Review  回顾
Role of peroxisomes in ROS/RNS-metabolism: Implications for human disease
过氧化物酶体在 ROS/RNS 代谢中的作用:对人类疾病的影响

https://doi.org/10.1016/j.bbadis.2011.12.001 Get rights and content  获取权利和内容
Under an Elsevier user license
在爱思唯尔用户许可证下
Open archive  打开存档

Abstract  抽象

Peroxisomes are cell organelles that play a central role in lipid metabolism. At the same time, these organelles generate reactive oxygen and nitrogen species as byproducts. Peroxisomes also possess intricate protective mechanisms to counteract oxidative stress and maintain redox balance. An imbalance between peroxisomal reactive oxygen species/reactive nitrogen species production and removal may possibly damage biomolecules, perturb cellular thiol levels, and deregulate cellular signaling pathways implicated in a variety of human diseases. Somewhat surprisingly, the potential role of peroxisomes in cellular redox metabolism has been underestimated for a long time. However, in recent years, peroxisomal reactive oxygen species/reactive nitrogen species metabolism and signaling have become the focus of a rapidly evolving and multidisciplinary research field with great prospects. This review is mainly devoted to discuss evidence supporting the notion that peroxisomal metabolism and oxidative stress are intimately interconnected and associated with age-related diseases. We focus on several key aspects of how peroxisomes contribute to cellular reactive oxygen species/reactive nitrogen species levels in mammalian cells and how these cells cope with peroxisome-derived oxidative stress. We also provide a brief overview of recent strategies that have been successfully employed to detect and modulate the peroxisomal redox status. Finally, we highlight some gaps in our knowledge and propose potential avenues for further research. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of peroxisomes in Health and Disease.
过氧化物酶体是在脂质代谢中起核心作用的细胞器。同时,这些细胞器产生活性氧和氮作为副产品。过氧化物酶体还具有复杂的保护机制来抵消氧化应激和维持氧化还原平衡。过氧化物酶体活性氧/活性氮的产生和去除之间的不平衡可能会损害生物分子,扰乱细胞硫醇水平,并失调与多种人类疾病有关的细胞信号通路。有点令人惊讶的是,过氧化物酶体在细胞氧化还原代谢中的潜在作用长期以来一直被低估。然而,近年来,过氧化物酶体活性氧/活性氮代谢和信号传导已成为快速发展的多学科研究领域的焦点,前景广阔。本综述主要讨论支持过氧化物酶体代谢和氧化应激与年龄相关疾病密切相关并相关的观点的证据。我们重点关注过氧化物酶体如何影响哺乳动物细胞中细胞活性氧/活性氮水平以及这些细胞如何应对过氧化物酶体衍生的氧化应激的几个关键方面。我们还简要概述了最近已成功用于检测和调节过氧化物酶体氧化还原状态的策略。最后,我们强调了我们知识中的一些差距,并提出了进一步研究的潜在途径。本文是题为“过氧化物酶体在健康和疾病中的代谢功能和生物发生”的特刊的一部分。

Graphical abstract  图形摘要

Schematic overview of the potential sources, sinks, and targets of peroxisomal ROS/RNS. Peroxisomes contain various enzymes that produce hydrogen peroxide (H2O2), superoxide (O2radical dot), or nitric oxide (NOradical dot) as part of their normal catalytic cycle. These molecules can readily react to form other ROS and RNS such as peroxynitrite (ONOO), hydroxyl radical (radical dotOH), and alkyl peroxides (ROOH). Peroxisomes are also well equipped with enzymatic and non ezymatic antioxidant defense systems, including catalase (CAT), superoxide dismutase 1 (SOD1), peroxiredoxin 5 (PRDX5), glutathione S‐transferase kappa (GSTK1), ‘microsomal’ glutathione S‐transferase (MGST1), epoxide hydrolase 2 (EPHX2), reduced glutathione (GSH) and vitamin C (VitC). GSH and VitC most likely freely penetrate the peroxisomal membrane through PXMP2, a non‐selective pore‐forming protein with an upper molecular size limit of 300–600 Da. How oxidized glutathione (GSSG) is reduced inside the peroxisomal matrix or exported back into the cytosol, is not yet known. The precise substrates of GSTK1, MGST1, and EPHX2 also remain to be identified. Excess peroxisomal ROS/RNS can directly inactivate peroxisomal matrix proteins or promote the production of potential signaling molecules such as S‐nitrosoglutathione (GSNO). Alternatively, some of these small reactive molecules may induce membrane damage through lipid peroxidation or diffuse out of the organelle. The latter event may perturb the cellular redox status, a condition generally considered as a risk factor for the development of age‐related diseases. Finally, under conditions of increased oxidative stress, peroxisomes may also function as a sink for cellular ROS. However, such conditions may in turn affect various peroxisomal functions, including the PEX‐mediated import pathway of peroxisomal matrix protein. XDH, xanthine oxidase; NOS2, inducible nitric oxide synthase; GRX, glutaredoxin; ROH, alcohol; ONO, nitrite.
过氧化物酶体 ROS/RNS 的潜在来源、汇和靶标的示意图。过氧化物酶体含有多种酶,这些酶可产生过氧化氢 (H2O2)、超氧化物 (O2 radical dot ) 或一氧化氮 (NO radical dot ),作为其正常催化循环的一部分。这些分子很容易反应形成其他 ROS 和 RNS,例如过氧亚硝酸盐 (ONOO−)、羟基自由基 ( radical dot OH) 和过氧化烷基 (ROOH)。过氧化物酶体还配备了酶促和非酶抗氧化防御系统,包括过氧化氢酶 (CAT)、超氧化物歧化酶 1 (SOD1)、过氧化物还蛋白 5 (PRDX5)、谷胱甘肽 S-转移酶κ (GSTK1)、“微粒体”谷胱甘肽 S-转移酶 (MGST1)、环氧化物水解酶 2 (EPHX2)、还原型谷胱甘肽 (GSH) 和维生素 C (VitC)。GSH 和 VitC 很可能通过 PXMP2 自由穿透过氧化物酶体膜,PXMP2 是一种非选择性成孔蛋白,分子大小上限为 300-600 Da。氧化谷胱甘肽 (GSSG) 如何在过氧化物酶体基质内还原或输出回胞质质中尚不清楚。GSTK1、MGST1 和 EPHX2 的精确底物也有待鉴定。过量的过氧化物酶体 ROS/RNS 可以直接使过氧化物酶体基质蛋白失活或促进 S-亚硝基谷胱甘肽 (GSNO) 等潜在信号分子的产生。或者,其中一些小反应分子可能通过脂质过氧化诱导膜损伤或扩散出细胞器。后一种事件可能会扰乱细胞氧化还原状态,这种情况通常被认为是与年龄相关的疾病发展的危险因素。最后,在氧化应激增加的条件下,过氧化物酶体还可以充当细胞活性氧的汇。 然而,这种情况可能反过来影响各种过氧化物酶体功能,包括 PEX 介导的过氧化物酶体基质蛋白的导入途径。XDH,黄嘌呤氧化酶;NOS2,诱导型一氧化氮合酶;GRX,戊二醇;ROH,酒精;ONO,亚硝酸盐。
  1. Download: Download high-res image (184KB)
  2. Download: Download full-size image

Highlights  突出

► Peroxisomes may function as a source, sink, or target of small reactive molecules. ► Peroxisomal ROS/RNS can deregulate redox-sensitive signaling pathways. ► Peroxisomes and mitochondria share a redox-sensitive relationship. ► Altered peroxisomal redox homeostasis is linked with age-associated diseases. ► Enhanced cellular oxidative stress can impair peroxisome function.
► 过氧化物酶体可作为小反应分子的来源、汇或靶标。► 过氧化物酶体 ROS/RNS 可以去调节氧化还原敏感信号通路。► 过氧化物酶体和线粒体具有氧化还原敏感关系。► 过氧化物酶体氧化还原稳态改变与年龄相关疾病有关。► 增强的细胞氧化应激会损害过氧化物酶体功能。

Abbreviations  缩写

3-AT
3-Amino-1,2,4-triazole
CFP
cyan fluorescent protein
EC number
Enzyme Commission number
ER
endoplasmic reticulum
FAO
fatty acyl-CoA oxidase
FRET
fluorescence resonance energy transfer
GSH
reduced glutathione
GSSG
oxidized glutathione
NFKB1
nuclear factor of kappa light polypeptide gene enhancer in B-cells 1
PPARα
peroxisome proliferator-activated receptor alpha
PTS
peroxisomal targeting signal
PTS1
C-terminal peroxisomal targeting signal
RNS
reactive nitrogen species
roGFP
redox-sensitive green fluorescent protein
ROS
reactive oxygen species
YFP
yellow fluorescent protein

3-AT
3-氨基-1,2,4-三唑
CFP
青色荧光蛋白
EC 编号
酶委员会编号
ER
内质网
FAO
脂肪酰基辅酶 A 氧化酶
FRET
荧光共振能量转移
GSH
降低谷胱甘肽
GSSG
氧化谷胱甘肽
NFKB1
κ 轻多肽基因增强子的核因子 B 细胞 1
PPARα
过氧化物酶体增殖物激活受体 α
PTS
过氧化物酶体靶向信号
PTS1
C 端过氧化物酶体靶向信号
RNS
活性氮
roGFP
氧化还原敏感绿色荧光蛋白
ROS
活性氧
YFP
黄色荧光蛋白

Keywords  关键字

Peroxisome
Oxidative stress
Antioxidant
Redox signaling
Interorganellar crosstalk
Age-related disease

过氧化物酶体
氧化应激
抗氧化
氧化还原信号传导
器官间串扰
与年龄相关的疾病

1. Introduction  1. 简介

Over the past decades, free radicals and other reactive small molecules have emerged as important regulators of many physiological and pathological processes [1], [2]. Currently, it is well established that – at physiological low levels – reactive oxygen species (ROS) and reactive nitrogen species (RNS) serve as signaling messengers to mediate various biological responses, including gene expression, cell proliferation, angiogenesis, innate immunity, programmed cell death, and senescence [3], [4]. On the other hand, it is also known that increased levels of these short-lived reactive molecules can exert harmful effects by causing oxidative damage to biological macromolecules and disrupting the cellular reduction–oxidation (redox) balance [3], [5]. A disturbance of ROS/RNS homeostasis is generally considered as a risk factor for the initiation and progression of diseases such as atherosclerosis, diabetes, neurodegeneration, and cancer [5], [6]. Whether the effects of ROS/RNS are beneficial or harmful depends on the site, type, and amount of ROS/RNS production and the activity of the organism's antioxidant defense system [7].
在过去的几十年里,自由基和其他反应性小分子已成为许多生理和病理过程的重要调节因子 [1]、[2]。 目前,众所周知,在生理低水平下,活性氧(ROS)和活性氮(RNS)作为信号信使介导各种生物反应,包括基因表达、细胞增殖、血管生成、先天免疫、程序性细胞死亡和衰老[3][4].另一方面,众所周知,这些短寿命反应分子水平的增加会对生物大分子造成氧化损伤并破坏细胞还原-氧化(氧化还原)平衡,从而产生有害影响[3][5]。ROS/RNS 稳态紊乱通常被认为是动脉粥样硬化、糖尿病、神经退行性变和癌症等疾病发生和进展的危险因素[5]、[6]。ROS/RNS 的作用是有益还是有害取决于 ROS/RNS 产生的部位、类型和数量以及生物体抗氧化防御系统的活性 [7]。
Endogenous ROS/RNS can be generated as the primary function of an enzyme system (e.g. NADPH oxidases that are activated in response to activated receptors), as a byproduct of other biological reactions (e.g. the mitochondrial electron transport chain), or by metal-catalyzed oxidations (e.g. the Fenton reaction: Fe2 + + H2O2 → Fe3 + + radical dotOH + OH) [8]. The primary ROS/RNS species generated in a cell are superoxide (O2radical dot), hydrogen peroxide (H2O2), and nitric oxide (NOradical dot) [2]. These molecules can readily react to form other ROS and RNS species. For example, O2radical dot can rapidly react with NOradical dot to form peroxynitrite (ONOO) or dismutate to form H2O2, and the latter compound can be decomposed through the Fenton reaction leading to the generation of hydroxyl radicals (radical dotOH) [8].
内源性 ROS/RNS 可以作为酶系统的主要功能(例如,响应激活受体而激活的 NADPH 氧化酶),作为其他生物反应(例如线粒体电子传递链)的副产物,或通过金属催化的氧化(例如芬顿反应:Fe2 + + H2O2 → Fe3 + +  radical dot OH + OH)[8].细胞中产生的主要 ROS/RNS 物质是超氧化物(O2 radical dot )、过氧化氢(H2O2)和一氧化氮(NO radical dot[2]。 这些分子很容易反应形成其他 ROS 和 RNS 物种。例如,O2 radical dot 可以与 NO 快速反应 radical dot 生成过氧亚硝酸盐 (ONOO) 或突变形成 H2O2,后者可以通过 Fenton 反应分解,从而产生羟基自由基 ( radical dot OH) [8]。
To counteract oxidative and nitrosative stress, cells employ a large panel of enzymatic and non-enzymatic defense mechanisms [8]. Stress occurs when the net flux of ROS/RNS production exceeds the capacity of the cell to detoxify these potentially injurious oxidants [9]. It is often assumed that mitochondria are the primary source of oxidative stress in mammalian cells [10]. However, there is currently no convincing experimental evidence to support this postulate [11]. In addition, the only currently available study comparing the relative ROS production by different cellular sources demonstrated that the endoplasmic reticulum (ER) and peroxisomes may even have a greater capacity to produce ROS than mitochondria, at least in rat liver [12]. Research efforts on ER-generated oxidative stress have revealed that the production of ROS is closely linked to protein folding [13]. Furthermore, it has been shown that chronic ER-derived oxidative stress plays a critical role in the initiation of apoptosis and the pathogenesis of multiple metabolic and neurodegenerative diseases [14]. Surprisingly, for a long time, little attention was paid to the importance of peroxisomes in cellular ROS/RNS homeostasis. However, in recent years, peroxisomal ROS/RNS metabolism and signaling has become an exciting and rapidly evolving multidisciplinary research field [15], [16], [17]. In this review, we will provide an overview of our current knowledge on how peroxisomes contribute to the maintenance of cellular ROS/RNS levels and how cells cope with peroxisome-derived oxidative stress. In addition, we will highlight the present gaps in our knowledge and outline a set of strategies that can drive this research field forward. Note that we will mainly focus on mammalian peroxisomes, although it should be emphasized that a significant portion of the pioneering work in this area was carried out in other organisms such as yeasts [18], nematodes [19], and plants [16].
为了抵消氧化和亚硝化应激,细胞采用了大量的酶促和非酶防御机制 [8]。 当 ROS/RNS 产生的净通量超过细胞解毒这些潜在有害氧化剂的能力时,就会发生应激[9]。 人们通常认为线粒体是哺乳动物细胞氧化应激的主要来源 [10]。 然而,目前还没有令人信服的实验证据支持这一假设 [11]。 此外,目前唯一一项比较不同细胞来源相对 ROS 产生的研究表明,内质网(ER)和过氧化物酶体甚至可能比线粒体具有更大的产生 ROS 的能力,至少在大鼠肝脏中是这样[12]。 对内质网产生的氧化应激的研究工作表明,ROS 的产生与蛋白质折叠密切相关[13]。 此外,研究表明,慢性内质网衍生的氧化应激在细胞凋亡的启动以及多种代谢和神经退行性疾病的发病机制中起着关键作用[14]。 令人惊讶的是,长期以来,过氧化物酶体在细胞 ROS/RNS 稳态中的重要性很少受到关注。然而,近年来,过氧化物酶体 ROS/RNS 代谢和信号传导已成为一个令人兴奋且快速发展的多学科研究领域 [15]、[16]、[17]。 在这篇综述中,我们将概述我们目前关于过氧化物酶体如何有助于维持细胞 ROS/RNS 水平以及细胞如何应对过氧化物酶体衍生的氧化应激的知识。此外,我们将强调我们目前在知识方面的差距,并概述一套可以推动该研究领域向前发展的策略。请注意,我们将主要关注哺乳动物过氧化物酶体,尽管应该强调的是,该领域的开创性工作中有很大一部分是在其他生物体中进行的,例如酵母 [18]、线虫 [19] 和植物 [16]。

2. Peroxisomal ROS/RNS metabolism
2. 过氧化物酶体 ROS/RNS 代谢

The term ‘peroxisome’ was introduced by Nobel Laureate Christian de Duve in 1965 to define a cell organelle which contains at least one H2O2-producing oxidase and catalase, a H2O2-degrading enzyme [20]. This implies that peroxisomes generate ROS as an integral feature of their normal metabolism. This is further exemplified by the fact that peroxisomes in rat liver may be responsible for as much as 20% of the oxygen consumption and 35% of the H2O2 production [12], [21]. Another indication that peroxisomes may act as endogenous stress generators comes from the finding that a long-term administration of peroxisome proliferators to rodents induces oxidative stress in liver cells [22]. This is most likely due to the fact that these compounds, which activate the nuclear receptor PPARα (peroxisome proliferator-activated receptor alpha), lead to a many-fold induction of H2O2-producing enzymes without a concomitant increase in catalase activity [23]. Numerous observations indicate that peroxisomes can also protect cells from oxidative stress. For example, the absence of functional peroxisomes causes increased apoptosis in the developing mouse cerebellum [24]; human patients suffering from an inherited deficiency of catalase, the most abundant peroxisomal antioxidant enzyme, face an increased risk of developing age-related diseases including diabetes, atherosclerosis, and cancer [25]; and mammalian cells defective in the biosynthesis of plasmalogens, a lipid species with antioxidant activity of which the two initial steps of biosynthesis are exclusively catalyzed by peroxisomal enzymes [26], are much more sensitive to ROS generated by UV-irradiation than control cells [27], [28]. These observations, among others [15], [29], support the idea that peroxisomal metabolism and cellular oxidative stress are closely intertwined. In the following two sections, we will focus on the major peroxisomal sources of ROS/RNS (see Section 2.1.) as well as the organelle's antioxidant defense systems (see Section 2.2.).
“过氧化物酶体”一词由诺贝尔奖获得者 Christian de Duve 于 1965 年提出,用于定义一种细胞器,该细胞器含有至少一种产生 H2O2 氧化酶和过氧化氢酶,一种 H2O2 降解酶[20]。 这意味着过氧化物酶体产生 ROS 是其正常代谢的一个组成部分。大鼠肝脏中的过氧化物酶体可能占耗氧量的 20%和 H2O2 产生的 35%[12]、[21]。 过氧化物酶体可能充当内源性应激发生器的另一个迹象来自发现,长期给予啮齿动物过氧化物酶体增殖物会诱导肝细胞氧化应激[22]。 这很可能是因为这些化合物激活了核受体 PPARα(过氧化物酶体增殖物激活的受体α),导致产生 H2O2 的酶被诱导了许多倍,而过氧化氢酶活性却没有随之增加 [23]。 大量观察表明,过氧化物酶体还可以保护细胞免受氧化应激。 例如,功能性过氧化物酶体的缺乏会导致发育中的小鼠小脑细胞凋亡增加 [24];过氧化氢酶(过氧化物酶体抗氧化酶含量最高)遗传性缺乏症的人类患者患糖尿病、动脉粥样硬化和癌症等年龄相关疾病的风险增加[25];哺乳动物细胞在生物合成中存在缺陷,疟原是一种具有抗氧化活性的脂质物种,其生物合成的两个初始步骤完全由过氧化物酶催化[26],对紫外线照射产生的 ROS 比对照细胞敏感得多 [27]、[28]。 这些观察结果[15]、[29] 支持过氧化物酶体代谢和细胞氧化应激密切相关的观点。在接下来的两节中,我们将重点介绍 ROS/RNS 的主要过氧化物酶体来源(见第 2.1 节 )以及细胞器的抗氧化防御系统(见第 2.2 节 )。

2.1. Peroxisomes as a cellular source of ROS/RNS species
2.1. 过氧化物酶体作为 ROS/RNS 物种的细胞来源

Mammalian peroxisomes play a key role in various metabolic pathways, including fatty acid α- and β-oxidation, ether-phospholipid biosynthesis, glyoxylate metabolism, amino acid catabolism, polyamine oxidation, and the oxidative part of the pentose phosphate pathway [30]. Interestingly, many of the enzymes participating in these pathways generate specific ROS or RNS as byproducts of their normal catalytic function (Table 1) [31]. In this section, we will focus on the different types of ROS/RNS that can be generated inside peroxisomes.
哺乳动物过氧化物酶体在各种代谢途径中起着关键作用,包括脂肪酸α氧化和β氧化、醚磷脂生物合成、乙醛酸代谢、氨基酸分解代谢、多胺氧化以及戊糖磷酸途径的氧化部分[30]。 有趣的是,参与这些途径的许多酶会产生特定的 ROS 或 RNS,作为其正常催化功能的副产物( 表 1[31]。 在本节中,我们将重点介绍过氧化物酶体内可产生的不同类型的 ROS/RNS。

Table 1. Human peroxisomal enzymes that produce ROS/RNS as byproducts of their normal catalytic activity.
表 1.产生 ROS/RNS 作为其正常催化活性的副产物的人过氧化物酶。

Name  名字Protein symbol  蛋白质符号EC number  EC 编号ROS/RNSPTSLocalization  地方化
Acyl-CoA oxidase 1  酰基辅酶 A 氧化酶 1ACOX11.3.3.6H2O2PTS1PO
Acyl-CoA oxidase 2  酰基辅酶 A 氧化酶 2ACOX21.3.3.6H2O2PTS1PO
Acyl-CoA oxidase 3  酰基辅酶 A 氧化酶 3ACOX31.3.3.6H2O2PTS1PO
d-amino acid oxidase
D-氨基酸氧化酶
DAO1.4.3.3H2O2PTS1PO
d-aspartate oxidase
d-天冬氨酸氧化酶
DDO1.4.3.1H2O2PTS1PO
l-pipecolic acid oxidase
L-哌啶酸氧化酶
PIPOX1.5.3.1H2O2PTS1PO
l-α-hydroxyacid oxidase 1
L-α-羟基酸氧化酶 1
HAO11.1.3.15H2O2PTS1PO
l-α-hydroxyacid oxidase 2
L-α-羟基酸氧化酶 2
HAO21.1.3.15H2O2PTS1PO
Polyamine oxidase  多胺氧化酶 Polyamine oxidasePAOX1.5.3.13H2O2PTS1PO
Xanthine oxidase  黄嘌呤氧化酶XDH1.17.1.4H2O2, NOradical dot, O2radical dot
H2O2, 否 radical dot , O2 radical dot
UPO/C/MT  采购订单/C/MT
Inducible nitric oxide synthase
诱导型一氧化氮合酶
NOS21.14.13.39NOradical dot, O2radical dot
radical dot , O2 radical dot -
UC/PO  邮寄式
C, cytosol; MT, mitochondria; PO, peroxisomes; U, unknown.
C,胞质;MT,线粒体;PO,过氧化物酶体;U,未知。

2.1.1. Hydrogen peroxide  2.1.1. 过氧化氢

Peroxisomes contain various enzymes that produce H2O2 as part of their normal catalytic cycle. These enzymes, which are mainly flavoproteins, include acyl-CoA oxidases, urate oxidase, d-amino acid oxidase, d-aspartate oxidase, l-pipecolic acid oxidase, l-α-hydroxyacid oxidase, polyamine oxidase, and xanthine oxidase. For a detailed description of these enzymes, we refer to an excellent recent review covering this topic [31].
过氧化物酶体含有多种酶,这些酶会产生 H2O2 作为其正常催化循环的一部分。这些酶主要是黄素蛋白,包括酰基辅酶 A 氧化酶、尿酸盐氧化酶、d-氨基酸氧化酶、d-天冬氨酸氧化酶、l-哌哥酸氧化酶、l-α-羟基酸氧化酶、多胺氧化酶和黄嘌呤氧化酶。有关这些酶的详细描述,我们参考了最近一篇关于该主题的优秀综述 [31]。

2.1.2. Superoxide- and nitric oxide radicals
2.1.2. 超氧化物和一氧化氮自由基

Peroxisomes contain two potential enzymatic sources of O2radical dot and NOradical dot, namely xanthine oxidase and the inducible form of nitric oxide synthase. Xanthine oxidase (XDH) is an enzyme that produces H2O2 (see Section 2.1.1.) and O2radical dot as byproducts of its catalytic cycle [32]. In addition, this enzyme can also reduce nitrates and nitrites to NOradical dot [33]. The inducible form of nitric oxide synthase (NOS2) is a homodimeric enzyme that catalyzes the oxidation of l-arginine to NOradical dot and citrulline in a complex reaction requiring O2, NADPH, tetrahydrobiopterin (BH4), FMN, and FAD [16]. Interestingly, in the absence of adequate substrate or when in its monomeric form, the enzyme can also produce significant amounts of O2radical dot [34]. The precise subcellular localization of NOS2 remains enigmatic and can vary depending on the cell type and the environment of the cell [35]. Localization studies of NOS2 have shown that this protein displays a dual cytosolic-peroxisomal localization in hepatocytes [35], [36]. Interestingly, although the molecular mechanisms underlying NOS2 targeting to peroxisomes remain to be determined, it has been shown that the peroxisomal pool of NOS2 mainly consists of ‘inactive’ monomers while the cytosolic pool is composed of both monomers and ‘active’ homodimers [36]. These findings, in combination with the observation that monomeric NOS2 can generate O2radical dot, led to the hypothesis that NOS2 might be sequestered by peroxisomes to protect the larger cellular environment from monomeric NOS2-generated superoxide [36]. Nevertheless, at the moment, it cannot be rigorously excluded that – under certain circumstances – peroxisomal NOS2 may also actively produce NOradical dot and function as a source of RNS signaling molecules.
过氧化物酶体含有两种潜在的酶源 O2 radical dot radical dot 和 NO ,即黄嘌呤氧化酶和诱导型一氧化氮合酶。黄嘌呤氧化酶(XDH)是一种酶,可产生 H2O2(见第 2.1.1 节 )和 O2 radical dot 作为其催化循环的副产物 [32]。 此外,这种酶还可以将硝酸盐和亚硝酸盐还原为 NO radical dot [33]。 一氧化氮合酶(notric oxide synthase, NOS2)的诱导型是一种同源二聚体酶,在需要 O2、NADPH、四氢生物蝶呤(tetrahydrobiopterin, BH4)、FMN 和 FAD 的复杂反应中,催化 l-精氨酸氧化为 NO radical dot 和瓜氨酸[16]。 有趣的是,在没有足够的底物或单体形式的情况下,该酶也可以产生大量的 O2 radical dot [34]。NOS2 的精确亚细胞定位仍然是一个谜,并且可能因细胞类型和细胞环境而异 [35]。NOS2 的定位研究表明,该蛋白在肝细胞中表现出双胞质-过氧化物酶体定位 [35]、[36]。 有趣的是,尽管 NOS2 靶向过氧化物酶体的分子机制仍有待确定,但已经表明,NOS2 的过氧化物酶体库主要由“非活性”单体组成,而胞质库由单体和“活性”同源二聚体组成 [36]。 这些发现,结合单体 NOS2 可以产生 O2 radical dot 的观察结果,得出了 NOS2 可能被过氧化物酶体隔离的假设,以保护更大的细胞环境免受单体 NOS2 产生的超氧化物的影响[36]。 然而,目前不能严格排除在某些情况下,过氧化物酶体 NOS2 也可能主动产生 NO radical dot 并充当 RNS 信号分子的来源。

2.1.3. Hydroxyl radical and peroxynitrite
2.1.3. 羟基自由基和过氧亚硝酸盐

Currently, there is no evidence that mammalian peroxisomes contain enzymes that produce radical dotOH or ONOO. However, as already mentioned in the Introduction, H2O2 inside peroxisomes may give rise to radical dotOH through the Fenton reaction. In addition, as (i) these organelles contain enzymatic sources of O2radical dot and NOradical dot (see Section 2.2.2.), and (ii) the reaction of NOradical dot with O2radical dot to form ONOO is kinetically and thermodynamically favored [37], it is very likely that peroxisomes also generate ONOO.
目前,没有证据表明哺乳动物过氧化物酶体含有产生 radical dot OH 或 ONOO− 的酶。然而,正如引中已经提到的,过氧化物酶体内的 H2O2 可能通过芬顿反应产生 radical dot OH。此外,由于(i)这些细胞器含有 O2 radical dot 和 NO 的酶源 radical dot (见第 2.2.2 节 ),以及(ii)NO radical dot 与 O2 radical dot 反应形成 ONOO 在动力学和热力学上是有利的[37],因此过氧化物酶体很可能也会产生 ONOO−

2.2. The peroxisomal antioxidant defense system
2.2. 过氧化物酶体抗氧化防御系统

Mammalian peroxisomes contain various ROS metabolizing enzymes, including catalase, superoxide dismutase 1, peroxiredoxin 5, glutathione S-transferase kappa, ‘microsomal’ glutathione S-transferase, and epoxide hydrolase 2 (Table 2). In addition, there is some evidence that these organelles also employ non-enzymatic low molecular weight antioxidant compounds. Each of these antioxidant defense systems will be discussed in more detail below.
哺乳动物过氧化物酶体含有多种 ROS 代谢酶,包括过氧化氢酶、超氧化物歧化酶 1、过氧化物还蛋白 5、谷胱甘肽 S-转移酶κ、“微粒体”谷胱甘肽 S-转移酶和环氧化物水解酶 2( 表 2)。此外,有一些证据表明这些细胞器还采用非酶低分子量抗氧化化合物。下面将更详细地讨论这些抗氧化防御系统中的每一个。

Table 2. Human peroxisomal antioxidant enzymes.
表 2.人过氧化物酶体抗氧化酶。

Name  名字Protein symbol  蛋白质符号EC number  EC 编号Substrate  酶作用物PTSLocalization  地方化
Catalase  过氧化氢酶CAT1.11.1.6H2O2PTS1PO/C?  采购订单/C?
Superoxide dismutase 1  超氧化物歧化酶 1SOD11.15.1.1O2radical dotPMC/MT/PO/N
Peroxiredoxin 5  过氧化还蛋白 5PRDX51.11.1.15ONOO, ROOH, H2O2
ONOO, ROOH, H2O2
PTS1C/MT/PO/N
GST kappa 1  商品及服务税 kappa 1GSTK12.5.1.18UPTS1PO
Microsomal GST 1  微粒体商品及服务税 1MGST12.5.1.18UUER/MT/PO  急诊室/MT/PO
Epoxide hydrolase 2  环氧化物水解酶 2EPHX23.3.2.10Epoxides  环氧化物PTS1PO/C  采购订单/C
C, cytosol; ER, endoplasmic reticulum; GST, glutathione S-transferase; MT, mitochondria; N, nucleus; PM, piggyback mechanism (for more information, see Section 2.2.2.); PO, peroxisomes; U, unknown (for more information, see Section 2.2.4.).
C,胞质;ER,内质网;GST,谷胱甘肽 S-转移酶;MT,线粒体;N,细胞核;PM,捎带机制(更多信息,参见第 2.2.2 节 );PO,过氧化物酶体;U,未知(有关更多信息,请参阅第 2.2.4 节 )。

2.2.1. Catalase  2.2.1. 过氧化氢酶

Catalase (CAT) is a homotetrameric heme-containing enzyme that can remove H2O2 in a catalatic (2 H2O2 → 2 H2O + O2) or peroxidatic (H2O2 + AH2 → A + 2 H2O) manner. Potential hydrogen donors (AH2) include – among others – alcohols, formate, and nitrite [38]. Mammalian catalase can also act as an oxidase, using O2 when H2O2 is absent [39]. Among the substrates identified for this oxidase action are indole, β-phenylethylamine, and various carcinogens and anticarcinogens [38]. Catalase is one of the most abundant peroxisomal proteins within mammalian cells. It contains a non-canonical C-terminal peroxisomal targeting signal (PTS1) and is targeted to the organelle by PEX5, the PTS1-import receptor [40]. However, in certain cell types or under certain conditions, catalase may also be (partially) localized to the cytosol and the nucleus [41], [42]. The exact physiological function of catalase is not yet completely understood. Its predominant role is most likely to prevent the accumulation of toxic levels of H2O2. This may in turn prevent the formation of hydroxyl radicals by the Fenton reaction. The oxidatic and peroxidatic activities of catalase may serve to metabolize and/or detoxify small molecular weight electron donors. For example, it is well-established that in brain, the catalase-mediated oxidation of ethanol is an important source of acetaldehyde, a compound involved in the behavioral and neurotoxic effects of ethanol in humans [43], [44]. Intriguingly, despite these apparently important functions, catalase activity is not essential for life. Indeed, catalase null mice develop normally and do not display any gross physical or behavioral abnormalities [45]. Nevertheless, tissues from these mice show a differential sensitivity to oxidant injury and exhibit a retarded rate in consuming extracellular H2O2 [45].
过氧化氢酶 (CAT) 是一种含同源四聚体血红素的酶,可以过氧化物 (2 H2O2 → 2 H2O + O2) 或过氧化物 (H2O2 + AH2 → A + 2 H2O) 方式去除 H2O2。潜在的氢供体(AH2)包括醇类、甲酸盐和亚硝酸盐[38]。 哺乳动物过氧化氢酶也可以作为氧化酶,当 H2O2 不存在时使用 O2 [39]。 这种氧化酶作用的底物包括吲哚、β-苯乙胺以及各种致癌物和抗癌物 [38]。 过氧化氢酶是哺乳动物细胞中最丰富的过氧化物酶体蛋白之一。它含有非典型 C 端过氧化物酶体靶向信号(PTS1),并通过 PTS1 导入受体 PEX5 靶向细胞器 [40]。 然而,在某些细胞类型或某些条件下,过氧化氢酶也可能(部分)定位于胞质和细胞核[41]、[42]。 过氧化氢酶的确切生理功能尚不完全清楚。它的主要作用最有可能防止 H2O2 毒性水平的积累。这反过来又可以防止芬顿反应形成羟基自由基。过氧化氢酶的氧化和过氧化活性可能有助于代谢和/或解毒小分子量电子供体。 例如,众所周知,在大脑中,过氧化氢酶介导的乙醇氧化是乙醛的重要来源,乙醛是一种参与乙醇对人类行为和神经毒性作用的化合物 [43][44]。 有趣的是,尽管这些功能显然很重要,但过氧化氢酶活性对生命来说并不是必需的。事实上,过氧化氢酶无效小鼠发育正常,没有表现出任何严重的身体或行为异常 [45]。 然而,这些小鼠的组织对氧化剂损伤表现出不同的敏感性,并且在消耗细胞外 H2O2 方面表现出迟缓的速率 [45]。

2.2.2. Superoxide dismutase 1
2.2.2. 超氧化物歧化酶1

Superoxide dismutase 1 (SOD1) is a homodimeric enzyme that can convert O2radical dot to O2 and H2O2 (2 O2radical dot + 2 H+ → O2 + H2O2). The protein, which can also be found in the cytosol, the nucleus, and mitochondria, is imported into peroxisomes via a piggyback mechanism in complex with ‘copper chaperone for SOD1’, a PTS1-containing physiological interaction partner [46]. Currently, it is postulated that SOD1 and catalase comprise a short metabolic route protecting cells from damage by ROS [31]. In addition, as O2radical dot can rapidly react with NOradical dot to form ONOO, SOD1 has been suggested to play an important role in the reduction of nitrosative stress [47]. Interestingly, mutations in the SOD1 gene account for approximately 20–25% of the patients with familial amyotrophic lateral sclerosis [48]. It has also been shown that transgenic mice containing an extra copy of the human SOD1 gene display a similar phenotype to Down syndrome, including neurological defects and premature aging [49].
超氧化物歧化酶 1 (SOD1) 是一种同源二聚体酶,可以将 O2 radical dot 转化为 O2 和 H2O2 (2 O2 radical dot  + 2 H+ → O2 + H2O2)。这种蛋白质也存在于细胞质、细胞核和线粒体中,通过与含有 PTS1 的生理相互作用伙伴“SOD1 的铜伴侣”复合的背负机制导入过氧化物酶体[46]。 目前,假设 SOD1 和过氧化氢酶是保护细胞免受 ROS 损伤的短代谢途径 [31]。 此外,由于 O2 radical dot 可以与 NO 快速反应 radical dot 形成 ONOO−,因此 SOD1 在减少亚硝化应激方面发挥着重要作用 [47]。 有趣的是,SOD1 基因突变约占家族性肌萎缩侧索硬化症患者的 20-25%[48]。 研究还表明,含有额外人 SOD1 基因拷贝的转基因小鼠表现出与唐氏综合征相似的表型,包括神经缺陷和过早衰老[49]。

2.2.3. Peroxiredoxin 5  2.2.3. 过氧化还蛋白5

Peroxiredoxin 5 (PRDX5) is a thiol-dependent monomeric peroxidase that can reduce H2O2 to H2O, alkyl hydroperoxides (ROOH) to their respective alcohols (ROH), and ONOO to nitrite (ONO) [50]. The reducing equivalents needed for these reactions are thought to be provided by thioredoxins (TRXs), a group of small, multifunctional proteins that act as antioxidants by facilitating the reduction of other proteins by cysteine thiol-disulfide exchange [51]. Interestingly, human PRDX5 has been shown to react much faster with ONOO (~ 107 M− 1 s− 1) and ROOH (~ 106 M− 1 s− 1) than with H2O2 (~ 105 M− 1 s− 1) [52]. In addition, this enzyme has been found in different subcellular compartments including the cytosol, the nucleus, mitochondria and peroxisomes [53]. Currently, it is well-established that mammalian PRDX5 is targeted to peroxisomes by virtue of a PTS1 targeting signal [54]. The exact function of this protein inside peroxisomes is not yet known. On one hand, it is thought that PRDX5 may assist catalase in the removal of H2O2. However, based on the measured rate constants, it is more likely that the enzyme functions in the detoxification process of peroxynitrite and lipid peroxides [50]. Finally, it should be noted that the physiological electron donor for PRDX5 in the peroxisomal matrix remains to be identified.
过氧化还原蛋白 5(peroxiredoxin 5, PRDX5)是一种硫醇依赖性单体过氧化物酶,可将 H2O2 还原为 H2O,烷基氢过氧化物(ROOH)可还原为各自的醇(ROH),将 ONOO− 还原为亚硝酸盐(ONO[50]。 这些反应所需的还原当量被认为是由硫氧还蛋白(TRX)提供的,TRX 是一组小型的多功能蛋白质,通过半蛋白硫醇-二硫键交换促进其他蛋白质的还原,从而充当抗氧化剂[51]。 有趣的是,人类 PRDX5 与 ONOO(~ 107 M− 1 s− 1)和 ROOH(~ 106 M− 1 s− 1)的反应速度比与 H2O2(~ 105 M− 1 s− 1)的反应要快得多 [52].此外,这种酶还存在于不同的亚细胞区室中,包括细胞质、细胞核、线粒体和过氧化物酶体[53]。 目前,哺乳动物 PRDX5 凭借 PTS1 靶向信号靶向过氧化物酶体已经得到充分证实 [54]。这种蛋白质在过氧化物酶体内的确切功能尚不清楚。一方面,人们认为 PRDX5 可能有助于过氧化氢酶去除 H2O2。然而,根据测量的速率常数,该酶更有可能在过氧亚硝酸盐和脂质过氧化物的解毒过程中发挥作用 [50]。 最后,应该注意的是,过氧化物酶体基质中 PRDX5 的生理电子供体仍有待鉴定。

2.2.4. Glutathione S-transferase kappa and microsomal glutathione S-transferase 1
2.2.4 谷胱甘肽 S-转移酶 κ 和微粒体谷胱甘肽 S-转移酶 1

Glutathione S-transferases (GST) are a superfamily of enzymes that catalyze the conjugation of xenobiotics and potentially damaging oxidative metabolites with glutathione [55]. Currently, there is some evidence that both glutathione S-transferase kappa (GSTK1) and ‘microsomal’ glutathione S-transferase 1 (MGST1) are at least partially located in peroxisomes [56], [57]. Both enzymes have also been found in mitochondria, and – as can be deduced from its name – MGST1 is also present in the ER [58], [59]. The peroxisomal localization of GSTK1, which is a soluble homodimeric enzyme, depends on a PTS1 sequence [56]. How the membrane-bound homotrimeric protein MGST1 is targeted to peroxisomes is not yet known [57]. The exact functions of GSTK1 and MGST1 within peroxisomes remain to be established. However, based on their in vitro activities, it has been suggested that these proteins may play an important role in the detoxification of xenobiotic compounds and lipid peroxide products [31], [57].
谷胱甘肽 S-转移酶(GST)是一种酶超家族,可催化异生素与谷胱甘肽偶联,并可能破坏氧化代谢物 [55]。 目前,有一些证据表明,谷胱甘肽 S-转移酶κ(glutathione S-transferase kappa, GSTK1)和“微粒体”谷胱甘肽 S-转移酶 1(mgst1)都至少部分位于过氧化物酶体中 [56][57]。 这两种酶也存在于线粒体中,并且从其名称中可以推断出,MGST1 也存在于内质网中 [58]、[59]。GSTK1 是一种可溶性同源二聚体酶,其过氧化物酶体定位取决于 PTS1 序列[56]。 膜结合同源三聚体蛋白 MGST1 如何靶向过氧化物酶体尚不清楚 [57]。GSTK1 和 MGST1 在过氧化物酶体内的确切功能仍有待确定。然而,基于它们的体外活性,有人认为这些蛋白质可能在异源化合物和脂质过氧化物产物的解毒中发挥重要作用 [31][57]。

2.2.5. Epoxide hydrolase 2
2.2.5. 环氧化物水解酶2

Epoxide hydrolase 2 (EPHX2) is a homodimeric enzyme that can bind epoxides and convert them to the corresponding dihydrothiols [60]. The protein, found in both the cytosol and peroxisomes, contains a relatively weak PTS1 targeting signal [61]. Currently, it is thought that the main physiological role of EPHX2 is to detoxify fatty-acid derived epoxides [62]. Interestingly, certain polymorphisms in the human gene are associated with an increased risk of atherosclerosis and cardiovascular diseases [63].
环氧化物水解酶 2(EPHX2)是一种同源二聚体酶,可以结合环氧化物并将其转化为相应的二氢硫醇[60]。 这种蛋白质存在于细胞质和过氧化物酶体中,含有相对较弱的 PTS1 靶向信号 [61]。 目前,人们认为 EPHX2 的主要生理作用是解毒脂肪酸衍生的环氧化物 [62]。 有趣的是,人类基因中的某些多态性与动脉粥样硬化和心血管疾病的风险增加有关 [63]。

2.2.6. Low molecular weight antioxidants
2.2.6. 低分子量抗氧化剂

Free radicals can also be scavenged by non-enzymatic low molecular weight antioxidants. These compounds, which are either water- or lipid-soluble, are synthesized within the body or supplemented by diet [64]. The low molecular weight antioxidants that will be discussed in more detail below include glutathione, ascorbic acid, and plasmalogens.
自由基也可以被非酶低分子量抗氧化剂清除。这些化合物可溶于水或脂溶性,可在体内合成或通过饮食补充 [64]。 下面将更详细讨论的低分子量抗氧化剂包括谷胱甘肽、抗坏血酸和缩醛磷脂。
Glutathione, a cysteinyl tripeptide, is one of the most prevalent and important redox buffers of the cell [65]. The molecule can exist in either a reduced (GSH) or oxidized (GSSG) state. GSH, the biologically active form, can participate in numerous redox reactions and is oxidized to GSSG during oxidative and nitrosative stress conditions [7]. GSSG is reduced back to GSH by an NADPH-dependent glutathione reductase (GR, EC 1.8.1.7). Currently, it is widely accepted that the GSH/GSSG ratio reflects the redox capacity of a cell [66]. Nevertheless, it is also clear that the GSH/GSSG redox couple functions in conjunction with redox proteins such as TRXs and glutaredoxins (GRXs) [5]. GSH is exclusively synthesized in the cytosol, from where it is transferred into other cellular compartments [65]. Whether or not peroxisomes contain a functional glutathione redox system is not yet clear. For example, there is some evidence that GSH may freely penetrate the peroxisomal membrane through PXMP2, a non-selective pore-forming protein with an upper molecular size limit of 300–600 Da [67]. In addition, it has been shown that roGFP2, a genetically-encoded probe that senses changes in the glutathione redox potential via GRX [68], responds quickly and reversibly to redox changes in the peroxisomal matrix (for more details, see Section 3.1.1.) [69]. However, it remains to be investigated how oxidized roGFP2 and GSSG are reduced inside the peroxisomal matrix, and – in case the organelles would completely lack glutathione reductase activity – how GSSG is exported back into the cytosol.
谷胱甘肽是一种半胱氨酰三肽,是细胞中最普遍和最重要的氧化还原缓冲液之一[65]。 该分子可以以还原 (GSH) 或氧化 (GSSG) 状态存在。GSH 是一种生物活性形式,可以参与多种氧化还原反应,并在氧化和亚硝化应激条件下被氧化为 GSSG[7]。GSSG 通过 NADPH 依赖性谷胱甘肽还原酶(GR,EC 1.8.1.7)还原回 GSH。目前,人们普遍认为 GSH/GSSG 比值反映了电池的氧化还原能力 [66]。 然而,同样明显的是,GSH/GSSG 氧化还原偶与 TRX 和谷氨酸(GRX)等氧化还原蛋白共同发挥作用 [5]。GSH 仅在细胞质中合成,从细胞质中转移到其他细胞区室中[65]。 过氧化物酶体是否含有功能性谷胱甘肽氧化还原系统尚不清楚。例如,有一些证据表明 GSH 可以通过 PXMP2 自由穿透过氧化物酶体膜,PXMP2 是一种非选择性成孔蛋白,分子大小上限为 300-600 Da[67]。 此外,研究表明,roGFP2 是一种基因编码的探针,可通过 GRX 感知谷胱甘肽氧化还原电位的变化[68],对过氧化物酶体基质中的氧化还原变化做出快速、可逆的反应(有关更多详细信息,请参见第 3.1.1 节 )。[69]。 然而,氧化的 roGFP2 和 GSSG 如何在过氧化物酶体基质内还原,以及 GSSG 如何输出回细胞质,仍有待研究。
Ascorbic acid (vitamin C) is a water-soluble dietary supplement that can act as cofactor and antioxidant [70]. In peroxisomes, the compound has been reported to be necessary for maximal activity of phytanoyl-CoA 2-hydroxylase, a peroxisomal α-oxidation enzyme that catalyzes the 2-hydroxylation of 3-methyl-branched acyl-CoAs [71]. Whether or not ascorbic acid also has an antioxidant function inside mammalian peroxisomes is less clear. Indeed, it has recently been demonstrated that cultivating mammalian cells in the presence of ascorbic acid actually results in an increased redox state of the peroxisomal matrix [69]. This may be explained by the combined findings that (i) peroxisomes contain relatively large amounts of heme- and non-heme iron-containing enzymes [72], and (ii) ascorbic acid can reduce transition metals, and this may in turn lead to the generation of free radicals through the Fenton reaction [70].
抗坏血酸(维生素 C)是一种水溶性膳食补充剂,可作为辅助因子和抗氧化剂[70]。 据报道,在过氧化物酶体中,该化合物是植烷酰辅酶 A-2-羟化酶的最大活性所必需的,植烷酰辅酶 A-2-羟化酶是一种过氧化物酶体α氧化酶,可催化 3-甲基支链酰基辅酶 A 的 2-羟基化[71]。 抗坏血酸在哺乳动物过氧化物酶体内是否也具有抗氧化功能尚不清楚。事实上,最近有研究表明,在抗坏血酸存在下培养哺乳动物细胞实际上会导致过氧化物酶体基质的氧化还原状态增加 [69]。 这可以通过以下综合发现来解释:(i)过氧化物酶体含有相对大量的含血红素和非血红素铁的酶 [72],以及(ii)抗坏血酸可以减少过渡金属,这反过来又可能导致通过 Fenton 反应产生自由基 [70]。
Another interesting group of non-enzymatic antioxidants may be plasmalogens. Indeed, albeit the physiological function of this specific class of glycerolipids is still poorly understood, there is currently good evidence that these molecules – which are produced from peroxisome-derived intermediates – may act as radical scavengers [26]. For example, it has been shown that plasmalogens are able to protect unsaturated membrane lipids against oxidation by singlet oxygen without producing oxidation products that are excessively toxic [73]. In addition, cells deficient in peroxisome assembly and/or plasmalogen biosynthesis are several orders of magnitude more sensitive to UV-induced ROS production than control cells [27].
另一组有趣的非酶促抗氧化剂可能是缩醛磷脂。事实上,尽管人们对这一类特定甘油脂的生理功能知之甚少,但目前有充分的证据表明,这些分子(由过氧化物酶体衍生的中间体产生)可能充当自由基清除剂 [26]。 例如,已经表明,缩醛磷脂能够保护不饱和膜脂免受单线态氧的氧化,而不会产生毒性过大的氧化产物 [73]。 此外,缺乏过氧化物酶体组装和/或缩醛磷脂生物合成的细胞对紫外线诱导的 ROS 产生的敏感性比对照细胞高几个数量级[27]。

3. Detection and modulation of the peroxisomal redox state
3. 过氧化物酶体氧化还原状态的检测和调节

Over the years, various experimental model systems have been used to gain a better insight into the physiological role of peroxisomal ROS/RNS metabolism and signaling. In this section, we will provide an overview of the strategies that have been successfully employed in the past. In addition, we will highlight some recent advances in the research area of oxidative stress and discuss how these developments may open new avenues in the field of peroxisome research. In this context, it is also interesting to note that, although peroxisomes are densely populated with oxidative enzymes, these organelles maintain a reduced redox environment [69], [74]. Whether or not this environment is more reducing than that of the cytosol or mitochondria depends on the cell type (e.g. fibroblasts versus pancreatic β-cells) and culture conditions (e.g. low or high concentrations of ascorbic acid, serum, and/or glucose) ([69]; Lemaire and Fransen, unpublished results).
多年来,各种实验模型系统已被用于更好地了解过氧化物酶体 ROS/RNS 代谢和信号传导的生理作用。在本节中,我们将概述过去成功采用的策略。此外,我们将重点介绍氧化应激研究领域的一些最新进展,并讨论这些发展如何为过氧化物酶体研究领域开辟新途径。在这种情况下,同样有趣的是,尽管过氧化物酶体中密集地填充了氧化酶,但这些细胞器保持了还原的氧化还原环境 [69][74]。 这种环境是否比细胞质或线粒体的还原程度更高取决于细胞类型(例如成纤维细胞与胰腺β细胞)和培养条件(例如低浓度或高浓度的抗坏血酸、血清和/或葡萄糖)([69];Lemaire 和 Fransen,未发表的结果)。

3.1. Detection of peroxisomal ROS/RNS
3.1. 过氧化物酶体 ROS/RNS 的检测

During the past decade, many probes have been developed to measure oxidative stress in both live and fixed cells. These probes can largely be grouped into three different classes: (i) compounds and reagents that can be used to detect irreversible oxidative modifications (e.g. protein carbonylation) [2]; (ii) chemical fluorescent and luminescent probes for the detection of reactive oxygen and nitrogen species [75]; and (iii) proteinaceous reporter molecules [76]. Here we will focus in more detail on the genetically-encoded fluorescent imaging probes which have recently gained a lot of interest for multiple reasons: (i) they offer the possibility to append organelle-specific targeting signals and to perform noninvasive compartment-specific measurements; (ii) they are reversible and can be used to quantify transient redox changes; and (iii) they are ratiometric by excitation, thus minimizing measurement errors resulting from probe concentration, probe distribution, and cell thickness [77]. These are all important requirements to detect ROS/RNS with a high degree of spatial and temporal resolution.
在过去的十年中,已经开发出许多探针来测量活细胞和固定细胞的氧化应激。这些探针大致可分为三类:(i)可用于检测不可逆氧化修饰(如蛋白质羰基化)的化合物和试剂[2];(ii)用于检测活性氧和氮物质的化学荧光和发光探针 [75];(iii)蛋白质类报告分子 [76]。 在这里,我们将更详细地关注基因编码的荧光成像探针,这些探针最近由于多种原因而引起了人们的广泛兴趣:(i)它们提供了附加细胞器特异性靶向信号和执行无创隔室特异性测量的可能性;(ii) 它们是可逆的,可用于量化瞬时氧化还原变化;(iii)它们通过激发实现比例测量,从而最大限度地减少了探针浓度、探针分布和细胞厚度引起的测量误差[77]。 这些都是以高度的空间和时间分辨率检测 ROS/RNS 的重要要求。

3.1.1. Redox-sensitive green fluorescent proteins
3.1.1. 氧化还原敏感绿色荧光蛋白

Redox-sensitive green fluorescent proteins (roGFPs) are currently the most commonly used probes for monitoring the organellar redox state in living cells. Members of this class of proteins contain engineered cysteine residues on adjacent surface-exposed β-strands that form a disulfide bond under oxidizing conditions [78]. As oxidation of the dithiol pair causes reciprocal changes in emission intensity when excited at ~ 400 and ~ 490 nm, the ratio of roGFP emissions (at ~ 510 nm) can provide a non-destructive read-out of the redox environment of the fluorophore [77], [78]. RoGFPs preferentially interact with GRXs, indicating that these probes most likely equilibrate with the local glutathione redox potential [79]. As distinct subcellular compartments often have different redox environments, various roGFPs with different reduction potentials of the disulphide have been developed [68], [80]. We have recently shown that roGFP2 is a suitable probe to monitor redox changes in the peroxisomal matrix in living cells [69].
氧化还原敏感绿色荧光蛋白 (roGFP) 是目前最常用的探针,用于监测活细胞中细胞器的氧化还原状态。这类蛋白质的成员在相邻的表面暴露β链上含有工程半胱氨酸残基,这些残基在氧化条件下形成二硫键 [78]。 由于二硫醇对的氧化在~ 400 和~ 490 nm 激发时会导致发射强度发生相互变化,因此 roGFP 发射比(在~ 510 nm 处)可以提供荧光团氧化还原环境的无损读数 [77]、[78]。RoGFP 优先与 GRX 相互作用,表明这些探针很可能与局部谷胱甘肽氧化还原电位平衡[79]。 由于不同的亚细胞区室通常具有不同的氧化还原环境,因此已经开发出具有不同二硫化物还原电位的各种 roGFPs[68]、[80]。 我们最近表明,roGFP2 是监测活细胞中过氧化物酶体基质氧化还原变化的合适探针 [69]。

3.1.2. HyPer  3.1.2. 炒作者

HyPer is a ratiometric probe specifically developed to detect H2O2 [81]. The protein, which consists of a circularly permutated yellow fluorescent protein inserted into the regulatory domain of a prokaryotic H2O2-sensing protein, contains two cysteine residues that are specifically oxidized by H2O2, but not by O2radical dot, ONOO, and GSSG [82], [83]. HyPer exhibits two excitation peaks at ~ 420 and ~ 500 nm and one emission peak at ~ 516 nm. Rise in H2O2 concentration results in a decrease in the 420 nm excitation peak and a proportional increase in the 500 nm excitation peak [81]. Interestingly, the half maximal effective concentration of HyPer for H2O2 is ± 8 μM, which is almost 25 times less than that of roGFP [83]. A potential disadvantage of this probe is that it is rather pH-sensitive [81]. Recently, HyPer has been used to demonstrate that H2O2 produced inside peroxisomes is an important mediator of lipotoxicity in insulin-producing cells [84].
HyPer 是专门为检测 H2O2 而开发的比例探头 [81]。 该蛋白由插入原核 H2O2 感应蛋白的调控结构域中的环状排列的黄色荧光蛋白组成,含有两个半胱氨酸残基,它们被 H2O2 特异性氧化,但不被 O2 radical dot ONOO− 和 GSSG 氧化[82], [83].HyPer 在~ 420 和~ 500 nm 处表现出两个激发峰,在~ 516 nm 处表现出一个发射峰。H2O2 浓度的升高导致 420 nm 激发峰降低,500 nm 激发峰成比例增加[81]。 有趣的是,HyPer 对 H2O2 的半最大有效浓度为± 8 μM,几乎是 roGFP 的 25 倍 [83]。 该探针的一个潜在缺点是它对 pH 值相当敏感 [81]。 最近,HyPer 已被用于证明过氧化物酶体内产生的 H2O2 是胰岛素产生细胞中脂毒性的重要介质 [84]。

3.1.3. Redoxfluor  3.1.3. 氧化还原

Redoxfluor is a recently developed fluorescence resonance energy transfer (FRET)-based probe that can sense the redox potential of glutathione via its internal disulfide bonds [74]. The protein contains a tandem repeat of a partial region within the carboxy-terminal cysteine-rich domain of Yap1, a transcription factor crucial for oxidative stress response in Saccharomyces cerevisiae, and mediates FRET between cerulean, a variant of the cyan fluorescent protein (CFP), and citrine, a yellow fluorescent protein (YFP) derivative [85]. Upon oxidation, CFP emission is enhanced at the expense of YFP emission, thereby decreasing the yellow-to-cyan emission ratio (527/476 nm). Recently, this probe has been successfully used to develop an efficient screening system for redox modulators that can restore the redox status in mammalian cell lines with defective peroxisome assembly without affecting the redox status of normal cells [74].
氧化还原荧光是最近开发的一种基于荧光共振能量转移(FRET)的探针,可以通过谷胱甘肽的内部二硫键感知谷胱甘肽的氧化还原电位[74]。 该蛋白含有 Yap1 羧基末端富含半胱氨酸结构域内部分区域的串联重复序列,Yap1 是酿酒酵母氧化应激反应的关键转录因子,可介导青色荧光蛋白(CFP)的变体天蓝色和黄水晶(黄色荧光蛋白(YFP)衍生物)之间的 FRET[85].氧化后,CFP 发射以牺牲 YFP 发射为代价增强,从而降低黄青色发射比(527/476 nm)。最近,该探针已成功用于开发一种有效的氧化还原调节剂筛选系统,该系统可以在不影响正常细胞的氧化还原状态的情况下恢复过氧化物酶体组装缺陷的哺乳动物细胞系的氧化还原状态[74]。

3.2. Modulation of the peroxisomal redox state
3.2 过氧化物酶体氧化还原状态的调节

To gain a better insight into how cells respond to peroxisome-derived oxidative stress, it is essential to have access to model systems in which the peroxisomal redox status can be selectively modulated in a controllable manner. Here we will discuss some of the strategies that have already been successfully used to manipulate peroxisome-derived oxidative stress in mammalian cells. Note that, although these studies clearly indicate that peroxisomes may constitute a cellular source of ROS/RNS, none of these strategies has yet been employed to study the corresponding cellular responses at the molecular level.
为了更好地了解细胞如何对过氧化物酶体衍生的氧化应激做出反应,必须能够访问模型系统,其中过氧化物酶体氧化还原状态可以以可控的方式选择性地调节。在这里,我们将讨论一些已经成功用于纵哺乳动物细胞中过氧化物酶体衍生的氧化应激的策略。请注意,尽管这些研究清楚地表明过氧化物酶体可能构成 ROS / RNS 的细胞来源,但这些策略都尚未用于在分子水平上研究相应的细胞反应。

3.2.1. Peroxisome proliferators and fatty acids
3.2.1. 过氧化物酶体增殖剂和脂肪酸

Already more than a decade ago, several studies reported that the peroxisomal redox balance can be disturbed by the selective activation of peroxisomal metabolism. For example, after Reddy and colleagues discovered that the administration of peroxisome proliferators to rodents can induce liver cancer [86], they also studied the effect of such a treatment on oxidative stress and found a disproportionate increase in H2O2-producing enzymes and catalase [22], [87]. Other studies showed that (i) mammalian cells stably overexpressing peroxisomal fatty acyl-CoA oxidase (FAO) became neoplastic upon exposure to a fatty acid substrate for 2–6 weeks [88], [89], (ii) a transient overexpression of peroxisomal FAO in Cos-1 cells led to nuclear NFKB1 DNA binding activity in a dose-dependent manner [90], and (iii) a chronic exposure of pancreatic β-cells to long-chain non-esterified fatty acids increased peroxisomal H2O2-production, ultimately leading to β-cell death [91]. In summary, these findings demonstrate that it is technically possible to induce peroxisomal oxidative stress in intact cells by stimulating the organelle's metabolism.
早在十多年前,几项研究就报告说,过氧化物酶体氧化还原平衡会因过氧化物酶体代谢的选择性激活而受到干扰。例如,在 Reddy 及其同事发现对啮齿动物施用过氧化物酶体增殖剂可诱发肝癌后[86],他们还研究了这种治疗对氧化应激的影响,发现产生 H2O2 的酶和过氧化氢酶不成比例地增加 [22][87].其他研究表明,(i)稳定过表达过氧化物酶体脂肪酰基辅酶 A 氧化酶(FAO)的哺乳动物细胞在暴露于脂肪酸底物 2-6 周后变成肿瘤[88][89],(ii)过氧化物酶体 FAO 在 Cos-1 细胞中的短暂过表达导致核 NFKB1 DNA 以剂量依赖性方式结合活性 [90],以及(iii)胰腺β细胞长期暴露于长链非酯化脂肪酸会增加过氧化物酶体 H2O2 的产生,最终导致β细胞死亡[91]。 总之,这些发现表明,在技术上可以通过刺激细胞器的代谢在完整细胞中诱导过氧化物酶体氧化应激。

3.2.2. Catalase activity  3.2.2. 过氧化氢酶活性

As catalase is the most abundant antioxidant enzyme in mammalian peroxisomes, it represents an attractive target to modulate the organelle's antioxidative stress system in intact cells. Several completely different approaches have already been used for this purpose. Perhaps the most straightforward way is to incubate the cells with 3-amino-1,2,4-triazole (3-AT), a well-characterized irreversible inhibitor of catalase [92]. At non-cytotoxic dosages, such a treatment may decrease catalase activity by ± 70% [93]. Alternatively, one may employ genetically modified cells (e.g. from transgenic or knockout mice) [45], [94], vector-driven expression systems [69], [95], or even cell-penetrating catalase derivatives [96], [97]. In this context, it is interesting to mention that both reducing and increasing catalase activity may make cells more vulnerable to different types of oxidative stress [94], [96]. These findings indicate that nonlethal concentrations of H2O2 may exert net beneficial effects on the cell, and that catalase overexpression may interfere with the potential signaling mechanisms of H2O2 [94]. The effects of altered catalase activities on human health will be discussed in Section 6.
由于过氧化氢酶是哺乳动物过氧化物酶体中最丰富的抗氧化酶,因此它是调节完整细胞中细胞器抗氧化应激系统的有吸引力的靶点。为此,已经使用了几种完全不同的方法。也许最直接的方法是将细胞与 3-氨基-1,2,4-三唑(3-AT)一起孵育,3-AT 是一种特征明确的过氧化氢酶不可逆抑制剂 [92]。 在非细胞毒性剂量下,这种治疗可能会使过氧化氢酶活性降低± 70%[93]。 或者,可以使用转基因细胞(例如来自转基因或基因敲除小鼠)[45]、[94]、载体驱动的表达系统 [69]、[95],甚至细胞穿透过氧化氢酶衍生物 [96]、[97].在这种情况下,有趣的是,降低和增加过氧化氢酶活性都可能使细胞更容易受到不同类型的氧化应激的影响[94]、[96]。 这些发现表明,非致死浓度的 H2O2 可能对细胞产生净有益作用,过氧化氢酶过表达可能会干扰 H2O2 的潜在信号机制 [94]。 过氧化氢酶活性改变对人类健康的影响将在第 6 节  中讨论。

3.2.3. Other (potential) strategies
3.2.3. 其他(潜在)策略

Another strategy that has already been successfully employed to selectively produce oxidative stress inside peroxisomes is the use of KillerRed, a genetically-encoded photosensitizer which produces radicals and H2O2 upon green light illumination [98], [99]. By using a peroxisomal variant of this protein, we recently found that excessive ROS production inside peroxisomes may disturb the mitochondrial redox balance, and this can in turn lead to mitochondrial fragmentation [69]. An alternative method that may be better suited for biochemical investigations are transgenic cells overexpressing d-amino acid oxidase, a bona fide peroxisomal matrix protein [100]. Indeed, a nuclear targeted version of this protein has already successfully been used to study the effects of nuclear localized oxidative stress [101]. In addition, it is most likely easier to control the production of H2O2 in a d-amino acid-regulatable system than in a peroxisome proliferator- or free fatty acid-dependent system. Finally, one may consider altering the activities of other peroxisomal antioxidant enzymes. However, as most of these enzymes are located in multiple cellular compartments (see Section 2.2.), it is virtually impossible to study the peroxisome-specific effects on the cellular phenotype by knocking down their expression (e.g. through RNA interference). Nevertheless, one may solve this problem, at least partially, by artificially targeting these enzymes to peroxisomes by the use of a strong PTS1 (see Section 4.3.2).
另一种已经成功用于在过氧化物酶体内选择性产生氧化应激的策略是使用 KillerRed,这是一种基因编码的光敏剂,在绿光照射下产生自由基和 H2O2[98][99]。 通过使用这种蛋白质的过氧化物酶体变体,我们最近发现过氧化物酶体内过多的 ROS 产生可能会扰乱线粒体氧化还原平衡,进而导致线粒体碎片化 [69]。 另一种可能更适合生化研究的方法是过表达 d-氨基酸氧化酶的转基因细胞,d-氨基酸氧化酶是一种真正的过氧化物酶体基质蛋白[100]。 事实上,这种蛋白质的核靶向版本已经成功地用于研究核局部氧化应激的影响 [101]。 此外,在 d-氨基酸调节系统中控制 H2O2 的产生很可能比在过氧化物酶体增殖物或游离脂肪酸依赖性系统中更容易。最后,可以考虑改变其他过氧化物酶体抗氧化酶的活性。然而,由于这些酶中的大多数位于多个细胞区室中(见第 2.2 节 ),因此几乎不可能通过敲低过氧化物酶体的表达(例如通过 RNA 干扰)来研究过氧化物酶体对细胞表型的特异性影响。然而,通过使用强 PTS1 人为地将这些酶靶向过氧化物酶体,可以至少部分解决这个问题(见第 4.3.2 节 )。

4. Targets of peroxisomal ROS/RNS
4. 过氧化物酶体 ROS/RNS 的靶点

Peroxisomes may potentially function as an intracellular source of H2O2, O2radical dot, radical dotOH, NOradical dot, and ONOO (see Section 2.1.). These small reactive molecules have distinct biological properties resulting from their chemical reactivity, half-life, and lipid solubility (Table 3). For example, the radical dotOH radical is highly reactive and therefore reacts very close to the site of its production. The half-life of H2O2 is much longer, and this molecule has preferred biological targets [102]. The range of ROS/RNS action is co-determined by their free aqueous diffusion distances [103]. This distance may vary depending on the action of ROS/RNS scavengers, their solubility in lipids, and the membrane permeability of the organelle in which these molecules are produced. In this context, it is important to note that peroxisomes are densely populated with antioxidant enzymes (see Section 2.2.), and that the peroxisomal membrane contains porin-like channels which may facilitate the transit of ROS/RNS from the peroxisomal matrix to the cytosol (and vice versa) [67].
过氧化物酶体可能充当 H2O2、O2 radical dot radical dot OH、NO radical dot 和 ONOO 的细胞内来源(见第 2.1 节 )。这些小反应性分子因其化学反应性、半衰期和脂溶性而具有独特的生物学特性( 表 3)。例如, radical dot OH 自由基具有高反应性,因此反应非常靠近其生产部位。H2O2 的半衰期要长得多,并且该分子具有优选的生物靶点 [102]。ROS/RNS 作用的范围由它们的自由水扩散距离共同决定[103]。该距离可能会根据 ROS/RNS 清除剂的作用、它们在脂质中的溶解度以及产生这些分子的细胞器的膜通透性而变化。在这种情况下,需要注意的是,过氧化物酶体中密集地填充了抗氧化酶(见第 2.2 节 ),并且过氧化物酶体膜含有孔蛋白样通道,可能促进 ROS/RNS 从过氧化物酶体基质到细胞质的转运(反之亦然)[67]。

Table 3. Chemical properties of ROS/RNS produced in peroxisomes.a
表 3.过氧化物酶体中产生的 ROS/RNS 的化学性质。 一个

Name  名字Formula  公式Biological half-lifeb
生物半衰期 b
Membrane-permeabilityc
膜渗透性 c
Hydrogen peroxide  过氧化氢H2O2~ 10− 5 s
~ 10− 5 秒
Very low  非常低
Superoxide radical  超氧自由基O2radical dot~ 10− 6 s
~ 10− 6 秒
Very low  非常低
Hydroxyl radical  羟基自由基radical dotOH~ 10− 9 s
~ 10− 9 秒
Very low  非常低
Nitric oxide radical  一氧化氮自由基NOradical dot< 1 s  < 1 秒High  
Peroxynitrite  过氧亚硝酸盐ONOO  奥诺 ~ 1 s  ~ 1 秒Very low  非常低
a
These data were compiled from [[37], [83], [103], [158], [159], [160]].
这些数据由[[37]、[83]、[103]、[158]、[159]、[160]]编制而成。
b
These values may be strongly influenced by local antioxidant activities.
这些值可能受到局部抗氧化活性的强烈影响。
c
These results have been obtained with artificial lipid membranes.
这些结果是用人工脂质膜获得的。

4.1. Peroxisomal matrix proteins
4.1. 过氧化物酶体基质蛋白

Oxidative and nitrosative stress can directly lead to reversible or irreversible protein modifications. For example, H2O2 may oxidize cysteine sulfhydryl groups to form disulfide bridges, sulfenic acids, or sulfinic acids; NOradical dot may react with sulfhydryls to yield S-nitrosothiols; and other redox-based protein modifications may include hydroxylations, carbonylations, nitrosylations, and the destruction of iron–sulfur clusters [2].
氧化应激和亚硝化应激可直接导致可逆或不可逆的蛋白质修饰。例如,H2O2 可能氧化半胱氨酸巯基形成二硫键、亚磺酸或亚磺酸;NO radical dot 可与巯基反应生成 S-亚硝基硫醇;其他基于氧化还原的蛋白质修饰可能包括羟基化、羰基化、亚硝基化和铁硫簇的破坏[2]。
Previous studies have shown that chronically reducing catalase activity in mammalian cells to approximately 38% of normal, increased the levels of carbonylated proteins, and particularly in the peroxisome-enriched organelle fraction [93]. This may be a surprising observation given that H2O2, the substrate of catalase, is not particularly reactive toward biological molecules. However, as transition metals such as iron are abundantly present in peroxisomes, the accumulation of H2O2 most likely results in the generation of highly reactive hydroxyl radicals via the Fenton reaction (see Section 1.). Note that protein carbonylation is considered to be an irreversible posttranslational modification [2], and the effects of this modification on peroxisome function are not yet clear. However, in order to preserve organelle function, these oxidatively damaged proteins are most likely proteolytically removed by the peroxisomal Lon protease [104], [105].
先前的研究表明,长期将哺乳动物细胞中的过氧化氢酶活性降低至正常值的约 38%,会增加羰基化蛋白的水平,特别是在富含过氧化物酶体的细胞器部分中[93]。 考虑到过氧化氢酶的底物 H2O2 对生物分子没有特别的反应性,这可能是一个令人惊讶的观察结果。然而,由于铁等过渡金属在过氧化物酶体中大量存在,H2O2 的积累很可能会导致通过芬顿反应产生高反应性羟基自由基(见第 1 节 )。请注意,蛋白质羰基化被认为是一种不可逆的翻译后修饰 [2],这种修饰对过氧化物酶体功能的影响尚不清楚。然而,为了保持细胞器功能,这些氧化损伤的蛋白质很可能被过氧化物酶体 Lon 蛋白酶蛋白水解去除[104][105]。
It is also thought that, within the peroxisomal matrix, NOradical dot can combine with O2radical dot to form ONOO, a strong oxidizing and nitrating agent that may inactivate peroxisomal enzymes [16], [35]. For example, NOradical dot and ONOO can rapidly react with the heme group of catalase and inactivate the enzyme [16]. This may in turn promote overproduction of H2O2. ONOO may also react with peroxisomal GSH to form S-nitrosoglutathione (GSNO), a long distance signal molecule. It has been hypothesized that peroxisomal GSNO may act as a powerful inducer of defense genes in plants [16]. The potential function of peroxisomal GSNO in mammalian cells, if any, is not yet clear.
也有人认为,在过氧化物酶体基质中,NO radical dot 可以与 O2 radical dot 结合形成 ONOO-,这是一种强氧化剂和硝化剂,可以使过氧化物酶体失活[16][35]。 例如,NO radical dotONOO− 可以与过氧化氢酶的血红素基团迅速反应并使酶失活[16]。 这反过来又可能促进 H2O2 的过度生产。ONOO− 还可以与过氧化物酶体 GSH 反应形成 S-亚硝基谷胱甘肽 (GSNO),这是一种长距离信号分子。据推测,过氧化物酶体 GSNO 可能作为植物防御基因的强大诱导剂 [16]。 过氧化物酶体 GSNO 在哺乳动物细胞中的潜在功能(如果有的话)尚不清楚。

4.2. The peroxisomal membrane
4.2. 过氧化物酶体膜

Currently, it is widely accepted that polyunsaturated fatty acids, which are important lipid constituents in biological membranes, are key targets for strong oxidants such as radical dotOH and ONOO [106]. The corresponding damage, called lipid peroxidation, may have profound effects on membrane fluidity, membrane permeability, and the activity of membrane-bound enzymes and receptors [3]. In addition, lipid peroxidation breakdown products (e.g. 4-hydroxynonenal) may act as second messengers of oxidative stress in autophagy, apoptosis, and cell proliferation signaling pathways [106]. At the moment, surprisingly little is known on the potential role of oxidative stress-induced lipid peroxidation in mammalian peroxisomes. Nevertheless, it is tempting to speculate that peroxisomes with oxidatively damaged membranes are selectively removed by autophagy. How this may occur, remains to be investigated.
目前,人们普遍认为,多不饱和脂肪酸是生物膜中重要的脂质成分,是 OH 和 ONOO−radical dot 强氧化剂的关键靶标[106]。 相应的损伤称为脂质过氧化,可能对膜流动性、膜通透性以及膜结合酶和受体的活性产生深远影响[3]。 此外,脂质过氧化分解产物(例如 4-羟基壬烯醛)可能在自噬、细胞死亡和细胞增殖信号通路中充当氧化应激的第二信使[106]。目前,令人惊讶的是,人们对氧化应激诱导的脂质过氧化在哺乳动物过氧化物酶体中的潜在作用知之甚少。然而,人们很容易推测具有氧化损伤膜的过氧化物酶体被自噬选择性地去除。这种情况如何发生还有待调查。

4.3. The extraperoxisomal environment
4.3. 过氧化物酶体外环境

Early studies with isolated rat liver peroxisomes have revealed that 20–60% of the H2O2 generated inside peroxisomes diffuses to the surrounding medium [12]. This finding demonstrates that H2O2 can rapidly cross the peroxisomal membrane, most likely through the recently identified porin-like channel [67]. In addition, a more recent study has shown that – in intact rat liver peroxisomes – H2O2 generated by the core-localized urate oxidase is directly released in the cytoplasm via crystalloid core tubules [107]. Together, these findings indicate that peroxisomes are not able to prevent the release of intraperoxisomal H2O2, despite their high content of catalase. As these organelles also contain enzymatic sources of membrane-permeant NOradical dot (see Section 2.2.2.), it is highly likely that – at least under certain physiological or pathological conditions – peroxisomes may act as a cellular source of both H2O2 and NOradical dot in living cells. Nevertheless, very little is currently known about how, and to what extent, these peroxisome-derived small reactive molecules contribute to cellular redox homeostasis and redox signaling. NOradical dot is thought to act through its primary receptor, guanylyl cyclase, which upon activation produces cyclic GMP, another second messenger [1]. Other intracellular targets of this reactive nitrogen species may include Fe2 +-containing proteins and reactive protein thiols [108]. H2O2 is thought to signal through the chemoselective oxidation of deprotonated cysteine residues in target proteins [109]. In addition, this molecule may react with Fe2 +-containing cofactors found in a select set of proteins [109]. In this section, we will focus on how peroxisome-derived oxidative stress may activate various redox-sensitive signaling pathways. For a link between peroxisomal ROS/RNS production and human disease, we refer to Section 6.
对分离的大鼠肝过氧化物酶体的早期研究表明,过氧化物酶体内产生的 H2O2 中有 20-60% 扩散到周围培养基 [12]。 这一发现表明,H2O2 可以快速穿过过氧化物酶体膜,很可能通过最近发现的孔蛋白样通道 [67]。 此外,最近的一项研究表明,在完整的大鼠肝过氧化物酶体中,由核心定位的尿酸盐氧化酶产生的 H2O2 通过晶体核心小管直接释放到细胞质中[107]。 总之,这些发现表明,过氧化物酶体尽管过氧化氢酶含量很高,但过氧化物酶体无法阻止过氧化物酶体内 H2O2 的释放。由于这些细胞器还含有膜渗透性 NO 的酶源 radical dot (见第 2.2.2 节 ),因此,至少在某些生理或病理条件下,过氧化物酶体很可能充当活细胞 radical dot 中 H2O2 和 NO 的细胞来源。然而,目前对这些过氧化物酶体衍生的小反应分子如何以及在多大程度上有助于细胞氧化还原稳态和氧化还原信号传导知之甚少。NO radical dot 被认为通过其主要受体鸟苷酸环化酶起作用,鸟苷酸环化酶激活后产生环状 GMP,这是另一种第二信使 [1]。 这种活性氮的其他细胞内靶标可能包括含 Fe2 + 的蛋白质和反应性蛋白硫醇 [108]。 H2O2 被认为通过对靶蛋白中去质子化半胱氨酸残基的化学选择性氧化发出信号 [109]。 此外,该分子可能与一组选定的蛋白质中发现的含 Fe2 + 的辅助因子发生反应[109]。 在本节中,我们将重点介绍过氧化物酶体衍生的氧化应激如何激活各种氧化还原敏感信号通路。有关过氧化物酶体 ROS/RNS 产生与人类疾病之间的联系,我们参考第 6 节 

4.3.1. Peroxisomal ROS production and nuclear gene expression
4.3.1 过氧化物酶体 ROS 的产生和核基因表达

The intracellular localization and activity of numerous signaling proteins and transcription factors are, directly or indirectly, controlled by the oxidation of thiol groups of redox-sensitive cysteine residues [9], [110]. For example, it has been shown that some transcription factors (e.g. nuclear factor (erythroid-derived 2)-like 2) possess reversibly oxidizable cysteines in their active site, and that – upon exposure to ROS – their sulfhydryl groups are oxidatively modified, which may cause their nuclear translocation and lead to enhanced cytoprotective gene expression [111], [112]. Currently, there is strong evidence that peroxisomal H2O2 may function as an important modulator of NFKB1, a pleiotropic transcription factor that is involved in many biological processes, including inflammation, immunity, differentiation, cell growth, tumorigenesis, and apoptosis [113]. For example, it has been reported that a transient overexpression of the H2O2-producing peroxisomal enzyme FAO resulted in a concentration-dependent DNA binding activity of NFKB1 DNA in Cos-1 cells, and that this phenomenon could be counteracted by overexpression of catalase [90]. In addition, it has been shown that a genetic or pharmacological inactivation of catalase in mouse neutrophils inhibited the nuclear accumulation of NFKB1 and the production of the proinflammatory cytokines TNF-α and MIP-2 [114]. Note that, to make sense of these apparently conflicting data, it is important to know that – depending on the cell type and the experimental conditions – H2O2 may stimulate or inhibit the NFKB1 activation pathway [115]. Despite this, these data clearly show that the production of H2O2 inside peroxisomes can affect nuclear gene expression. As the peroxisomal localization of NOS2 has been associated with a reduced expression level of catalase in hepatocytes [35], the same might be true for peroxisomal NOradical dot production. However, note that – as (i) only a fraction of NOS2 is localized in peroxisomes (see Section 2.1.2.), and (ii) it is not yet clear whether or not peroxisomal NOS2 effectively produces NOradical dot (see Section 2.2.2.) – this remains to be investigated in more detail.
许多信号蛋白和转录因子的细胞内定位和活性直接或间接受到氧化还原敏感半胱氨酸残基的硫醇基团的氧化控制[9][110]。 例如,已经表明,一些转录因子(例如核因子(红系衍生的 2)样 2)在其活性位点具有可逆的可氧化半胱氨酸,并且在暴露于 ROS 后,它们的巯基被氧化修饰,这可能导致它们的核易位并导致细胞保护基因表达增强[111]、[112]。 目前,有强有力的证据表明,过氧化物酶体 H2O2 可能作为 NFKB1 的重要调节因子,NFKB1 是一种多效性转录因子,参与许多生物学过程,包括炎症、免疫、分化、细胞生长、肿瘤发生和细胞凋亡[113]。 例如,据报道,产生 H2O2 的过氧化物酶 FAO 的瞬时过表达导致 NFKB1 DNA 在 Cos-1 细胞中具有浓度依赖性 DNA 结合活性,并且这种现象可以通过过氧化氢酶的过表达来抵消 [90]。 此外,研究表明,小鼠中性粒细胞中过氧化氢酶的遗传或药理学失活抑制了 NFKB1 的核积累以及促炎细胞因子 TNF-α和 MIP-2 的产生[114]。 请注意,为了理解这些明显相互矛盾的数据,重要的是要知道,根据细胞类型和实验条件,H2O2 可能会刺激或抑制 NFKB1 激活途径 [115]。 尽管如此,这些数据清楚地表明,过氧化物酶体内 H2O2 的产生会影响核基因表达。由于 NOS2 的过氧化物酶体定位与肝细胞中过氧化氢酶表达水平降低有关 [35],因此过氧化物酶体 NO radical dot 的产生可能也是如此。然而,请注意,由于 (i) 只有一小部分 NOS2 位于过氧化物酶体中(见第 2.1.2 节 ),以及 (ii) 尚不清楚过氧化物酶体 NOS2 是否有效产生 NO radical dot (见第 2.2.2 节 )——这仍有待更详细地研究。

4.3.2. Redox communication between peroxisomes and mitochondria
4.3.2. 过氧化物酶体和线粒体之间的氧化还原通讯

Peroxisomes and mitochondria exhibit a functional interplay that continues to emerge [116], [117]. Over the past years, it has become clear that these organelles also share a redox-sensitive relationship. For example, it has been shown that catalase-SKL, a catalase derivative with enhanced peroxisome targeting, can efficiently repolarize mitochondria in late passage cells [118]. In addition, we recently found that the mitochondrial redox balance is disturbed in cells lacking catalase or functional peroxisomes, and upon the generation of excess ROS inside peroxisomes [69; Apanasets and Fransen, unpublished results]. On the other hand, peroxisomes were found to resist oxidative stress generated inside mitochondria [69]. In summary, these findings suggest that peroxisome-derived oxidative stress may trigger signaling/communication events that ultimately result in increased mitochondrial stress. The molecular mechanisms underlying this phenomenon remain unclear. A number of molecules may participate in linking these organelles. For example, peroxisomes initiate oxidative metabolism of specific fatty acids which are then trafficked to mitochondria where processing is completed [119]. The organelles also communicate via anaplerotic metabolism [17]. It can be envisioned that as peroxisomal metabolism is slowed down, critical metabolic intermediates (e.g. acetyl-CoA) are not properly produced and trafficked to mitochondria [69]. If mitochondrial metabolism is similarly disrupted, an increase in uncoupled reactions and ROS production can certainly be anticipated. There also exists the mitochondrial retrograde signaling pathway, a process involving multiple factors that sense mitochondrial dysfunction and transmit signals to the nucleus to affect gene expression [120]. The protein products of these genes promote, among other processes, peroxisomal β-oxidation and peroxisome proliferation [17]. Finally, the organelles may also interact via reactive oxygen species.
过氧化物酶体和线粒体表现出持续出现的功能相互作用 [116]、[117]。 在过去的几年里,很明显这些细胞器也具有氧化还原敏感关系。例如,研究表明,过氧化氢酶-SKL 是一种具有增强过氧化物酶体靶向的过氧化氢酶衍生物,可以有效地使晚传代细胞中的线粒体重极化[118]。 此外,我们最近发现,在缺乏过氧化氢酶或功能性过氧化物酶体的细胞中,线粒体氧化还原平衡受到干扰,并且在过氧化物酶体内产生过量的 ROS 时[69;Apanasets 和 Fransen,未发表的结果]。另一方面,研究发现过氧化物酶体可以抵抗线粒体内产生的氧化应激 [69]。 总之,这些发现表明过氧化物酶体衍生的氧化应激可能会触发信号传导/通讯事件,最终导致线粒体应激增加。这种现象背后的分子机制尚不清楚。许多分子可能参与连接这些细胞器。例如,过氧化物酶体启动特定脂肪酸的氧化代谢,然后被转运到线粒体,在那里完成加工[119]。 细胞器还通过同步代谢进行交流 [17]。 可以想象,随着过氧化物酶体代谢减慢,关键代谢中间体(例如乙酰辅酶 A)无法正常产生并转运到线粒体[69]。 如果线粒体代谢同样受到破坏,则当然可以预期不偶联反应和 ROS 产生的增加。 还存在线粒体逆行信号通路,这是一个涉及多种因素的过程,这些因素感知线粒体功能障碍并将信号传递到细胞核以影响基因表达[120]。 这些基因的蛋白质产物促进过氧化物酶体β氧化和过氧化物酶体增殖等过程[17]。 最后,细胞器还可以通过活性氧相互作用。

5. Peroxisomes as targets of oxidative stress
5. 过氧化物酶体作为氧化应激的靶标

Currently, little is known about how peroxisomes cope with oxidative stress. In this section, we will discuss the pros and cons of these organelles as a sink for cellular ROS as well as how cellular ROS may affect peroxisome biology and function.
目前,人们对过氧化物酶体如何应对氧化应激知之甚少。在本节中,我们将讨论这些细胞器作为细胞 ROS 汇的优缺点,以及细胞 ROS 如何影响过氧化物酶体生物学和功能。

5.1. Peroxisomes as a sink for cellular ROS
5.1 过氧化物酶体作为细胞 ROS 的吸收器

The very high content of catalase inside peroxisomes led to the experimentally-based prediction that these organelles may serve as an intracellular sink for H2O2 [121]. This prediction is in line with the findings that hypocatalasemic fibroblasts accumulate H2O2 and are oxidatively damaged [122], and that overexpression of catalase in pancreatic islets of transgenic mice produced a marked protection of islet insulin secretion against H2O2 [123]. However, as already discussed in Section 4.3., other studies strengthen the notion that peroxisomes rather represent a potential source of oxidative stress, which may cause damage to the cell or modulate redox-sensitive pathways [107], [124]. Taken together, these apparently conflicting observations illustrate that caution must be taken when studying the potential contribution of peroxisomal ROS metabolism to cellular redox homeostasis. In this context, it may also not be that difficult to envision that this contribution may display strong plasticity under different physiological and pathological conditions.
过氧化物酶体内过氧化氢酶含量非常高,导致基于实验的预测,即这些细胞器可能充当 H2O2 的细胞内汇 [121]。 这一预测与低过氧化氢血症成纤维细胞积累 H2O2 并受到氧化损伤[122]的研究结果一致,并且过氧化氢酶在转基因小鼠胰岛中的过氧化氢酶过度表达对胰岛胰岛素分泌产生了对 H2O2 的显着保护 [123]。然而,正如第 4.3 节  中已经讨论的那样,其他研究强化了过氧化物酶体是氧化应激的潜在来源的观点,这可能会对细胞造成损害或调节氧化还原敏感途径 [107][124]。 综上所述,这些明显相互矛盾的观察结果表明,在研究过氧化物酶体 ROS 代谢对细胞氧化还原稳态的潜在贡献时必须谨慎行事。在这种情况下,不难想象这种贡献在不同的生理和病理条件下可能表现出很强的可塑性。

5.2. Effects of cellular ROS on peroxisome biology and function
5.2. 细胞 ROS 对过氧化物酶体生物学和功能的影响

Currently, there is substantial evidence that peroxisome number and morphology can drastically change upon exposure of cells to various conditions of oxidative stress. For example, both UV-irradiation and a pharmacological depletion of cellular GSH induce extensive peroxisome elongation in mammalian cells [15], [29]. In addition, it has been reported that the number of peroxisomes drastically increases while cells age, a process associated with an increase in systemic oxidative stress [42], [125]. The underlying mechanisms and the functional significance of these findings are still largely unknown. However, it has been established that the PEX5-mediated import pathway into peroxisomes is – at least partially – functionally impaired in cells experiencing oxidative stress conditions [42], [126]. This manifests itself primarily in the accumulation of PEX5 at the peroxisomal membrane and a partial mislocalization of catalase to the cytosol [42]. As (i) monoubiquitination of PEX5 at a conserved cysteine residue (e.g. Cys11 in human PEX5) is a requisite for its ATP-dependent export back into the cytosol [127], and (ii) shifting the cytosolic redox balance back to a more reduced state restores PTS1 import in late passage cells (Apanasets and Fransen, unpublished results), it is tempting to speculate that the Cys11 in PEX5 may act as a functional redox switch thereby regulating the peroxisomal/cytosolic localization of peroxisomal proteins such as catalase. Such a mechanism may allow cells to rapidly respond to oxidative stress in the cytosol [128]. With respect to the relationship between peroxisome number and oxidative stress, it has been suggested that cellular aging may somehow alter the regulation of peroxisome growth and division, leading to organelle proliferation in the absence of normally required cellular cues [42]. However, as mammalian peroxisomes are mainly degraded via macroautophagy [129], [130], [131] and the rate of autophagy slows with age [132], it can currently not be ruled out that the accumulation of peroxisomes in aging cells is an indirect result of reduced autophagy.
目前,有大量证据表明,过氧化物酶体数量和形态在细胞暴露于各种氧化应激条件下时会发生巨大变化。例如,紫外线照射和细胞 GSH 的药理学耗竭都会诱导哺乳动物细胞中广泛的过氧化物酶体伸长[15]、[29]。 此外,据报道,随着细胞老化,过氧化物酶体的数量急剧增加,这一过程与全身氧化应激的增加有关 [42][125]。 这些发现的潜在机制和功能意义在很大程度上仍然未知。然而,已经确定,PEX5 介导的过氧化物酶体导入途径在经历氧化应激条件的细胞中至少部分功能受损[42][126]。 这主要表现为 PEX5 在过氧化物酶体膜上的积累和过氧化氢酶在胞质质上的部分错误定位[42]。 由于(i)PEX5 在保守的半胱氨酸残基(例如人 PEX5 中的 Cys11)处的单泛素化是其 ATP 依赖性输出回胞质的必要条件 [127],并且(ii)将胞质氧化还原平衡转移回更还原的状态,恢复了 PTS1 在晚期传代细胞中的输入(Apanasets 和 Fransen,未发表的结果),因此很容易推测 PEX5 中的 Cys11 可能充当功能性氧化还原开关,从而调节过氧化物酶体/胞质过氧化物酶酶等过氧化物酶蛋白的定位。 这种机制可能使细胞能够对细胞质中的氧化应激做出快速反应 [128]。 关于过氧化物酶体数量与氧化应激之间的关系,有人认为细胞衰老可能以某种方式改变过氧化物酶体生长和分裂的调节,导致细胞器在没有正常需要的细胞线索的情况下增殖 [42]。 然而,由于哺乳动物过氧化物酶体主要通过宏自噬降解[129]、[130]、[131],并且自噬速度随着年龄的增长而减慢 [132],因此目前不能排除过氧化物酶体在衰老细胞中的积累是自噬减少的间接结果。

6. Peroxisomal ROS metabolism and human disease
6. 过氧化物酶体 ROS 代谢与人类疾病

It is currently a common belief that alterations in the cellular redox state impose a considerable risk for the development of various diseases [6]. As (i) the intracellular redox status is inherently linked to cellular metabolism, and (ii) peroxisomes regulate major fluxes of primary and secondary metabolites, it may not be surprising to see that also these organelles are increasingly recognized as being involved in human pathologies related to oxidative stress. In this context, it is interesting to note that – for example – compromised catalase activity has already been associated with ischemia-reperfusion injury, hypertension, skin pigmentation disorders, retinal disease, degenerative joint disease, heart failure, type 2-diabetes, neurodegenerative disorders, and the initiation and progression of certain cancers ([93]; and references therein). In addition, the protein and activity levels of this enzyme have recently been shown to be downregulated in nasopharyngeal secretions of infants with naturally acquired respiratory syncytial virus infections [133]. In this section, we will highlight the potential role of peroxisomal oxidative stress in the pathogenesis of neurodegeneration, diabetes, aging, and cancer.
目前人们普遍认为,细胞氧化还原状态的改变会给各种疾病的发展带来相当大的风险 [6]。 由于 (i) 细胞内氧化还原状态与细胞代谢有内在联系,并且 (ii) 过氧化物素体调节初级和次级代谢物的主要通量,因此看到这些细胞器也越来越被认为参与与氧化应激相关的人类病理可能并不奇怪。在这种情况下,有趣的是,例如,过氧化氢酶活性受损已经与缺血再灌注损伤、高血压、皮肤色素沉着障碍、视网膜疾病、退行性关节疾病、心力衰竭、2 型糖尿病、神经退行性疾病以及某些癌症的发生和进展有关([93];及其中的参考文献)。此外,最近发现,在自然获得性呼吸道合胞病毒感染婴儿的鼻咽分泌物中,这种酶的蛋白质和活性水平会下调[133]。 在本节中,我们将重点介绍过氧化物酶体氧化应激在神经退行性变、糖尿病、衰老和癌症发病机制中的潜在作用。

6.1. Neurodegeneration  6.1. 神经退行性变

In recent years, it has become increasingly clear that alterations in peroxisome function may contribute to the development of neurodegenerative diseases [134]. This is best illustrated by pathomorphological examinations of the brain of patients (and mice) in which one or more peroxisomal functions are lost [[30], [134], [135], [136], [137]]. The major neuropathological features of these disorders include impaired neuronal migration, axonal degeneration, and progressive subcortical demyelination [136], [137], [138], [139], [140], [141]. The mechanisms underlying these phenotypes, which most likely result from a combination of facts, have not yet been elucidated [134]. One of these pathogenic factors may be oxidative stress. Indeed, it has been reported that mitochondrial SOD2, a marker for oxidative stress, is significantly upregulated in different organs of peroxisome-deficient mice [142]. In addition, it has been shown that peroxisomes provide oligodendrocytes with neuroprotective and anti-inflammatory functions [138], and that these cells protect neuronal axons from the harmful effects of H2O2 [143]. Finally, it has been demonstrated that a cocktail of antioxidants can halt and even reverse axonal damage in a mouse model of X-linked adrenoleukodystrophy, a demyelinating peroxisomal disorder [140].
近年来,过氧化物酶体功能的改变可能导致神经退行性疾病的发生,这一点越来越明显[134]。 对患者(和小鼠)大脑的病理形态学检查最好地说明了这一点,其中一种或多种过氧化物酶体功能丧失[[30][134][135][136][137]]。这些疾病的主要神经病理学特征包括神经元迁移受损、轴突变性和进行性皮质下脱髓鞘[136]、[137]、[138]、[139]、[140]、[141].这些表型的机制很可能是由多种事实共同产生的,但尚未阐明[134]。 这些致病因素之一可能是氧化应激。事实上,据报道,线粒体 SOD2(氧化应激的标志物)在过氧化物酶体缺陷小鼠的不同器官中显着上调[142]。此外,研究表明,过氧化物酶体为少突胶质细胞提供神经保护和抗炎功能 [138],并且这些细胞保护神经元轴突免受 H2O2 的有害影响 [143]。 最后,已经证明,抗氧化剂混合物可以阻止甚至逆转 X 连锁肾上腺脑白质营养不良(一种脱髓鞘性过氧化物酶体疾病)小鼠模型的轴突损伤[140]。

6.2. Type 2-diabetes  6.2. 2型糖尿病

For some time, it is known that elevated levels of long-chain and very-long-chain saturated non-esterified fatty acids exhibit a strong cytotoxic effect on insulin-producing β-cells [91], [144]. Interestingly, these cells contain virtually no catalase [145], [146], and an elegant study has recently demonstrated that the cytotoxic phenomenon – referred to as lipotoxicity – is mediated by H2O2 derived from peroxisomal β-oxidation [84]. Importantly, overexpression of catalase in the peroxisomes and the cytosol, but not in the mitochondria, protected the cells against palmitic acid-induced toxicity [84]. In summary, these experiments led to a completely new concept in the pathogenesis of fatty acid-induced lipotoxicity for pancreatic β-cells.
一段时间以来,人们知道长链和超长链饱和非酯化脂肪酸水平升高对产生胰岛素的β细胞表现出强烈的细胞毒性作用 [91][144]。 有趣的是,这些细胞几乎不含过氧化氢酶 [145]、[146],最近一项优雅的研究表明,细胞毒性现象(称为脂毒性)是由过氧化物酶体β氧化衍生的 H2O2 介导的[84].重要的是,过氧化物酶体和细胞质中的过氧化氢酶过表达,而不是线粒体中的过氧化氢酶,可以保护细胞免受棕榈酸诱导的毒性[84]。 综上所述,这些实验在脂肪酸诱导的胰腺β细胞脂毒性发病机制中引入了一个全新的概念。

6.3. Aging  6.3. 老化

More and more evidence indicates that peroxisomes may also play a vital role in the chronic processes of cellular and organismal aging. Many studies on this topic have focused on the role of catalase. Nonetheless, the results are – albeit indicative – not always straightforward. For example, detailed epidemiological studies on patients suffering from hypocatalasemia revealed an increased frequency of age-related diseases, including – among others – type 2-diabetes, hypertension, and vitiligo [147]. Despite this, mice completely lacking catalase develop normally and are apparently healthy [45]. In addition, long-lived dwarf mice and short-lived transgenic mice exhibit increased and decreased levels of catalase, respectively [148]. However, transgenic mice overexpressing peroxisomal catalase do not show a significant increase in lifespan [149]. Interestingly, mice overexpressing catalase targeted to the mitochondrial matrix display an increased life expectancy by ± 20% [149]. Finally, inactivation of catalase activity has a negative impact on the mitochondrial redox balance [69], [93], a condition commonly associated with aging [150]. However, cellular aging may also compromise peroxisomal ROS metabolism [42]. Importantly, a retroviral-mediated transduction of catalase-SKL cDNA in aging cells reduced the cellular H2O2 levels and restored mitochondrial membrane polarization [118]. In summary, these studies suggest that peroxisomes may play a physiological role in aging. In addition, the finding that alterations in the peroxisomal ROS metabolism can affect the mitochondrial redox balance [69], [93], [118], may have important implications for how we think about aging and age-related diseases. In this context, it has recently been suggested that peroxisomal ROS may not only provoke pro-aging effects, but also function as anti-aging signaling molecules, akin to mitochondrial ROS [17].
越来越多的证据表明,过氧化物酶体也可能在细胞和生物体衰老的慢性过程中发挥至关重要的作用。关于这个主题的许多研究都集中在过氧化氢酶的作用上。尽管如此,结果——尽管是指示性的——并不总是简单的。例如,对低过氧化氢血症患者的详细流行病学研究表明,与年龄相关的疾病的发生率增加,包括 2 型糖尿病、高血压和白癜风[147]。 尽管如此,完全缺乏过氧化氢酶的小鼠发育正常,并且显然是健康的[45]。 此外,长寿侏儒小鼠和短命转基因小鼠的过氧化氢酶水平分别升高和降低[148]。 然而,过表达过氧化物酶体过氧化氢酶的转基因小鼠的寿命并未显着延长[149]。 有趣的是,过表达靶向线粒体基质的过氧化氢酶的小鼠的预期寿命延长了± 20%[149]。最后,过氧化氢酶活性失活对线粒体氧化还原平衡有负面影响[69]、[93],这是一种通常与衰老相关的疾病 [150]。 然而,细胞老化也可能损害过氧化物酶体 ROS 代谢 [42]。 重要的是,逆转录病毒介导的过氧化氢酶-SKL cDNA 在衰老细胞中转导降低了细胞 H2O2 水平,恢复了线粒体膜极化[118]。 综上所述,这些研究表明,过氧化物酶体可能在衰老中发挥生理作用。此外,过氧化物酶体 ROS 代谢的改变会影响线粒体氧化还原平衡[69]、[93]、[118] 的发现可能对我们如何看待衰老和与年龄相关的疾病具有重要意义。在此背景下,最近有人提出过氧化物酶体 ROS 不仅可能引起促衰老作用,而且还可以作为抗衰老信号分子发挥作用,类似于线粒体 ROS[17]。

6.4. Cancer  6.4. 癌症

Currently, there is growing evidence that peroxisomes may be either directly or indirectly involved in cancer development. For example, the administration of nongenotoxic peroxisome proliferators to rodents can induce liver cancer [86], [151]; hypocatalasemic mice display a higher susceptibility to spontaneous and induced tumorigenesis [152], [153]; and peroxisome number and catalase activity are significantly reduced in various tumors, including colon, hepatocellular and renal cell carcinoma [154], [155], [156]. The precise mechanism of how peroxisomes may contribute to the cancer process is not well understood. One may envision that peroxisomal ROS/RNS may cause permanent oxidative damage to the cell's genetic material, which in turn may lead to genomic instability and carcinogenesis. Alternatively, increased peroxisomal oxidative stress may – akin to mitochondrial ROS – lead to the aberrant induction of stress-sensitive signaling pathways that cause tumorigenesis [5].
目前,越来越多的证据表明过氧化物酶体可能直接或间接参与癌症的发展。例如,对啮齿动物给予无遗传毒性过氧化物酶体增殖剂可诱发肝癌 [86]、[151];低过氧化氢血症小鼠对自发性和诱导性肿瘤发生表现出更高的易感性 [152]、[153];过氧化物酶体数量和过氧化氢酶活性在各种肿瘤中显着降低,包括结肠癌、肝细胞癌和肾细胞癌 [154]、[155]、[156]。 过氧化物酶体如何促成癌症过程的确切机制尚不清楚。人们可能会认为过氧化物酶体 ROS/RNS 可能会对细胞的遗传物质造成永久性氧化损伤,进而可能导致基因组不稳定和致癌。或者,过氧化物酶体氧化应激增加(类似于线粒体 ROS)可能导致导致肿瘤发生的应激敏感信号通路的异常诱导[5]。

7. Conclusions and future directions
七、结论与未来方向

Over the last decade, peroxisomes have emerged as potentially important players of cellular redox metabolism. Strong arguments have been presented that – depending on the physiological and pathological situation – these organelles may function as a source, a sink, or a target of small reactive molecules. In addition, compelling evidence support a direct relationship between peroxisomes and ROS/RNS signaling. For example, high levels of peroxisomal ROS may invoke profound changes in gene expression; peroxisomes may act as an upstream initiator of mitochondrial ROS signaling pathways; and alterations in peroxisomal redox metabolism have been associated with the etiology and progression of age-related diseases, perhaps best exemplified by cancer and type 2-diabetes. An intriguing question that remains to be answered is how excessive levels of peroxisomal ROS/RNS can lead to the activation of such stress-sensitive signaling pathways. The molecular details underpinning these responses are just beginning to emerge. However, in analogy to mitochondria [157], it is tempting to speculate that peroxisomal ROS/RNS may play a significant role in the maintenance and/or regulation of the cellular disulfide proteome. In this context, it is interesting to note that cultivating bovine aortic endothelial cells in the presence of 3-AT increased cellular protein disulfide content by 20% [157]. Future studies should focus on the identification of the proximal targets of peroxisomal ROS/RNS as well as on the molecular mechanisms of how cellular ROS/RNS impinge on peroxisome function. Such studies may provide a powerful route toward a more coherent understanding of the mechanisms and pathways that mediate the relationship between peroxisomes and oxidative stress. This, in turn, is crucial to gain a better insight into the physiological relevance of these organelles in cellular aging and the initiation and progression of age-related diseases.
在过去的十年中,过氧化物酶体已成为细胞氧化还原代谢的潜在重要参与者。已经提出了强有力的论点,即根据生理和病理情况,这些细胞器可以充当小反应分子的来源、汇或靶标。此外,令人信服的证据支持过氧化物酶体与 ROS/RNS 信号传导之间的直接关系。例如,高水平的过氧化物酶体 ROS 可能会引起基因表达的深刻变化;过氧化物酶体可能充当线粒体 ROS 信号通路的上游引发剂;过氧化物酶体氧化还原代谢的改变与年龄相关疾病的病因和进展有关,也许最好的例子是癌症和 2 型糖尿病。一个有待回答的有趣问题是过氧化物酶体 ROS/RNS 水平过高如何导致这种应激敏感信号通路的激活。支撑这些反应的分子细节才刚刚开始显现。然而,与线粒体 [157] 类似,人们很容易推测过氧化物酶体 ROS/RNS 可能在细胞二硫键蛋白质组的维持和/或调节中发挥重要作用。在这种情况下,有趣的是,在 3-AT 存在下培养牛主动脉内皮细胞可使细胞蛋白二硫化物含量增加 20%[157]。 未来的研究应侧重于过氧化物酶体 ROS/RNS 近端靶标的鉴定以及细胞 ROS/RNS 如何影响过氧化物酶体功能的分子机制。 此类研究可能为更连贯地理解介导过氧化物酶体与氧化应激之间关系的机制和途径提供了一条强有力的途径。反过来,这对于更好地了解这些细胞器在细胞衰老以及与年龄相关的疾病的发生和进展中的生理相关性至关重要。

Acknowledgements  确认

M.F. is supported by grants from the ‘Fonds voor Wetenschappelijk Onderzoek-Vlaanderen (Onderzoeksproject G.0754.09)’ and the ‘Bijzonder Onderzoeksfonds van de K.U.Leuven (OT/09/045)’. B.W. is a recipient of a fellowship from the Chinese Research Council.
M.F. 得到了“Fonds voor Wetenschappelijk Onderzoek-VlaanderenOnderzoeksproject G.0754.09)”和“Bijzondere Onderzoeksfonds van de K.U.LeuvenOT/09/045)”的资助。B.W. 是中国研究委员会的奖学金获得者。

References

Cited by (500)

View all citing articles on Scopus
This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of peroxisomes in Health and Disease.