Elsevier

Environmental Research

Volume 268, 1 March 2025, 120691
Environmental Research

Integrated use of electrochemical anaerobic reactors and genomic based modeling for characterizing methanogenic activity in microbial communities exposed to BTEX contamination
电化学厌氧反应器与基因组建模的整合应用用于表征暴露于 BTEX 污染下微生物群落的产甲烷活性

https://doi.org/10.1016/j.envres.2024.120691Get rights and content
Full text access

Highlights

  • A reactor system was designed to represent differentiation along contaminant plume.
  • Variations in the functioning of the reactors were associated with microbial shifts.
  • Community functionality was simulated by representing key species as metabolic models.
  • Simulations successfully captured the differentiation in reactors' emission profile.
  • Simulations predicted different exchanges between fermenters and methanogens underlying different emission profiles.

Abstract

In soil polluted with benzene, toluene, ethylbenzene, and xylenes (BTEX), oxygen is rapidly depleted by aerobic respiration, creating a redox gradient across the plume. Under anaerobic conditions, BTEX biodegradation is then coupled with fermentation and methanogenesis. This study aimed to characterize this multi-step process, focusing on the interactions and functional roles of key microbial groups involved. A reactor system, comprising an Anaerobic Bioreactor (AB) and two Microbial Electrolysis Cell (MEC) chambers, designed to represent different spatial zones along the redox gradient, operated for 160 days with intermittent exposure to BTEX. The functional differentiation of each chamber was reflected by the gas emission profiles: 50%, 12% and 84% methane in the AB, anode and cathode chambers, respectively. The taxonomic profiling, assessed using 16S amplicon sequencing, led to the identification chamber-characteristic taxonomic groups. To translate the taxonomic shift into a functional shift, community dynamics was transformed into a simulative platform based on genome scale metabolic models constructed for 21 species that capture both key functionalities and taxonomies. Representatives include BTEX degraders, fermenters, iron reducers acetoclastic and hydrogenotrophic methanogens. Functionality was inferred according to the identification of the functional gene bamA as a biomarker for anaerobic BTEX degradation, taxonomy and literature support. Comparison of the predicted performances of the reactor-specific communities confirmed that the simulation successfully captured the experimentally recorded functional variation. Variations in the predicted exchange profiles between chambers capture reported and novel competitive and cooperative interactions between methanogens and non-methanogens. Examples include the exchange profiles of hypoxanthine (HYXN) and acetate between fermenters and methanogens, suggesting mechanisms underlying the supportive/repressive effect of taxonomic divergence on methanogenesis. Hence, the platform represents a pioneering attempt to capture the full spectrum of community activity in methanogenic hydrocarbon biodegradation while supporting the future design of optimization strategies.
在受苯、甲苯、乙苯和二甲苯(BTEX)污染的土壤中,氧气通过好氧呼吸作用迅速耗尽,从而在污染羽流中形成氧化还原梯度。在厌氧条件下,BTEX 的生物降解过程与发酵作用和产甲烷作用相耦合。本研究旨在表征这一多步骤过程,重点关注关键微生物类群间的相互作用及其功能角色。实验采用由厌氧生物反应器(AB)和两个微生物电解池(MEC)室组成的反应器系统,该系统设计用于模拟沿氧化还原梯度的不同空间区域,在间歇性暴露于 BTEX 的条件下运行了 160 天。各反应室的功能分化通过气体排放特征得以体现:AB 室、阳极室和阴极室的甲烷占比分别为 50%、12%和 84%。通过 16S 扩增子测序进行的分类学分析,鉴定出了各反应室特有的分类群。为将分类学变化转化为功能变化,研究将群落动态转化为基于基因组尺度代谢模型的模拟平台,该模型针对 21 个物种构建,涵盖了关键功能类群和分类学特征。 代表性微生物包括 BTEX 降解菌、发酵菌、铁还原菌、乙酸营养型和氢营养型产甲烷菌。根据厌氧 BTEX 降解功能基因 bamA 作为生物标志物的鉴定结果,结合分类学信息和文献支持,推断了其功能特性。通过比较反应器特异性群落的预测性能,证实模拟成功捕捉了实验记录的功能变异。各反应室间预测代谢交换谱的差异反映了已报道及新发现的产甲烷菌与非产甲烷菌间的竞争与协作关系,例如发酵菌与产甲烷菌之间的次黄嘌呤(HYXN)和乙酸盐交换谱,揭示了分类差异对产甲烷作用的促进/抑制机制。因此,该平台开创性地实现了对产甲烷烃类生物降解过程中群落全活性谱的捕捉,同时为未来优化策略的设计提供了支撑。

Keywords  关键词

BTEX
Soil pollution
AB-MEC bioreactor system
Microbial functional groups
Hydrogenotrophic methanogens
Acetoclastic methanogens
Metabolic modeling
Dynamic flux balance analysis

BTEX 土壤污染 AB-MEC 生物反应器系统 微生物功能群组 氢营养型产甲烷菌 乙酸裂解型产甲烷菌 代谢建模 动态通量平衡分析

1. Introduction  1. 引言

Crude oil spills and the resulting contamination have significant adverse effects on soil quality and the local economy. Crude oil predominantly contains aromatic hydrocarbons such as benzene, toluene, ethylbenzene, and xylene isomers (BTEX), which are highly resistant to degradation and toxic to humans (ATSDR and Agency for Toxic Substances and Disease Registry, 2019; Lueders, 2017). Elevated concentrations of BTEX have been detected in soils, sediments, and groundwater, posing severe threats to local water ecosystems. As globally pervasive contaminants of great environmental concern, BTEX compounds serve as model substances for studying anaerobic degradation in soils. Over the past few decades, the bioremediation of polluted sites has garnered considerable attention (Lueders, 2017; Daghio et al., 2017; Weelink et al., 2010). Delineating microbial metabolic exchanges underlying this multi-step process can serve as a key for its beneficial management.
原油泄漏及其造成的污染对土壤质量和当地经济产生重大负面影响。原油主要含有苯、甲苯、乙苯和二甲苯异构体(BTEX)等芳香烃化合物,这些物质难降解且对人体具有高毒性(美国毒物与疾病登记署,2019;Lueders,2017)。在土壤、沉积物和地下水中检测到的高浓度 BTEX 对当地水生态系统构成严重威胁。作为全球普遍存在且备受关注的环境污染物,BTEX 化合物成为研究土壤厌氧降解的模式物质。过去几十年来,污染场地的生物修复技术受到广泛关注(Lueders,2017;Daghio 等,2017;Weelink 等,2010)。阐明这一多步骤过程中微生物代谢交换机制,可成为实现有效治理的关键所在。
In the early stages following contamination, oxygen is often rapidly depleted through aerobic respiration near the soil surface. This depletion leads to the formation of a redox gradient under oxygen-poor conditions, where alternative electron acceptors such as nitrate, sulfate, and oxidized forms of iron or manganese are utilized (Lueders, 2017; Chen et al., 2022; Ning et al., 2024). When these alternative electron acceptors are exhausted, methanogenic conditions develop, resulting in methane (CH₄) as the primary end product under such anaerobic environments (Fig. 1) (Jiménez et al., 2016; Rabus et al., 2005; Schink, 1997).
污染初期,表层土壤附近的氧气常因好氧呼吸作用迅速耗竭。这种耗氧过程导致在贫氧条件下形成氧化还原梯度,此时微生物会利用硝酸盐、硫酸盐以及氧化态铁/锰等替代电子受体(Lueders, 2017; Chen 等, 2022; Ning 等, 2024)。当这些替代电子受体耗尽时,系统进入产甲烷条件,在此类厌氧环境中最终主要生成甲烷(CH₄)(图 1)(Jiménez 等, 2016; Rabus 等, 2005; Schink, 1997)。
Fig. 1
  1. Download: Download high-res image (728KB)
    下载:下载高分辨率图片(728KB)
  2. Download: Download full-size image
    下载:下载全尺寸图片

Fig. 1. Illustration of key biochemical processes in the reactor system. a. A redox gradient developed in contaminated soil. Each colored bar represents expected microbial functional groups; b. A Three-chamber bioreactor system designed to capture natural processes within contaminated soil.
图 1. 反应器系统中关键生化过程示意图。a. 污染土壤中形成的氧化还原梯度,各色条带代表预期微生物功能群;b. 用于模拟污染土壤自然过程的三室生物反应器系统。

Microbiota-mediated biodegradation of BTEX under aerobic, facultative anaerobic, and strictly anaerobic conditions has been extensively studied (Lueders, 2017; Chen et al., 2022; Ning et al., 2024; Terry, 2019; Jeon and Madsen, 2013; Huang et al., 2021; Margesin et al., 2003). While microbial-mediated BTEX degradation is considered highly efficient under aerobic conditions, degradation under anaerobic conditions is governed by the availability of electron acceptors (Lueders, 2017). This availability influences the structure of microbial communities and, consequently, their functional roles across redox potential zones (Wu et al., 2022). The degradation of chemically complex pollutants often results from the collective activity of microbial consortia. In such cases, endogenous members of the in-situ microbial community catalyze both complementary and overlapping stages of the biodegradation process (Hansen et al., 2007; Fuhrman, 2009). Throughout this process, pollutants are mineralized into environmentally harmless end-products through a series of metabolic steps (Tahri Joutey et al., 2013). Biodegradation rates and the nature of its final products are influenced by the composition of the microbial community and the interactions among its members (Kato et al., 2005; Gieg et al., 2014). In naturally contaminated plumes, effective bioremediation relies on BTEX degraders activity in conjunction with other functional groups, such as fermenters, acetate and hydrogen scavengers (Chen et al., 2022; Terry, 2019; Kleinsteuber et al., 2012). Based on the characterization of catabolic pathways in BTEX-degrading bacteria (Fuchs et al., 2011) and other microorganisms, several genes encoding key enzymes can serve as biomarkers for detecting these organisms in natural and artificial environments (Chen et al., 2022; Ning et al., 2024; Wu et al., 2022; von Netzer et al., 2016; Wu et al., 2024). In polluted sites, methanogens have been identified as critical components of anaerobic BTEX biodegradation (Ning et al., 2024; Jiménez et al., 2016). In some cases, BTEX concentrations correlated more strongly with biomarkers of methanogenic processes than with those associated with pathways utilizing alternative electron acceptors (Chen et al., 2022). The co-occurrence of BTEX-degrading bacteria and methanogens at polluted sites is thought to result from mutualistic interactions among microorganisms, reflecting the coupling of BTEX degradation with fermentation and methanogenesis (Chen et al., 2022). In this process, biodegradation begins with microbial species capable of converting BTEX into accessible organic intermediates, terminating in methane formation by methanogens.
微生物群落在好氧、兼性厌氧和严格厌氧条件下介导的 BTEX 生物降解已得到广泛研究(Lueders,2017;Chen 等,2022;Ning 等,2024;Terry,2019;Jeon 和 Madsen,2013;Huang 等,2021;Margesin 等,2003)。虽然好氧条件下微生物介导的 BTEX 降解被认为效率极高,但厌氧条件下的降解过程受电子受体可用性调控(Lueders,2017)。这种可用性会影响微生物群落结构,进而影响其在氧化还原电位区间的功能作用(Wu 等,2022)。化学复杂污染物的降解通常源于微生物群落的协同作用,其中原位微生物群落的内源成员可催化生物降解过程中互补且重叠的各个阶段(Hansen 等,2007;Fuhrman,2009)。通过一系列代谢步骤,污染物最终被矿化为对环境无害的终产物(Tahri Joutey 等,2013)。 生物降解速率及其最终产物的特性受微生物群落组成及其成员间相互作用的共同影响(Kato 等,2005;Gieg 等,2014)。在自然污染羽流中,有效的生物修复依赖于 BTEX 降解菌与发酵菌、乙酸及氢清除菌等功能菌群的协同作用(Chen 等,2022;Terry,2019;Kleinsteuber 等,2012)。基于对 BTEX 降解细菌(Fuchs 等,2011)及其他微生物分解代谢途径的表征研究,若干编码关键酶的基因可作为检测自然与人工环境中这类微生物的生物标志物(Chen 等,2022;Ning 等,2024;Wu 等,2022;von Netzer 等,2016;Wu 等,2024)。在污染场地中,产甲烷菌已被确认为厌氧 BTEX 生物降解的关键组分(Ning 等,2024;Jiménez 等,2016)。某些情况下,BTEX 浓度与产甲烷过程生物标志物的相关性显著强于其他电子受体代谢途径的相关标志物(Chen 等,2022)。 污染场地中 BTEX 降解菌与产甲烷菌的共存现象被认为源于微生物间的互作关系,反映了 BTEX 降解过程与发酵作用及产甲烷过程的耦合(Chen 等,2022)。该生物降解过程始于能将 BTEX 转化为可利用有机中间产物的微生物种群,最终由产甲烷菌完成甲烷的生成。
As BTEX components are among the most widespread soil pollutants, the efficiency of microbial community function is crucial for the effective cleanup of contaminated environments (Wartell, 2021). For instance, bioaugmentation with methanogenic consortia has been shown to enhance the anaerobic degradation of BTEX in groundwater (Silva and Alvarez, 2004). In recent years, omics approaches have been increasingly employed to uncover the roles of functional microbes and their syntrophic interactions in natural ecosystems (Weelink et al., 2010; Chen et al., 2022; Ning et al., 2024). Metagenomic and genomic data not only facilitate the characterization of the activity of individual species but also provide valuable insights into the syntrophic interactions within real-life degrading communities. Metabolic modeling is a tool used to determine molecular basis underlying different interaction types and predict potential routes for their optimization. Genome-Scale Metabolic Model (GSMM) allows in-silico representation of the overall metabolic processes conducted by an organism as inferred from its genomic information. Such mathematical instruments allow a well-established and relatively reliable approach for conducting systematic simulations exploring the outcomes of genomic or environmental manipulations of metabolic performances in an organism in the service of developing strategies for enhancing desirable traits (O'Brien et al., 2015). As such, GSMMs describing biodegrades can be used for predicting strategies for the optimization of bioremediation (Ofaim et al., 2020; Dhakar et al., 2021, 2022); GSMMs describing methanogens can be used as a platform to reveal their environmental contribution to carbon balance under different conditions (Chellapandi et al., 2017). Beyond the single organism, through the co-analysis of microbial combinations, metabolic modelling supports the prediction of metabolic exchanges underlying microbial interactions (Faust, 2019).
由于 BTEX 组分是最常见的土壤污染物之一,微生物群落功能的效率对于有效修复污染环境至关重要(Wartell,2021 年)。例如,研究表明通过添加产甲烷菌群进行生物强化,可显著提升地下水中 BTEX 的厌氧降解效率(Silva 和 Alvarez,2004 年)。近年来,组学技术被越来越多地用于揭示自然生态系统中功能微生物的作用及其互营关系(Weelink 等,2010 年;Chen 等,2022 年;Ning 等,2024 年)。宏基因组和基因组数据不仅能表征单一物种的活性,更能为实际降解群落中的互营作用机制提供重要见解。代谢建模是用于解析不同相互作用类型分子基础并预测其优化路径的重要工具。基因组尺度代谢模型(GSMM)能够根据生物体的基因组信息,在计算机中模拟其整体代谢过程。 这类数学工具为开展系统性模拟提供了一种成熟且相对可靠的方法,通过探索基因组或环境因素对生物体代谢性能的调控结果,服务于增强目标性状的策略开发(O'Brien 等,2015)。因此,描述生物降解过程的基因组尺度代谢模型(GSMMs)可用于预测生物修复优化策略(Ofaim 等,2020;Dhakar 等,2021,2022);而描述产甲烷菌的 GSMMs 则能作为揭示不同环境下其对碳平衡贡献的研究平台(Chellapandi 等,2017)。在单生物体研究之外,通过对微生物组合的联合分析,代谢建模技术可支持预测微生物互作背后的代谢交换机制(Faust,2019)。
GSMMs derived from native microbial communities enable systematic simulations to explore the metabolic outcomes of community dynamics in response to environmental stimuli (Dhakar et al., 2021; Faust, 2019; Milne et al., 2009; Ruan et al., 2024; Simeonidis and Price, 2015). Advances in sequencing technologies now allow for the detailed observation of community shifts, and when combined with modeling approaches, they provide a framework for uncovering the "black box" of community function (Widder et al., 2016). Recent studies have utilized GSMMs to contextualize metagenomics data from anaerobic digesters, offering comprehensive descriptions of the respective microbial interactions and suggesting strategies to enhance biogas production efficiency (Basile et al., 2020, 2023; De Bernardini et al., 2022; Zampieri et al., 2023). In bioremediation, metabolic modeling approaches have proven valuable for elucidating the interactions that underpin the efficiency of microbial consortia and for designing optimal biodegradation strategies. For example, GSMMs have been applied to enhance the biodegradation of agrochemicals such as phenyl urea, atrazine, and bromoxynil octanoate herbicides (Dhakar et al., 2022; Ruan et al., 2024; Xu et al., 2013, 2019). The use of GSMMs enables to predict the most favorable growth conditions for the microorganisms, overall suggesting strategies to improve desirable environmental traits.
源自本土微生物群落的基因组规模代谢模型(GSMMs)能够通过系统模拟探索群落动态对环境刺激的代谢响应(Dhakar 等,2021;Faust,2019;Milne 等,2009;Ruan 等,2024;Simeonidis 和 Price,2015)。测序技术的进步现已实现对群落演变的精细观测,当与建模方法结合时,这些技术为揭示群落功能的"黑箱"提供了框架(Widder 等,2016)。近期研究利用 GSMMs 对厌氧消化器的宏基因组数据进行情境化分析,全面描述了相应的微生物互作关系,并提出了提升沼气生产效率的策略(Basile 等,2020,2023;De Bernardini 等,2022;Zampieri 等,2023)。在生物修复领域,代谢建模方法已被证实能有效阐明微生物群落效率的互作机制,并为设计最优生物降解策略提供支持。 例如,基因组尺度代谢模型(GSMMs)已被应用于增强苯基脲类、莠去津和辛酰溴苯腈等农用化学品的生物降解(Dhakar 等,2022;Ruan 等,2024;Xu 等,2013,2019)。通过运用 GSMMs 能够预测微生物最适宜的生长条件,从而为改善目标环境特性提供优化策略。
Considering the importance of anaerobic biodegradation and methanogenesis in hydrocarbon bioremediation in general and in BTEX biodegradation in particular (Daghio et al., 2017; Wei et al., 2024; Espinoza-Tofalos et al., 2020; Liang et al., 2019), this research aimed to apply metabolic modelling for gaining a comprehensive description of the interactions underlying this process. This was achieved through integrating chemical-biological monitoring, combined with GSMM based analysis. Specifically, our goal was to employ metabolic modeling to simulate and elucidate sequential metabolic processes mediated by the microbial community, starting from BTEX degradation to methane emission. In this respect, this study represents a pioneering attempt to capture the full range of microbial community activities during methanogenic hydrocarbon biodegradation, considering both functional and taxonomic composition of the degrading community. As soil inhabits a highly diverse microbiota with various trophic interactions between community members (metabolic exchanges, competition, etc.) and abiotic factors (temperature, salinity, etc.), the choice of key species for computational representation of the community is not trivial. Whereas the community dynamics of the aerobic degradation of simple compounds is relatively straightforward to trace using modern high throughput sequencing technique, the degradation of aromatic hydrocarbon pollutants is far less trivial for monitoring in complex ecological systems especially under anaerobic conditions. Thus, the study of degradation processes under controlled laboratory systems (e.g. reactors or microcosms) allows us to simplify the choice of species associated with specific conditions. To capture the community function under different conditions, we used a reactor system combining an Anaerobic Bioreactor (AB) and two chambers of Microbial Electrolysis Cell (MEC) (Daghio et al., 2017; Wei et al., 2024; Espinoza-Tofalos et al., 2020; Liang et al., 2019). Generally, electron acceptors alter microbial functions by regulating microbial community structure and interactions along redox potential zones (Wu et al., 2022). Methanogenic conditions are typically achieved in AB. However, microbial community members in natural anaerobic BTEX-contaminated environments and in AB systems often exhibit low metabolic activity. Facilitation of methanogenesis-related bioremediation processes is achieved through Microbial electrochemical systems (MESs) such as MECs (Wei et al., 2024; Liang et al., 2019; Wang et al., 2021). The presence of carbon electrodes creates selective conditions that enrich iron-reducing bacteria, which catalyze the oxidation of biodegradable substrates, releasing electrons. This has generated growing interest in AB-MEC configurations for removing petroleum hydrocarbon pollutants and producing methane (Daghio et al., 2017; Geppert et al., 2016). Enhanced anaerobic BTEX degradation in AB-MEC systems has been shown to be synchronized with methane production (Wu et al., 2024). The combination of an AB system, where no specific conditions are applied, and a two-chamber MEC system not only imitates the redox potential across BTEX contaminated plume, but also spatially stratify microbial key groups participating in anaerobic BTEX biodegradation. A recent genomic profiling has delineated potential interaction mechanisms that enhance the metabolic efficiency of toluene degradation in an AB-single MEC setup (Wu et al., 2024). The main goal of this study is to further highlight the main microbial species and microbial species interactions in anaerobic BTEX degrading communities through integration of metabolic modeling approaches for the analysis of microbial function. The reactor systems allowed us to compare microbial composition and functionality under different selective conditions. By combining the monitoring of AB-MEC system with metabolic modelling approaches we not only described microbial interactions in different conditions, but also generated a platform for the future design of optimization strategies for deriving biomethane through better control on BTEX biodegradation.
鉴于厌氧生物降解和产甲烷作用在烃类生物修复(尤其是 BTEX 生物降解)中的重要性(Daghio 等,2017;Wei 等,2024;Espinoza-Tofalos 等,2020;Liang 等,2019),本研究旨在应用代谢建模技术全面解析该过程的相互作用机制。通过整合化学-生物监测与基于基因组尺度代谢模型(GSMM)的分析方法,我们实现了从 BTEX 降解到甲烷排放这一微生物群落介导的连续代谢过程的模拟与阐释。本研究开创性地尝试在考虑降解群落功能组成与分类学特征的同时,完整捕捉烃类产甲烷生物降解过程中微生物群落的全谱活动特征。 由于土壤栖息着高度多样化的微生物群落,其成员间存在多种营养级相互作用(代谢交换、竞争等)与非生物因素(温度、盐度等)的影响,选择用于计算模拟群落的关键物种并非易事。虽然通过现代高通量测序技术追踪简单化合物的好氧降解群落动态相对直接,但在复杂生态系统中监测芳香烃污染物的降解过程——尤其在厌氧条件下——则远为困难。因此,通过受控实验室系统(如反应器或微观宇宙)研究降解过程,使我们能够简化特定条件下相关物种的选择。为捕捉不同条件下的群落功能,我们采用了结合厌氧生物反应器(AB)与双室微生物电解池(MEC)的反应器系统(Daghio 等,2017;Wei 等,2024;Espinoza-Tofalos 等,2020;Liang 等,2019)。 通常而言,电子受体通过调控氧化还原电位分区的微生物群落结构与相互作用来改变微生物功能(Wu 等,2022)。厌氧生物反应器(AB)中通常可实现产甲烷条件。然而,天然厌氧 BTEX 污染环境与 AB 系统中的微生物群落成员往往表现出较低代谢活性。通过微生物电化学系统(MESs)如微生物电解池(MECs)可促进产甲烷相关生物修复过程(Wei 等,2024;Liang 等,2019;Wang 等,2021)。碳电极的存在创造了选择性条件,可富集铁还原菌——这类微生物能催化可生物降解底物的氧化反应并释放电子。这使得 AB-MEC 构型在去除石油烃污染物与甲烷生产方面日益受到关注(Daghio 等,2017;Geppert 等,2016)。研究证实 AB-MEC 系统中增强的厌氧 BTEX 降解与甲烷生产具有同步性(Wu 等,2024)。 采用无特定条件设置的 AB 系统与双室 MEC 系统相结合,不仅模拟了 BTEX 污染羽流中的氧化还原电位梯度,还实现了参与厌氧 BTEX 生物降解关键微生物群落的空间分层。最新基因组分析揭示了 AB-MEC 单室系统中提升甲苯降解代谢效率的潜在互作机制(Wu 等,2024)。本研究通过整合代谢建模方法分析微生物功能,旨在进一步阐明厌氧 BTEX 降解群落中的核心微生物种类及其相互作用关系。反应器系统使我们能够比较不同选择压力下的微生物组成与功能特性。通过将 AB-MEC 系统监测与代谢建模方法相结合,我们不仅解析了不同条件下的微生物互作网络,更为未来通过优化 BTEX 生物降解控制来提升生物甲烷产量的策略设计构建了研究平台。

2. Materials & methods  2. 材料与方法

2.1. Experimental setup  2.1 实验装置

The closed circuit MEC consisted of two 1-liter glass-bottles with carbon cloth electrodes, serving as the anode and cathode chambers. The electrodes were connected to an 800 mV-powered potentiostat (PalmSens, The Netherlands), while the double-chamber control MEC operated under open circuit conditions. The 3-liter volume AB and MEC chambers were inoculated with medium and clean soil collected from Newe Yaar Research Center (32°42′18″N; 35°11′07″E; Organic plots, from the margins of the control blocks, Ramat Yishay, Israel). The medium (previously described in (Yanuka-Golub et al., 2019) and soil characterization are described in Tables S1 and S2 respectively. A BTEX-DMSO (Sigma-Aldrich, Israel) was used as the stock solution (solution contain benzene, toluene, ethylbenzene, p-xylene, m-xylene, o-xylene, 1 mg mL−1 each) to ensure BTEX solubility before injection into the reactors. BTEX was injected directly into the reactors through PVC tubes to reach a final concentration of 15 mg L−1 for each BTEX component, according to effective concentration values described in (Lueders, 2017). Immediately following the injection, the tubes were washed several times by injecting the anaerobic medium described above. Glucose was injected during the clean soil phases as a single carbon source, reaching a final concentration of 500 mg L−1 (Fig. 2 a). The addition of glucose was found to be necessary because the carbon sources were very low (chemical oxygen demand (COD) ∼ 50 mg L−1). During the BTEX exposure phases (Fig. 2), BTEX was added as the single carbon source. Samples were collected directly from the reactors into 2 mL amber glass vials using a syringe. For BTEX analysis, the samples were preserved in the glass vials, ensuring no headspace to minimize BTEX evaporation. The samples were kept et 4 °C until measurement. BTEX concentrations were analyzed by gas chromatography–mass spectrometry (GC-MS, Agilent 6890). The produced biogas in the anaerobic system was collected in 3 L Tedlar Air® sampling bags. The collected biogas volume was measured weekly by gas chromatography GC system (Agilent 7890B Gas Chromatograph). Overall, the AB-MEC system operated for 160 days. During the experiment, monitoring of chemical oxygen demand (COD), pH, gas emission and short-chain fatty acids (SCFA) and microbial community dynamics was conducted weekly. SCFA were measured by HPLC (Thermo Finnigan LLC Scientific Surveyor, California, USA), pH by combo water tester (MRC Labs IP67, Israel) and COD was measured according to the 18th edition of Standard Methods for the Examination of Water and Wastewater (American Public Health Association, 1926). For community structure analysis, 16S rRNA gene amplicon sequencing was performed for samples taken at different time points from each reactor.
该闭路微生物电解池(MEC)系统由两个 1 升玻璃瓶构成,分别作为阳极室和阴极室,内装碳布电极。电极连接至 800 mV 恒电位仪(PalmSens,荷兰),而作为对照的双室 MEC 则在开路条件下运行。3 升容积的厌氧消化(AB)和 MEC 反应器接种了来自 Newe Yaar 研究中心(32°42′18″N;35°11′07″E;以色列 Ramat Yishay 有机试验区边界对照地块)的培养基与洁净土壤。培养基配方(详见 Yanuka-Golub 等人 2019 年研究)及土壤特性参数分别见表 S1 和 S2。使用 BTEX-DMSO(Sigma-Aldrich,以色列)作为母液(含苯、甲苯、乙苯、对二甲苯、间二甲苯、邻二甲苯各 1 mg/mL −1 )以确保注入反应器前 BTEX 的溶解性。通过 PVC 管将 BTEX 直接注入反应器,根据(Lueders, 2017)报道的有效浓度值,使各 BTEX 组分终浓度均达到 15 mg/L −1 。 注射完成后,立即使用上述厌氧培养基对反应管进行多次冲洗。在清洁土壤阶段注入葡萄糖作为单一碳源,最终浓度达到 500 mg/L(图 2a)。由于初始碳源含量极低(化学需氧量 COD 约 50 mg/L),葡萄糖的添加被证实是必要的。在 BTEX 暴露阶段(图 2),BTEX 作为单一碳源加入。使用注射器将反应器中的样品直接采集至 2 mL 棕色玻璃样品瓶中。针对 BTEX 分析,样品在无顶空条件下保存于玻璃瓶中以减少挥发,并于 4°C 冷藏直至检测。BTEX 浓度通过气相色谱-质谱联用仪(GC-MS,安捷伦 6890)进行分析。厌氧系统产生的沼气收集于 3L 特德拉 Tedlar Air®采样袋中,每周通过气相色谱系统(安捷伦 7890B 气相色谱仪)测量沼气体积。整个 AB-MEC 系统持续运行 160 天。 实验期间,每周监测化学需氧量(COD)、pH 值、气体排放量、短链脂肪酸(SCFA)及微生物群落动态变化。SCFA 采用高效液相色谱仪(美国加州 Thermo Finnigan LLC Scientific Surveyor)测定,pH 值使用组合式水质测试仪(以色列 MRC Labs IP67)检测,COD 则依据《水和废水标准检验方法》第 18 版(美国公共卫生协会,1926 年)进行测定。针对群落结构分析,对各反应器不同时间点采集的样本进行了 16S rRNA 基因扩增子测序。
Fig. 2
  1. Download: Download high-res image (488KB)
    下载:下载高分辨率图像(488KB)
  2. Download: Download full-size image
    下载:下载全尺寸图片

Fig. 2. a. AB-MEC bioreactor system operation experimental design and sampling events; b. Experiment workflow. GSMM – Genome-Scale Metabolic Model.
图 2. a. AB-MEC 生物反应器系统运行实验设计与采样事件;b. 实验工作流程。GSMM——基因组尺度代谢模型。

2.2. DNA extraction, amplicon sequencing and data analysis
2.2. DNA 提取、扩增子测序与数据分析

Soil samples were collected at different time points from each bioreactor chamber (Fig. 2). DNA extraction was performed by Powersoil DNA isolation kit (DNEASY Powersoil Pro Kit, QIAGEN, Israel), according to the manufacturer's instructions. Quality and quantity of the genomic DNA were determined using NanoDrop (Thermo-Fisher Scientific, Waltham, MA) and agarose gel electrophoresis. For community analysis extracted DNA 16S rRNA genes were amplified by universal primer based on the V3-V4 hypervariable region of prokaryotic 16S rDNA for the simultaneous detection of Bacteria and Archaea CS1_341F/CS2_806R primer set (Takahashi et al., 2014). The resulted amplicons were sent to Core Laboratory Services, Rush University Medical Center Chicago, IL for subsequent sequencing. Metadata file that included monitoring data validated using Keemei (Rideout et al., 2016), an open-source Google Sheets plugin available at https://keemei.qiime2.org was used. The bioreactors' sequencing results were analyzed with the Quantitative Insights into Microbial Ecology platform (QIIME2 software package version 2020.2) (Estaki et al., 2020; Bolyen et al., 2019) and plugins associated with this version. Quality control, filtering chimeric sequences, and feature table construction were done using the QIIME2 plugins demux (https://github.com/qiime2/q2-demux) and dada2 (Callahan et al., 2016). A total of 10,931,245 raw reads were reduced to 6,443,599 reads after the quality control, merging, denoising and chimera removal. The paired-end reads were combined based on overlapped regions, and the two 250-bp paired-end sequences were merged to obtain a single read (approximately 406.97 bp, mean length). Taxonomy classification alignment with 99% similarity was done against the SILVA 138 database (Quast et al., 2013; Yilmaz et al., 2014) using a pretrained naive Bayes classifier and the “feature-classifier” QIIME2 plugin (Bokulich et al., 2018) with the “classify-sklearn”. Alpha and beta diversities were calculated through the q2-diversity plugin4 using the “core-metrics-phylogenetic” method with a sampling depth (rarefaction) of 12,000. Associations between categorical metadata “treatment” column (contains bioreactor chamber and experiment day) and alpha diversity data were calculated through “qiime diversity alpha-group-significance” with Kruskal-Wallis pairwise test (Kruskal and Wallis, 1952) for Shannon's diversity index. Condition-characteristic taxa were identified with Linear discriminant analysis Effect Size (LEfSe) (Dang and Chang) calculated by Microbiomeanalist web based tool (Chong et al., 2020; Dhariwal et al., 2017) requiring LDL score >3. Differential abundance was determined with DESeq2 test conducted by the r package (Love et al., 2014). The bamA gene fragments (354bp) were amplified using the previously described primers oah_t (GCA GTA CAA YTC CTA CAC SAC YGA BAT GGT) and bamA_R (CCR TGC TTS GGR CCV GCC TGV CCG AA) (Wu et al., 2022; Staats et al., 2011). The amplification was done for the three reactors at four time points representing the four experimental phases. PCR mixtures and conditions were performed as shown in Table S3. The DNA of Geobacter metallireducens (DSM 7210) and Magnetospirillum moscoviense (DSM 29455) from Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ, https://www.dsmz.de) were used as positive control for bamA amplification. For bamA gene amplification and sequencing, purified amplicons were pooled in the equimolar and paired-end sequenced on an Illumina MiSeq PE300 platform (Illumina, San Diego, USA) according to the standard protocols by Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China). Sequencing processing followed (Wu et al., 2022).To capture dominant BTEX degraders species an amplicon sequence variants (ASVs) with relative abundance less than 0.01 were filtered out. The relative abundance of ASVs across samples is reported in Table S4.The bamA and 16S sequence files are available in NCBI GenBank depository under BioProject PRJNA1137253.
在不同时间点从各生物反应器腔室中采集土壤样品(图 2)。使用 Powersoil DNA 提取试剂盒(DNEASY Powersoil Pro Kit,QIAGEN,以色列)按制造商说明进行 DNA 提取。采用 NanoDrop(Thermo-Fisher Scientific,美国马萨诸塞州沃尔瑟姆市)和琼脂糖凝胶电泳测定基因组 DNA 的质量与浓度。针对群落分析,采用基于原核生物 16S rDNA V3-V4 高变区的通用引物 CS1_341F/CS2_806R(Takahashi 等,2014)对提取的 DNA 16S rRNA 基因进行扩增,实现细菌和古菌同步检测。所得扩增子送至美国芝加哥拉什大学医学中心核心实验室服务部进行测序。使用经 Keemei(Rideout 等,2016,开源 Google Sheets 插件,详见 https://keemei.qiime2.org)验证的监测数据元数据文件。生物反应器测序结果通过微生物生态定量分析平台(QIIME2 软件包 2020.2 版)(Estaki 等,2020;Bolyen 等,2019)及其配套插件进行分析。 质量控制、嵌合序列过滤及特征表构建均采用 QIIME2 插件 demux(https://github.com/qiime2/q2-demux)和 dada2(Callahan 等,2016)完成。经过质量控制、序列合并、去噪及嵌合体去除后,原始 10,931,245 条读长缩减至 6,443,599 条。基于重叠区域将双端读长进行合并,两条 250bp 的双端序列经拼接获得单条读长(平均长度约 406.97bp)。使用预训练的朴素贝叶斯分类器及 QIIME2 插件"feature-classifier"中的"classify-sklearn"方法,以 99%相似度对 SILVA 138 数据库(Quast 等,2013;Yilmaz 等,2014)进行物种分类比对。通过 q2-diversity 插件的"core-metrics-phylogenetic"方法,在 12,000 抽样深度(稀疏化)下计算α和β多样性指数。 分类元数据"处理"列(包含生物反应器腔室和实验天数)与α多样性数据之间的关联性通过"qiime 多样性α组显著性"计算,采用 Kruskal-Wallis 配对检验(Kruskal 和 Wallis,1952)分析香农多样性指数。使用基于 Microbiomeanalist 网络工具(Chong 等,2020;Dhariwal 等,2017)计算的线性判别分析效应量(LEfSe)(Dang 和 Chang)鉴定条件特征类群,要求 LDL 得分>3。差异丰度分析通过 r 包的 DESeq2 检验(Love 等,2014)完成。bamA 基因片段(354bp)扩增采用已报道引物 oah_t(GCA GTA CAA YTC CTA CAC SAC YGA BAT GGT)和 bamA_R(CCR TGC TTS GGR CCV GCC TGV CCG AA)(Wu 等,2022;Staats 等,2011)。对代表四个实验阶段的四个时间点的三个反应器进行了扩增,PCR 混合体系及反应条件如表 S3 所示。 来自德国微生物和细胞培养物保藏中心(DSMZ,https://www.dsmz.de)的金属还原地杆菌(Geobacter metallireducens DSM 7210)和莫斯科磁螺菌(Magnetospirillum moscoviense DSM 29455)的 DNA 被用作 bamA 基因扩增的阳性对照。bamA 基因扩增与测序过程中,纯化后的扩增子经等摩尔混合后,由上海美吉生物医药科技有限公司按照标准流程在 Illumina MiSeq PE300 平台(美国圣地亚哥 Illumina 公司)进行双端测序。测序数据处理参照 Wu 等人(2022)的方法。为捕获优势 BTEX 降解菌种,相对丰度低于 0.01 的扩增子序列变异(ASVs)被过滤剔除。各样本中 ASVs 的相对丰度数据详见附表 S4。bamA 和 16S 序列文件已存入 NCBI GenBank 数据库,项目编号为 PRJNA1137253。

2.3. Reconstruction and curation of GSMMs
2.3. GSMMs 的重建与优化

Genome-scale metabolic models (GSMMs) were constructed for 21 microbial species, selected to represent the microbial communities in the different reactors. A metabolic model includes a network that is described as a stoichiometric matrix Sm × n, where m represents the number of metabolites and n the number of reactions in the model that are inferred based on the gene content in the respective genome (Mahadevan and Schilling, 2003). Genome sequences representing the selected ASVs were retrieved from public depositories of fully sequenced genomes based on sequence similarity search. Representative ASVs and the respective genome sequences selected for constructing the metabolic networks models are listed in Table 1. With the exception of the two methanogens (Methanosarcina acetivorans and Methanobacterium formicicum), the initial automatic construction followed the protocol described by (Ofaim et al., 2020; Dhakar et al., 2021, 2022; Xu et al., 2019). Briefly, Model SEED was used for constructing the initial draft metabolic models from the genome sequence data (Faria et al., 2018). Annotations were done through RAST (Meyer et al., 2008). For the two methanogens, draft reconstruction relied on a high-quality reconstruction of a methanogen (Richards et al., 2016) that was modified according to the genome specificities of the selected representatives. As part of the automatic reconstruction, the reactions of each of the models were further updated according to additional available genome annotation schemes including KEGG (Kanehisa et al., 2014), UniProt (UniProt Consortium, 2018), JGI (Nordberg et al., 2014). Reactions added from additional annotation platforms were converted according to the KBASE (Arkin et al., 2018) rxn conventions, reaction stoichiometry and reversibility was validated, and futile loops were identified and eliminated. Following initial reconstruction, the models were manually curated through a systematic procedure: First, metabolic capacities and physiological growth conditions were determined based on a detailed literature survey (Table 2). Then, simulations were conducted to validate the is silico performances of each model. For microorganisms designated as BTEX degraders (based on amplification of functional genes), their selectivity to BTEX components was retrieved from the literature, also ensuring their ability to utilize these components as a sole carbon source. Relevant degradation pathways were added to the respective models based on the KEGG database (https://www.genome.jp/kegg/pathway.html). For methanogens, the full inclusion of reactions involved in acetoclastic and hydrogenotrophic methanogenesis was verified and missing reactions were added. Similarly, growth requirements of members of other functional groups were defined based on a comprehensive literature search and the models were modified accordingly (Table 2). To validate the performances of the different models we designed a simulation matrix testing biomass production and consumption and production of short chain fatty acids (SCFA), H2, CO2 and CH4 for each model in 25 in silico media representing control (non-feasible conditions), and selective media that are relevant to specific microbial groups as defined based on their validated physiology from the literature (Table 2). All media are composed of essential trace elements and minerals (MMM: K+, Mn2+, CO2, Zn2+, SO42−, Cu2+, Ca2+, HPO42−, Mg2+, Fe2+, Cl) supplemented with alternative C and N sources, in accordance with species physiology. Simulations were carried out using flux balance analysis (FBA), following protocols described in (Ofaim et al., 2020; Dhakar et al., 2021, 2022; Xu et al., 2019). Briefly, FBA makes use of the cellular reconstructions for depicting cellular processes. This is done by following the law of mass conservation while considering the metabolic framework as a static stoichiometric matrix (metabolites × reactions) (Rana et al., 2020). FBA describes the predicted flux distribution through linear optimization by targeting specific cellular objectives (mainly growth). Here, the growth of the model was chosen as the objective function through the maximization of the biomass reaction. Specific fluxes for metabolites consumption and secretion were determined following fixation of the respective biomass reaction to its maximal value and then using Flux Variability Analysis (FVA), a linear programming method to find the minimal amount of metabolites needed to produce a preset amount of biomass (Mahadevan and Schilling, 2003). All model simulations were done on an Intel i7 quad-core server with 128 GB of memory, running Linux. The development programming language of our simulators was Java, and our linear programming software was IBM CPLEX. Simulation environments and running conditions, and simulation outcomes (text files and heatmaps) and code for constructing the simulation matrix are available in https://github.com/FreilichLab/Supplementary_methanogenesis/tree/main/BEvis. Models are available as Systems Biology Markup Language (SBML) (Hucka et al., 2003) files https://github.com/FreilichLab/Supplementary_methanogenesis/tree/main/MatrixViz.
本研究为 21 种微生物物种构建了基因组尺度代谢模型(GSMMs),这些物种选自不同反应器中的微生物群落代表。代谢模型包含一个由化学计量矩阵 Sm×n 描述的代谢网络,其中 m 代表代谢物数量,n 表示基于相应基因组基因内容推断的模型反应数量(Mahadevan 和 Schilling,2003 年)。通过序列相似性搜索从公共全基因组数据库中获取了代表选定 ASVs 的基因组序列。用于构建代谢网络模型的代表性 ASVs 及其对应基因组序列列于表 1。除两种产甲烷菌(乙酸甲烷八叠球菌和甲酸甲烷杆菌)外,初始自动构建流程遵循 Ofaim 等人(2020 年)、Dhakar 等人(2021 年,2022 年)及 Xu 等人(2019 年)描述的方案。简言之,采用 Model SEED 从基因组序列数据构建初始代谢模型草案(Faria 等人,2018 年),并通过 RAST 系统完成注释(Meyer 等人,2008 年)。 针对这两种产甲烷菌,草案重建工作基于一个高质量产甲烷菌模型(Richards 等人,2016 年研究)进行修改,并根据所选代表菌株的基因组特性进行调整。在自动重建过程中,各模型反应进一步根据其他可用基因组注释方案进行更新,包括 KEGG(Kanehisa 等人,2014 年)、UniProt(UniProt Consortium,2018 年)和 JGI(Nordberg 等人,2014 年)。从其他注释平台添加的反应按照 KBASE(Arkin 等人,2018 年)反应规范进行转换,验证了反应化学计量和可逆性,并识别消除了无效循环。初步重建完成后,通过系统程序对模型进行人工校验:首先基于详细文献调研确定代谢能力和生理生长条件(表 2),随后通过模拟验证各模型的计算机性能表现。 对于被指定为 BTEX 降解菌的微生物(基于功能基因扩增),其对各 BTEX 组分的选择性数据来自文献检索,同时确保这些微生物能以 BTEX 组分作为唯一碳源。根据 KEGG 数据库(https://www.genome.jp/kegg/pathway.html)将相关降解途径添加至相应模型。针对产甲烷菌,我们验证并补全了涉及乙酸营养型和氢营养型产甲烷途径的所有反应。同理,通过全面文献调研确定了其他功能菌群的生长需求,并相应调整了模型参数(表 2)。为验证不同模型的性能,我们设计了模拟矩阵:在 25 种计算机模拟培养基中测试各模型的生物量产出、短链脂肪酸(SCFA)代谢以及 H 2 、CO 2 和 CH 4 的生成情况,这些培养基包括对照组(不可行条件)和根据文献证实的特定微生物群生理特性配置的选择性培养基(表 2)。 所有培养基均根据物种生理特性,添加了必需微量元素和矿物质(MMM:K + 、Mn 2+ 、CO 2 、Zn 2+ 、SO 4 2− 、Cu 2+ 、Ca 2+ 、HPO 4 2− 、Mg 2+ 、Fe 2+ 、Cl )以及替代碳氮源。模拟采用通量平衡分析(FBA)进行,遵循(Ofaim 等人,2020;Dhakar 等人,2021,2022;Xu 等人,2019)所述方案。简言之,FBA 利用细胞重建来描述细胞过程,其通过遵循质量守恒定律,将代谢框架视为静态化学计量矩阵(代谢物×反应)(Rana 等人,2020)。FBA 通过线性优化针对特定细胞目标(主要是生长)来描述预测的通量分布。本研究选择模型生长作为目标函数,通过最大化生物量反应来实现。 通过将各生物量反应固定至最大值后,采用通量变异性分析(FVA)方法测定代谢物消耗与分泌的特异性通量。该线性规划方法用于确定产生预设生物量所需代谢物的最小量(Mahadevan 和 Schilling,2003)。所有模型模拟均在配备 128GB 内存的 Intel i7 四核服务器(运行 Linux 系统)上完成。模拟器开发采用 Java 编程语言,线性规划软件使用 IBM CPLEX。模拟环境与运行条件、模拟结果(文本文件与热图)以及构建模拟矩阵的代码详见 https://github.com/FreilichLab/Supplementary_methanogenesis/tree/main/BEvis。模型以系统生物学标记语言(SBML)(Hucka 等,2003)文件形式发布于 https://github.com/FreilichLab/Supplementary_methanogenesis/tree/main/MatrixViz。

Table 1. Features selected as representatives for genomic-based modeling.
表 1. 基因组建模代表性特征筛选结果

RefSeq ID  RefSeq 编号Feature frequency/abundance (%)
特征频率/丰度(%)
p-value differential abundance pattern (inferred by LEfSe)
差异丰度模式 p 值(通过 LEfSe 推断)
Representative microorganism [% identity with the respective feature]
代表性微生物[与相应特征的%相似度]
Functional Group (Supporting references)
功能基团(支持性参考文献)
GCA_000009985.12107/0.03<0.001Magnetospirillum magneticum [94.46]
磁性螺菌 [94.46]
BTEX degradation (Shinoda et al., 2005; Meyer-Cifuentes et al., 2017; Dziuba et al., 2016; Okpala and Voordouw, 2018)
BTEX 降解(Shinoda 等,2005;Meyer-Cifuentes 等,2017;Dziuba 等,2016;Okpala 和 Voordouw,2018)
GCA_017848965.148246/0.75<0.001Dechloromonas aromatica RCB [96.44]
芳香脱氯单胞菌 RCB [96.44]
BTEX degradation (Chakraborty et al., 2005; Coates et al., 2001; Salinero et al., 2009)
BTEX 降解(Chakraborty 等,2005;Coates 等,2001;Salinero 等,2009)
GCA_013387465.143219/0.67<0.001Hydrogenophaga aromaticivorans [100.0]
芳香氢噬菌 [100.0]
BTEX degradation (Banerjee et al., 2021)
BTEX 降解 (Banerjee 等, 2021)
GCA_000012925.11242/0.02<0.001Geobacter metallireducens [95.5]
金属还原地杆菌 [95.5]
BTEX degradation & Iron reduction (Zhang et al., 2012; Lovley et al., 1993; Juárez et al., 2010)
BTEX 降解与铁还原 (Zhang 等, 2012; Lovley 等, 1993; Juárez 等, 2010)
GCA_001263415.176785/1.19<0.001Thermincola ferriacetica [90.73]
铁乙酸热厌氧菌 [90.73]
Iron reduction (Parameswaran et al., 2013; Zavarzina et al., 2007; Toth et al., 2021)
铁还原(Parameswaran 等,2013;Zavarzina 等,2007;Toth 等,2021)
GCA_014193895.11250037/19.98<0.001Clostridium fungisolvens [97.98]
溶真菌梭菌 [97.98]
Fermentative iron reduction (Ueki et al., 2021; Chen et al., 2013)
发酵性铁还原(Ueki 等人,2021;Chen 等人,2013)
GCA_000023225.186364/1.34<0.001Desulfomicrobium baculatum [98.1]
杆状脱硫微菌 [98.1]
Fermentation (Copeland et al., 2009; Daghio et al., 2018)
发酵作用(Copeland 等人,2009;Daghio 等人,2018)
GCA_013409575.1132231/2.05<0.001Macellibacteroides fermentans [100.0]
发酵杆菌属 Macellibacteroides fermentans [100.0]
Fermentation (Jabari et al., 2012; Kanniah Goud et al., 2017)
发酵作用(Jabari 等,2012;Kanniah Goud 等,2017)
GCA_900157305.122901/0.36<0.001Mesotoga infera [100.0]  中温袍菌 Mesotoga infera [100.0]Fermentation (Ben Hania et al., 2013; Nobu et al., 2015)
发酵作用(Ben Hania 等,2013;Nobu 等,2015)
GCA_016865445.157836/0.9<0.001Mariniplasma anaerobium [94.2]
厌氧海洋菌 [94.2]
Fermentation (Kube et al., 2014; Tully et al., 1994; Watanabe et al., 2021)
发酵过程(Kube 等人,2014;Tully 等人,1994;Watanabe 等人,2021)
GCA_001050235.2282664/4.4<0.001Longilinea sp. [90.0]  长线菌属 [90.0]Fermentation (Yamada et al., 2007)
发酵过程(Yamada 等人,2007)
GCA_003475485.189738/1.39<0.001Dielma fastidiosa [92.0]  难养迪尔氏菌 [92.0]Fermentation (Ramasamy et al., 2013; Verbarg et al., 2004)
发酵作用(Ramasamy 等,2013;Verbarg 等,2004)
GCA_004101785.1121523/1.89<0.001Gudongella oleilytica [100.0]
油性古东氏菌 [100.0]
Fermentation (Wu et al., 2020)
发酵作用(Wu 等,2020)
GCA_007556685.1139046/2.16<0.001Tepidimonas charontis [93.0]
卡戎氏温单胞菌 [93.0]
Unidentified (Albuquerque et al., 2020; Chae et al., 2009; Huang et al., 2020; Ishii et al., 2017)
未鉴定菌种(Albuquerque 等人,2020;Chae 等人,2009;Huang 等人,2020;Ishii 等人,2017)
GCA_001458655.117322/0.27<0.001Methanobacterium formicicum [100.0]
甲酸甲烷杆菌 [100.0]
Hydrogenotrophic methanogenesis (Chellapandi et al., 2018; Vítězová et al., 2020)
氢营养型产甲烷作用 (Chellapandi 等, 2018; Vítězová等, 2020)
GCA_000007345.1139349/2.16<0.001Methanosarcina acetivorans [100.0]
乙酸甲烷八叠球菌 [100.0]
Acetoclastic methanogenesis (Galagan, 2002; Meng et al., 2010)
乙酸裂解型产甲烷作用 (Galagan, 2002; Meng 等, 2010)
GCA_900129025.1323875/5.03<0.001Mariniphaga anaerophila [91.61]
厌食海杆菌 [91.61]
Fermentation (Kube et al., 2014; Tully et al., 1994; Watanabe et al., 2021)
发酵过程(Kube 等人,2014;Tully 等人,1994;Watanabe 等人,2021)
GCA_900095795.1109505/1.7<0.001Petrimonas mucosa [96.39]
黏膜石油单胞菌 [96.39]
Fermentation (Hahnke et al., 2016)
发酵过程(Hahnke 等人,2016)
GCA_001591505.1209583/3.25<0.001Neobacillus niacini NBRC [100.0]
尼阿西尼新芽孢杆菌 NBRC [100.0]
Fermentation (Nagel and Andreesen, 1991; Patel and Gupta, 2020)
发酵(Nagel 和 Andreesen,1991 年;Patel 和 Gupta,2020 年)
GCA_000368805.165824/1.02<0.001Acinetobacter johnsonii [100.0]
约氏不动杆菌 [100.0]
Fermentation (Bouvet and Grimont, 1986)
发酵(Bouvet 和 Grimont,1986 年)
GCA_021432765.154788/0.85<0.001Pseudomonas phenolilytica [100.0]
嗜酚假单胞菌 [100.0]
Fermentation (Kujur and Das, 2022)
发酵(Kujur 和 Das,2022 年)

Table 2. General features of GSMMs constructed for the representative species and literature-based characterization of physiological performance of the respective species.
表 2. 代表性物种基因组规模代谢模型(GSMMs)构建的总体特征及基于文献的各物种生理性能表征

Feature  特征#Genes in model  模型中基因数量#Biochemical reactions/#Exchange reactions
生化反应数/交换反应数
#MetabolitesCarbon source  碳源Supporting references  支持性参考文献
Macellibacteroides fermentans
马塞利杆菌发酵亚种
7371453/791678Glucose  葡萄糖(Jabari et al., 2012; Kanniah Goud et al., 2017)
(Jabari 等,2012;Kanniah Goud 等,2017)
Methanobacterium formicicum
甲酸甲烷杆菌
539603/52720CO2+H2, formate
CO 2 +H 2 ,甲酸盐
(Wu et al., 2022; Chellapandi et al., 2018; Vítězová et al., 2020; Lemaire et al., 2020)
(Wu 等,2022;Chellapandi 等,2018;Vítězová等,2020;Lemaire 等,2020)
Mariniplasma anaerobium  厌氧海洋血浆菌347775/92952Glucose + yeast extract  葡萄糖+酵母提取物(Kube et al., 2014; Tully et al., 1994; Watanabe et al., 2021)
(Kube 等,2014;Tully 等,1994;Watanabe 等,2021)
Methanosarcina acetivorans
甲烷八叠球菌(Methanosarcina acetivorans)
539595/53718Acetate, formate  乙酸、甲酸(Galagan, 2002; Meng et al., 2010; Lemaire et al., 2020)
(Galagan, 2002; Meng 等, 2010; Lemaire 等, 2020)
Magnetospirillum magneticum
磁性螺菌
7072791/633374Toluene, ethylbenzene, propionate, acetate, butyrate, Pyruvate, succinate, fumarate, lactate
甲苯、乙苯、丙酸、乙酸、丁酸、丙酮酸、琥珀酸、富马酸、乳酸
(Shinoda et al., 2005; Meyer-Cifuentes et al., 2017; Dziuba et al., 2016; Okpala and Voordouw, 2018)
(Shinoda 等,2005;Meyer-Cifuentes 等,2017;Dziuba 等,2016;Okpala 与 Voordouw,2018)
Gudongella oleilytica  油性古东氏菌435882/821123Methionine, tryptone and yeast extract
蛋氨酸、胰蛋白胨和酵母提取物
Wu et al. (2020)  Wu 等人(2020 年)
Thermincola ferriacetica  嗜铁热厌氧菌5061252/791592Acetate  乙酸(Parameswaran et al., 2013; Zavarzina et al., 2007; Toth et al., 2021)
(Parameswaran 等, 2013; Zavarzina 等, 2007; Toth 等, 2021)
Clostridium fungisolvens  溶真菌梭菌8061129/911315Glucose  葡萄糖(Ueki et al., 2021; Chen et al., 2013)
(Ueki 等,2021;Chen 等,2013)
Geobacter metallireducens
金属还原地杆菌
6411817/632088Benzene, toluene, acetate, pyruvate, butyrate, propionate
苯、甲苯、乙酸、丙酮酸、丁酸、丙酸
(Zhang et al., 2012, 2014; Lovley et al., 1993; Juárez et al., 2010)
(Zhang 等,2012,2014;Lovley 等,1993;Juárez 等,2010)
Longilinea sp  长线菌属4761370/751631glucose, pectin, peptone + yeast extract
葡萄糖、果胶、蛋白胨+酵母提取物
Yamada et al. (2007)  山田等人(2007 年)
Hydrogenophaga aromaticivorans
嗜芳烃氢噬菌
9522021/702374Benzene, xylenes, glucose, fructose, mannose, mannitol, arabidol, malate
苯、二甲苯、葡萄糖、果糖、甘露糖、甘露醇、阿拉伯糖醇、苹果酸盐
(Banerjee et al., 2021, 2022)
(Banerjee 等人,2021,2022)
Tepidimonas charontis  嗜温单胞菌5691816/712170succinate, lactate, pyruvate, acetate, glutamate, aspartate, l-alanine, l-asparagine, l-lysine, l-glutamine, l-isoleucine and l- ornithine
琥珀酸盐、乳酸盐、丙酮酸盐、乙酸盐、谷氨酸盐、天冬氨酸盐、L-丙氨酸、L-天冬酰胺、L-赖氨酸、L-谷氨酰胺、L-异亮氨酸和 L-鸟氨酸
(Albuquerque et al., 2020; Chae et al., 2009; Huang et al., 2020; Ishii et al., 2017)
(Albuquerque 等人,2020;Chae 等人,2009;Huang 等人,2020;Ishii 等人,2017)
Mesotoga infera  中温托加菌4781610/851941glucose, lactate + yeast extract
葡萄糖、乳酸+酵母提取物
(Ben Hania et al., 2013; Nobu et al., 2015)
(Ben Hania 等人,2013;Nobu 等人,2015)
Desulfomicrobium baculatum
杆状脱硫微菌
5622267/592852Malate, fumarate and pyruvate, lactate
苹果酸、富马酸和丙酮酸、乳酸
(Copeland et al., 2009; Daghio et al., 2018)
(Copeland 等,2009;Daghio 等,2018)
Dielma fastidiosa  苛养木杆菌6671190/901463Grows on blood-enriched Columbia agar
在添加血液的哥伦比亚琼脂培养基上生长
(Ramasamy et al., 2013; Verbarg et al., 2004)
(Ramasamy 等,2013;Verbarg 等,2004)
Dechloromonas aromatica  芳香脱氯单胞菌7031843/662100Benzene, toluene, ethylbenzene, xylenes, acetate, propionate, butyrate, iso-butyrate, iso-valerate, lactate, pyruvate, succinate, malate, glutamate
苯、甲苯、乙苯、二甲苯、乙酸、丙酸、丁酸、异丁酸、异戊酸、乳酸、丙酮酸、琥珀酸、苹果酸、谷氨酸
(Chakraborty et al., 2005; Coates et al., 2001; Salinero et al., 2009)
(Chakraborty 等,2005;Coates 等,2001;Salinero 等,2009)
Neobacillus niacini NBRC  尼氏新芽孢杆菌 NBRC14422162/1602460Aspartate, citrate, lactate, glucose, acetate, fumarate, glutamate, malate, pyruvate, and succinate
天冬氨酸、柠檬酸、乳酸、葡萄糖、乙酸、富马酸、谷氨酸、苹果酸、丙酮酸和琥珀酸
Nagel and Andreesen (1991)
Nagel 和 Andreesen(1991 年)
Mariniphaga anaerophila  厌氧噬菌体(Mariniphaga anaerophila)7541456/1091686Glucose, cysteine  葡萄糖、半胱氨酸Iino et al. (2014)  Iino 等人(2014 年)
Acinetobacter johnsonii  约氏不动杆菌8441422/1171676Citrate, lactate, malonate, malate, aspartate, tyrosine, arginine, aminobutyrate
柠檬酸盐、乳酸盐、丙二酸盐、苹果酸盐、天冬氨酸盐、酪氨酸、精氨酸、氨基丁酸盐
Bouvet and Grimont (1986)
Bouvet 与 Grimont(1986 年)
Petrimonas mucosa618891/901039Peptone, glucose  蛋白胨,葡萄糖Hahnke et al. (2016)  Hahnke 等人(2016)
Pseudomonas phenolilytica
嗜酚假单胞菌
9531619/1091933Acetate, citrate, formate, lactate, propionate, succinate, alanine, asparagine, glutamate, proline, serine, inosine, aminoethanol and phenol
乙酸、柠檬酸、甲酸、乳酸、丙酸、琥珀酸、丙氨酸、天冬酰胺、谷氨酸、脯氨酸、丝氨酸、肌苷、氨基乙醇和苯酚
Kujur and Das (2022)  Kujur 和 Das(2022 年)

2.4. Community modelling and construction of trophic networks
2.4 群落建模与营养网络构建

Community model construction and simulations followed the algorithm outlined in (Dhakar et al., 2022; Xu et al., 2019) making use of dynamic flux balance analysis (dFBA) for simulating the growth of multiple species in a given media across time (Harcombe et al., 2014; Dukovski et al., 2021). Briefly, the model is updated after each time tick: the amount of biomass of each species is changed after each time tick based on the biomass reaction flux of the given species in that time tick; uptaken metabolites are removed from the media and secreted metabolites are added to it. The new concentrations are then used as a starting point for the next iteration. A conceptual illustration of the simulations is provided in Fig. S5. Biomasses for each chamber were described according to the amplicon inferred composition (Table S5) and the simulation medium was designed to reflect the specific abundances and conditions in each chamber. Media definitions relied both on simulations – reflecting information regarding the amounts of external metabolites that were added to the reactor on specific days (BTEX components and glucose, Fig. 2) together with model-based predictions regarding internal community exchanges following the uptake of external metabolites and secretion of exchange metabolites. Media was also supplemented with amino acids reflecting the available necromass. To reflect the conditions induced by the electrode, we supplied in our computational simulations excessive amounts of hydrogen in the cathode versus setting the external hydrogen flux to zero in the anode chamber. In the AB reactor, hydrogen supply relied solely on intrinsic fluxes of the microbial community. Community dynamics were validated against observed reactor performances ensuring that key shifts of biomass and measured metabolites availability in each reactor were captured. Output files describing the exchange profiles of community members (exchanges files, “get_species_exchange_fluxes” function in comets) were depicted as directional networks spanning from BTEX components to CO2 and CH4 using code developed in Python 3.8.0. A detailed description of the algorithm, code and simulation files are available at https://github.com/FreilichLab/Supplementary_methanogenesis/tree/main/BEvis. Simulation environments and running conditions, and simulation outcomes (text files and heatmaps) are available in https://github.com/FreilichLab/Supplementary_methanogenesis/tree/main/Simulation_outcomes.
群落模型构建与仿真遵循(Dhakar 等,2022;Xu 等,2019)提出的算法框架,采用动态通量平衡分析(dFBA)技术模拟多物种在给定培养基中随时间变化的生长过程(Harcombe 等,2014;Dukovski 等,2021)。简言之,模型在每个时间步长后更新:基于各物种在当前时间步长的生物量反应通量调整其生物量;消耗的代谢物从培养基中移除,分泌的代谢物则被添加至培养基。更新后的浓度值将作为下一轮迭代的初始条件。图 S5 提供了该模拟过程的概念示意图。各反应室的生物量根据扩增子测序推断的群落组成(表 S5)进行设定,模拟培养基的设计则对应各反应室的具体丰度与环境条件。培养基成分的确定综合了模拟数据——反映特定日期添加至反应器的外源代谢物(BTEX 组分与葡萄糖,如图 2)结合模型预测,分析微生物群落摄取外部代谢物及分泌交换代谢物后的内部群落交换情况。培养基中还添加了氨基酸以反映可利用的坏死生物量。为模拟电极诱导的条件,我们在计算模拟中为阴极室提供过量氢气,同时将阳极室的外部氢通量设为零。在 AB 反应器中,氢气供应完全依赖于微生物群落的内在通量。通过对比观测到的反应器性能验证群落动态变化,确保准确捕捉各反应器中生物量关键变化及实测代谢物可用性。 描述群落成员交换特征(交换文件,即 COMETS 中"get_species_exchange_fluxes"函数)的输出文件通过 Python 3.8.0 开发的代码被可视化为从 BTEX 组分指向 CO 2 和 CH 4 的定向网络。算法、代码及模拟文件的详细说明详见 https://github.com/FreilichLab/Supplementary_methanogenesis/tree/main/BEvis。模拟环境与运行条件、模拟结果(文本文件与热图)可在 https://github.com/FreilichLab/Supplementary_methanogenesis/tree/main/Simulation_outcomes 获取。

3. Results  3. 结果

3.1. The effect of applied selective conditions on microbial function in anaerobic reactors
3.1 选择性施加条件对厌氧反应器中微生物功能的影响

The designed bioreactor system consisted of three chambers: Anaerobic Bioreactor AB chamber and two chambers of Microbial Electrolysis Cell (MEC) – anode and cathode chambers (Fig. 1). Each chamber was designed to selectively enrich a specific microbial functional population to spatially dissect a typical redox gradient (Fig. 1a). The anode-chamber served as an electron acceptor where iron reducers were expected to be enriched (yellow group, Fig. 1); proton transfer from the anode towards the cathode were expected to enrich hydrogenotrophic methanogens vs acetoclastic methanogens (green and brown groups, respectively, Fig. 1). Alternatively, in the AB reactor, no specific condition was applied, beyond the absence of oxygen resulting in a mixed methanogenic population, comprising a higher abundance of acetolactic compared to hydrogenotrophic methanogens (Dolfing, 2001; Thauer et al., 2008; Liu and Whitman, 2008). In parallel, an additional double-chamber MEC system operated under open circuit conditions and served as a control. Overall, the experiment was designed to compare the functionality and composition of the soil-derived microbial communities within the different reactors. The AB-MEC system operated for 160 days, where the period was divided into four distinct phases (Fig. 2): I) First "clean" phase (days 0–40): inoculation with non-contaminated soil and system initiation (days 0–40) with glucose addition on day 19. II) First BTEX exposure period (days 40–83) with two consecutive spiking additions of BTEX (days 40 & 63). III) Second "clean" phase (days 83–146) with no BTEX exposure allowing soil natural attenuation and soil remediation, followed by glucose addition (days 83, 91, 111). IV) Second BTEX exposure period (days 146–160): re-contamination of the soil by additional two consecutive spiking events (days 146 & 159). As the clean soil was poor in organic carbon glucose was added as a carbon source during the clean phases (Fig. 2). To ensure process stability and to estimate proper time for glucose/BTEX spiking, pH and chemical oxygen demand (COD) were measured weekly. In all bioreactors COD increased sharply with glucose addition (Fig. 3b). Nevertheless, BTEX addition did not induce such a sharp rise in COD. As expected, pH measurements remained significantly different between bioreactors' chambers. The pH in the anode closed circuit bioreactor chamber decreased (∼pH = 6) and the pH of the cathode closed circuit bioreactor chamber increased (∼pH = 9). Such measures indicate oxidation reactions and H2 release in the cathode, due to reduction reactions in the anode. In comparison, in the AB and open circuit MECs bioreactors’ chamber the pH remained relatively constant (Fig. 3c). Fig. 3a shows that in all reactor chambers, the concentration of the four BTEX components compounds dropped rapidly. Such results may be due continuous mixing of soil slurry that increases carbon sources and water availability or absorption (Zanello et al., 2021). Rapid degradation of BTEX components is likely to be abiotic as efficient biodegradation needs a longer acclimation period (European Chemicals Bureau and European Chemicals Bureau, 2008; European Chemicals Bureau and European Chemicals Bureau, 2007; Carvajal et al., 2018). At the end of the experiment (day 159) BTEX compounds did not degrade completely: 30%, 0.2%, 10% of added benzene,17%, 0.5% and 3% of added toluene, 12%, 4% and 1% of added ethylbenzene and 14.7% 2% and 6% of added xylenes remained in AB, anode and cathode CC, respectively. Gas emission profiles indicated that methanogenic activity significantly differed in the bioreactor system (Fig. 3d). While in the AB chamber the measured biogas emission (CO2:CH4) at the end of the experiment was 50%:33% - consistent with the typical range previously reported for anaerobic bioreactors (Kapoor et al., 2020), the anode CC chamber displayed a much lower biogas percentage CH4:CO2 ratio of 12%:32% at the end of the experiment. An opposite pattern was detected in the cathode chamber where CH4 reached 84% at phase 3 of the experiment with no apparent CO2 emission. Such results suggest the selective enrichment of specific bacterial groups, possibly iron reducers in the anode and methanogens in the cathode. As expected, monitored biogas emission in open circuit MECs showed the same ratio as in AB bioreactor (Fig. 3d). The detected differences in the emission profile support that selective conditions induced a functional divergence in the microbial communities in the reactors (Fig. 1).
设计的生物反应器系统由三个腔室组成:厌氧生物反应器 AB 腔室和微生物电解池(MEC)的两个腔室——阳极室与阴极室(图 1)。每个腔室专门设计用于选择性富集特定微生物功能种群,以空间解析典型的氧化还原梯度(图 1a)。阳极室作为电子受体,预期富集铁还原菌群(黄色组别,图 1);质子从阳极向阴极转移的过程预计将促进氢营养型产甲烷菌相对于乙酸营养型产甲烷菌的富集(分别为绿色和棕色组别,图 1)。而在 AB 反应器中,除缺氧条件外未施加特定限制,因此形成了混合型产甲烷菌群,其中乙酸营养型产甲烷菌的丰度高于氢营养型产甲烷菌(Dolfing,2001;Thauer 等,2008;Liu 和 Whitman,2008)。实验同时设置了在开路条件下运行的双室 MEC 系统作为对照。整体实验设计旨在比较不同反应器中土壤源微生物群落的功能与组成差异。 AB-MEC 系统运行了 160 天,实验周期划分为四个不同阶段(图 2):I)首个"清洁"阶段(0-40 天):接种未污染土壤并启动系统(0-40 天),第 19 天添加葡萄糖。II)首次 BTEX 暴露期(40-83 天),分两次连续投加 BTEX(第 40 天和第 63 天)。III)第二个"清洁"阶段(83-146 天),无 BTEX 暴露以促进土壤自然衰减和修复,期间分三次添加葡萄糖(第 83 天、91 天和 111 天)。IV)第二次 BTEX 暴露期(146-160 天):通过两次连续投加(第 146 天和 159 天)对土壤进行再次污染。由于清洁土壤有机碳含量较低,在清洁阶段添加葡萄糖作为碳源(图 2)。为确保过程稳定性并确定葡萄糖/BTEX 的最佳投加时机,每周监测 pH 值和化学需氧量(COD)。所有生物反应器中 COD 均随葡萄糖投加而急剧上升(图 3b),但 BTEX 投加并未引起 COD 的类似骤增。正如预期,各生物反应器舱室的 pH 测量值始终存在显著差异。 阳极闭合电路生物反应器腔室中的 pH 值降低(约 pH=6),而阴极闭合电路生物反应器腔室的 pH 值升高(约 pH=9)。这些测量结果表明,由于阳极发生还原反应,阴极发生了氧化反应并释放 H 2 。相比之下,AB 和开路 MEC 生物反应器腔室中的 pH 值保持相对恒定(图 3c)。图 3a 显示,在所有反应器腔室中,四种 BTEX 组分的浓度均迅速下降。这一结果可能是由于土壤浆料的持续混合增加了碳源和水分的可利用性或吸收(Zanello 等,2021)。BTEX 组分的快速降解很可能是非生物性的,因为有效的生物降解需要更长的适应期(欧洲化学品管理局,2008;欧洲化学品管理局,2007;Carvajal 等,2018)。 实验结束时(第 159 天),BTEX 化合物未完全降解:在厌氧生物反应器(AB)、阳极室和阴极室中分别残留了添加苯的 30%、0.2%、10%,添加甲苯的 17%、0.5%、3%,添加乙苯的 12%、4%、1%,以及添加二甲苯的 14.7%、2%、6%。气体排放曲线表明生物反应器系统中的产甲烷活性存在显著差异(图 3d)。AB 反应室实验末期测得沼气排放比例(CO₂:CH₄)为 50%:33%——与既往报道的厌氧生物反应器典型范围一致(Kapoor 等,2020),而阳极室在实验末期显示的沼气比例 CH₄:CO₂显著降低至 12%:32%。阴极室则呈现相反模式,在实验第三阶段 CH₄占比达到 84%且未检测到明显 CO₂排放。这些结果表明特定菌群(阳极可能富集铁还原菌,阴极可能富集产甲烷菌)的选择性增殖。正如预期,开路微生物电解池(MECs)监测到的沼气排放比例与 AB 生物反应器相同(图 3d)。 检测到的排放特征差异表明,选择性条件诱导了反应器中微生物群落的功能分化(图 1)。
Fig. 3
  1. Download: Download high-res image (949KB)
    下载:下载高分辨率图像(949KB)
  2. Download: Download full-size image
    下载:下载全尺寸图片

Fig. 3. Monitoring of the AB-MEC system: a. Benzene, Toluene, Ethylbenzene and Xylene isomers concentration; b. Chemical Oxygen Demand (COD) indicating total organic carbon; c. pH measurement; d. biogas composition (%) OC – open circuit. Color shades charts' zones represent the four experimental phases as described in Fig.2 a.
图 3. AB-MEC 系统监测结果:a. 苯、甲苯、乙苯和二甲苯异构体浓度;b. 化学需氧量(COD)表征总有机碳含量;c. pH 值测量;d. 沼气组成(%) OC – 开路状态。彩色阴影区域表示四个实验阶段,如图 2a 所述。

3.2. The effect of applied selective conditions on microbial community profiling
3.2 选择性施加条件对微生物群落分析的影响

DNA samples were collected along the experimental phases (Fig. 2) and microbial community composition was assessed using 16S amplicon sequencing. A sharp decline in biodiversity was observed in the three reactors on the 3rd phase, after glucose addition suggesting enrichment and further domination of specific microbial species (Fig. 4a). Alternative alpha diversity measures, such as Chao1 or Faith PD indices, were inconclusive regarding the effect of BTEX exposure on community diversity, however all measures indicated a dramatic decline in community diversity in the 3rd phase (Fig. S1). The PCoA analysis showed that while initial microbial communities in the three chambers were similar at the beginning of the experiment (phase I) - a divergence occurred along the experiment time period (Fig. 4b). The most dramatic shift in the diversity distances of the bioreactor chambers was observed after glucose addition (day 99, phase 3) in parallel to the drastic decline in Shannon diversity indices. Following this shift, the communities in the cathode and anode bioreactors' chambers dispersed in opposite direction from the AB chamber. The divergence is congruent with the functional differentiation as a response to the chamber-specific conditions applied. Microbial classes dominating the reactors during the first phase (clean soil) of the experiment were Clostridia, Bacteroidia, and Bacilli, all of which exhibited high abundance in all three bioreactor chambers. Clostridia were significantly more abundant in AB than in MEC reactors (Fig. 5). At the same time period, Alphaproteobacteria and Gammaproteobacteria were found to be abundant in the MEC chambers but not in the AB chamber (p < 4.4x10−12). The high abundance (>7.5%) of six microbial classes in the MEC chambers vs four in the AB chamber possibly accounts for their higher biodiversity (Fig. 4a). BTEX addition significantly increased (p < 1.6x10−22) the relative abundance of Clostridia and Bacilli in MEC reactors but not in AB (Fig. 5). In the third phase (second glucose addition) of the experiment, there was a significant and sharp increase in the relative abundance of Clostridia in all reactors' chambers which apparently became the most dominant class in all chambers. The noticeable and rapid rise in the relative abundance of Clostridia (Fig. 5) can be attributed to the decrease in biodiversity (Fig. 4a) and to the shift in community composition (Fig. 4b) detected in all reactors in this phase. In parallel, there was significant increase in the relative abundance of Bacteroidia (p < 5.46x10−41) versus a decline of Bacilli, Alphaproteobacteria and Gammaproteobacteria (p < 0.001) in all bioreactors’ chambers (Fig. 5). Throughout the experiment, we observed an enrichment of Anaerolineae in all bioreactors' chambers. In addition, the relative abundance of Thermotogae in the AB chamber enriched (p = 1.3x10−57) in the fourth phase (second BTEX spiking). Finally, at the end of the experiment the relative abundance of Archaeal classes (compromising mostly methanogens) reached 6.4% and 2.3% in the AB and cathode chambers, respectively, compared with 0.8% in the anode chambers. The abundance pattern correlated with the high biogas emission profile observed in the late phases of the experiment (mainly 3rd and 4th) in these two chambers but not in the anode (Fig. 2b). The different biogas emission profiles observed in the third phase of the experiment – 50:33 vs 84:16 CO2:CH4 ratio in the AB vs cathode chamber, respectively - corroborates to significant changes within Archaeal class composition. Whereas in the AB reactor the most dominant Archaeal class are Methanosarcinia (mostly of acetoclastic methanogens), reaching 5% of the microbial community and 78% of the Archaea (in comparison to 19% in the cathode chambers), the most dominant class in the cathode are Methanobacteria (mostly hydrogenotrophic methanogens) reaching 1.8% of the microbial community and 79% of the Archaea (in comparison to 15% in the AB chamber). The high ratio of hydrogenotrophic methanogens in the cathode at the final stages of the experiment provided a potential explanation for the high methane rate observed in the cathode chamber.
实验各阶段均采集了 DNA 样本(图 2),并通过 16S 扩增子测序评估微生物群落组成。在第三阶段添加葡萄糖后,三个反应器均观察到生物多样性急剧下降,表明特定微生物物种的富集与进一步优势化(图 4a)。虽然 Chao1 指数和 Faith PD 指数等α多样性指标对 BTEX 暴露影响群落多样性的结论不一致,但所有指标均显示第三阶段群落多样性出现断崖式下降(图 S1)。主坐标分析(PCoA)表明,尽管实验初期(第一阶段)三个反应室的初始微生物群落相似,但随着实验推进出现了分化(图 4b)。在添加葡萄糖后(第 99 天,第三阶段),伴随着香农多样性指数的骤降,生物反应器各室的多样性距离发生了最显著变化。此后阴极和阳极生物反应器中的群落分别朝与 AB 反应室相反的方向离散。 这种差异与功能分化相一致,是对各反应室特定环境条件的响应。实验第一阶段(清洁土壤)中,主导反应器的微生物类群为梭菌纲(Clostridia)、拟杆菌纲(Bacteroidia)和芽孢杆菌纲(Bacilli),这三类微生物在所有三个生物反应室中均呈现高丰度。其中 AB 反应器中的梭菌纲丰度显著高于 MEC 反应器(图 5)。同期,α-变形菌纲(Alphaproteobacteria)和γ-变形菌纲(Gammaproteobacteria)在 MEC 反应室中丰度较高,而在 AB 反应室中未检测到显著存在(p < 4.4×10^-10)。MEC 反应室中六类微生物的高丰度(>7.5%)相较于 AB 反应室中的四类,可能是其更高生物多样性的原因(图 4a)。BTEX 添加使 MEC 反应器中梭菌纲和芽孢杆菌纲的相对丰度显著增加(p < 1.6×10^-11),但 AB 反应器中未观察到该现象(图 5)。在实验第三阶段(第二次葡萄糖添加)中,所有反应室中梭菌纲的相对丰度均出现显著急剧上升,显然成为各反应室中最优势的类群。梭菌纲相对丰度的显著快速升高(图 5)可归因于此阶段所有反应器中生物多样性的下降(图 4a)及群落组成的变化(图 4b)。与此同时,所有生物反应器腔室中拟杆菌纲(Bacteroidia)相对丰度显著上升(p < 5.46×10^-2),而芽孢杆菌纲(Bacilli)、α-变形菌纲(Alphaproteobacteria)和γ-变形菌纲(Gammaproteobacteria)则呈现下降趋势(p < 0.001)(图 5)。整个实验过程中,我们观察到所有生物反应器腔室中厌氧绳菌纲(Anaerolineae)的富集现象。此外,在第四阶段(第二次 BTEX 投加期间),AB 腔室中热袍菌门(Thermotogae)的相对丰度显著增加(p = 1.3×10^-3)。实验末期,AB 腔室和阴极腔室中古菌纲(主要为产甲烷菌)的相对丰度分别达到 6.4%和 2.3%,而阳极腔室仅为 0.8%。这种丰度分布模式与实验后期(主要是第三和第四阶段)在这两个腔室中观察到的高生物气排放特征相吻合,但在阳极腔室中未出现此现象(图 2b)。 实验第三阶段观察到的不同沼气排放特征——阳极生物膜反应器(AB)与阴极室的气体比例分别为 50:33 和 84:16(CO 2 :CH 4 )——证实了古菌纲组成发生的显著变化。在 AB 反应器中,优势古菌纲为甲烷八叠球菌纲(主要为乙酸营养型产甲烷菌),占微生物群落的 5%和古菌的 78%(阴极室仅为 19%);而阴极室优势菌纲为甲烷杆菌纲(主要为氢营养型产甲烷菌),占微生物群落的 1.8%和古菌的 79%(AB 室仅为 15%)。实验末期阴极室氢营养型产甲烷菌的高占比,为观测到该室甲烷高产率现象提供了合理解释。
Fig. 4
  1. Download: Download high-res image (462KB)
    下载:下载高分辨率图片(462KB)
  2. Download: Download full-size image
    下载:下载全尺寸图片

Fig. 4. Alpha-diversity (Shannon index) of bacterial communities within each reactor in the three-chamber system during the four experimental phases (white-blue shading). Significance is based on Kruskal-Wallis pairwise test (∗p ≤ 0.05; ∗∗p ≤ 0.01; ∗∗∗p ≤ 0.001) b. Principal coordinates analysis (PCoA) plots calculated based on Bray-Curtis dissimilarities between the samples. Table S6 provides the full pairwise PERMANOVA metrics.
图 4. 三室系统中各反应器内细菌群落在四个实验阶段(白-蓝渐变色标注)的α多样性(香农指数)。显著性基于 Kruskal-Wallis 配对检验(∗p ≤ 0.05;∗∗p ≤ 0.01;∗∗∗p ≤ 0.001)。b. 基于样本间 Bray-Curtis 相异度计算的主坐标分析(PCoA)图。完整配对 PERMANOVA 指标见表 S6。

Fig. 5
  1. Download: Download high-res image (857KB)
    下载:下载高分辨率图片(857KB)
  2. Download: Download full-size image
    下载:下载全尺寸图片

Fig. 5. Class level microbial community composition of the three-chamber bioreactor system.
图 5. 三室生物反应器系统在纲水平上的微生物群落组成。

3.3. Functional analysis of the community dynamics and selection of representative species
3.3. 群落动态功能分析及代表性物种筛选

To go beyond the descriptive level gained by genomic characterization towards a functional view of the degradation process as depicted in Fig. 1, we simplified the analysis by focusing on microorganisms representing the primary groups involved in the degradation processes, starting from BTEX degradation and ending in methane emission. Species selection aimed to focus on key taxonomic groups in each reactor, capturing both functional and taxonomic composition. For downstream analysis, representative species were such that have a closely related homolog with fully sequenced genome. Overall, the 24055 16S ASVs were mapped to 2680 unique taxa comprised of 815 genera, 471 families, 147 classes and 53 unique phyla (Fig. 6). To identify potential BTEX degraders in the reactors we have complemented the 16S rRNA amplicon sequencing with bamA gene sequencing. bamA is the gene encoding for 6-oxocyclohex-1-ene-1-carbonyl-coenzyme a hydrolase. This key enzyme carries out the ring cleavage step and is considered as biomarker for anaerobic BTEX degradation (Wu et al., 2022; Kuntze et al., 2008; von Netzer et al., 2016). bamA was successfully identified in all the reactors after BTEX addition (Fig. S2). To determine the taxonomic origin of bamA, the gene was amplified in the three reactors at four time points representing the four experimental phases. 29 dominant ASVs with minimum 10000 reads each were further mapped to eight species (Fig. 7). Eight out of the 29 ASVs were associated with Magnetospirillum magneticum (Table S4)), which is considered a key species involved in anaerobic BTEX degradation (Shinoda et al., 2005). The ASVs classified as 'M. magneticum' were highly dominant in all reactors and their relative abundance increased after BTEX exposure (Fig. 7). Whereas following BTEX exposure the AB reactor is almost exclusively dominated by M. magneticum ASVs, the anode and cathode chambers are co-dominated by ASVs associated with Hydrogenophaga aromaticivorans. H. aromaticivorans was also documented as central BTEX degraders (Banerjee et al., 2021). ASV associated with Geobacter metallireducens, a key iron reducer reported to degrade BTEX (Zhang et al., 2012, 2014), was dominant in the anode chamber. In the cathode, we detected a high abundance of two ASVs associated with Dechloromonas aromatica - reported for its BTEX degrading activity (Chakraborty et al., 2005; Coates et al., 2001). Overall, the sequence distribution points at four dominant taxonomic groups carrying bamA (M. magneticum, H. aromaticivorans, G.metallireducens, D. aromatica). All these species were associated (≥97%) with taxonomic groups that were detected in the reactors based on 16S rRNA amplicon sequencing (Table 1, Table S4). The distribution of the taxonomic groups varied across time points and between reactors (Fig. 7). Looking downstream at the degradation process, we screened for key species involved in acetoclastic and hydrogentrophic methanogenesis (Fig. 1). Features classified to the Methanosarcinaceae and Methanobacteriaceae archaeal families were identical to 16S rRNA sequences of Methanosarcina acetivorans and Methanobacterium formicicum, respectively (Table 1) – key acetoclastic and hydrogentrophic methanogens in anaerobic digestion (Wu et al., 2022; Galagan, 2002; Meng et al., 2010; Chellapandi et al., 2018; Vítězová et al., 2020). The other key steps in the biochemical process in the reactor - fermentation and iron reduction processes (Fig. 1) cannot be systematically inferred based on taxonomy. To fully cover all steps, we screened for representatives that will capture the taxonomic composition and dynamics observed in the reactors across the experimental phases. Following filtering families with a relative abundance of at least 5% in at least a single treatment, the community was composed of 22 families and 107 genera (Fig. 5). For each family, a representative ASV was selected based on the availability of a genome sequence in the NCBI depository for a closely related homolog for the most abundant feature. Overall, 21 representatives were assigned to 21 dominant families dominating together >80% of the entire community in each reactors' chamber (Table 1). Comparing the composition of the original community (2680 unique taxa) to the composition of the set of selected ASVs, indicates that the representatives form a subset that captures the taxonomic composition and dynamics of the original community (Fig. 6). The entire selected representatives displayed temporal variations in their differential abundance pattern (Table 1). Looking at class level dynamics (Fig. 5), representatives cover Clostridia (Clostridacea, Peptostreptococcales-Tissierellales and Thermincolaceae family's representatives) and Bacilli (Bacillaceae, Erysipelotrichaceae and Acholeplasmataceae), the dominant classes (Fig. 5). As observed for their respective classes (Fig. 4), the family representatives of the Alphaproteobacteria and Gammaproteobacteria - Magnetospirillaceae, Rhodocyclaceae, Comamonadaceae, Moraxellaceae and Pseudomonadaceae - were mainly abundant in MEC bioreactors' chambers in the early phase of the experiment. Slight reduction in the relative abundance of Gammaproteobacteria in the MEC chambers is consistent with the decline in the relative abundance of H. aromaticivorans – the representative of the Comamonadaceae family, also confirmed by relative prevalence of the bamA gene (Fig. 7). Notably, the drastic decline in the overall relative abundance of Alphaproteobacteria and Gammaproteobacteria in the third phase of the experiment, after glucose addition, can be related to the reduction in BTEX degraders, all belong to the Proteobacteria – the taxonomic group to which most degraders of aromatic compounds belong to (Wu et al., 2022; Lueders, 2017; Rabus et al., 2016). Along the experiment, dynamics in the relative abundance of the Anaerolineae representative from the Anaerolineaceae family were detected in correspondence with class level pattern. Consistent with the class Thermotogae, its representative from the Kosmotogaceae family is mainly detected in the AB chamber in the fourth phase. Finally, along the experiment Methanobacteria and Metanosarcina representatives increase in relative abundance in all bioreactors' chambers (p < 2.37x10−11) with dominance of the acetolactic representative (M. acetivorans) in the AB chamber vs dominance of the hydrogenotrophic representative (M. formicicum) in the cathode chamber. For downstream analysis, for each of the selected ASVs a respective complete genome sequence was retrieved from the NCBI depository based on blast inferred similarity. 11 of the representatives were assigned based on homology of 97–100% identity between the selected feature from the reactors and NCBI accession; 5 based on homology of 94–97% identity and 5 based on homology of 90–94%. Groups for which no homolog above the 90% similarity threshold was detected were not represented. The relative promiscuity in representative selection is supported by reports of high-level taxonomic consistency in interactions pattern (Belcour et al., 2020; Kehe et al., 2021). Based on a literature survey, we inferred that all selected representatives are known to be detected in anaerobic communities (Lueders, 2017) and classified species into functional categories in the key anaerobic biodegradation process (Fig. 1). The representative community includes four BTEX degraders inferred based on bamA functional gene sequences, 14 fermenters and iron reducers inferred based on literature survey, and two methanogens whose functionality was inferred based on taxonomy (Table 1). The focus on selected representatives allows translating the taxonomic description of the community into a functional view and examine its distribution along experimental phases (Fig. 6). Overall, the enrichment pattern in the bioreactor system was consistent with patterns expected based on the original design of the reactors (Fig. 1). The relative abundance of iron reducers was higher in the anode chamber (13% at the begging of the experiment vs 53% in its end, p = 1.05x10−204, 2.31x10−92 of Clostridiaceae and Thermincolaceae representatives respectively). G. metallireducens, an iron reducer (Lovley et al., 1993; Weber et al., 2006), was observed only in anode chamber. A high fraction of hydrogenotrophic methanogens were detected in the cathode vs high fraction of acetoclastic methanogens in the AB chamber and a lower overall abundance of methanogens in the anode (Fig. 1). To further validate the comparison of methanogen prevalence across bioreactors' chambers as inferred from representative selection, we used PICRUSt2 pipeline (Douglas et al., 2020) and compared the predicted methanogenic activity across reactors for the original, full community. The PICRUSt2 analysis further confirmed that the relative abundance of Methyl‐Coenzyme M Reductase (MCR) - a functional marker for methanogens (Friedrich, 2005) was significantly higher in AB and cathode than in anode chambers. Consistent with the patterns observed in the full community and in the representative community, a higher fraction if methanogens were detected in the AB vs cathode chamber (Fig. S3). Overall, considering taxonomy, dynamics and functionality, the selected species provided a simplified representation of the original community. The respective complete genome sequences assigned to each species (Table 1) supported the conductance of detailed functional analysis of the functionality of each member.
为突破基因组表征的描述性层面,转向图 1 所示的降解过程功能解析,我们通过聚焦参与降解过程的主要微生物类群简化了分析流程,研究范围从 BTEX 降解起始延伸至甲烷排放终止。物种筛选旨在锁定各反应器中的关键分类群,同时反映功能与分类组成特征。下游分析所选代表物种均需具备基因组已完整测序的近缘同源种。总体而言,24055 个 16S ASV 被归类至 2680 个独立分类单元,涵盖 815 属、471 科、147 纲和 53 个独立门类(图 6)。为识别反应器中潜在的 BTEX 降解菌,我们在 16S rRNA 扩增子测序基础上补充了 bamA 基因测序。bamA 基因编码 6-氧代环己-1-烯-1-甲酰辅酶 A 水解酶,该关键酶催化开环反应步骤,被公认为厌氧 BTEX 降解的生物标志物(Wu 等,2022;Kuntze 等,2008;von Netzer 等,2016)。 在所有反应器添加 BTEX 后均成功检测到 bamA 基因(图 S2)。为确定 bamA 的分类学来源,我们在代表四个实验阶段的四个时间点对三个反应器中的该基因进行了扩增。将 29 个 reads 数均超过 10000 的优势 ASVs 进一步比对到八个物种(图 7)。其中 8 个 ASVs 与磁性螺菌(Magnetospirillum magneticum)相关联(表 S4),该菌被认为是参与厌氧 BTEX 降解的关键物种(Shinoda 等,2005)。被归类为"磁性螺菌"的 ASVs 在所有反应器中均占绝对优势,且其相对丰度在 BTEX 暴露后显著增加(图 7)。值得注意的是,BTEX 暴露后 AB 反应器几乎完全由磁性螺菌 ASVs 主导,而阳极室和阴极室则共同由嗜芳烃氢噬胞菌(Hydrogenophaga aromaticivorans)相关 ASVs 主导。嗜芳烃氢噬胞菌同样被证实是核心 BTEX 降解菌(Banerjee 等,2021)。在阳极室中,金属还原地杆菌(Geobacter metallireducens)相关 ASVs 占据优势,该铁还原菌已被报道可降解 BTEX(Zhang 等,2012,2014)。 在阴极区域,我们检测到与芳香族化合物降解菌 Dechloromonas aromatica 高度同源的两个 ASV(Chakraborty 等,2005;Coates 等,2001)。总体而言,序列分布表明携带 bamA 基因的四大优势分类群(M. magneticum、H. aromaticivorans、G.metallireducens、D. aromatica)。基于 16S rRNA 扩增子测序,这些物种均与反应器中检测到的分类群具有≥97%的关联性(表 1,表 S4)。不同时间点和反应器间分类群的分布存在差异(图 7)。针对下游降解过程,我们筛选了参与乙酸裂解型和氢营养型产甲烷的关键菌种(图 1)。经鉴定的甲烷八叠球菌科(Methanosarcinaceae)和甲烷杆菌科(Methanobacteriaceae)古菌特征序列,分别与 Methanosarcina acetivorans 和 Methanobacterium formicicum 的 16S rRNA 序列完全匹配(表 1)——这两类菌是厌氧消化过程中关键的乙酸裂解型和氢营养型产甲烷菌(Wu 等,2022;Galagan,2002;Meng 等,2010;Chellapandi 等,2018;Vítězová等,2020)。 反应器内生化过程中的其他关键步骤——发酵与铁还原过程(图 1)无法单纯基于分类学进行系统推断。为全面涵盖所有步骤,我们筛选了能够反映各实验阶段反应器内分类组成与动态变化的代表性菌群。经过滤处理(保留至少在单一处理组中相对丰度≥5%的菌科)后,群落由 22 个科和 107 个属构成(图 5)。针对每个菌科,我们根据 NCBI 数据库中与最丰富特征序列高度同源基因组序列的可获取性,选取了代表性 ASV。最终 21 个代表性 ASV 被分配至 21 个优势菌科,这些菌科在各反应室中共同占据群落总量的 80%以上(表 1)。将原始群落(2680 个独特分类单元)与筛选 ASV 集的组成进行对比表明,这些代表性菌群构成的子集能准确反映原始群落的分类学组成与动态特征(图 6)。 所有选定的代表性菌群均显示出丰度差异模式的时序变化(表 1)。从纲水平动态来看(图 5),代表性菌群涵盖了优势纲——梭菌纲(梭菌科、消化链球菌目-毛螺菌目及热脱硫杆菌科的代表菌株)和芽孢杆菌纲(芽孢杆菌科、丹毒丝菌科及无胆甾原体科)。正如各纲所观察到的(图 4),α-变形菌纲和γ-变形菌纲的代表性科——磁螺菌科、红环菌科、丛毛单胞菌科、莫拉克斯菌科和假单胞菌科——主要富集于实验初期微生物电解池(MEC)生物反应器的腔室中。MEC 腔室中γ-变形菌纲相对丰度的轻微下降与丛毛单胞菌科代表菌株 H. aromaticivorans 的丰度降低趋势一致,这一现象也通过 bamA 基因的相对流行度得到证实(图 7)。 值得注意的是,在实验第三阶段添加葡萄糖后,α-变形菌纲(Alphaproteobacteria)和γ-变形菌纲(Gammaproteobacteria)总体相对丰度的急剧下降可能与 BTEX 降解菌的减少有关——这些降解菌均属于变形菌门(Proteobacteria),该分类群包含了大多数芳香族化合物降解菌(Wu 等,2022;Lueders,2017;Rabus 等,2016)。实验过程中,厌氧绳菌科(Anaerolineaceae)中厌氧绳菌纲(Anaerolineae)代表的相对丰度动态变化与纲水平模式一致。与热袍菌纲(Thermotogae)类似,其科斯莫热袍菌科(Kosmotogaceae)代表主要在第四阶段的 AB 反应室中被检出。最终,所有生物反应器腔室中甲烷杆菌目(Methanobacteria)和甲烷八叠球菌属(Metanosarcina)代表的相对丰度均呈上升趋势(p < 2.37×10 −11 ),其中 AB 反应室以乙酸营养型代表(M. acetivorans)为主,而阴极室则以氢营养型代表(M. formicicum)占优势。 在下游分析中,针对每个选定的 ASV(扩增子序列变体),我们基于 BLAST 推断的相似性从 NCBI 数据库检索了相应的完整基因组序列。其中 11 个代表性菌株是根据反应器样本特征序列与 NCBI 登录号之间 97-100%的相似性同源性确定的;5 个基于 94-97%相似性同源性;另有 5 个基于 90-94%相似性同源性。未检测到相似性阈值超过 90%同源序列的类群未予纳入。这种代表性选择的相对包容性得到了关于互作模式具有高阶分类一致性的研究支持(Belcour 等,2020;Kehe 等,2021)。通过文献调研,我们确认所有选定代表菌株均已知存在于厌氧微生物群落中(Lueders,2017),并将其按关键厌氧生物降解过程中的功能类别进行分类(图 1)。该代表性群落包含:基于 bamA 功能基因序列推断的 4 种 BTEX 降解菌、基于文献调研推断的 14 种发酵菌和铁还原菌,以及通过分类学推断功能的 2 种产甲烷菌(表 1)。 通过选取代表性菌种,可将群落的分类学描述转化为功能视角,并考察其在实验各阶段的分布情况(图 6)。总体而言,生物反应器系统中的富集模式与基于反应器原始设计预期的模式一致(图 1)。阳极室中铁还原菌的相对丰度较高(实验初期为 13% vs 末期达 53%,p 值分别为 1.05×10 −204 和 2.31×10 −92 ,对应梭菌科和热袍菌科的代表菌种)。仅在阳极室中观察到铁还原菌 Geobacter metallireducens(Lovley 等,1993;Weber 等,2006)。阴极室检测到较高比例的氢营养型产甲烷菌,而 AB 室则以乙酸裂解型产甲烷菌为主,阳极室的产甲烷菌总体丰度较低(图 1)。为验证通过代表性菌种选择推断的生物反应器各室产甲烷菌分布比较结果,我们采用 PICRUSt2 分析流程(Douglas 等,2020),对原始完整群落的产甲烷活性预测值进行了跨反应器比较。 PICRUSt2 分析进一步证实,甲基辅酶 M 还原酶(MCR)——产甲烷菌的功能标记物(Friedrich, 2005)在 AB 室和阴极室的相对丰度显著高于阳极室。与完整群落和代表性群落中观察到的模式一致,AB 室检测到的产甲烷菌比例高于阴极室(图 S3)。总体而言,从分类学、动态变化和功能角度考量,所选物种为原始群落提供了简化表征。分配给各物种的完整基因组序列(表 1)支持对每个成员功能进行详细的功能分析。
Fig. 6
  1. Download: Download high-res image (2MB)
    下载:下载高分辨率图片(2MB)
  2. Download: Download full-size image
    下载:下载全尺寸图片

Fig. 6. Distribution of taxonomic and functional microbial groups in the reactor system. Left column – community distribution at the family level. Groups whose relative abundance <5% were classified as others. Middle column – family level distribution of the ASVs selected as a representative. Right column – functional classification of the representative ASVs based on sequencing of functional genes, taxonomic classification and literature survey (Table 1).
图 6. 反应器系统中微生物类群与功能组的分布情况。左栏——科水平上的群落分布,相对丰度<5%的类群归为其他。中栏——选定为代表序列的 ASV 在科水平上的分布。右栏——基于功能基因测序、分类学鉴定及文献调研(表 1)对代表性 ASV 进行的功能分类。

Fig. 7
  1. Download: Download high-res image (693KB)
    下载:下载高分辨率图片(693KB)
  2. Download: Download full-size image
    下载:下载全尺寸图片

Fig. 7. Taxonomic distribution of bacteria carrying the functional gene bamA encoding the enzyme 6-oxocyclohex-1-ene-1-carbonyl-coenzyme a hydrolase in the AB-MEC community. Taxonomy was inferred based on homology search versus the NR database in the NCBI depository. Entries marked as ∗ were selected as representative species of BTEX degradation for downstream analysis.
图 7. AB-MEC 群落中携带功能基因 bamA(编码 6-氧代环己-1-烯-1-甲酰辅酶 A 水解酶)的细菌分类分布。分类学信息通过 NCBI 数据库 NR 库的同源性比对推断得出。标有∗的条目被选作 BTEX 降解代表性物种用于后续分析。

3.4. Using genome scale metabolic models for simulating the metabolic functioning of the community
3.4. 利用基因组尺度代谢模型模拟微生物群落的代谢功能

Genome-scale metabolic modeling (GSMM) is a tool for in-silico representation of the complete metabolic processes conducted by organisms as inferred from their genomic information. Here, we have constructed a genome scale metabolic model representation of each of the representative species (Table 2) aiming to gain in silico representation of the full spectrum of the metabolic activities including the BTEX degradation process (Fig. 1).
基因组尺度代谢模型(GSMM)是一种基于生物体基因组信息推断其完整代谢过程的计算机模拟工具。本研究针对各代表性菌种(表 2)构建了基因组尺度代谢模型,旨在通过计算机模拟全面呈现包括 BTEX 降解过程在内的代谢活动全谱图(图 1)。
Following an initial semi-automatic construction of the draft models, a systematic procedure of manual curation was conducted. The manual curation process focused on ensuring that the models’ performances correspond with their published physiological properties. The growth media for each species/model were curated based on a literature review (Table 2). To validate the performances of the different models we designed a simulation matrix testing biomass production and consumption and production of SCFA, H2, CO2 and CH4 for each model in 25 in silico media representing control (non-feasible conditions), and selective media that are relevant to specific microbial groups as defined based on their validated physiology from the literature (Table 2). Manual curation was done throughout an iterative process. The final version of the curated models was validated to be aligned with the published experimental data regarding the nutritional requirements and physiological performances of each species (Fig. 8). As expected, none of the species could grow in non-feasible conditions where no carbon and/or nitrogen source are provided; heterotrophs could grow on a minimal medium supplemented with manually defined specific organic compounds such as carbon source and only autotrophs (methanogens) could grow on C1 carbon sources. BTEX is consumed by specific primary degraders. Growth profile of BTEX degraders on media complemented with either benzene, toluene, ethylbenzene or xylene corresponded to their literature reports. Degraders secreted SCFAs; SCFAs served the production of methane by acetolactic methanogens; CO2 together with H2 served the production of methane by hydrogenotrophic methanogens.
在完成初步半自动构建的模型草案后,我们进行了系统化的手动修正流程。该人工修正过程着重确保模型性能与其已发表的生理特性相符。通过文献调研(表 2),我们对每个物种/模型的生长培养基进行了校准。为验证不同模型的性能表现,我们设计了模拟矩阵测试,在 25 种计算机模拟培养基中检测各模型的生物量产出、短链脂肪酸(SCFA)代谢以及 H2、CO2 和 CH4 的生成情况,这些培养基包括对照组(不可行条件)和根据文献中已验证的生理特性为特定微生物群定制的选择性培养基(表 2)。整个修正过程采用迭代式方法完成。最终版本的修正模型经验证,其营养需求和生理性能指标均与已发表的实验数据吻合(图 8)。 正如预期,所有菌种均无法在未提供碳源和/或氮源的不可行条件下生长;异养菌只能在添加了人工定义特定有机化合物(如碳源)的基础培养基上生长,而只有自养菌(产甲烷菌)能够利用 C1 碳源生长。BTEX 由特定的初级降解菌消耗。苯、甲苯、乙苯或二甲苯补充培养基中 BTEX 降解菌的生长曲线与其文献报道一致。降解菌分泌短链脂肪酸(SCFAs);这些 SCFAs 被乙酸营养型产甲烷菌用于甲烷生成;而 CO 2 与 H 2 则被氢营养型产甲烷菌用于甲烷合成。
Fig. 8
  1. Download: Download high-res image (1MB)
    下载:下载高分辨率图片(1MB)
  2. Download: Download full-size image
    下载:下载全尺寸图片

Fig. 8. Validation matrices examining three key physiological performances of each representative species (columns) across 25 validation media that were designed according to literature survey (Table 2).
图 8. 验证矩阵展示了每种代表性菌种(列)在 25 种验证培养基中的三项关键生理性能指标,这些培养基是根据文献调研(表 2)设计的。

Overall, simulation results corresponded with the physiological observations and secretion profiles of the degradation process (Fig. 1): BTEX is consumed by specific primary degraders; degraders secreted SCFAs; SCFAs served the production of methane by acetolactic methanogens; CO2 together with H2 served the production of methane by and hydrogenotrophic methanogens. Whereas a single species/model can either use BTEX as a carbon source or emit methane, no single model can carry the full anaerobic process outlined in Fig. 1. However, once we assemble communities that capture the full spectrum of the anaerobic degradation processes – communities should be able to utilize BTEX as a carbon source and emit methane. We used community simulations to capture the anaerobic digestion processes in each of the three reactors, exhibiting functional and taxonomic differentiation. The community in each was described according to the experimentally described microbial composition and the simulation medium was designed to reflect the specific conditions in each reactor as inferred from the experimental data, simulations and system design. Comparison of the predicted performances of the different reactors confirms that the simulation successfully captured (Spearman's rank correlation rho >0.7, p value = 0.003, Supplementary Table S7) the functional variation between the different reactors as experimentally detected in the reactors (Fig. 2). Whereas at time 40 all reactors have relatively high CO2:CH4 emission ratios, reactor performances differentiate with time. Simulation on day 159 captured the similar CO2:CH4 ratio in the AB reactor vs high and low ratios in the anode and cathode respectively (Fig. S4).
总体而言,模拟结果与降解过程的生理学观察及分泌谱相符(图 1):BTEX 被特定初级降解菌消耗;降解菌分泌短链脂肪酸(SCFAs);SCFAs 通过乙酸裂解产甲烷菌促进甲烷生成;CO₂与 H₂通过氢营养型产甲烷菌参与甲烷合成。虽然单一物种/模型可以仅利用 BTEX 作为碳源或仅产生甲烷,但没有任何单一模型能完整执行图 1 所示的全套厌氧过程。然而,当我们构建能涵盖厌氧降解全过程的微生物群落时——这些群落应具备利用 BTEX 作为碳源并释放甲烷的能力。我们通过群落模拟捕捉了三个反应器中各自的厌氧消化过程,这些反应器表现出功能与分类学差异。每个反应器的微生物群落均根据实验描述的微生物组成进行建模,模拟培养基的设计则基于实验数据、模拟结果及系统设计所推断的各反应器特定条件。 对不同反应器预测性能的比较证实,该模拟成功捕捉到了各反应器间的功能差异(Spearman 等级相关系数 rho>0.7,p 值=0.003,补充表 S7),这与实验检测结果一致(图 2)。虽然在 40 天时所有反应器都表现出较高的 CO 2 :CH 4 排放比,但随着时间推移,各反应器性能逐渐分化。第 159 天的模拟结果再现了 AB 反应器中相似的 CO 2 :CH 4 比例,而阳极和阴极分别呈现高比值和低比值的特征(图 S4)。

3.5. Model-based dissection of the biodegradation process in three different anaerobic reactors
3.5. 基于模型的三类厌氧反应器中生物降解过程的解析

Given that simulations were successful in tracking the end products (gas emission) of the anaerobic biodegradation, we further used the simulations to dissect the process and delineate the full range of exchange interactions supported by the microbiomes in each reactor. To gain the full range of trophic interaction across the process, we used the simulations to produce predictions for the uptake-secretion profile of each community member.
鉴于模拟成功追踪了厌氧生物降解的最终产物(气体排放),我们进一步利用模拟来剖析这一过程,并描绘出每个反应器中微生物组所支持的全部交换相互作用范围。为了获取整个过程中的完整营养相互作用谱,我们通过模拟预测了每个群落成员的摄取-分泌特征。
By interlinking the secretion-consumption fluxes we depicted chamber-specific networks of interactions (Fig. 9). The networks point at potential scenarios for mechanisms underlying the functional divergence resulting in the different emission profile of each reactor. For example, in the AB and the cathode, acetate is the dominant predicted fermentation product of C. fungisolvens, supporting downstream acetoclastic methanogenic activity (Fig. 9). In the anode, despite the similar abundance of this fermenter, it mainly secrets carbon as CO2 rather than acetate as in the AB and the cathode (Fig. 9). This is consistent with previous reports on the enhanced full substrate mineralization under iron-reducing conditions (Lovley et al., 2004). The shift from acetate to CO2 secretion can be explained by the scarcity of H2 in the anode chamber due to its transfer to the cathode chamber. Such conditions – low hydrogen environment in MEC chambers, induce a transition of certain bacteria from acetate production to acetate consumption (and CO2 production) that subsequently leads to unfavorable conditions for the methanogens (Hasibar et al., 2020), suggesting a possible explanation for their low abundance in the anode chamber. Another example for a network-based predicted chamber-specific interaction is the production of hydrogen by M. acetivorans on the last day of the experiment in the AB chamber but not in the cathode (Fig. 9). Production of H+ by M. acetivorans was reported to take place in low hydrogen environments (Valentine et al., 2000), consistent with conditions in AB at the end of the experiment. An additional explanation to the favorable conditions to hydrogenotrophic vs acetoclastic methanogenesis in the cathode vs the AB chamber (beyond the design-induced high levels of H2) can be related to the cathode-specific dominant presence of Rikenellaceae (represented by T. charontis). A typical prevalence of Rikenellaceae in cathode chambers is consistent with previous reports (Jiang et al., 2022). Considering the predicted consumption profile, Rikenellaceae are predicted to compete with the acetoclastic methanogen M. acetivorans on acetate in the cathode but not in the AB chamber where their relative abundance is low. Finally, in both MEC chambers we predict an exchange of hypoxanthine (HYXN) molecule between C. fungisolvens (anode) and G. oleilytica (cathode) (as producers) and methanogens (as consumers). Hypoxanthine – a purine derivate, was previously reported as a common microbial exchange molecule (Klitgord and Segrè, 2010). Such molecule may serve as template for purine production in anaerobic environments (Ornelas et al., 2022). In methanogens, the role of purine degradation in methane biosynthesis and energy production was explored and reported to generate a favorable proton gradient and result in the production of amino acids (DeMoll, 1998; Worrell and Nagle, 1990). In addition, hypoxanthine is a central metabolite in purine salvage in AMP and GMP production (Miller et al., 2016). As G. oleilytica (hypoxanthine source) is highly abundant only in the cathode chamber, it might further support the beneficial conditions to M. formicicum found in this chamber. In addition to the cathode-specific high abundance of two taxonomic groups (Rikenellaceae represented by T. charontis and Peptostreptococcales-Tissierellales represented by G. oleilytica, Fig. 6) that can be related to positive interactions with methanogenic archaea (competition on acetate and being a source for hypoxanthine, respectively), the cathode-specific low abundance of Tannerellaceae (represented by M. fermentans) – a potential hypoxanthine consumer, can also support the beneficial conditions in this chamber. The resource competition of two fermenters (M. fermentans and N. niacini) on hypoxanthine might also contribute to a low abundance of methanogens and subsequent methanogenic activity in the anode chamber. Hence, the network view suggests a functional role to the two non-methanogenic bacteria that are predominantly specific to the cathode – Rikenellaceae and Peptostreptococcales-Tissierellales in supporting the prevalence of hydrogenotrophic methanogen and indirectly contributing to the high methane emission either by supporting the hydrogenotrophic or competing the acetoclastic methanogens.
通过关联分泌-消耗通量,我们绘制了反应室特异的相互作用网络(图 9)。这些网络揭示了导致各反应器排放特征差异的功能分化潜在机制。例如,在厌氧反应区(AB)和阴极室,C. fungisolvens 的主要预测发酵产物是乙酸,这支持了下游乙酸裂解产甲烷活动(图 9)。而在阳极室,尽管该发酵菌的丰度相近,但其主要分泌形式为 CO 2 而非 AB 区和阴极室的乙酸(图 9)。这与先前关于铁还原条件下底物完全矿化增强的研究结果一致(Lovley 等,2004)。从乙酸到 CO 2 的分泌转变可归因于阳极室 H 2 的稀缺性——因其持续向阴极室转移所致。 微生物电解池(MEC)反应室中的低氢环境会促使某些细菌从乙酸生成转变为乙酸消耗(同时产生 CO 2 ),进而导致产甲烷菌生存条件恶化(Hasibar 等,2020),这可能是阳极室中产甲烷菌丰度较低的原因。另一个基于网络预测的腔室特异性相互作用案例是:实验最后一天,M. acetivorans 在 AB 反应室中产氢,而在阴极室中未观测到该现象(图 9)。研究报道 M. acetivorans 在低氢环境中会产生 H + (Valentine 等,2000),这与实验末期 AB 反应室的环境条件相符。除设计因素导致的高浓度 H 2 外,阴极室相对于 AB 反应室更有利于氢营养型而非乙酸裂解型产甲烷作用的另一个原因,可能与阴极室中 Rikenellaceae(以 T. charontis 为代表)的优势定植有关。Rikenellaceae 在阴极室的典型优势定植现象与既往研究报道一致(Jiang 等,2022)。 根据预测的消耗特征,Rikenellaceae 科细菌预计会在阴极室与乙酸营养型产甲烷菌 M. acetivorans 竞争乙酸底物,但在其相对丰度较低的 AB 室中则不会形成竞争。最后,在两个微生物电解池(MEC)反应室中,我们预测存在次黄嘌呤(HYXN)分子在 C. fungisolvens(阳极)和 G. oleilytica(阴极)(作为生产者)与产甲烷菌(作为消费者)之间的交换。次黄嘌呤作为一种嘌呤衍生物,先前已被报道为微生物间常见的交换分子(Klitgord 和 Segrè,2010)。该分子可能作为厌氧环境中嘌呤合成的模板(Ornelas 等,2022)。在产甲烷菌中,嘌呤降解在甲烷生物合成和能量产生中的作用已被研究证实,其能形成有利的质子梯度并产生氨基酸(DeMoll,1998;Worrell 和 Nagle,1990)。此外,次黄嘌呤是 AMP 和 GMP 合成过程中嘌呤补救途径的核心代谢物(Miller 等,2016)。由于 G. oleilytica(次黄嘌呤来源菌)仅在阴极室具有高丰度,这可能进一步支持该反应室中 M. formicicum 所需的有利生长条件。 除阴极室特有的两类高丰度菌群(可由 T. charontis 代表的 Rikenellaceae 科和 G. oleilytica 代表的 Peptostreptococcales-Tissierellales 目,见图 6)——它们分别通过与产甲烷古菌的乙酸竞争和提供次黄嘌呤来源产生正向互作外,阴极室中潜在次黄嘌呤消耗菌 Tannerellaceae 科(以 M. fermentans 为代表)的低丰度同样为该腔室创造了有利条件。两种发酵菌(M. fermentans 和 N. niacini)对次黄嘌呤的资源竞争也可能导致阳极室产甲烷菌丰度及后续产甲烷活性较低。因此,网络分析表明两种阴极特异性非产甲烷菌——Rikenellaceae 科和 Peptostreptococcales-Tissierellales 目具有双重功能:既通过支持氢营养型产甲烷菌的生存优势,又通过竞争乙酸裂解型产甲烷菌的生态位,间接促成了高甲烷排放。
Fig. 9
  1. Download: Download high-res image (1MB)
    下载:下载高分辨率图片(1MB)
  2. Download: Download full-size image
    下载:下载全尺寸图片

Fig. 9. Networks of exchange interactions constructed for the chamber communities on day 159, spanning from BTEX consumption to methane emission on the last day of the experiment. Key individual fluxes are provided in Fig. S6; Full exchange files and corresponding heatmaps are available in https://github.com/FreilichLab/Supplementary_methanogenesis/.
图 9. 为第 159 天反应室群落构建的交换互作网络,涵盖从 BTEX 消耗到实验最后一天甲烷排放的全过程。关键个体通量数据见图 S6;完整交换文件及对应热图详见 https://github.com/FreilichLab/Supplementary_methanogenesis/。

The hypotheses generated provide a starting point for experimental design that can further test and validate the actual metabolic dependencies and competitive and cooperative interactions in the reactor community.
这些假设为实验设计提供了起点,可进一步测试和验证反应器群落中实际存在的代谢依赖性及竞争合作关系。

4. Discussion  4. 讨论

Here, we aimed to characterize key steps in the methanogenic activity taking place following BTEX exposure in terms of describing the activity of the main microbial species and their interactions. Our study presents a pioneering attempt to capture the full range of methanogenic hydrocarbon biodegradation taking place in communities exposed to selective conditions. To this end we combined chemical and biological monitoring together with analysis pipeline that goes through dissecting community activity into key steps, selecting corresponding representative species for which a metabolic model is constructed and designing a validation matrix for testing the physiological feasibility of individual models. The use of metabolic modeling allows analyzing community activity, delineating predicted exchange fluxes and associate the community dynamics and metabolic performance variations while depicting a potential scenario for the mechanisms underlying the landscape of microbiome functioning. The application of FBA for the characterization of microbial interactions and their predicted functional outcomes in microbiomes involved in anaerobic digestion was successfully demonstrated through the study of pairwise combinations formed between the microbial inhabitants of a collection of anaerobic digesters (Basile et al., 2023). In a recent work, Zampieri et al. (2023) focused on the pairwise interactions in an authentic reactor communities where species were represented through the recovery of a corresponding MAG from the sample followed by the characterization of FBA-based pairwise interactions. Here, we aim to apply such modelling approach in order to associate microbial dynamics with microbial functioning in our experimental system while going beyond pairwise combination and delineating the full network of interactions in a simplistic, yet authentic, consortia. Notably, the detailed selection of a simplistic community also enables a careful manual curation of the models constructed for the member species. In a recent research, Wu et al. (2024) demonstrated that synergism promoted anaerobic toluene degradation and methane production using one-chamber MEC, where microbial community shifted after applying voltage. In this study the anaerobic biodegradation process was monitored in three AB-MEC chambers, where by applying different conditions we aimed to represent spatiotemporal differentiated zones (Fig. 1) in respect to microbial activity and explore the community dynamics that accompanies the functional variation. The experimental design led to the detection of a functional shift (variation in gas emission profile, Fig. 3), accompanied by corresponding divergence in community structure (Fig. 4, Fig. 5). Mainly, gas emission profile correlated with variation in the relative abundance of members of the Methanobacteria and Methanosarcinia classes (Fig. 5). Methanobacteria was prevalent in cathodic biofilm of the closed circuit one-chamber MEC, being the main methane producer (Wu et al., 2024). Hence, AB-MEC experimental design allowed to further dissect the factors that are associated with methanogen prevalence and activity, including the variations in microbial community composition. To translate the taxonomic shift into functional shift, we aimed to transform community dynamics as inferred from the amplicon sequencing into a simulative platform based on GSMMs constructed for key species that capture both functional and taxonomic composition in each chamber. Selection process resulted in 21 representatives including BTEX degraders inferred based on bamA functional gene sequences (Figs. 7), 16 fermenters and iron reducers inferred based on literature survey, and two methanogens whose functionality was inferred based on taxonomy. Considering taxonomy, dynamics and functionality, the selected species provides a simplified representation of the original community in each reactor (Fig. 6). The simulation matrix (Fig. 8) was designed to curate the performances of the different models. Whereas individual community members can conduct fragments of the anaerobic degradation processes, only assembled functionalities can support the full conductance of this process. Once individual models were assembled to represent their respective communities - the reactor-modified communities successfully captured the full spectrum of the anaerobic degradation processes. We used community simulations to capture the anaerobic biodegradation processes in each of the three reactors where simulations take into consideration the unique microbial composition in each reactor and the characteristic environmental conditions. The resulting performances of assembled communities were validated versus the experimental data where the simulated communities exhibit the functional differentiation that is characteristic for each reactor. Comparison of the predicted performances of the different reactors confirmed that simulation successfully captured the functional variation between the different reactors as experimentally detected in the reactors. Mainly, simulation at day 159 captured the similar CO2:CH4 ratio in the AB reactor vs high and low ratios in the anode and cathode respectively (Fig. S4). Our simulation design was unsuccessful in dissecting biotic and abiotic BTEX degradation and future studies will include adaptations that will support the reliable characterization of this phenotype, in addition to the monitoring of the gas emission profile.
本研究旨在通过描述主要微生物物种的活性及其相互作用,揭示苯系物(BTEX)暴露条件下产甲烷活性的关键步骤。我们首次尝试全面捕捉选择性环境条件下微生物群落中发生的产甲烷烃类生物降解过程。为此,我们整合了化学与生物监测手段,并建立了一套分析流程:首先将群落活性分解为关键步骤,筛选具有代表性的物种构建代谢模型,继而设计验证矩阵来测试各模型的生理可行性。通过代谢模型分析,我们能够解析群落活性特征,预测代谢通量变化,关联群落动态与代谢性能差异,从而描绘出微生物组功能景观背后的潜在作用机制。 通过研究厌氧消化器微生物群落中两两组合的相互作用,Basile 等人(2023 年)成功验证了通量平衡分析(FBA)在表征厌氧消化微生物组中微生物互作及其预测功能输出方面的应用价值。Zampieri 团队(2023 年)的最新研究则聚焦于真实反应器群落中的成对互作关系,通过从样本中重建宏基因组组装基因组(MAG)来代表物种,进而基于 FBA 解析两两相互作用机制。本研究拟采用该建模方法,在突破两两组合局限性的基础上,通过构建简化但真实的微生物群落互作网络,将微生物动态变化与其功能特征进行关联。值得注意的是,这种简化群落的精选策略也使得针对成员物种构建的代谢模型能够进行精细化人工校验。Wu 等学者近期研究... (2024 年)研究表明,在单室微生物电解池(MEC)中施加电压后,协同作用促进了厌氧甲苯降解和甲烷生成,并导致微生物群落发生演替。本研究通过监测三个 AB-MEC 反应器中的厌氧生物降解过程,旨在通过不同工况模拟微生物活性的时空分异区域(图 1),并探究伴随功能变化的群落动态特征。实验设计成功捕捉到功能转变(气体排放特征变化,图 3)及其对应的群落结构分异(图 4、图 5)。其中,气体排放特征与甲烷杆菌纲(Methanobacteria)和甲烷八叠球菌纲(Methanosarcinia)成员的相对丰度变化显著相关(图 5)。在闭合电路单室 MEC 的阴极生物膜中,甲烷杆菌纲占据优势地位并成为主要产甲烷菌群(Wu 等,2024)。因此,AB-MEC 实验设计可进一步解析与产甲烷菌优势度及活性相关的驱动因素,包括微生物群落组成的变化特征。 为将分类学变化转化为功能变化,我们旨在将扩增子测序推断的群落动态转化为基于基因组尺度代谢模型(GSMMs)的模拟平台。这些模型针对关键物种构建,能够同时捕捉各反应室中的功能组成与分类组成。筛选过程最终确定了 21 个代表性菌种:包括基于 bamA 功能基因序列推断的 BTEX 降解菌(图 7)、通过文献调研确定的 16 种发酵菌与铁还原菌,以及两种通过分类学推断功能的产甲烷菌。综合考虑分类学地位、动态变化与功能特性,所选菌种为各反应器中的原始群落提供了简化表征(图 6)。设计的模拟矩阵(图 8)用于评估不同模型的性能表现。虽然单个群落成员只能执行厌氧降解过程的片段,但只有整合后的功能组合才能支持该过程的完整传导。当个体模型被组装以代表各自群落时,经反应器改造的群落成功实现了对厌氧降解过程全谱系的完整模拟。 我们采用群落模拟方法捕捉了三个反应器中的厌氧生物降解过程,其中模拟考虑了每个反应器独特的微生物组成和特征性环境条件。组装群落的模拟性能与实验数据进行了验证,结果显示模拟群落表现出各反应器特有的功能分化特征。不同反应器预测性能的比较证实,模拟成功捕捉到了实验检测中反应器间的功能差异。特别是在第 159 天的模拟中,准确再现了 AB 反应器中 CO 2 :CH 4 的相似比例,以及阳极和阴极分别呈现的高比例与低比例现象(图 S4)。当前模拟设计在区分 BTEX 的生物与非生物降解方面尚未成功,未来研究将引入改进方案,除监测气体排放特征外,还将支持对该表型的可靠表征。
We further used the predictions to dissect the process and delineate the full range of exchange interactions supported by the different microbiomes in each reactor. The predicted chamber-specific networks of interactions point at potential scenarios for mechanisms underlying the functional divergence resulting in different emission profiles in each reactor (Fig. 9). Examples for model inferred trophic interactions include the shift from acetate to CO2 secretion by fermenters under iron-reducing conditions and the synergic exchange of purine precursors. As such, the predicted network view (Fig. 9) can provide potential mechanistic explanations to the coupling of fermentation, methanogenesis and hydrocarbon degradation reported by several environmental studies (Chen et al., 2022; Ning et al., 2024). Thus, under specific conditions, fermentative bacteria may act a source of purine precursor for methanogens, further supporting methanogenesis. Notably, interactions predicted from this network analysis are not intended to be used as a stand-alone tool for determining microbial function. The hypotheses generated provide a starting point for experimental design that can further test and validate the actual metabolic dependencies and competitive and cooperative interactions in the reactor community, for example based on the inclusion of a detailed metabolomics profiling of the corresponding samples (Dhakar et al., 2022; Ruan et al., 2024; Ginatt et al., 2024; Berihu et al., 2023). Another key limitation of the current study is the construction of the metabolic models based on genomes that were retrieved from public repositories based on the identification of their taxonomy, as inferred from 16S rRNA gene amplicon sequencing of the respective samples. Such an approach might impose biases toward a limited collection of cultivated species that are not present in the native sample. Functional annotations for example are affected by the limited number of experimentally classified species in the reactor system with a large majority of uncultivated taxa (Basile et al., 2023; Zampieri et al., 2023). Genome recovery, or genome-resolved metagenomics, often referred to as metagenome-assembled genomes, is an alternative approach that allows the construction of native genomes directly out of a metagenome. Such an approach is fundamentally superior over 16S-based genome computation because the genomes are derived directly from the sample, without referring to a database, allowing an authentic look at the metabolic activities in native communities (Taş et al., 2021). As to date the volume of shotgun metagenomics projects supports recovery of high quality metagenome assembled genomes (for example (Dang et al., 2023)), our intention is to apply the analytical framework outlined here for the analysis of genomes of microbial species that are native inhabitants of the relevant reactors. Nevertheless, here we chose a simplistic approach for the selection of representative species based on amplicon sequencing, demonstrating that model-based predictions can also be generated in the lack of the shotgun sequencing data. Similarly, both experimental and simulation conditions can be further adapted to reflect true in situ conditions. For example, here both in the reactors and in simulations, all BTEX components were added in an equal amount. However, in real life contaminations (for example (Chen et al., 2022; Wu et al., 2022)) the abundance and toxicity of components can differ. Future simulation system can be adapted to capture real life contaminated sites.
我们进一步利用预测结果剖析了这一过程,并描绘出各反应器中不同微生物组所支持的全部交换相互作用范围。预测得到的反应室特异性相互作用网络揭示了可能导致各反应器排放特征差异的功能分化机制(图 9)。模型推断的营养相互作用实例包括:在铁还原条件下发酵菌从分泌乙酸盐转变为分泌 CO 2 ,以及嘌呤前体的协同交换。因此,预测的网络视图(图 9)可为多项环境研究报道的发酵作用、产甲烷作用和烃类降解之间的耦合关系提供潜在的机理解释(Chen 等,2022;Ning 等,2024)。这表明在特定条件下,发酵细菌可能作为产甲烷菌的嘌呤前体来源,从而进一步支持产甲烷过程。值得注意的是,该网络分析预测的相互作用并非作为确定微生物功能的独立工具使用。 这些假设为实验设计提供了起点,可进一步测试和验证反应器群落中实际的代谢依赖性及竞争合作关系,例如通过纳入对应样品的详细代谢组学分析(Dhakar 等,2022;Ruan 等,2024;Ginatt 等,2024;Berihu 等,2023)。当前研究的另一个关键局限在于:代谢模型构建所依据的基因组是从公共数据库获取的,其分类学鉴定依赖于对应样本的 16S rRNA 基因扩增子测序结果。这种方法可能导致偏向于某些培养物种的有限集合,而这些物种在原始样本中并不存在。例如功能注释会受限于反应器系统中实验验证物种的数量不足——其中绝大多数属于未培养类群(Basile 等,2023;Zampieri 等,2023)。 基因组恢复(或称基因组解析宏基因组学,常被称为宏基因组组装基因组)是一种直接从宏基因组中构建原生基因组的替代方法。该方法从根本上优于基于 16S rRNA 的基因组计算,因为这些基因组直接来源于样本,无需参考数据库,从而能够真实反映原生群落中的代谢活动(Taş等人,2021 年)。迄今为止,鸟枪法宏基因组项目的规模已支持高质量宏基因组组装基因组的获取(例如 Dang 等人 2023 年的研究),我们拟采用本文所述分析框架来研究反应器中原生微生物物种的基因组。尽管如此,本研究仍选择基于扩增子测序的简化方法来筛选代表性物种,证明即使缺乏鸟枪法测序数据也能生成基于模型的预测结果。同样地,实验条件和模拟条件均可进一步调整以反映真实原位环境。 例如,在反应器和模拟实验中,所有 BTEX 组分均以等量添加。然而在实际污染场景中(如 Chen 等人 2022 年、Wu 等人 2022 年研究所示),各组分的丰度与毒性可能存在差异。未来的模拟系统可进行调整以更真实地反映实际污染场地的特征。
Finally, interactions predicted from this network analysis are not intended to be used for merely describing microbial interactions in a given condition. It is intended to be used as a platform to formulate hypothesis regarding the optimization of desired functionality. The hypotheses generated can be tested experimentally and moreover, they support the design of experiments aiming to optimize microbial function. At the single species level, metabolic model-based predictions of media modifications were shown efficient in optimizing their function (Ofaim et al., 2020; Dhakar et al., 2021, 2022; Ruan et al., 2024; Xu et al., 2019). In microbiomes involved in anaerobic biodegradation, there is accumulating body of evidence supporting the use of metabolic models for describing and optimizing pre-defined performances (Basile et al., 2023; Zampieri et al., 2023). Hence, the demonstrated capacity to capture community performances supports the use of community-level representation of metabolism for the future design of media modifications promoting a better control of the degradation rate.
最后,通过该网络分析预测的相互作用不仅限于描述特定条件下的微生物互作关系,更旨在作为构建功能优化假设的研究平台。这些假设既可通过实验验证,又能为优化微生物功能的实验设计提供理论支撑。在单一物种层面,基于代谢模型的培养基优化预测已被证实能有效提升功能表现(Ofaim 等,2020;Dhakar 等,2021,2022;Ruan 等,2024;Xu 等,2019)。针对厌氧生物降解微生物组,越来越多证据支持采用代谢模型来描述和优化预设性能指标(Basile 等,2023;Zampieri 等,2023)。因此,本研究展示的群落性能捕捉能力,为未来利用群落水平代谢表征设计培养基改良方案、实现降解速率的精准调控提供了方法论基础。

5. Conclusion  5. 结论

By integrating the use of electrochemical anaerobic reactors and genomic based modeling we characterized the multi-step process of methanogenesis coupled BTEX degradation, a critical process under anaerobic conditions. The experimental set up was successful in capturing reported community dynamics under similar conditions whereas the in silico representation and respective simulations successfully captured observed performances as well as delineated potential microbial metabolic exchanges underlying this process. Many of the predicted interactions are consistent with reports from relevant systems. Our work is pioneering in applying metabolic modeling for the study of methanogenesis coupled biodegradation. Considering the growing recognition of metabolic modeling platform as a tool for the contextualization of genomics and other ′omics data our analyses we view the analyses conducted here as a first step towards model-based optimization of microbial function. Beyond testing the hypotheses generated regarding microbial functioning, metabolic modeling can be used for generating strategies for the beneficial management of microbiomes. More specifically, such strategies can be designed and tested for AB-MEC configurations applied for removing petroleum hydrocarbon pollutants and producing methane. Overall, our study represents a pioneering attempt of capturing the full range of community activity in methanogenic hydrocarbon biodegradation taking place in a native community while generating a platform for the future design of optimization strategies.
通过结合电化学厌氧反应器与基因组建模技术,我们系统解析了产甲烷过程耦合 BTEX 降解的多步骤反应机制——这一厌氧环境中的关键生物过程。实验装置成功复现了类似条件下已报道的微生物群落动态特征,而计算机模型及其模拟结果不仅准确重现了观测性能,还揭示了该过程中潜在的微生物代谢互作网络。多数预测的相互作用机制与相关系统的研究报道相一致。本研究开创性地将代谢建模应用于产甲烷耦合生物降解过程的研究。鉴于代谢建模平台作为基因组学及其他组学数据情境化分析工具日益受到重视,我们认为当前分析工作为基于模型的微生物功能优化迈出了第一步。除验证关于微生物功能的假设外,代谢建模还可用于制定微生物组有益管理的优化策略。 更具体地说,这类策略可针对应用于去除石油烃污染物并产生甲烷的厌氧生物电化学系统(AB-MEC)进行设计与测试。总体而言,我们的研究开创性地实现了对原始微生物群落中产甲烷烃类生物降解全过程活性的捕捉,同时为未来优化策略的设计构建了研究平台。

CRediT authorship contribution statement
CRediT 作者贡献声明

Evgenia Jenny Yusim: Writing – original draft, Visualization, Validation, Methodology, Investigation, Formal analysis, Data curation. Raphy Zarecki: Writing – review & editing, Software, Methodology, Data curation, Conceptualization. Shlomit Medina: Visualization, Software. Gon Carmi: Visualization. Sari Mousa: Investigation. Mahdi Hassanin: Investigation. Zeev Ronen: Methodology. Zhiming Wu: Methodology, Investigation, Funding acquisition. Jiandong Jiang: Methodology, Investigation, Funding acquisition. Katie Baransi-Karkaby: Resources, Methodology. Dror Avisar: Writing – review & editing, Resources, Methodology, Funding acquisition. Isam Sabbah: Writing – review & editing, Resources, Funding acquisition. Keren Yanuka-Golub: Writing – review & editing, Resources, Project administration, Methodology, Funding acquisition, Data curation, Conceptualization. Shiri Freilich: Writing – review & editing, Resources, Project administration, Methodology, Funding acquisition, Data curation, Conceptualization. 

Funding 

This research was funded by the NSFC-ISF joint program (4181101565), Israel Science Foundation Grant no. 3164/19. 

Declaration of Competing Interest
利益冲突声明

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
作者声明,对于本论文所报告的研究工作,不存在任何可能被视为影响研究结果的已知经济或人际关系方面的利益冲突。

Acknowledgements  致谢

We would like to express our gratitude to Dr. Maya Ofek-Lalzar for her advice regarding statistical methods. We also want to thank Aviv Kaplan and Igal Gozlan for their help with BTEX measuring.
我们要感谢 Maya Ofek-Lalzar 博士在统计方法方面提供的建议。同时感谢 Aviv Kaplan 和 Igal Gozlan 在 BTEX 测量工作中给予的帮助。

Appendix A. Supplementary data
附录 A. 补充数据

The following is the Supplementary data to this article:
本文的补充数据如下:
Download: Download spreadsheet (3MB)

Multimedia component 1.

Data availability  数据可用性

The links to my data and code are shared in the manuscript
我的数据和代码链接已在论文中共享

References

Cited by (0)

1
Equal contribution.
View Abstract