, and Climate Change and carried out by TÜBİTAK-MAM-Integrated Marine Pollution Monitoring Program. BB was funded by the National Sciences and Engineering Council of Canada under grant no. 06844. BC was funded by the Leverhulme Trust, through grant no. RPG-2020-389. JDE was funded by the Australian Research Council Discovery through grants no. DP190102293 and no. DP230102359. TG was funded by the Long-Term Ecological Research Program Brazilian semiarid coast-PELD CSB (grant no. 442337/2020-5). RG was funded by the European Union’s Next Generation through the Spanish Ministry of Universities (María Zambrano program). TG-H was funded by the Israel Science Foundation through grant no. 1655/21. SH was funded by the Strategic Science Investment Funding to NIWA by the Ministry of Business, Innovation, and Employment. RH was supported by the Ministry of Fisheries and Marine Resources, Namibia. CL received funding from the Horizon Europe Framework project C-BLUES (project no. 101137844) and the FRIPRO project PELAGIC (project no. 334996) funded by the Norwegian Research Council. MM was funded by the David and Lucile Packard Foundation. EM was funded through the Marine Biodiversity Observation Network (MBON) and the MBON Pole to Pole of the Americas with grants from NASA (no. 80NSSC18K0318, no. 80NSSC23K0047, and no. 80NSSC23K1779). This work was also supported by the NOAA award no. NA23NOS4780271 as part of the Florida Regional Ecosystems Stressors Collaborative Assessment project. FM-K was supported through the Marine Biodiversity Observation Network grants from NASA (grants no. NNX14AP62A, no. 80NSSC20K0017, and no. 80NSSC22K1779), NOAA IOOS (grant no. NA19NOS0120199), NOAA Climate Program Office (grant no. NA22OAR4310561), and the Gulf of Mexico Coastal Ocean Observing System (GCOOS/IOOS cooperative agreement no. NA16NOS0120018). AP was supported by the EU Horizon Europe projects BioEcoOcean (grant no. 101136748) and SEA-Quester (grant no. 101136480). AJP was funded by the EU Horizon OceanICU project (grant no. 101083922) and UK Research and Innovation under the UK government’s Horizon Europe funding guarantee (grant no. 10054454). JFS was supported by projects no. PIBAA-CONICET 28720210100721CO and no. PIN1UNCo 04/P007. RS was supported by Defra, Environment Agency, in the United Kingdom. SV was supported by Trond Mohn Starting Grand no. TMS2018REK02. 以及未来将做出贡献的人们。我们还希望将这篇文章献给所有热爱浮游生物的人们,激励他们继续探索和认识这些重要生物的神奇世界。本文得到了国家自然科学基金项目 WARMEM(批准号:OCE1851866)以及欧洲 HORIZON 项目 EU4OceanObs2.0 和 BioEcoOcean(批准号:101136748)的资助。SMD 由国家自然科学基金长期生态研究项目资助,项目编号:OCE-2322676。OCE-2322676。AM-G 由英国环境、食品和农村事务部(Department for Environment, Food and Rural Affairs)资助,作为自然资本和生态系统评估计划(NC34 Pelagic program PelCap)海洋部分的一部分;英国国家环境研究委员会(NERC)通过 NERC 知识交流奖学金计划(NE/R002738/1)提供资助。GA 得到了加拿大国家科学与工程理事会第 04728 号基金的资助。S-DA 由法国国家研究署资助,资助编号:ANR-22-CE02-0023。ANR-22-CE02-0023-1(项目 TRAITZOO)和 Horizon Europe RIA 的资助,资助号 101081273。DB 由 TC 环境、城市化和气候变化部资助,由 TÜBİTAK-MAM-综合海洋污染监测计划实施。BB 由加拿大国家科学与工程委员会资助,资助编号为 06844。BC 由 Leverhulme 信托基金会资助,资助号为 RPG-2020-389。RPG-2020-389。JDE 由澳大利亚研究理事会发现项目资助,资助编号为 DP190102293 和 No.DP190102293 和 no.DP230102359。TG 由巴西半干旱海岸长期生态研究计划(PELD CSB)资助(资助编号:442337/2020-5)。RG 由欧盟下一代通过西班牙大学部(María Zambrano 计划)资助。 TG-H 由以色列科学基金会通过第 1655/21 号赠款资助。SH 由商业、创新和就业部向 NIWA 提供的战略科学投资基金资助。RH 得到纳米比亚渔业和海洋资源部的资助。CL 获得了挪威研究理事会资助的地平线欧洲框架项目 C-BLUES(项目编号:101137844)和 FRIPRO 项目 PELAGIC(项目编号:334996)的资助。MM 由 David and Lucile Packard 基金会资助。EM 通过海洋生物多样性观测网络(MBON)和 MBON 美洲极点到极点项目获得美国国家航空航天局(NASA)的资助(项目编号:80NSSC18K0318、80NSSC23K0047 和 80NSSC23K1779)。这项工作还得到了美国国家海洋和大气管理局(NOAA)NA23NOS4780271 号奖项的支持。NA23NOS4780271 作为佛罗里达区域生态系统压力合作评估项目的一部分。FM-K 得到了美国国家航空航天局海洋生物多样性观测网络(NNX14AP62A、80NSSC20K0017 和 80NSSC22K1779)、NOAA IOOS(NA19NOS0120199)、NOAA Climate Program Office(NA22OAR4310561)和墨西哥湾沿海海洋观测系统(GCOOS/IOOS 合作协议,NA16NOS0120018)的资助。AP 得到了欧盟地平线欧洲项目 BioEcoOcean(资助号 101136748)和 SEA-Quester(资助号 101136480)的支持。AJP 由欧盟地平线 OceanICU 项目(批准号:101083922)和英国政府地平线欧洲资金保障下的英国研究与创新项目(批准号:10054454)资助。JFS 得到了项目 No.PIBAA-CONICET 28720210100721CO 和 No.PIN1UNCo04/P007。RS 得到了英国环境局 Defra 的支持。SV 由 Trond Mohn Starting Grand no.TMS2018REK02。
Author contributions 作者供稿
Maria Grigoratou (Conceptualization, Funding acquisition, Project administration, Visualization, Writing - original draft, Writing - 玛丽亚-格里戈拉图(构思、资金获取、项目管理、可视化、写作--原稿、写作--原稿
review & editing), Susanne Menden-Deuer (Conceptualization, Writing - original draft, Writing - review & editing), Abigail McQuatters-Gollop (Conceptualization, Writing - original draft, Writing - review & editing), George Arhonditsis (Writing - review & editing), Luis Felipe Artigas (Writing - review & editing), SakinaDorothée Ayata (Writing - review & editing), Dalida Bedikoğlu (Writing - review & editing), Beatrix E. Beisner (Writing - review & editing), Bingzhang Chen (Writing - review & editing), Claire Davies (Writing - review & editing), Lillian Diarra (Funding acquisition, Visualization, Writing - review & editing), Owoyemi W. Elegbeleye (Writing - review & editing), Jason D. Everett (Writing - review & editing), Tatiane M. Garcia (Writing - review & editing), Wendy C. Gentleman (Writing - review & editing), Rodrigo Javier Gonçalves (Visualization, Writing - review & editing), Tamar Guy-Haim (Writing - review & editing), Svenja Halfter (Visualization, Writing - review & editing), Jana Hinners (Writing - review & editing), Richard R. Horaeb (Writing - review & editing), Jenny A. Huggett (Writing - review & editing), Catherine L. Johnson (Writing - review & editing), Maria T. Kavanaugh (Writing - review & editing), Ana Lara-Lopez (Writing - review & editing), Christian Lindemann (Writing - review & editing), Celeste López-Abbate (Writing - review & editing), Monique Messié (Writing - review & editing), Klas Ove Möller (Writing - review & editing), Enrique Montes (Writing - review & editing), Frank E. Muller-Karger (Writing - review & editing), Aimee Neeley (Writing - review & editing), Yusuf Olaleye (Writing - review & editing), Artur P. Palacz (Writing - review & editing), Alex J. Poulton (Writing - review & editing), A. E. Friederike Prowe (Writing - review & editing), Lavenia Ratnarajah (Writing - review & editing), Luzmila Rodríguez (Writing - review & editing), Clara Natalia Rodríguez-Flórez (Visualization, Writing - review & editing), Aurea Rodriquez-Santiago (Writing - review & editing), Cecile S. Rousseaux (Visualization, Writing - review & editing), Juan Francisco Saad (Writing - review & editing), Ioulia Santi (Writing - review & editing), Alice Soccodato (Writing - review & editing), Rowena Stern (Writing - review & editing), Selina Våge (Writing - review & editing), Ioanna Varkitzi (Writing - review & editing), and Anthony Richardson (Conceptualization, Writing review & editing) 审阅和编辑)、Susanne Menden-Deuer(构思、写作 - 初稿、写作 - 审阅和编辑)、Abigail McQuatters-Gollop(构思、写作 - 初稿、写作 - 审阅和编辑)、George Arhonditsis(写作 - 审阅和编辑)、Luis Felipe Artigas(写作 - 审阅和编辑)、SakinaDorothée Ayata(写作 - 审阅和编辑)、Dalida Bedikoğlu(写作 - 审阅和编辑)、Beatrix E. Beisner(写作 - 审阅和编辑)、陈秉章(写作 - 审阅和编辑)、Claire Davies(写作 - 审阅和编辑)、Lillian Diarra(资金获取、可视化 Beisner (写作--审阅与编辑), Bingzhang Chen (写作--审阅与编辑), Claire Davies (写作--审阅与编辑), Lillian Diarra (资金获取、可视化、写作--审阅与编辑), Owoyemi W. Elegbeleye (写作--审阅与编辑).Elegbeleye (写作 - 审核与编辑), Jason D. Everett (写作 - 审核与编辑), Tatiane M. Garcia (写作 - 审核与编辑), Wendy C. Gentleman (写作 - 审核与编辑)Gentleman (写作-审核与编辑), Rodrigo Javier Gonçalves (Visualization, Writing - review & editing), Tamar Guy-Haim (写作-审核与编辑), Svenja Halfter (Visualization, Writing - review & editing), Jana Hinners (写作-审核与编辑), Richard R. Horaeb (写作-审核与编辑), Jenny A. Huggett (写作-审核与编辑), Catherine L. Johnson (写作-审核与编辑), Maria T. Kavanaugh (写作-审核与编辑).Kavanaugh (写作-审核与编辑), Ana Lara-Lopez (写作-审核与编辑), Christian Lindemann (写作-审核与编辑), Celeste López-Abbate (写作-审核与编辑), Monique Messié (写作-审核与编辑), Klas Ove Möller (写作-审核与编辑), Enrique Montes (写作-审核与编辑), Frank E. Muller-Karger (写作-审核与编辑).Muller-Karger (写作-审稿与编辑), Aimee Neeley (写作-审稿与编辑), Yusuf Olaleye (写作-审稿与编辑), Artur P. Palacz (写作-审稿与编辑), Alex J. Poulton (写作-审稿与编辑), A. E. Friederike Prowe (写作 - 审阅和编辑), Lavenia Ratnarajah (写作 - 审阅和编辑), Luzmila Rodríguez (写作 - 审阅和编辑), Clara Natalia Rodríguez-Flórez (可视化, 写作 - 审阅和编辑), Aurea Rodriquez-Santiago (写作 - 审阅和编辑), Cecile S.Rousseaux (Visualization, Writing - review & editing), Juan Francisco Saad (Writing - review & editing), Ioulia Santi (Writing - review & editing), Alice Soccodato (Writing - review & editing), Rowena Stern (Writing - review & editing), Selina Våge (Writing - review & editing), Ioanna Varkitzi (Writing - review & editing), and Anthony Richardson (Conceptualization, Writing review & editing).
Supplemental material 补充材料
Supplemental data are available at BIOSCI online. 补充数据可在 BIOSCI 在线查阅。
References cited 引用的参考文献
Abida H, Ruchaud S, Rios L, Humeau A, Probert I, De Vargas C, Bach S, Bowler C. 2013. Bioprospecting marine plankton. Marine Drugs 11: 4594-4611. Abida H, Ruchaud S, Rios L, Humeau A, Probert I, De Vargas C, Bach S, Bowler C. 2013.海洋浮游生物生物勘探。海洋药物》11: 4594-4611.
Alekseev VR, Pinel-Alloul B. 2019. Dormancy in Aquatic Organisms. Theory, Human Use, and Modeling. Springer International. Alekseev VR, Pinel-Alloul B. 2019.水生生物的休眠。理论、人类使用和建模。Springer International.
Amoozegar MA, Safarpour A, Noghabi KA, Bakhtiary T, Ventosa A. 2019. Halophiles and their vast potential in biofuel production. Frontiers in Microbiology 10: 1895. Amoozegar MA, Safarpour A, Noghabi KA, Bakhtiary T, Ventosa A. 2019.嗜卤生物及其在生物燃料生产中的巨大潜力。微生物学前沿 10: 1895.
Araujo GS, et al. 2022. Plankton: Environmental and Economic Importance for a Sustainable Future. Plankton Communities. IntechOpen. Araujo GS, et al.浮游生物:可持续未来的环境和经济重要性。浮游生物群落。IntechOpen。
Ardyna M, Arrigo KR. 2020. Phytoplankton dynamics in a changing Arctic Ocean. Nature Climate Change 10: 892-903. Ardyna M, Arrigo KR.2020.不断变化的北冰洋浮游植物动力学。自然气候变化》10: 892-903.
Balch WM, et al. 2016. Factors regulating the Great Calcite Belt in the Southern Ocean and its biogeochemical significance. Global Biogeochemical Cycles 30: 1124-1144. Balch WM, et al. 2016.调节南大洋大方解石带的因素及其生物地球化学意义。全球生物地球化学循环 30: 1124-1144.
Bandara K, Varpe O/\varnothing, Wijewardene L, Tverberg V, Eiane K. 2021. Two hundred years of zooplankton vertical migration research. Biological Reviews 96: 1547-1589. Bandara K, Varpe O/\varnothing , Wijewardene L, Tverberg V, Eiane K. 2021.浮游动物垂直迁移研究二百年。生物评论》96: 1547-1589.
Barkley AE, Olson NE, Prospero JM, Gatineau A, Panechou K, Maynard NG, Blackwelder P, China S, Ault AP, Gaston CJ. 2021. Atmospheric transport of North African dust-bearing supermicron freshwater diatoms to South America: Implications for iron transport to the equatorial North Atlantic Ocean. Geophysical Research Letters 48: e2020GL090476. Barkley AE, Olson NE, Prospero JM, Gatineau A, Panechou K, Maynard NG, Blackwelder P, China S, Ault AP, Gaston CJ.2021.Atmospheric transport of North African dust-bearing supermicron freshwater diatoms to South America: Implications for iron transport to the equatorial North Atlantic Ocean.地球物理研究快报 48: e2020GL090476.
Batten SD, et al. 2019. A global plankton diversity monitoring program. Frontiers in Marine Science 6: 321. Batten SD, et al.全球浮游生物多样性监测计划。海洋科学前沿 6: 321.
Behrenfeld MJ, Boss ES. 2014. Resurrecting the ecological underpinnings of Ocean plankton blooms. Annual Review of Marine Science 6: 167-194. Behrenfeld MJ, Boss ES.2014.复活海洋浮游生物大量繁殖的生态基础。海洋科学年度评论》6: 167-194.
Benedetti F, Vogt M, Elizondo UH, Zimmermann NE, Gruber N, Righetti D. 2021. Major restructuring of marine plankton assemblages under global warming. Nature Communications 12: 5226. Benedetti F, Vogt M, Elizondo UH, Zimmermann NE, Gruber N, Righetti D. 2021.全球变暖下海洋浮游生物群的重大结构调整。自然通讯》12: 5226.
Blackburn EH. 2010. Telomeres and telomerase: The means to the end (Nobel lecture). Angewandte Chemie 49: 7405-7421. Blackburn EH.2010.端粒和端粒酶:达到目的的手段(诺贝尔演讲)。Angewandte Chemie 49:7405-7421.
Bollens SM, Cordell JR, Avent S, Hooff R. 2002. Zooplankton invasions: a brief review, plus two case studies from the northeast Pacific Ocean. Hydrobiologia 480: 87-110. Bollens SM, Cordell JR, Avent S, Hooff R. 2002.浮游动物入侵:简要回顾,以及太平洋东北部的两个案例研究。Hydrobiologia 480: 87-110.
Botterell ZLR, Lindeque PK, Thompson RC, Beaumont NJ. 2023. An assessment of the ecosystem services of marine zooplankton and the key threats to their provision. Ecosystem Services 63: 101542. Botterell ZLR, Lindeque PK, Thompson RC, Beaumont NJ.2023.海洋浮游动物的生态系统服务评估及其面临的主要威胁。生态系统服务 63: 101542.
Brummitt N, Regan EC, Weatherdon LV, Martin CS, Geijzendorffer IR, Rocchini D, Gavish Y, Haase P, Marsh CJ, Schmeller DS. 2017. Taking stock of nature: Essential biodiversity variables explained. Biological Conservation 213: 252-255. Brummitt N, Regan EC, Weatherdon LV, Martin CS, Geijzendorffer IR, Rocchini D, Gavish Y, Haase P, Marsh CJ, Schmeller DS.2017.盘点自然:生物多样性基本变量解释。生物保护 213: 252-255.
Cael BB, Bisson K, Boss E, Dutkiewicz S, Henson S. 2023. Global climate-change trends detected in indicators of ocean ecology. Nature 619: 551-554. Cael BB, Bisson K, Boss E, Dutkiewicz S, Henson S. 2023.海洋生态指标中检测到的全球气候变化趋势。自然》619: 551-554.
Calbet A. 2024. The wonders of Marine Plankton. Pages 95-101 in Calbet A, ed. The Wonders of Marine Plankton. Springer Nature. Calbet A. 2024.The wonders of Marine Plankton.第 95-101 页,载于 Calbet A, ed. The Wonders of Marine Plankton.海洋浮游生物的奇迹》。Springer Nature.
Campos CC, de Sousa Barroso H, Belmonte G, Rossi S, Soares MO, Garcia TM. 2022. Copepod assemblages at the base of Mangrove food webs during a severe drought. Water 14: 3648. Campos CC, de Sousa Barroso H, Belmonte G, Rossi S, Soares MO, Garcia TM.2022.大旱期间红树林食物网底部的桡足类集合。水 14: 3648.
Canada. 1996. Oceans Act (SC 1996, c. 31). Government of Canada. 加拿大。1996.Oceans Act (SC 1996, c. 31).加拿大政府。
Carpenter SR, Cole JJ, Hodgson JR, Kitchell JF, Pace ML, Bade D, Cottingham KL, Essington TE, Houser JN, Schindler DE. 2001. Trophic cascades, nutrients, and lake productivity: The whole-lake experiments. Ecological Monographs 71: 163-186. Carpenter SR, Cole JJ, Hodgson JR, Kitchell JF, Pace ML, Bade D, Cottingham KL, Essington TE, Houser JN, Schindler DE.2001.营养级联、营养物质和湖泊生产力:全湖实验。生态专著 71: 163-186.
Carroll SR, Herczog E, Hudson M, Russell K, Stall S. 2021. Operationalizing the CARE and FAIR principles for indigenous data futures. Scientific Data 8: 108. Carroll SR, Herczog E, Hudson M, Russell K, Stall S. 2021.本土数据未来的 CARE 和 FAIR 原则的可操作性。科学数据 8: 108.
Chavez FP, Bertrand A, Guevara-Carrasco R, Soler P, Csirke J. 2008. The northern Humboldt Current System: Brief history, present status and a view towards the future. Progress in Oceanography 79: 95-105. Chavez FP, Bertrand A, Guevara-Carrasco R, Soler P, Csirke J. 2008.The northern Humboldt Current System:简史、现状和未来展望。Progress in Oceanography 79: 95-105.
Chiba S, Batten S, Martin CS, Ivory S, Miloslavich P, Weatherdon LV. 2018. Zooplankton monitoring to contribute towards addressing global biodiversity conservation challenges. Journal of Plankton Research 40: 509-518. Chiba S, Batten S, Martin CS, Ivory S, Miloslavich P, Weatherdon LV.2018.浮游动物监测有助于应对全球生物多样性保护挑战。浮游生物研究杂志》40: 509-518.
Convention on the Conservation of Antarctic Marine Living Resources. 2023. Schedule of Conservation Measures 2023/24. Convention on the Conservation of Antarctic Marine Living Resources. 南极海洋生物资源保护公约》。2023.2023/24 年养护措施表》。南极海洋生物资源保护公约》。
Cooley S, et al. 2022. Oceans and coastal ecosystems and their services. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 379-550. Pörtner HO, et al. (eds.). Cambridge: Cambridge University Press and NY: New York, USA. Cooley S 等人,2022 年。海洋和沿海生态系统及其服务。In:Climate Change 2022: Impacts, Adaptation and Vulnerability.Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, pp.Pörtner HO, et al. (eds.).Cambridge:Cambridge: University Press and NY:New York, USA.
Court C, Ferreira J, Ropicki A, Qiao X, Saha B. 2021. Quantifying the Socio-Economic Impacts of Harmful Algal Blooms in Southwest Florida in 2018. University of Florida Economic Impact Analysis Program. Court C, Ferreira J, Ropicki A, Qiao X, Saha B. 2021.量化 2018 年佛罗里达州西南部有害藻华的社会经济影响》。佛罗里达大学经济影响分析项目。
Dahms H-U, Hagiwara A, Lee J-S. 2011. Ecotoxicology, ecophysiology, and mechanistic studies with rotifers. Aquatic Toxicology 101: 1-12. Dahms H-U、Hagiwara A、Lee J-S。2011.轮虫的生态毒理学、生态生理学和机理研究。水生毒理学 101: 1-12.
Deppeler SL, Davidson AT. 2017. Southern Ocean phytoplankton in a changing climate. Frontiers in Marine Science 4: 40. Deppeler SL, Davidson AT.2017.气候变化中的南大洋浮游植物。海洋科学前沿 4: 40.
de Vargas C, et al. 2015. Eukaryotic plankton diversity in the sunlit ocean. Science 348: 1261605. de Vargas C, et al. 2015.阳光海洋中真核浮游生物的多样性。科学》348: 1261605。
de Vargas C, et al. 2022. Plankton planet: A frugal, cooperative measure of aquatic life at the planetary scale. Frontiers in Marine Science 9: 936972. de Vargas C, et al.浮游生物星球:行星尺度上水生生物的节俭、合作措施。海洋科学前沿 9: 936972.
Dolan JR. 2021. Pioneers of plankton research: Victor Hensen (18351924). Journal of Plankton Research 43: 507-510. Dolan JR. 2021.浮游生物研究的先驱 Victor Hensen (18351924).浮游生物研究杂志》43: 507-510.
Du Y, Hsu S-B. 2010. On a nonlocal reaction-diffusion problem arising from the modeling of phytoplankton growth. SIAM Journal on Mathematical Analysis 42: 1305-1333. Du Y, Hsu S-B.2010.浮游植物生长建模中的非局部反应-扩散问题.SIAM 数学分析学报 42: 1305-1333.
Eckert AW. 1997. The World of Opals. New York and Chichester. Wiley. Eckert AW.1997.蛋白石的世界》。纽约和奇切斯特。Wiley.
Erwin PM, López-Legentil S, Schuhmann PW. 2010. The pharmaceutical value of marine biodiversity for anti-cancer drug discovery. Ecological Economics 70: 445-451. Erwin PM, López-Legentil S, Schuhmann PW.2010.海洋生物多样性对抗癌药物发现的制药价值。生态经济学》70: 445-451.
Falkowski PG. 2002. The ocean’s invisible forest. Scientific American 287: 54-61. Falkowski PG.2002.海洋的隐形森林。Scientific American 287:54-61.
Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR. 2004. The evolution of modern eukaryotic phytoplankton. Science 305: 354-360. Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR.2004.现代真核浮游植物的进化.科学》305: 354-360.
Falkowski PG, Fenchel T, Delong EF. 2008. The microbial engines that drive Earth’s biogeochemical cycles. Science 320: 1034-1039. Falkowski PG, Fenchel T, Delong EF.2008.推动地球生物地球化学循环的微生物引擎。科学》320: 1034-1039.
Flaum E, Prakash M. 2024. Curved crease origami and topological singularities enable hyperextensibility of L. olor. Science 384: eadk5511. Flaum E, Prakash M. 2024.弯曲折痕折纸和拓扑奇异性实现了 L. olor 的超伸展性。Science 384: eadk5511.
Flynn KJ, Torres R, Irigoien X, Blackford JC. 2022. Plankton digital twins: A new research tool. Journal of Plankton Research 44: 805805. Flynn KJ, Torres R, Irigoien X, Blackford JC. 2022.浮游生物数字双胞胎:一种新的研究工具。浮游生物研究杂志 44: 805805.
Friedlingstein P, et al. 2022. Global carbon budget 2022. Earth System Science Data 14: 4811-4900. Friedlingstein P, et al.全球碳预算 2022.地球系统科学数据 14: 4811-4900.
Garcia TM, Costa ACP, Campos CCC, Júnior JPVA, Barroso H, de S, Soares MdO. 2022. The decade of ocean science: The importance of “rediscovering” the tiny and invisible world of plankton. (A Década da Ciência Oceânica: A importância de “redescobrir” o minúsculo e invisível mundo do plâncton.) Arquivos de Ciências do Mar 55: 102-122. Garcia TM, Costa ACP, Campos CCC, Júnior JPVA, Barroso H, de S, Soares MdO.2022.海洋科学十年:重新发现 "微小而不可见的浮游生物世界的重要性。(A Década da Ciência Oceânica:A importância de "redescobrir" o minúsculo e invisível mundo do plâncton.)Arquivos de Ciências do Mar 55: 102-122.
García-Mendoza E, Cáceres-Martínez J, Rivas D, Fimbres-Martinez M, Sánchez-Bravo Y, Vásquez-Yeomans R, Medina-Elizalde J. 2018. Mass mortality of cultivated Northern bluefin tuna Thunnus thynnus orientalis associated with Chattonella species in Baja California, Mexico. Frontiers in Marine Science 5: 454. García-Mendoza E, Cáceres-Martínez J, Rivas D, Fimbres-Martinez M, Sánchez-Bravo Y, Vásquez-Yeomans R, Medina-Elizalde J. 2018.墨西哥下加利福尼亚州养殖的北方蓝鳍金枪鱼(Thunnus thynnus orientalis)与 Chattonella 物种相关的大规模死亡。海洋科学前沿 5: 454.
Garcia-Soto C, et al. 2017. Advancing Citizen Science for Coastal and Ocean Research. European Marine Board. Position paper no. 23. Garcia-Soto C 等人,2017 年。推进沿海和海洋研究的公民科学》。欧洲海洋委员会。立场文件 No.23.
Gause GF. 1934. Experimental analysis of Vito Volterra’s mathematical theory of the struggle for existence. Science 79: 16-17. Gause GF.1934.维托-沃尔特拉的生存斗争数学理论的实验分析》。科学》79: 16-17.
[GCOS] Global Climate Observing System. 2022. The 2022 GCOS ECVs Requirements. World Meteorological Organization. GCOS report no. 245. [全球气候观测系统。2022.2022 年全球气候观测系统 ECVs 要求。世界气象组织。GCOS 第 245 号报告。
[GESAMP] Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection. 2019. High level review of a wide range of proposed marine geoengineering techniques. GESAMP. Report no. 98. [海洋环境保护的科学方面联合专家组。2019.对各种拟议的海洋地球工程技术的高级别审查。科学专家组。第 98 号报告。
Gray DK, Arnott SE, Shead JA, Derry AM. 2012. The recovery of aciddamaged zooplankton communities in Canadian Lakes: The relative importance of abiotic, biotic and spatial variables. Freshwater Biology 57: 741-758. Gray DK, Arnott SE, Shead JA, Derry AM.2012.加拿大湖泊中受虫害破坏浮游动物群落的恢复:非生物、生物和空间变量的相对重要性。淡水生物学》57: 741-758.
Griffith AW, Gobler CJ. 2020. Harmful algal blooms: A climate change co-stressor in marine and freshwater ecosystems. Harmful Algae 91: 101590. Griffith AW, Gobler CJ.2020.有害藻华:海洋和淡水生态系统中的气候变化胁迫因素。有害藻类 91: 101590.
Grigoratou M, et al. 2022. The Marine Biodiversity Observation Network Plankton Workshops: Plankton ecosystem function, biodiversity, and forecasting: Research requirements and applications. Limnology and Oceanography Bulletin 31: 22-26. Grigoratou M, et al.海洋生物多样性观测网络浮游生物研讨会:浮游生物生态系统功能、生物多样性和预测:Research requirements and applications.Limnology and Oceanography Bulletin 31: 22-26.
Hatton I, Heneghan R, Al E. 2022. The global ocean size spectrum from bacteria to whales. Science Advances 7: eabh3732. Hatton I, Heneghan R, Al E. 2022.从细菌到鲸鱼的全球海洋大小谱。Science Advances 7: eabh3732.
Hays GC. 2003. A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiologia 503: 163-170. Hays GC.2003.浮游动物昼夜垂直洄游的适应意义和生态系统后果综述。Hydrobiologia 503: 163-170.
Hays G, Richardson A, Robinson C. 2005. Climate change and marine plankton. Trends in Ecology and Evolution 20: 337-344. Hays G, Richardson A, Robinson C. 2005.Climate change and marine plankton.Trends in Ecology and Evolution 20: 337-344.
Heneghan RF, Holloway-Brown J, Gasol JM, Herndl GJ, Morán XAG, Galbraith ED. 2024. The global distribution and climate resilience of marine heterotrophic prokaryotes. Nature Communications 15: 6943. Heneghan RF, Holloway-Brown J, Gasol JM, Herndl GJ, Morán XAG, Galbraith ED.2024.海洋异养原核生物的全球分布和气候适应力。自然通讯》15: 6943.
Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM. 2018. Cyanobacterial blooms. Nature Reviews Microbiology 16: 471-483. Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM.2018.蓝藻藻华。自然-微生物学评论》16: 471-483.
Hutchinson GE. 1961. The paradox of the plankton. American Naturalist 95: 137-145. Hutchinson GE.1961.浮游生物的悖论》。American Naturalist 95: 137-145.
[IPBES]Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. 2022. Summary for Policymakers of the Methodological Assessment of the Diverse Values and Valuation of Nature of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES). IPBES. www.ipbes.net/document-library-catalogue/summary-policymakers-methodological-assessment-regarding-diverse. [生物多样性和生态系统服务政府间科学政策平台。2022.生物多样性和生态系统服务政府间科学政策平台(IPBES)自然的多样价值和估值方法评估决策者摘要。IPBES. www.ipbes.net/document-library-catalogue/summary-policymakers-methodological-assessment-regarding-diverse.
Jönsson M, Hylander S, Ranåker L, Nilsson PA, Brönmark C. 2011. Foraging success of juvenile pike Esox lucius depends on visual conditions and prey pigmentation. Journal of Fish Biology 79: 290297. Jönsson M, Hylander S, Ranåker L, Nilsson PA, Brönmark C. 2011.梭子鱼幼鱼的觅食成功率取决于视觉条件和猎物色素。鱼类生物学杂志》79: 290297。
Jungck JR, Wagner R, van Loo D, Grossman B, Khiripet N, Khiripet J, Khantuwan W, Hagan M. 2019. Art Forms in nature: Radiolaria from Haeckel and Blaschka to 3D nanotomography, quantitative image analysis, evolution, and contemporary art. Theory in Biosciences 138: 159-187. Jungck JR, Wagner R, van Loo D, Grossman B, Khiripet N, Khiripet J, Khantuwan W, Hagan M. 2019.自然中的艺术形式:从海克尔和布拉什卡的放射虫到三维纳米层析、定量图像分析、进化和当代艺术。生物科学理论》138: 159-187.
Kiørboe T, Visser A, Andersen KH. 2018. A trait-based approach to ocean ecology. ICES Journal of Marine Science 75: 1849-1863. Kiørboe T, Visser A, Andersen KH.2018.基于性状的海洋生态学方法。ICES Journal of Marine Science 75:1849-1863.
Kirby RR, Beaugrand G, Kleparski L, Goodall S, Lavender S. 2021. Citizens and scientists collect comparable oceanographic data: Measurements of ocean transparency from the Secchi Disk study and science programmes. Scientific Reports 11: 15499. Kirby RR, Beaugrand G, Kleparski L, Goodall S, Lavender S. 2021.公民和科学家收集可比海洋学数据:Secchi Disk 研究和科学计划的海洋透明度测量。Scientific Reports 11: 15499.
Kotterba P, Moll D, Winkler H, Finke A, Polte P. 2024. A wolf in sheep’s clothing: Planktivorous A tlantic herring preys on demersal fishes in coastal waters. Ecology 105: e4363. Kotterba P, Moll D, Winkler H, Finke A, Polte P. 2024.披着羊皮的狼:大西洋鲱鱼在沿岸水域捕食底层鱼类。Ecology 105: e4363.
Krishnamurthy D, Li H, Benoit du Rey F, Cambournac P, Larson A, Prakash M. 2019. Scale-free Vertical tracking microscopy: Towards bridging scales in biological oceanography. Krishnamurthy D, Li H, Benoit du Rey F, Cambournac P, Larson A, Prakash M. 2019.无尺度垂直跟踪显微镜:迈向生物海洋学的桥梁尺度。
Leone A, Lecci RM, Durante M, Meli F, Piraino S. 2015. The bright side of gelatinous blooms: Nutraceutical value and antioxidant properties of three Mediterranean jellyfish (Scyphozoa). Marine Drugs 13: 4654-4681. Leone A, Lecci RM, Durante M, Meli F, Piraino S. 2015.凝胶绽放的光明面:三种地中海水母(Scyphozoa)的保健价值和抗氧化特性。海洋药物》13: 4654-4681.
Lombard F, et al. 2019. Globally consistent quantitative observations of planktonic ecosystems. Frontiers in Marine Science 6. Lombard F, et al.全球一致的浮游生物生态系统定量观测。海洋科学前沿 6.
Macêdo RL, Franco ACS, Kozlowsky-Suzuki B, Mammola S, Dalu T, Rocha O. 2022. The global social-economic dimension of biological invasions by plankton: Grossly underestimated costs but a rising concern for water quality benefits? Water Research 222: 118918. Macêdo RL, Franco ACS, Kozlowsky-Suzuki B, Mammola S, Dalu T, Rocha O. 2022.浮游生物入侵的全球社会经济层面:成本被严重低估,水质效益却日益受到关注?Water Research 222: 118918.
Marten G. 2007. Larvicidal algae. Journal of the American Mosquito Control Association 23: 177-183. Marten G. 2007.杀幼虫藻类。美国蚊虫控制协会期刊》23: 177-183.
Martins Medeiros IP, Souza MM. 2023. Acid times in physiology: A systematic review of the effects of ocean acidification on calcifying invertebrates. Environmental Research 231: 116019. Martins Medeiros IP, Souza MM.2023.生理学中的酸化时代:海洋酸化对钙化无脊椎动物影响的系统综述》。环境研究 231:116019.
Mathijssen AJTM, Culver J, Bhamla MS, Prakash M. 2019. Collective intercellular communication through ultra-fast hydrodynamic trigger waves. Nature 571: 560-564. Mathijssen AJTM, Culver J, Bhamla MS, Prakash M. 2019.通过超快流体动力触发波进行细胞间集体交流。自然》571: 560-564.
Michelutti N, Wolfe AP, Cooke CA, Hobbs WO, Vuille M, Smol JP. 2015. Climate change forces new ecological states in Tropical Andean Lakes. PLOS ONE 10: e0115338. Michelutti N、Wolfe AP、Cooke CA、Hobbs WO、Vuille M、Smol JP。2015.气候变化迫使热带安第斯湖泊出现新的生态状态。PLOS ONE 10: e0115338.
Miller SM. 2010. Volvox, Chlamydomonas, Evolution of multicellularity | learn science at scitable. www.nature.com/scitable/ topicpage/volvox-chlamydomonas-and- the-evolution- of-multicellularity-14433403 Miller SM.2010.Volvox, Chlamydomonas, Evolution of multicellularity | learn science at scitable. www.nature.com/scitable/ topicpage/volvox-chlamydomonas-and- the-evolution- of-multicellularity-14433403
Millette NC, et al. 2023. Mixoplankton and mixotrophy: Future research priorities. Journal of Plankton Research 45: 576-596. Millette NC, et al.Mixoplankton and mixotrophy:未来研究重点.Journal of Plankton Research 45: 576-596.
Mills MM, Ridame C, Davey M, La Roche J, Geider RJ. 2004. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429: 292-294. Mills MM, Ridame C, Davey M, La Roche J, Geider RJ.2004.铁和磷共同限制了热带北大西洋东部的固氮作用。自然》429: 292-294.
Miloslavich P, et al . 2018. Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. Global Change Biology 24: 2416-2433. Miloslavich P, et al .全球持续观测生物多样性和生态系统变化的基本海洋变量。全球变化生物学 24: 2416-2433.
Moreno AR, Martiny AC. 2018. Ecological stoichiometry of Ocean plankton. Annual Review of Marine Science 10: 43-69. Moreno AR, Martiny AC.2018.海洋浮游生物的生态化学计量。海洋科学年度评论》10: 43-69.
Nature Conservation Bureau. 2011. Marine Biodiversity Conservation Strategy. Japanese Ministry of the Environment. 《自然保护局。2011.海洋生物多样性保护战略》。日本环境省。
Nicol S. 2006. Krill, currents, and sea ice: Euphausia superba and its changing environment. BioScience 56: 111-120. Nicol S. 2006.磷虾、洋流和海冰:Euphausia superba 及其不断变化的环境。BioScience 56:111-120.
O’Connor S, Kenter J. 2019. Making intrinsic values work: Integrating intrinsic values of the more-than-human world through the Life Framework of Values. Sustainability Science 14: 1247-1265. O'Connor S, Kenter J. 2019.让内在价值发挥作用:通过生命价值框架整合超越人类世界的内在价值。可持续性科学 14: 1247-1265.
Ogutu-Ohwayo R, Natugonza V, Musinguzi L, Olokotum M, Naigaga S. 2016. Implications of climate variability and change for African lake ecosystems, fisheries productivity, and livelihoods. Journal of Great Lakes Research 42: 498-510. Ogutu-Ohwayo R, Natugonza V, Musinguzi L, Olokotum M, Naigaga S. 2016.气候多变性和变化对非洲湖泊生态系统、渔业生产力和生计的影响。大湖研究期刊》42:498-510。
O’Neill J. 1992. The varieties of intrinsic value. Monist 75: 119-137. O'Neill J. 1992.内在价值的多样性》。Monist 75: 119-137.
Opdal AF, Lindemann C, Aksnes DL. 2019. Centennial decline in North Sea water clarity causes strong delay in phytoplankton bloom timing. Global Change Biology 25: 3946-3953. Opdal AF, Lindemann C, Aksnes DL.2019.北海海水透明度百年下降导致浮游植物开花时间强烈延迟。全球变化生物学 25: 3946-3953.
Pascual U, et al. 2023. Diverse values of nature for sustainability. Nature 620: 813-823. Pascual U, et al.自然对可持续发展的不同价值。自然》620: 813-823.
Perhar G, Arhonditsis GB, Brett MT. 2012. Modelling the role of highly unsaturated fatty acids in planktonic food web processes: A mechanistic approach. Environmental Reviews 20: 155-172. Perhar G, Arhonditsis GB, Brett MT.2012.模拟高度不饱和脂肪酸在浮游食物网过程中的作用:机理方法。环境评论》20: 155-172.
Picheral M, et al. 2022. The Underwater Vision Profiler 6: An imaging sensor of particle size spectra and plankton, for autonomous and cabled platforms. Limnology and Oceanography: Methods 20: 115129. Picheral M, et al.The Underwater Vision Profiler 6: An imaging sensor of particle size spectra and plankton, for autonomous and cabled platforms.Limnology and Oceanography:Limnology and Oceanography: Methods 20: 115129.
Platt T, Denman K. 1977. Organisation in the pelagic ecosystem. Helgoländer Wissenschaftliche Meeresuntersuchungen 30: 575-581. Platt T, Denman K. 1977.浮游生态系统中的组织。Helgoländer Wissenschaftliche Meeresuntersuchungen 30: 575-581.
Pohl G, Nachtigall W. 2015. Biomimetics for Architecture and Design: Nature-Analogies-Technology. Springer International. Pohl G, Nachtigall W. 2015.建筑与设计的仿生学:自然-类比-技术》。Springer International.
Poloczanska ES, et al. 2013. Global imprint of climate change on marine life. Nature Climate Change 3: 919-925. Poloczanska ES 等人,2013 年。气候变化对海洋生物的全球影响。自然-气候变化》3:919-925。
Ratnarajah L, et al. 2023. Monitoring and modelling marine zooplankton in a changing climate. Nature Communications 14: 564. Ratnarajah L, et al.气候变化中海洋浮游动物的监测与建模。自然通讯 14: 564.
Ravera O. 2001. Monitoring of the aquatic environment by species accumulator of pollutants: A review. Journal of Limnology 60: 63. Ravera O. 2001.通过污染物积累物种监测水生环境:Review.Limnology Journal 60: 63.
Régnier P, et al. 2015. Astaxanthin from Haematococcus pluvialis prevents oxidative stress on Human endothelial cells without toxicity. Marine Drugs 13: 2857-2874. Régnier P 等人,2015 年。来自血球藻的虾青素可预防人体内皮细胞的氧化应激,且无毒性。海洋药物 13: 2857-2874。
Riccio G, Lauritano C. 2019. Microalgae with immunomodulatory activities. Marine Drugs 18: 2. Riccio G, Lauritano C. 2019.具有免疫调节活性的微藻。Marine Drugs 18: 2.
Richardson AJ, Bakun A, Hays GC, Gibbons MJ. 2009. The jellyfish joyride: Causes, consequences, and management responses to a more gelatinous future. Trends in Ecology and Evolution 24: 312322. Richardson AJ, Bakun A, Hays GC, Gibbons MJ.2009.水母兜风:原因、后果和管理应对更多胶质的未来。生态学与进化趋势》24: 312322。
Rigby S, Milsom CV. 2000. Origins, evolution, and diversification of zooplankton. Annual Review of Ecology and Systematics 31: 293-313. Rigby S, Milsom CV.2000.浮游动物的起源、进化和多样化。Annual Review of Ecology and Systematics 31: 293-313.
Rojo C, Álvarez-Cobelas M, Benavent-Corai J, Barón-Rodríguez MM, Rodrigo MA. 2012. Trade-offs in plankton species richness arising from drought: Insights from long-term data of a National Park wetland (central Spain). Biodiversity and Conservation 21: 24532476. Rojo C, Álvarez-Cobelas M, Benavent-Corai J, Barón-Rodríguez MM, Rodrigo MA.2012.干旱导致浮游生物物种丰富度的权衡:国家公园湿地(西班牙中部)长期数据的启示。生物多样性与保护》21: 24532476。
Ruggiero MA, Gordon DP, Orrell TM, Bailly N, Bourgoin T, Brusca RC, Cavalier-Smith T, Guiry MD, Kirk PM. 2015. A higher level classification of all living organisms. PLOS ONE 10: e0119248. Ruggiero MA、Gordon DP、Orrell TM、Bailly N、Bourgoin T、Brusca RC、Cavalier-Smith T、Guiry MD、Kirk PM。2015.所有生物的更高层次分类。PLOS ONE 10: e0119248.
Saini E, Rohilla P. 2020. Forensic diatomological mapping: A data base for diatom profiling to solve drowning cases. International Journal of Current Research and Review 12: 23-31. Saini E, Rohilla P. 2020.法医硅藻绘图:解决溺水案件的硅藻特征分析数据库。国际当前研究与评论期刊》12: 23-31.
Sardet C. 2015. Plankton: Wonders of the Drifting World. University of Chicago Press. Sardet C. 2015.浮游生物:漂流世界的奇迹》。芝加哥大学出版社。
Scharlemann JPW, et al. 2020. Towards understanding interactions between Sustainable Development Goals: The role of environment-human linkages. Sustainability Science 15: 15731584. Scharlemann JPW, et al.了解可持续发展目标之间的相互作用:环境与人类联系的作用》。可持续性科学 15: 15731584.
Sharma N, Simon DP, Diaz-Garza AM, Fantino E, Messaabi A, Meddeb-Mouelhi F, Germain H, Desgagné-Penix I. 2021. Diatoms biotechnology: Various industrial applications for a greener tomorrow. Frontiers in Marine Science 8: 636613. Sharma N, Simon DP, Diaz-Garza AM, Fantino E, Messaabi A, Meddeb-Mouelhi F, Germain H, Desgagné-Penix I. 2021.硅藻生物技术:绿色明天的各种工业应用。海洋科学前沿 8: 636613.
Shimoda Y, Azim ME, Perhar G, Ramin M, Kenney MA, Sadraddini S, Gudimov A, Arhonditsis GB. 2011. Our current understanding of lake ecosystem response to climate change: What have we really learned from the north temperate deep lakes? Journal of Great Lakes Research 37: 173-193. Shimoda Y, Azim ME, Perhar G, Ramin M, Kenney MA, Sadraddini S, Gudimov A, Arhonditsis GB.2011.我们目前对湖泊生态系统应对气候变化的理解:我们从北温带深湖学到了什么?大湖研究期刊》37: 173-193.
Siciliano A, Gesuele R, Pagano G, Guida M. 2015. How Daphnia (Cladocera) assays may be used as bioindicators of health effects? Journal of Biodiversity and Endangered Species S1: 005. Siciliano A, Gesuele R, Pagano G, Guida M. 2015.水蚤(Cladocera)检测如何用作健康影响的生物指标?生物多样性与濒危物种期刊》S1:005。
Siegel DA, DeVries T, Cetinić I, Bisson KM. 2023. Quantifying the ocean’s biological pump and its carbon cycle impacts on global scales. Annual Review of Marine Science 15: 329-356. Siegel DA, DeVries T, Cetinić I, Bisson KM.2023.量化海洋生物泵及其对全球碳循环的影响。海洋科学年度评论》15: 329-356.
Skogen MD, et al. 2021. Disclosing the truth: Are models better than observations? Marine Ecology Progress Series 680: 7-13. Skogen MD, et al.Disclosing the truth: Are models better than observations?Marine Ecology Progress Series 680:7-13.
Skogen M, et al. 2024. Bridging the gap: Integrating models and observations for better ecosystem understanding. Marine Ecology Progress Series 739: 257-268. Skogen M, et al.弥合差距:Integrating models and observations for better ecosystem understanding.Marine Ecology Progress Series 739: 257-268.
Spanbauer TL, Briseño-Avena C, Pitz KJ, Suter E. 2020. Salty sensors, fresh ideas: The use of molecular and imaging sensors in understanding plankton dynamics across marine and freshwater ecosystems. Limnology and Oceanography Letters 5: 169-184. Spanbauer TL, Briseño-Avena C, Pitz KJ, Suter E. 2020.咸味传感器,新鲜创意:利用分子和成像传感器了解海洋和淡水生态系统中浮游生物的动态。Limnology and Oceanography Letters 5: 169-184.
Steinberg DK, Landry MR. 2017. Zooplankton and the Ocean carbon cycle. Annual Review of Marine Science 9: 413-444. Steinberg DK, Landry MR.2017.浮游动物与海洋碳循环。海洋科学年度评论》9: 413-444.
Suthers IM, Rissik D, Richardson A. 2019. Plankton: A Guide to Their Ecology and Monitoring for Water Quality, 2nd ed. CSIRO. Suthers IM, Rissik D, Richardson A. 2019.浮游生物:浮游生物:生态学和水质监测指南》,第 2 版。澳大利亚联邦科学与工业研究组织。
Takenaka Y, Yamaguchi A, Shigeri Y. 2017. A light in the dark: Ecology, evolution and molecular basis of copepod bioluminescence. Journal of Plankton Research 39: 369-378. Takenaka Y, Yamaguchi A, Shigeri Y. 2017.黑暗中的一道光:桡足类动物生物发光的生态学、进化和分子基础。浮游生物研究杂志》39: 369-378.
Tanioka T, Garcia CA, Larkin AA, Garcia NS, Fagan AJ, Martiny AC. 2022. Global patterns and predictors of C:N:P in marine ecosystems. Communications Earth and Environment 3: 1-9. Tanioka T, Garcia CA, Larkin AA, Garcia NS, Fagan AJ, Martiny AC.2022.海洋生态系统中 C:N:P 的全球模式和预测因子。Communications Earth and Environment 3: 1-9.
Tilman D. 1982. Resource Competition and Community Structure. Princeton University Press. Tilman D. 1982.Resource Competition and Community Structure.普林斯顿大学出版社。
Timsit Y, Lescot M, Valiadi M, Not F. 2021. Bioluminescence and photoreception in unicellular organisms: Light-signalling in a biocommunication perspective. International Journal of Molecular Sciences 22: 11311. Timsit Y, Lescot M, Valiadi M, Not F. 2021.单细胞生物的生物发光和光感受:生物通讯视角下的光信号。国际分子科学杂志 22: 11311.
Toro-Farmer G, Muller-Karger FE, Vega-Rodríguez M, Melo N, Yates K, Cerdeira-Estrada S, Herwitz SR. 2016. Characterization of available light for seagrass and patch reef productivity in Sugarloaf Key, Lower Florida Keys. Remote Sensing 8: 86. Toro-Farmer G, Muller-Karger FE, Vega-Rodríguez M, Melo N, Yates K, Cerdeira-Estrada S, Herwitz SR.2016.下佛罗里达礁岛群苏加拉夫礁海草和斑块礁生产力可用光的特征。遥感 8: 86.
Trubovitz S, Lazarus D, Renaudie J, Noble PJ. 2020. Marine plankton show threshold extinction response to Neogene climate change. Nature Communications 11: 5069. Trubovitz S, Lazarus D, Renaudie J, Noble PJ.2020.海洋浮游生物对新近纪气候变化的阈值灭绝反应。自然通讯》11: 5069.
Turner JT. 2015. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Progress in Oceanography 130: 205-248. Turner JT.2015.浮游动物排泄物、海洋积雪、植物沉积物和海洋的生物泵。海洋学进展》130: 205-248.
Tyrrell T. 2008. Calcium carbonate cycling in future oceans and its influence on future climates. Journal of Plankton Research 30: 141156. Tyrrell T. 2008.未来海洋的碳酸钙循环及其对未来气候的影响。浮游生物研究杂志》30: 141156。
Varanasi U, Trainer VL, Schumacker EJ. 2021. Taking the long view for oceans and Human health connection through community driven science. International Journal of Environmental Research and Public Health 18: 2662. Varanasi U, Trainer VL, Schumacker EJ.2021.通过社区驱动科学,以长远眼光看待海洋与人类健康的联系。国际环境研究与公共卫生杂志》18: 2662.
Vaughn D, Allen JD. 2010. The Peril of the Plankton. Integrative and Comparative Biology 50: 552-570. Vaughn D, Allen JD. 2010.浮游生物的危险》。综合与比较生物学》50: 552-570.
Wilkinson MD, et al. 2016. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data 3: 160018. Wilkinson MD, et al.科学数据管理和指导的 FAIR 指导原则》。科学数据 3: 160018.
Winder M, Sommer U. 2012. Phytoplankton response to a changing climate. Hydrobiologia 698: 5-16. Winder M, Sommer U. 2012.浮游植物对气候变化的反应。Hydrobiologia 698: 5-16.
Wolf R, Heuschele J. 2018. Water browning influences the behavioral effects of ultraviolet radiation on zooplankton. Frontiers in Ecology and Evolution 6: 26. Wolf R, Heuschele J. 2018.水褐变影响紫外线辐射对浮游动物的行为效应。生态学与进化前沿 6: 26.
Woolway RI, Kraemer BM, Lenters JD, Merchant CJ, O’Reilly CM, Sharma S. 2020. Global lake responses to climate change. Nature Reviews Earth and Environment 1: 388-403. Woolway RI, Kraemer BM, Lenters JD, Merchant CJ, O'Reilly CM, Sharma S. 2020.全球湖泊对气候变化的响应。Nature Reviews Earth and Environment 1: 388-403.
Zhang C, et al. 2022. Eco-engineering approaches for ocean negative carbon emission. Science Bulletin 67: 2564-2573. Zhang C, et al.海洋负碳排放的生态工程方法。科学通报 67: 2564-2573.
Zohary T, Flaim G, Sommer U. 2021. Temperature and the size of freshwater phytoplankton. Hydrobiologia 848: 143-155. Zohary T, Flaim G, Sommer U. 2021.温度与淡水浮游植物的大小。Hydrobiologia 848:143-155.
Abstract 摘要
Plankton, a diverse group of aquatic organisms, make Earth livable, regulate aquatic life, and provide benefits to human societies such as access to clean water, food security, and well-being. They also support economies and inspire biotechnological innovations. This article aims to raise awareness of the value of plankton to humanity and serves as an informative guide for aquatic professionals, policymakers, 浮游生物是一个多样化的水生生物群体,它们使地球变得宜居,调节水生生物,并为人类社会带来好处,如获得清洁水、粮食安全和福祉。它们还为经济提供支持,并激发生物技术创新。本文旨在提高人们对浮游生物对人类价值的认识,并为水产专业人士和政策制定者提供信息指南、