Data availability 数据可用性
我的数据和代码链接已在论文中共享

Fig. 1. Illustration of key biochemical processes in the reactor system. a. A redox gradient developed in contaminated soil. Each colored bar represents expected microbial functional groups; b. A Three-chamber bioreactor system designed to capture natural processes within contaminated soil.
图 1. 反应器系统中关键生化过程示意图。a. 污染土壤中形成的氧化还原梯度,各色条带代表预期微生物功能群;b. 用于模拟污染土壤自然过程的三室生物反应器系统。

Fig. 2. a. AB-MEC bioreactor system operation experimental design and sampling events; b. Experiment workflow. GSMM – Genome-Scale Metabolic Model.
图 2. a. AB-MEC 生物反应器系统运行实验设计与采样事件;b. 实验工作流程。GSMM——基因组尺度代谢模型。
Table 1. Features selected as representatives for genomic-based modeling.
表 1. 基因组建模代表性特征筛选结果
| RefSeq ID RefSeq 编号 | Feature frequency/abundance (%) 特征频率/丰度(%) | p-value differential abundance pattern (inferred by LEfSe) 差异丰度模式 p 值(通过 LEfSe 推断) | Representative microorganism [% identity with the respective feature] 代表性微生物[与相应特征的%相似度] | Functional Group (Supporting references) 功能基团(支持性参考文献) |
|---|---|---|---|---|
| GCA_000009985.1 | 2107/0.03 | <0.001 | Magnetospirillum magneticum [94.46] 磁性螺菌 [94.46] | BTEX degradation (Shinoda et al., 2005; Meyer-Cifuentes et al., 2017; Dziuba et al., 2016; Okpala and Voordouw, 2018) BTEX 降解(Shinoda 等,2005;Meyer-Cifuentes 等,2017;Dziuba 等,2016;Okpala 和 Voordouw,2018) |
| GCA_017848965.1 | 48246/0.75 | <0.001 | Dechloromonas aromatica RCB [96.44] 芳香脱氯单胞菌 RCB [96.44] | BTEX degradation (Chakraborty et al., 2005; Coates et al., 2001; Salinero et al., 2009) BTEX 降解(Chakraborty 等,2005;Coates 等,2001;Salinero 等,2009) |
| GCA_013387465.1 | 43219/0.67 | <0.001 | Hydrogenophaga aromaticivorans [100.0] 芳香氢噬菌 [100.0] | BTEX degradation (Banerjee et al., 2021) BTEX 降解 (Banerjee 等, 2021) |
| GCA_000012925.1 | 1242/0.02 | <0.001 | Geobacter metallireducens [95.5] 金属还原地杆菌 [95.5] | BTEX degradation & Iron reduction (Zhang et al., 2012; Lovley et al., 1993; Juárez et al., 2010) BTEX 降解与铁还原 (Zhang 等, 2012; Lovley 等, 1993; Juárez 等, 2010) |
| GCA_001263415.1 | 76785/1.19 | <0.001 | Thermincola ferriacetica [90.73] 铁乙酸热厌氧菌 [90.73] | Iron reduction (Parameswaran et al., 2013; Zavarzina et al., 2007; Toth et al., 2021) 铁还原(Parameswaran 等,2013;Zavarzina 等,2007;Toth 等,2021) |
| GCA_014193895.1 | 1250037/19.98 | <0.001 | Clostridium fungisolvens [97.98] 溶真菌梭菌 [97.98] | Fermentative iron reduction (Ueki et al., 2021; Chen et al., 2013) 发酵性铁还原(Ueki 等人,2021;Chen 等人,2013) |
| GCA_000023225.1 | 86364/1.34 | <0.001 | Desulfomicrobium baculatum [98.1] 杆状脱硫微菌 [98.1] | Fermentation (Copeland et al., 2009; Daghio et al., 2018) 发酵作用(Copeland 等人,2009;Daghio 等人,2018) |
| GCA_013409575.1 | 132231/2.05 | <0.001 | Macellibacteroides fermentans [100.0] 发酵杆菌属 Macellibacteroides fermentans [100.0] | Fermentation (Jabari et al., 2012; Kanniah Goud et al., 2017) 发酵作用(Jabari 等,2012;Kanniah Goud 等,2017) |
| GCA_900157305.1 | 22901/0.36 | <0.001 | Mesotoga infera [100.0] 中温袍菌 Mesotoga infera [100.0] | Fermentation (Ben Hania et al., 2013; Nobu et al., 2015) 发酵作用(Ben Hania 等,2013;Nobu 等,2015) |
| GCA_016865445.1 | 57836/0.9 | <0.001 | Mariniplasma anaerobium [94.2] 厌氧海洋菌 [94.2] | Fermentation (Kube et al., 2014; Tully et al., 1994; Watanabe et al., 2021) 发酵过程(Kube 等人,2014;Tully 等人,1994;Watanabe 等人,2021) |
| GCA_001050235.2 | 282664/4.4 | <0.001 | Longilinea sp. [90.0] 长线菌属 [90.0] | Fermentation (Yamada et al., 2007) 发酵过程(Yamada 等人,2007) |
| GCA_003475485.1 | 89738/1.39 | <0.001 | Dielma fastidiosa [92.0] 难养迪尔氏菌 [92.0] | Fermentation (Ramasamy et al., 2013; Verbarg et al., 2004) 发酵作用(Ramasamy 等,2013;Verbarg 等,2004) |
| GCA_004101785.1 | 121523/1.89 | <0.001 | Gudongella oleilytica [100.0] 油性古东氏菌 [100.0] | Fermentation (Wu et al., 2020) 发酵作用(Wu 等,2020) |
| GCA_007556685.1 | 139046/2.16 | <0.001 | Tepidimonas charontis [93.0] 卡戎氏温单胞菌 [93.0] | Unidentified (Albuquerque et al., 2020; Chae et al., 2009; Huang et al., 2020; Ishii et al., 2017) 未鉴定菌种(Albuquerque 等人,2020;Chae 等人,2009;Huang 等人,2020;Ishii 等人,2017) |
| GCA_001458655.1 | 17322/0.27 | <0.001 | Methanobacterium formicicum [100.0] 甲酸甲烷杆菌 [100.0] | Hydrogenotrophic methanogenesis (Chellapandi et al., 2018; Vítězová et al., 2020) 氢营养型产甲烷作用 (Chellapandi 等, 2018; Vítězová等, 2020) |
| GCA_000007345.1 | 139349/2.16 | <0.001 | Methanosarcina acetivorans [100.0] 乙酸甲烷八叠球菌 [100.0] | Acetoclastic methanogenesis (Galagan, 2002; Meng et al., 2010) 乙酸裂解型产甲烷作用 (Galagan, 2002; Meng 等, 2010) |
| GCA_900129025.1 | 323875/5.03 | <0.001 | Mariniphaga anaerophila [91.61] 厌食海杆菌 [91.61] | Fermentation (Kube et al., 2014; Tully et al., 1994; Watanabe et al., 2021) 发酵过程(Kube 等人,2014;Tully 等人,1994;Watanabe 等人,2021) |
| GCA_900095795.1 | 109505/1.7 | <0.001 | Petrimonas mucosa [96.39] 黏膜石油单胞菌 [96.39] | Fermentation (Hahnke et al., 2016) 发酵过程(Hahnke 等人,2016) |
| GCA_001591505.1 | 209583/3.25 | <0.001 | Neobacillus niacini NBRC [100.0] 尼阿西尼新芽孢杆菌 NBRC [100.0] | Fermentation (Nagel and Andreesen, 1991; Patel and Gupta, 2020) 发酵(Nagel 和 Andreesen,1991 年;Patel 和 Gupta,2020 年) |
| GCA_000368805.1 | 65824/1.02 | <0.001 | Acinetobacter johnsonii [100.0] 约氏不动杆菌 [100.0] | Fermentation (Bouvet and Grimont, 1986) 发酵(Bouvet 和 Grimont,1986 年) |
| GCA_021432765.1 | 54788/0.85 | <0.001 | Pseudomonas phenolilytica [100.0] 嗜酚假单胞菌 [100.0] | Fermentation (Kujur and Das, 2022) 发酵(Kujur 和 Das,2022 年) |
Table 2. General features of GSMMs constructed for the representative species and literature-based characterization of physiological performance of the respective species.
表 2. 代表性物种基因组规模代谢模型(GSMMs)构建的总体特征及基于文献的各物种生理性能表征
| Feature 特征 | #Genes in model 模型中基因数量 | #Biochemical reactions/#Exchange reactions 生化反应数/交换反应数 | #Metabolites | Carbon source 碳源 | Supporting references 支持性参考文献 |
|---|---|---|---|---|---|
| Macellibacteroides fermentans 马塞利杆菌发酵亚种 | 737 | 1453/79 | 1678 | Glucose 葡萄糖 | (Jabari et al., 2012; Kanniah Goud et al., 2017) (Jabari 等,2012;Kanniah Goud 等,2017) |
| Methanobacterium formicicum 甲酸甲烷杆菌 | 539 | 603/52 | 720 | CO2+H2, formate CO 2 +H 2 ,甲酸盐 | (Wu et al., 2022; Chellapandi et al., 2018; Vítězová et al., 2020; Lemaire et al., 2020) (Wu 等,2022;Chellapandi 等,2018;Vítězová等,2020;Lemaire 等,2020) |
| Mariniplasma anaerobium 厌氧海洋血浆菌 | 347 | 775/92 | 952 | Glucose + yeast extract 葡萄糖+酵母提取物 | (Kube et al., 2014; Tully et al., 1994; Watanabe et al., 2021) (Kube 等,2014;Tully 等,1994;Watanabe 等,2021) |
| Methanosarcina acetivorans 甲烷八叠球菌(Methanosarcina acetivorans) | 539 | 595/53 | 718 | Acetate, formate 乙酸、甲酸 | (Galagan, 2002; Meng et al., 2010; Lemaire et al., 2020) (Galagan, 2002; Meng 等, 2010; Lemaire 等, 2020) |
| Magnetospirillum magneticum 磁性螺菌 | 707 | 2791/63 | 3374 | Toluene, ethylbenzene, propionate, acetate, butyrate, Pyruvate, succinate, fumarate, lactate 甲苯、乙苯、丙酸、乙酸、丁酸、丙酮酸、琥珀酸、富马酸、乳酸 | (Shinoda et al., 2005; Meyer-Cifuentes et al., 2017; Dziuba et al., 2016; Okpala and Voordouw, 2018) (Shinoda 等,2005;Meyer-Cifuentes 等,2017;Dziuba 等,2016;Okpala 与 Voordouw,2018) |
| Gudongella oleilytica 油性古东氏菌 | 435 | 882/82 | 1123 | Methionine, tryptone and yeast extract 蛋氨酸、胰蛋白胨和酵母提取物 | Wu et al. (2020) Wu 等人(2020 年) |
| Thermincola ferriacetica 嗜铁热厌氧菌 | 506 | 1252/79 | 1592 | Acetate 乙酸 | (Parameswaran et al., 2013; Zavarzina et al., 2007; Toth et al., 2021) (Parameswaran 等, 2013; Zavarzina 等, 2007; Toth 等, 2021) |
| Clostridium fungisolvens 溶真菌梭菌 | 806 | 1129/91 | 1315 | Glucose 葡萄糖 | (Ueki et al., 2021; Chen et al., 2013) (Ueki 等,2021;Chen 等,2013) |
| Geobacter metallireducens 金属还原地杆菌 | 641 | 1817/63 | 2088 | Benzene, toluene, acetate, pyruvate, butyrate, propionate 苯、甲苯、乙酸、丙酮酸、丁酸、丙酸 | (Zhang et al., 2012, 2014; Lovley et al., 1993; Juárez et al., 2010) (Zhang 等,2012,2014;Lovley 等,1993;Juárez 等,2010) |
| Longilinea sp 长线菌属 | 476 | 1370/75 | 1631 | glucose, pectin, peptone + yeast extract 葡萄糖、果胶、蛋白胨+酵母提取物 | Yamada et al. (2007) 山田等人(2007 年) |
| Hydrogenophaga aromaticivorans 嗜芳烃氢噬菌 | 952 | 2021/70 | 2374 | Benzene, xylenes, glucose, fructose, mannose, mannitol, arabidol, malate 苯、二甲苯、葡萄糖、果糖、甘露糖、甘露醇、阿拉伯糖醇、苹果酸盐 | (Banerjee et al., 2021, 2022) (Banerjee 等人,2021,2022) |
| Tepidimonas charontis 嗜温单胞菌 | 569 | 1816/71 | 2170 | succinate, lactate, pyruvate, acetate, glutamate, aspartate, l-alanine, l-asparagine, l-lysine, l-glutamine, l-isoleucine and l- ornithine 琥珀酸盐、乳酸盐、丙酮酸盐、乙酸盐、谷氨酸盐、天冬氨酸盐、L-丙氨酸、L-天冬酰胺、L-赖氨酸、L-谷氨酰胺、L-异亮氨酸和 L-鸟氨酸 | (Albuquerque et al., 2020; Chae et al., 2009; Huang et al., 2020; Ishii et al., 2017) (Albuquerque 等人,2020;Chae 等人,2009;Huang 等人,2020;Ishii 等人,2017) |
| Mesotoga infera 中温托加菌 | 478 | 1610/85 | 1941 | glucose, lactate + yeast extract 葡萄糖、乳酸+酵母提取物 | (Ben Hania et al., 2013; Nobu et al., 2015) (Ben Hania 等人,2013;Nobu 等人,2015) |
| Desulfomicrobium baculatum 杆状脱硫微菌 | 562 | 2267/59 | 2852 | Malate, fumarate and pyruvate, lactate 苹果酸、富马酸和丙酮酸、乳酸 | (Copeland et al., 2009; Daghio et al., 2018) (Copeland 等,2009;Daghio 等,2018) |
| Dielma fastidiosa 苛养木杆菌 | 667 | 1190/90 | 1463 | Grows on blood-enriched Columbia agar 在添加血液的哥伦比亚琼脂培养基上生长 | (Ramasamy et al., 2013; Verbarg et al., 2004) (Ramasamy 等,2013;Verbarg 等,2004) |
| Dechloromonas aromatica 芳香脱氯单胞菌 | 703 | 1843/66 | 2100 | Benzene, toluene, ethylbenzene, xylenes, acetate, propionate, butyrate, iso-butyrate, iso-valerate, lactate, pyruvate, succinate, malate, glutamate 苯、甲苯、乙苯、二甲苯、乙酸、丙酸、丁酸、异丁酸、异戊酸、乳酸、丙酮酸、琥珀酸、苹果酸、谷氨酸 | (Chakraborty et al., 2005; Coates et al., 2001; Salinero et al., 2009) (Chakraborty 等,2005;Coates 等,2001;Salinero 等,2009) |
| Neobacillus niacini NBRC 尼氏新芽孢杆菌 NBRC | 1442 | 2162/160 | 2460 | Aspartate, citrate, lactate, glucose, acetate, fumarate, glutamate, malate, pyruvate, and succinate 天冬氨酸、柠檬酸、乳酸、葡萄糖、乙酸、富马酸、谷氨酸、苹果酸、丙酮酸和琥珀酸 | Nagel and Andreesen (1991) Nagel 和 Andreesen(1991 年) |
| Mariniphaga anaerophila 厌氧噬菌体(Mariniphaga anaerophila) | 754 | 1456/109 | 1686 | Glucose, cysteine 葡萄糖、半胱氨酸 | Iino et al. (2014) Iino 等人(2014 年) |
| Acinetobacter johnsonii 约氏不动杆菌 | 844 | 1422/117 | 1676 | Citrate, lactate, malonate, malate, aspartate, tyrosine, arginine, aminobutyrate 柠檬酸盐、乳酸盐、丙二酸盐、苹果酸盐、天冬氨酸盐、酪氨酸、精氨酸、氨基丁酸盐 | Bouvet and Grimont (1986) Bouvet 与 Grimont(1986 年) |
| Petrimonas mucosa | 618 | 891/90 | 1039 | Peptone, glucose 蛋白胨,葡萄糖 | Hahnke et al. (2016) Hahnke 等人(2016) |
| Pseudomonas phenolilytica 嗜酚假单胞菌 | 953 | 1619/109 | 1933 | Acetate, citrate, formate, lactate, propionate, succinate, alanine, asparagine, glutamate, proline, serine, inosine, aminoethanol and phenol 乙酸、柠檬酸、甲酸、乳酸、丙酸、琥珀酸、丙氨酸、天冬酰胺、谷氨酸、脯氨酸、丝氨酸、肌苷、氨基乙醇和苯酚 | Kujur and Das (2022) Kujur 和 Das(2022 年) |

Fig. 3. Monitoring of the AB-MEC system: a. Benzene, Toluene, Ethylbenzene and Xylene isomers concentration; b. Chemical Oxygen Demand (COD) indicating total organic carbon; c. pH measurement; d. biogas composition (%) OC – open circuit. Color shades charts' zones represent the four experimental phases as described in Fig.2 a.
图 3. AB-MEC 系统监测结果:a. 苯、甲苯、乙苯和二甲苯异构体浓度;b. 化学需氧量(COD)表征总有机碳含量;c. pH 值测量;d. 沼气组成(%) OC – 开路状态。彩色阴影区域表示四个实验阶段,如图 2a 所述。

Fig. 4. Alpha-diversity (Shannon index) of bacterial communities within each reactor in the three-chamber system during the four experimental phases (white-blue shading). Significance is based on Kruskal-Wallis pairwise test (∗p ≤ 0.05; ∗∗p ≤ 0.01; ∗∗∗p ≤ 0.001) b. Principal coordinates analysis (PCoA) plots calculated based on Bray-Curtis dissimilarities between the samples. Table S6 provides the full pairwise PERMANOVA metrics.
图 4. 三室系统中各反应器内细菌群落在四个实验阶段(白-蓝渐变色标注)的α多样性(香农指数)。显著性基于 Kruskal-Wallis 配对检验(∗p ≤ 0.05;∗∗p ≤ 0.01;∗∗∗p ≤ 0.001)。b. 基于样本间 Bray-Curtis 相异度计算的主坐标分析(PCoA)图。完整配对 PERMANOVA 指标见表 S6。

Fig. 5. Class level microbial community composition of the three-chamber bioreactor system.
图 5. 三室生物反应器系统在纲水平上的微生物群落组成。

Fig. 6. Distribution of taxonomic and functional microbial groups in the reactor system. Left column – community distribution at the family level. Groups whose relative abundance <5% were classified as others. Middle column – family level distribution of the ASVs selected as a representative. Right column – functional classification of the representative ASVs based on sequencing of functional genes, taxonomic classification and literature survey (Table 1).
图 6. 反应器系统中微生物类群与功能组的分布情况。左栏——科水平上的群落分布,相对丰度<5%的类群归为其他。中栏——选定为代表序列的 ASV 在科水平上的分布。右栏——基于功能基因测序、分类学鉴定及文献调研(表 1)对代表性 ASV 进行的功能分类。

Fig. 7. Taxonomic distribution of bacteria carrying the functional gene bamA encoding the enzyme 6-oxocyclohex-1-ene-1-carbonyl-coenzyme a hydrolase in the AB-MEC community. Taxonomy was inferred based on homology search versus the NR database in the NCBI depository. Entries marked as ∗ were selected as representative species of BTEX degradation for downstream analysis.
图 7. AB-MEC 群落中携带功能基因 bamA(编码 6-氧代环己-1-烯-1-甲酰辅酶 A 水解酶)的细菌分类分布。分类学信息通过 NCBI 数据库 NR 库的同源性比对推断得出。标有∗的条目被选作 BTEX 降解代表性物种用于后续分析。

Fig. 8. Validation matrices examining three key physiological performances of each representative species (columns) across 25 validation media that were designed according to literature survey (Table 2).
图 8. 验证矩阵展示了每种代表性菌种(列)在 25 种验证培养基中的三项关键生理性能指标,这些培养基是根据文献调研(表 2)设计的。

Fig. 9. Networks of exchange interactions constructed for the chamber communities on day 159, spanning from BTEX consumption to methane emission on the last day of the experiment. Key individual fluxes are provided in Fig. S6; Full exchange files and corresponding heatmaps are available in https://github.com/FreilichLab/Supplementary_methanogenesis/.
图 9. 为第 159 天反应室群落构建的交换互作网络,涵盖从 BTEX 消耗到实验最后一天甲烷排放的全过程。关键个体通量数据见图 S6;完整交换文件及对应热图详见 https://github.com/FreilichLab/Supplementary_methanogenesis/。
Multimedia component 1.