Finding harmony in the sea: Resolving conflicts by regional marine spatial planning 在海洋中尋找和諧:通過區域海洋空間規劃解決衝突
Jen-Han Yang ^("a "){ }^{\text {a }}, Yi Chang ^("b,c, "){ }^{\text {b,c, }}, Shih-Chun Hsiao ^("d "){ }^{\text {d }} Jen-Han Yang ^("a "){ }^{\text {a }} , Yi Chang ^("b,c, "){ }^{\text {b,c, }} , Shih-Chun Hsiao ^("d "){ }^{\text {d }}^(a){ }^{\mathrm{a}} Institute of Ocean Technology and Marine Affairs, National Cheng Kung University (NCKU), No.1, University Rd., Tainan City, 701, Taiwan ^(a){ }^{\mathrm{a}} 國立成功大學 (NCKU) 海洋科技與海洋研究所,台南市大學路 1 號,臺灣 701^(b){ }^{\mathrm{b}} Graduate Institute of Marine Affairs, National Sun Yat-sen University (NSYSU), 70 Lienhai Rd., Kaohsiung City, 80424, Taiwan ^(b){ }^{\mathrm{b}} 國立中山大學海洋研究所 (NSYSU), 70 Lienhai Rd., Kaohsiung City, 80424, Taiwan^("c "){ }^{\text {c }} Sustainable Ocean Governance Center, National Sun Yat-sen University, Kaohsiung, 804, Taiwan ^("c "){ }^{\text {c }} 國立中山大學可持續海洋治理中心, 臺灣高雄 804^(d){ }^{\mathrm{d}} Department of Hydraulic and Ocean Engineering, National Cheng Kung University (NCKU), No.1, University Rd., Tainan City, 701, Taiwan ^(d){ }^{\mathrm{d}} 國立成功大學 (NCKU) 水利與海洋工程系,臺灣台南市大學路 1 號,臺灣 701
A R T I C L E I N F O
Keywords: 關鍵字:
Automatic identification system (AIS) 自動識別系統 (AIS)
Oyster farming 牡蠣養殖
Marine spatial planning (MSP) 海洋空間規劃 (MSP)
Conflict potential 潛在衝突
Geographic information system (GIS) 地理資訊系統 (GIS)
Abstract 抽象
Ocean space is of paramount importance to coastal regions worldwide. However, rapid coastal development has led to competition in marine spatial allocation, exacerbating conflicts within maritime domains. Despite significant progress in establishing regulations for coastal governance in Taiwan, conflicts across diverse maritime industries due to a lack of marine spatial planning (MSP) institutions remain a persistent challenge. Potential conflict areas were identified via geographic information system (GIS) maps to assist maritime governance and used in several rounds of coordination meetings with stakeholders for zoning. A regional MSP framework for improving maritime governance is proposed based on a case study, which shows that even without legal MSP institutions, local or certain central government departments can act as the key authorities for implementing the bottom-up planning concept with strong engagement from local communities. The proposed planning process includes: (1) establishing and employing a monitoring system to promptly identify marine activities that can facilitate efficient enforcement; (2) continuous communication with stakeholders led by the local government to improve amendment regulations and aid compliance; and (3) prioritizing the preservation of traditional use rights with community self-management to accelerate regional MSP processes. 海洋空間對全球沿海地區至關重要。然而,沿海的快速發展導致了海洋空間分配的競爭,加劇了海洋域內的衝突。儘管臺灣在制定沿海治理法規方面取得了重大進展,但由於缺乏海洋空間規劃 (MSP) 機構,不同海洋行業的衝突仍然是一個持續的挑戰。通過地理資訊系統 (GIS) 地圖確定潛在的衝突區域以協助海事治理,並用於與利益相關者進行分區的幾輪協調會議。根據案例研究提出了一個改善海洋治理的區域 MSP 框架,該案例研究表明,即使沒有合法的 MSP 機構,地方或某些中央政府部門也可以在當地社區的大力參與下充當實施自下而上的規劃概念的關鍵當局。擬議的規劃過程包括:(1) 建立和採用監控系統,以及時識別可以促進有效執法的海洋活動;(2) 與當地政府領導的利益相關者進行持續溝通,以改進修訂法規並幫助合規;(3) 通過社區自我管理優先保護傳統使用權,以加速區域 MSP 進程。
1. Introduction 1. 引言
Human activities within marine environments have escalated, including diverse activities such as fisheries, recreation, commerce, and tourism (Frazão Santos et al., 2019). This has produced related conflicts regarding spatial allocation (Ehler and Douvere, 2009) and has affected the ecological equilibrium of these coastal and marine ecosystems (O’Mahony et al., 2009). General methodologies for managing coastal and marine regions have been pursued for an extensive period. Marine spatial planning (MSP) has gained recognition as a viable strategy for mitigating conflicts, particularly in heavily trafficked marine and coastal localities. MSP is increasingly used to manage marine zoning and allocation strategies and address the array of marine-use-related friction (Day, 2002; Ehler and Douvere, 2009). Furthermore, stakeholder participation, inter-organizational cooperation, and effective communication strategies are identified as critical factors in achieving successful outcomes in MSP (Olsen et al., 2014; Smythe and McCann, 2018). The distribution of human activities and natural events within 海洋環境中的人類活動已經升級,包括漁業、娛樂、商業和旅遊等各種活動(Frazão Santos 等,2019 年)。這產生了有關空間分配的相關衝突(Ehler 和 Douvere,2009 年),並影響了這些沿海和海洋生態系統的生態平衡(O'Mahony 等人,2009 年)。管理沿海和海洋區域的一般方法已經被追求了很長一段時間。海洋空間規劃 (MSP) 已被公認為緩解衝突的可行策略,尤其是在交通繁忙的海洋和沿海地區。MSP 越來越多地用於管理海洋分區和分配策略,並解決一系列與海洋使用相關的摩擦(Day,2002 年;Ehler 和 Douvere,2009 年)。此外,利益相關者的參與、組織間合作和有效的溝通策略被認為是在 MSP 中取得成功的關鍵因素(Olsen 等人,2014 年;Smythe 和 McCann,2018 年)。人類活動和自然事件在其中的分佈
this intricate framework must be determined comprehensively for the optimal MSP of oceanic activities. Ehler and Douvere (2009) stated that collecting and mapping spatiotemporal distributions, along with human activity densities, offer fundamental data necessary for improving coastal management practices. To achieve this, geographic information systems (GIS) serves as a platform that enables users to create, analyze, visualize spatial or geographic data, and interpret geographic information effectively in the form of maps (Fischer and Nijkamp, 1992). Moreover, GIS offers the integration of diverse spatial datasets and the analytical capabilities required to identify potential conflict areas, which are used for conflict resolution in coastal regions (Gimpel et al., 2018; Stelzenmüller et al., 2013). 必須全面確定這個複雜的框架,以實現海洋活動的最佳 MSP。Ehler 和 Douvere (2009) 指出,收集和繪製時空分佈以及人類活動密度為改進沿海管理實踐提供了必要的基礎數據。為了實現這一目標,地理資訊系統 (GIS) 充當了一個平臺,使用戶能夠創建、分析、可視化空間或地理數據,並以地圖的形式有效地解釋地理資訊(Fischer 和 Nijkamp,1992 年)。此外,GIS 提供了各種空間數據集和識別潛在衝突區域所需的分析能力的集成,這些區域用於解決沿海地區的衝突(Gimpel 等人,2018 年;Stelzenmüller et al., 2013)。
Southwestern Taiwan has several essential marine industries including shipping, fisheries, and recreational pursuits, which contribute significantly to regional economic advancement. However, the rapid development of coastal areas has led to competition over marine space allocation, thereby intensifying marine spatial conflicts. In response, the legislative and regulatory framework for coastal 臺灣西南部擁有幾個重要的海洋產業,包括航運、漁業和娛樂活動,這些產業為區域經濟發展做出了重大貢獻。然而,沿海地區的快速發展導致了對海洋空間分配的競爭,從而加劇了海洋空間衝突。作為回應,沿海地區的立法和監管框架
governance, exemplified by statutes such as the Coastal Zone Management Act and the Spatial Planning Act, has been successfully promulgated by the government of Taiwan. Additionally, the Ocean Affairs Council (OAC) was established in 2018 as a government-sanctioned custodian of marine affairs (Shih, 2020). This demonstrates the governmental commitment to effective marine management. Despite significant progress in establishing regulations for coastal governance in Taiwan, conflicts persist among disparate maritime sectors due to the lack of efficient and comprehensive MSP institutions and governance strategies. This continued predicament highlights concerns about maritime development in Taiwan. 臺灣政府已成功頒布了以《海岸帶管理法》和《空間規劃法》等法規為代表的治理。此外,海洋事務委員會 (OAC) 成立於 2018 年,是政府批准的海洋事務託管機構(Shih,2020 年)。這表明政府對有效海洋管理的承諾。儘管臺灣在制定沿海治理法規方面取得了重大進展,但由於缺乏高效和全面的 MSP 機構和治理策略,不同的海事部門之間的衝突仍然存在。這種持續的困境凸顯了人們對臺灣海事發展的擔憂。
In response to the need for MSP implementation, the Taiwanese government announced the Ocean Basic Act in November 2019, in which Article 4 (Ocean Basic Act, 2019, p.1) stated that: 為回應 MSP 實施的需要,臺灣政府於 2019 年 11 月宣佈了《海洋基本法》,其中第 4 條(海洋基本法,2019 年,第 1 頁)規定:
“The government should enact (formulate) regulations for marine spatial planning, coordinate the use of sea areas and competition, and implement integrated marine management in response to the needs of multi-purpose marine use.” “政府應制定海洋空間規劃法規,協調海域利用和競爭,實施海洋綜合管理,以應對海洋多用途需求。”
The highest level of marine governance in Taiwan is the OAC, which delivered the Maritime Management Act (draft) to the legislative department in 2021. The drafted Maritime Management Act would coordinate strategies to address conflicts between marine sectors and preserve the marine environment and ecosystems by implementing integrated management. Accordingly, the OAC would become the marine zoning authority for various sectors and provide marine spatial use plans at the central government level. However, this drafted MSP legislation did not have the capacity to formulate plans for regional governments, such as marine protected areas zonings (Huang et al., 2024) and offshore wind farm development (Hung et al., 2021). 臺灣海洋治理的最高級別是 OAC,該委員會於 2021 年向立法部門提交了《海事管理法》(草案)。《海事管理法》草案將協調戰略,通過實施綜合管理來解決海洋部門之間的衝突,並保護海洋環境和生態系統。因此,OAC 將成為各個部門的海洋分區機構,並在中央政府層面提供海洋空間利用計劃。然而,這份 MSP 立法草案沒有能力為地方政府制定計劃,例如海洋保護區分區(Huang et al., 2024)和海上風電場開發(Hung et al., 2021)。
MSP is considered as a collaborative process that integrating spatial data, stakeholder perspectives, and policy considerations to develop a comprehensive framework for marine resource/space-appropriate allocations and sustainable management (Olsen et al., 2014; Twomey and O’Mahony, 2019). The study area in the water off Tainan, Taiwan, is used by diverse maritime sectors including oyster farming, captur fisheries, commercial harbor, and marine conservations. It is notable that oyster farming and capture fisheries were initially existed before the 1980s, while commercial harbor Anping Port extended since the 1990s and Taijiang Natial Park was established in 2009, respectively. Because of lacking MSP institution for the latter sectors, conflicts for sea space and fish resources occurred and remained till present. To resolve the conflicts and create an optimal management plan, the authors of this study were commissioned by the Tainan City Government to provide an optimal management plan. The authors of this this study therefore counducted MSP concept by collecting stakeholder engagement, political processes, and management regulations analysis. The major steps include collecting and visualizing spatial data, mapping information about human activities, and identifying potential conflict areas (Ehler and Douvere, 2009). A new zoning map for the study area concluded from stakeholder perspectives observation, political processes, and management regulations. 海洋空間規劃被認為是一個協作過程,它整合了空間數據、利益相關者的觀點和政策考慮,為海洋資源/空間適當的分配和可持續管理制定了一個全面的框架(Olsen 等人,2014 年;Twomey 和 O'Mahony,2019 年)。臺灣台南附近水域的研究區域被不同的海洋部門使用,包括牡蠣養殖、捕撈漁業、商業港口和海洋保護區。值得注意的是,牡蠣養殖和捕撈漁業最初存在於 1980 年代之前,而商業港口安平港自 1990 年代以來延伸,台江自然公園分別於 2009 年建立。由於缺乏后一個部門的 MSP 機構,海洋空間和魚類資源的衝突發生了,並一直持續到現在。為了解決衝突並制定最佳管理計劃,本研究的作者受台南市政府委託提供最佳管理計劃。因此,本研究的作者通過收集利益相關者參與、政治進程和管理法規分析來引入 MSP 概念。主要步驟包括收集和可視化空間數據、繪製有關人類活動的資訊以及識別潛在的衝突區域(Ehler 和 Douvere,2009 年)。根據利益相關者的角度觀察、政治進程和管理法規得出研究區域的新分區圖。
2. Background of the study area 2. 研究區域的背景
Since the 2000s, human activities have increased in coastal areas and ports in Tainan, including shipping, oyster farming, and recreational development, leading to heightened spatial conflicts. The designation of Anping Port (Fig. 1) as an international free-trade zone harbor in 2014 further amplified cargo shipments, tourist ferries, and recreational developments (Chang and Lin, 2016). Tainan City also serves as a major oyster farming area in Taiwan, predominantly employing a floating raft culture system (Yang and Chang, 2017). However, irregularly positioned oyster farming rafts near shipping channels have hampered ship navigation (National Audit Office Taiwan, 2015). Chang and Lin (2016) discovered overlapping areas between floating oyster farming rafts and shipping channels in Anping Port, resulting in conflicts between oyster 自 2000 年代以來,台南沿海地區和港口的人類活動有所增加,包括航運、牡蠣養殖和娛樂開發,導致空間衝突加劇。2014 年安平港(圖 1)被指定為國際自由貿易區港口,進一步擴大了貨物運輸、旅遊渡輪和娛樂開發(Chang 和 Lin,2016 年)。台南市也是臺灣主要的牡蠣養殖區,主要採用浮筏養殖系統(Yang 和 Chang,2017 年)。然而,在航道附近放置不規則的牡蠣養殖筏阻礙了船舶航行(台灣國家審計署,2015 年)。Chang 和 Lin (2016) 發現安平港浮式牡蠣養殖筏與航道重疊區域,導致牡蠣之間發生衝突
Fig. 1. Anping Port on the southwest coast of Taiwan showcases the focal area of interest, emphasizing the need for effective management strategies and conflict resolution mechanisms. 圖 1.位於臺灣西南海岸的安平港是人們關注的重點區域,強調需要有效的管理策略和衝突解決機制。
farming and shipping activities. The waters around Anping Port are crucial for oyster farming, but they also support gill nets and capture fisheries, causing significant conflicts in the sector. In response, the Tainan City Government has been actively c the Self-Government Ordinance of Shallow Water Oyster Farming and enhancing coastal fisheries management by planning fishing rights for the future. These initiatives aim to improve the management of floating rafts, mitigate conflicts related to marine spatial allocation, reinforce oyster farmers’ property protection, and address marine environmental pollution. However, the absence of a comprehensive management plan, determination of oyster farming areas, and an efficient monitoring system to identify the precise locations of oyster farms remains challenges (Ocean Affairs Council Taiwan, 2019). Ensuring maritime safety is a critical concern for Taiwan’s maritime industry. According to the 2017 Fisheries Statistical Yearbook in Taiwan, a significant proportion (71%) of registered ships in Tainan City are small-scale fishing boats. The majority of these fishing boats weigh less than five tons and lack collision-avoidance systems, posing potential risks to maritime safety (Ocean Affairs Council Taiwan, 2019). 農業和航運活動。安平港周圍水域對牡蠣養殖至關重要,但它們也支援刺網和捕撈漁業,導致該行業發生重大衝突。作為回應,台南市政府積極實施《淺水牡蠣養殖自治條例》,並通過規劃未來的捕魚權來加強沿海漁業管理。這些舉措旨在改善浮筏的管理,緩解與海洋空間分配相關的衝突,加強牡蠣養殖者的財產保護,並解決海洋環境污染問題。然而,缺乏全面的管理計劃、確定牡蠣養殖區和確定牡蠣養殖場精確位置的有效監測系統仍然是挑戰(臺灣海洋事務委員會,2019年)。確保海上安全是臺灣海運業的關鍵關注點。根據 2017 年臺灣漁業統計年鑒,台南市註冊船舶中有很大一部分 (71%) 是小型漁船。這些漁船大多重量不到5噸,缺乏防撞系統,對海上安全構成潛在風險(臺灣海洋事務委員會,2019年)。
3. Materials and methods 3. 材料和方法
The main steps in the MSP process include pre-planning, defining and analyzing present conflicts, organizing stakeholder participation, and preparing and approving the spatial management plan, that improving decision-making on conflict resolution and allocation of coastal areas (Ehler and Douvere, 2009; Gilliland and Laffoley, 2008). Accordingly, conflict analysis and resolution in the study area followed the MSP process, including spatial distribution of varied types from Automatic Identification System (AIS), oyster farming rafts identified from satellite images (Yang et al., 2022), and spatial zoning and management plan perspectives were archived through stakeholder workshops and coordination meetings (Chang and Lin, 2016; Huang et al., 2024). Finally, the MSP output map (Fig. 2) was proposed by GIS techniques (Gimpel et al., 2018; Stelzenmüller et al., 2013). MSP 過程的主要步驟包括預先規劃、定義和分析當前的衝突、組織利益相關者參與以及準備和批准空間管理計劃,從而改進衝突解決和沿海地區分配的決策(Ehler 和 Douvere,2009 年;Gilliland 和 Laffoley,2008 年)。因此,研究區域的衝突分析和解決遵循 MSP 過程,包括自動識別系統 (AIS) 中不同類型的空間分佈、從衛星圖像中識別的牡蠣養殖筏(Yang et al., 2022),以及空間分區和管理計劃的觀點通過利益相關者研討會和協調會議進行存檔(Chang 和 Lin,2016 年;Huang et al., 2024)。最後,通過 GIS 技術提出了 MSP 輸出地圖(圖 2)(Gimpel et al., 2018;Stelzenmüller et al., 2013)。
3.1. AIS data collection and analysis 3.1. AIS 數據收集與分析
The AIS is a radio information reception and transmission system that provides comprehensive ship data, including basic ship information, dynamic ship data, and voyage-related information. The basic ship data contains crucial details, such as Maritime Mobile Service Identity (MMSI), call sign, name, International Maritime Organization (IMO) AIS 是一種無線電資訊接收和傳輸系統,提供全面的船舶數據,包括船舶基本資訊、動態船舶數據和航行相關信息。基本船舶數據包含關鍵詳細資訊,例如海事移動服務標識 (MMSI)、呼號、名稱、國際海事組織 (IMO)
Fig. 2. A flowchart depicting the procedure for creating overlapping and proposed zoning maps using GIS, spatial data, and satellite imagery. 圖 2.描述使用 GIS、空間數據和衛星圖像創建重疊和擬議分區地圖的過程的流程圖。
number, length, beam, and ship type. The dynamic ship data included the position, position time stamp, course over ground (COG), speed over ground (SOG), and navigation status. Voyage-related information encompasses the ship draught, hazardous cargo, and destination (Le Tixerant et al., 2018; Liu et al., 2019). 數量、長度、光束和船類型。動態船舶數據包括位置、位置時間戳、對地航向 (COG)、對地速度 (SOG) 和導航狀態。與航行相關的資訊包括船舶吃水、危險貨物和目的地(Le Tixerant 等人,2018 年;Liu et al., 2019)。
To identify the main shipping lanes, the AIS data provided by Taiwan’s Ministry of Transportation and Communications was used to illustrate maritime traffic density maps and estimate vessel routes. The raw AIS data was processed using Microsoft Structured Query Language (SQL) Server software, including filtering vessels by type, such as fishing, cargo, and tankers, followed by conversion into comma-separated value (CSV) files for import into the GIS software ArcGIS Pro. Obtaining a succinct overview of maritime traffic density is crucial within the framework of MSP plans (Le Tixerant et al., 2018). A kernel density analysis approach, which provides a clear spatial representation of maritime lanes, was implemented to identify the main shipping lanes (Le Guyader et al., 2016; Nicolas et al., 2016). 為了確定主要航道,交通部提供的 AIS 資料用於說明海上交通密度圖和估計船舶路線。原始 AIS 數據使用 Microsoft 結構化查詢語言 (SQL) 伺服器軟體進行處理,包括按類型過濾船隻,例如捕魚、貨物和油輪,然後轉換為逗號分隔值 (CSV) 檔以導入 GIS 軟體 ArcGIS Pro。在 MSP 計劃的框架內,獲得海上交通密度的簡潔概述至關重要(Le Tixerant 等人, 2018 年)。實施了一種核密度分析方法,該方法提供了海上航道的清晰空間表示,以確定主要航道(Le Guyader et al., 2016;Nicolas et al., 2016)。
Furthermore, numerous coastal fishing vessels, predominantly representing small-scale fisheries (SSF), actively engage in recreational fishing, gill netting, and pole-and-line practices within the coastal areas of Taiwan (Taiwan Fishery Agency, 2018). To investigate the positions of SSF vessels, real-time positional data from fishing vessels equipped with AIS Class B systems were analyzed. Subsequent analysis was performed using GIS technology to produce points and maps that illustrated the distribution patterns of the SSF vessels. 此外,許多主要代表小規模漁業 (SSF) 的沿海漁船在臺灣沿海地區積極從事休閒捕魚、刺網和桿線做法(台灣漁業局,2018 年)。為了調查 SSF 船隻的位置,分析了配備 AIS B 級系統的漁船的即時位置數據。隨後使用 GIS 技術進行分析,以生成說明 SSF 船隻分佈模式的點和地圖。
3.2. Identifying overlaps and potential conflicts 3.2. 識別重疊和潛在衝突
Understanding maritime uses within a spatiotemporal scenario and comprehensively mapping marine activities are crucial for MSP due to the extensive utilization of coastal areas and the accompanying need to identify marine conflict areas (Douvere, 2008). Various studies have reported GIS applications in MSP, indicating that GIS can be utilized as a tool for conflict resolution and spatial overlap analysis. (Coccoli et al., 2018; Moore et al., 2017; Prestrelo and Vianna, 2016). GIS also plays a significant role in all geographic and spatial aspects of marine aquaculture development and management (Stelzenmüller et al., 2017). 由於沿海地區的廣泛利用以及隨之而來的確定海洋衝突區域的需求,瞭解時空情景中的海洋用途並全面繪製海洋活動地圖對海洋空間規劃至關重要(Douvere,2008 年)。各種研究報導了 GIS 在 MSP 中的應用,表明 GIS 可以用作解決衝突和空間重疊分析的工具。(Coccoli 等人,2018 年;Moore 等人,2017 年;Prestrelo 和 Vianna,2016 年)。GIS 在海水養殖開發和管理的所有地理和空間方面也發揮著重要作用(Stelzenmüller 等,2017)。
Mapping and identifying marine and coastal features are essential for MSP, including socioeconomic and environmental uses and values (Shucksmith and Kelly, 2014). In addition, this process provides a clear 繪製和識別海洋和沿海特徵對於海洋空間規劃至關重要,包括社會經濟和環境用途和價值(Shucksmith 和 Kelly,2014 年)。此外,此過程提供了明確的
visualization of spatial relationships for marine aquaculture development and management (Meaden et al., 2016), aiding in conflict visibility and promoting compatibility in ocean use, facilitating potential zoning arrangements (Douvere, 2008; Ehler and Douvere, 2009; Retzlaff and LeBleu, 2018). Zoning is the principal management measure for MSP, highlighting the importance of ocean zoning maps (Ehler and Douvere, 2009). Moreover, zoning maps can be produced using simplified GIS techniques (Chien et al., 2012). 海洋水產養殖開發和管理的空間關係可視化(Meaden et al., 2016),有助於提高衝突的可見性,促進海洋利用的相容性,促進潛在的分區安排(Douvere,2008 年;Ehler 和 Douvere,2009 年;Retzlaff 和 LeBleu,2018 年)。分區是海洋空間規劃的主要管理措施,突出了海洋分區圖的重要性(Ehler 和 Douvere,2009 年)。此外,可以使用簡化的 GIS 技術生成分區圖(Chien et al., 2012)。
To investigate potential conflicts in the coastal areas of Tainan, data was gathered from specialized portals focusing on spatial data collection within the Taiwanese government, including the OpenData platform, Taiwan Geospatial One Stop, National Ocean Database, and Sharing System. Subsequently, a comprehensive GIS database was constructed using data production, transformation, and classification and incorporating all relevant variables of the study area. The datasets were presented in shapefile format and standardized using the same reference system. In addition, remote sensing images were used to assess the locations of oyster farming areas precisely. High-resolution satellitederived images sourced from SPOT-7 and employing a Transverse Mercator projection were obtained from the Center for Space and Remote Sensing Research at the National Central University of Taiwan. All maps and images were projected onto the TWD 97 coordinate system and integrated into a GIS dataset focusing on the positions of the oyster farming rafts. A satellite-derived imagery analysis method (Yang et al., 2022) was adopted to detect the positions of the oyster farming rafts and display them as polygons on the area maps to identify potential conflict areas. In addition, AIS data was imported into GIS to create a density map. Subsequently, the overlapping areas were analyzed, and conflict matrices and maps were generated to highlight the areas of potential conflict. Finally, the oyster farming areas and main shipping lanes were seamlessly integrated with a diverse array of GIS data layers sourced from government-provided datasets that encompassed protected areas, geographic information, transport details, ports, fisheries, aquaculture, cable and conduit information, and other anthropogenic activity data. Subsequently, the meticulous digitization and organization of these datasets facilitated the generation of a comprehensive zoning map for this study. 為了調查台南沿海地區的潛在衝突,從臺灣政府內部專注於空間數據收集的專業入口網站收集數據,包括 OpenData 平臺、臺灣地理空間一站式、國家海洋資料庫和共享系統。隨後,使用數據生成、轉換和分類構建了一個全面的 GIS 資料庫,並納入了研究區域的所有相關變數。數據集以 shapefile 格式呈現,並使用相同的參考系統進行標準化。此外,還使用遙感圖像精確評估牡蠣養殖區的位置。來自 SPOT-7 並採用橫軸墨卡托投影的高解析度衛星圖像來自國立中央大學空間與遙感研究中心。所有地圖和圖像都投影到 TWD 97 座標系上,並集成到一個 GIS 數據集中,重點關注牡蠣養殖筏的位置。採用衛星衍生圖像分析方法(Yang et al., 2022)來檢測牡蠣養殖筏的位置,並將其在區域地圖上顯示為多邊形,以識別潛在的衝突區域。此外,還將 AIS 數據導入 GIS 以創建密度圖。隨後,分析重疊區域,並生成衝突矩陣和地圖以突出顯示潛在衝突區域。 最後,牡蠣養殖區和主要航道與各種 GIS 數據層無縫集成,這些數據層來自政府提供的數據集,其中包括保護區、地理資訊、運輸細節、港口、漁業、水產養殖、電纜和管道資訊以及其他人為活動數據。隨後,這些數據集的細緻數位化和組織促進了本研究綜合分區圖的生成。