Full length article 全文A statistical study of the relationship between plastic strain and lattice misorientation on the surface of a deformed Ni-based superalloy
一项关于变形镍基高温合金表面塑性应变与晶格取向关系的统计分析
Abstract 摘要
电子背散射衍射(EBSD)的取向数据常用于识别应变局部化和在微观结构尺度上量化塑性应变。然而,局部塑性应变与取向之间的确切关系以及它在晶粒和亚晶粒尺度上的变化尚未得到详细研究。我们使用高分辨率数字图像相关(HRDIC)测量了应变至 2%的镍基高温合金表面的亚微米尺度塑性应变。应变值与数百个晶粒的晶粒和亚晶粒尺度的不同取向度量相关联。我们发现,尽管晶粒平均塑性应变与晶格取向呈正相关,但相关性存在很大散布,这取决于所使用的取向度量。此外,晶粒应变的大小与晶粒取向参数(如 Schmid 因子和 Taylor 因子)之间基本没有相关性,这主要是因为中尺度变形带并非晶体学特征。 在这些应变水平下,取向差与塑性应变之间的关系受到滑移(不连续)和晶格旋转(连续)发展方式差异的影响,受到局部晶粒相互作用和穿晶应变局部化发展的影响。因此,仅使用 EBSD 衍生的取向差值无法有效量化单个晶粒内的塑性应变,尽管如果对潜在的局部塑性现象有所了解,某些取向差度量比其他度量更合适。滑移在滑移带中局部化,而取向差则以平滑的方式变化,这种变化与滑移的空间相关性较弱。这些发现对使用连续介质力学在微观结构尺度上对多晶金属变形状态进行建模具有启示意义。
Graphical abstract 图示摘要
Keywords 关键词
塑性变形位错数字图像相关电子背散射衍射
1. Introduction 1. 引言
先进多晶合金的变形响应由构成其微观结构的各相和晶粒的变形行为及相互作用决定[1]。研究这些相互作用是理解控制其性能的强化和损伤机制的有效途径,进而有助于开发新型改进合金和为特定应用定制微观结构。一种普遍的观点是,损伤通过在微观结构尺度上应力与塑性应变的局部化而发展,最终导致失效,例如[2]。局部塑性应变可以产生缺陷(位错和空位)的累积,这些缺陷会导致损伤,但也可以产生应力集中,例如在受阻滑移带前方[3],这些应力集中会导致损伤。然而,并非所有塑性应变都会产生缺陷,在微观结构尺度上尤其难以测量局部塑性应变,特别是在块体材料和死后分析中。相反,研究人员通常使用电子背散射衍射(EBSD)的取向数据作为局部应变的替代指标,并将局部变形与损伤联系起来。
EBSD 可以提供局部晶格畸变的定量分析,测量方式为晶格取向差[4,5]。该技术在测量变形方面的有效性已在文献中得到证实。例如,通过参考变形状态下的晶粒平均取向或像素邻域计算出的平均图样取向差,与拉伸[6],[7],[8]和压缩[7]过程中的准静态加载以及蠕变[7,9,10]期间施加的塑性应变密切相关;几何必需位错图样平均已被证明与单晶铜在拉伸[11]下的全局塑性应变相关,但在单晶镍中则不相关。由于晶粒取向差利用晶粒内的参考点,因此可以通过 EBSD 方便地测量和绘制,包括死后分析和通过切片进行的整体分析。平均图样取向差与施加的宏观应变密切相关,但局部晶格取向差不应在空间上与塑性变形相关。 这是因为晶格倾斜是由塑性应变梯度产生的[13],因此它不与塑性应变的幅度成正比,而是与其不均匀性成正比。例如,滑移带在晶界处的终止会导致局部应变梯度和晶格倾斜[14,15],而晶格倾斜的程度取决于晶界特性、位错滑移类型以及与自由表面相关的边界条件[16]。因此,如果没有对潜在局部塑性现象的了解,晶格倾斜数据很难解释。在金属微观结构中,变形梯度,因此晶格倾斜,可能是由不同微观结构组分之间的变形不兼容引起的,例如不同相或同一相但具有不同晶体学取向的晶粒,或由单个晶体的塑性不稳定性引起[17]。这解释了为什么平均晶粒倾斜与宏观塑性应变相关。在经历应变强化的多晶材料中,单个晶粒内的应变梯度通常应随着塑性应变的增加而增加。 然而,在晶粒尺度上,塑性应变与局部晶格旋转(通过晶格旋转测量)之间的相关性会失效,正如对拉伸至 5%的铜所展示的那样[18]。尽管这项铜研究覆盖了数百个晶粒,但 EBSD 晶格旋转测量所采用的空间分辨率与应变测量非常不同,因此无法详细研究散布的原因。尽管存在这一缺陷,EBSD 晶格畸变测量通常被用作定位和估计塑性应变水平的替代方法[19],[20],[21],并且已被用于识别不同的断裂模式[22]和裂纹萌生模式[23]。晶格畸变与局部应力腐蚀裂纹(SCC)的萌生位点相关联[24],并且显示出沿着裂纹路径局部化[22],这表明局部变形与裂纹萌生和扩展之间存在关系。 晶格畸变已被证明是在周围不同类型的应力腐蚀裂纹(SCCs)时的一种变量[25],并且已被用于量化退火温度对残余变形的影响以及这种局部变形对腐蚀速率的最终影响[26]。
在这篇论文中,我们旨在对表面晶格取向差和塑性应变进行直接比较,以在较高的空间分辨率和包含大量晶粒的宽视场范围内进行测量,从而获得能够代表所研究表面的统计代表性测量结果。我们在这项测量中使用了经过沉淀强化的镍基高温合金,其塑性应变约为 2%,这一水平的塑性应变与疲劳试验和服务中经历的小变形和晶格旋转相关,并且通常出现在以往使用 EBSD 量化塑性应变的尝试中。我们采用自动化数据采集方法覆盖了 1 × 0.5 mm 的区域,空间分辨率为~120 nm,并开发了用于处理亚晶粒尺度数据的自动化数据分析程序,使得 HRDIC 塑性应变信息和 EBSD 晶格畸变信息能够直接关联[27]。由于存在多种不同的方法可以用来处理 EBSD 数据以获得晶格畸变信息[5,[28], [29], [30]],我们从同一 Hough 索引的 EBSD 数据集中计算了九种不同的晶格取向差测量值。 这些值与使用 HRDIC 测量的局部塑性应变进行了比较,比较尺度包括平均晶粒间变异尺度和像素到像素的亚晶粒尺度。最后,我们通过寻找这些预测因子与晶粒尺度上实际测量的塑性变形和晶格畸变之间的相关性,以统计方式评估了基于全局边界条件方向变形预测器的有效性,例如泰勒因子和施密特因子。这些计算可以在商业 EBSD 后处理软件中轻松完成,并常用于理解微观结构尺度的局部塑性变形[19]、[20]、[21]。然而,我们证明了这些预测因子在局部尺度上失效,不能用于预测局部应变的幅度。
2. Material and experimental methodology
2. 材料与实验方法
2.1. Material and sample 2.1. 材料和样品
所研究的材料是单轴拉伸下的多晶 Ni 基高温合金 RR1000。RR1000 是一种γ/γ'合金,由 Rolls Royce plc 公司开发,用于旋转热部件中的涡轮盘,具有高抗拉强度,并在其工作寿命中保持良好的疲劳性能[31]。其开发细节在另一篇综合综述中有详细描述[32]。在此,我们通过热处理获得了γ'尺寸的单峰分布[33]。这是通过首先进行γ'过饱和固溶热处理,然后进行油淬,接着进行γ'亚饱和热处理,并随后进行非常缓慢的冷却来实现的,以促进现有γ'的生长而不是新γ'的形核[33]。所有热处理均在氩气气氛中进行。该工艺产生了直径约为 250 nm、体积分数约为 40%的γ'析出物的单峰尺寸分布。在这种微观结构中,滑移主要通过切割γ'颗粒发生[34],因此可以忽略两相之间的变形不均匀性,即在本研究中可以将其视为单相多晶材料。 热处理后的晶粒表征如图 1 所示,其中分别展示了 a)部分的平均晶粒取向和 b)部分的晶粒尺寸分布(均为变形后)。晶粒尺寸被定义为晶粒面积的等效圆直径,平均晶粒尺寸约为 20 μm。a)部分的逆极图(IPF)散点图显示加载方向,表明织构是随机的。这种微观结构中近半数(0.47)的晶界是Σ3 退火孪晶界。

Fig. 1. Material characterisation and mechanical testing. a) The mean grain orientations are plotted on an IPF (loading direction), b) the grain size distribution, c) the microtensile sample dimensions, and d) the engineering stress-strain curve.
图 1。材料表征和力学测试。a) 平均晶粒取向在 IPF(加载方向)上绘制,b) 晶粒尺寸分布,c) 微拉伸样品尺寸,d) 工程应力-应变曲线。
拉伸试样通过电火花加工(EDM)加工成图 1c)中详细描述的几何形状。通过研磨和抛光去除 EDM 再铸层,并在预变形取向映射前用胶体二氧化硅(0.06 μm)进行最后一步抛光,持续约 10 分钟。然后在样品表面施加金点状图案,作为图像相关过程的基准标记。在单轴拉伸变形前后获取点状图案的图像,并计算所得位移场。在变形后 EBSD 前,通过胶体二氧化硅抛光去除金颗粒。以下包含与此程序相关的详细信息。
2.2. Orientation mapping 2.2. 取向映射
取向映射在变形前后对感兴趣区域进行了检测,使用配备牛津仪器电子背散射衍射(EBSD)系统的场发射枪(蔡司 Sigma)SEM,该系统由 NordlyNano 探测器及 Aztec 软件版本 3 组成。在非变形状态下,EBSD 扫描在金重塑前获得,而在变形状态下,通过用胶体二氧化硅抛光约 60 秒去除金层。扫描在 30 kV 的工作电压和约 7.8 nA 的探针电流下进行,使用 120 μm 孔径在高电流模式下进行。扫描区域约为 1 × 0.5 mm,步长为 0.5 μm,采集频率约为 35 Hz。通过将衍射图与理论图进行比较,使用牛津仪器 Aztec 软件进行基于 Hough 的标定。
2.3. High resolution digital image correlation
2.3. 高分辨率数字图像相关
2.3.1. Gold remodelling 2.3.1. 金重塑
EBSD 引起的碳污染通过使用胶体二氧化硅进行约 30 秒的抛光去除,然后使用金重塑技术[36]在样品表面施加金点。使用爱德华兹 S150B 溅射涂层机以 5-8 纳米/分钟的速度将 25-40 纳米厚的金层沉积到样品表面。之后,在含水蒸气环境中进行重塑 3 小时。这是通过将样品放置在 300°C 的热板上,同时放置一个水杯和一个更大的倒置水杯来覆盖小水杯和样品,并根据需要添加水来实现的。
2.3.2. Image acquisition 2.3.2. 图像采集
背散射电子图像在变形步骤前后通过 FEI Magellan HR 400 L FE-SEM 获取。为最大化空间分辨率,显微镜在 5 kV 电压下操作,带有+2 kV 的样品台偏置和 0.8 nA 的探针电流。选择 4 mm 的工作距离以最大化信噪比。使用 40 列×20 行的马赛克来收集 800 张图像,具有 20%的重叠,对应视野约为 1 × 0.5 mm²。每张图像分辨率为 2048 × 1768 像素,像素大小为 14.6 nm。变形步骤后,特别注意确保变形后图像的对比度和亮度与非变形状态下的情况尽可能接近,以最小化系统误差。
2.3.3. Mechanical testing
2.3.3. 力学测试
狗骨样条在 Zeiss–Kammrath 5 kN 拉伸-压缩微测试机上进行了单轴拉伸变形。样条以 0.3 mm/min 的速率变形至全局宏观单轴工程应变约为 0.02。工程应力-应变曲线如图 1(d)所示。测试后,样条从测试机上取下,根据 2.3.2 节,在无载荷状态下获取了变形后图像。
2.3.4. Image correlation 2.3.4. 图像相关
图像拼贴使用 FIJI 的 Grind/Collection 拼接插件[37]拼接在一起,并根据 DIC 计算的最大图像尺寸限制裁剪成 8 个独立区域进行图像相关分析。随后,使用 LaVision 的商业 DIC 软件 DaVis 8(LaVision,2018)[38]对变形和非变形状态下的拼接图像进行相关分析。通过比较非变形状态下的两张图像来计算系统误差。这两张图像来自同一区域,但在拍摄第二张图像之前将样品从显微镜中移除并更换。然后使用逐渐减小的查询窗口大小对这两张图像进行相关分析,以获得最佳查询窗口大小[36]。我们发现,使用 8×8 像素的子窗口大小且无重叠,在空间分辨率约为 120 纳米和平均系统误差约为 0.01 有效应变(ɛ eff )之间取得了最佳平衡,覆盖了约 3200 万数据点。图像相关分析结果得到 x 1 ,x 2 平面上的全场 u 1 ,u 2 位移,法线为 x 3 。 然后可以通过使用公式(1)对位移相对于宏观方向进行梯度运算,找到位移梯度张量的各个分量。(1)
通过将位移梯度张量的四个分量组合成一个有效应变ɛ eff [1],可以方便地可视化局部应变。这是一个以剪切为主的项,反映了特征滑移,可以使用公式(2)进行计算。(2)
2.4. Data analysis routines
2.4. 数据分析程序
使用我们自研的 Python 程序,结合 NumPy 进行数值计算[39]和 Matplotlib 进行可视化[40],对 EBSD 取向数据和 HRDIC 位移数据进行了分析。这些程序包含在开源的 DefDAP 库(Python 中的变形数据分析)[27]中。取向的操作采用四元数几何方法,其详细内容在其他地方有详细描述[41][42][43],晶粒级别的取向偏差通过九种方法之一进行计算,具体见表 1。所有这些取向偏差的测量方法都计算了变形状态下的像素取向偏差。其中一种取向偏差的计算方法是核平均取向偏差(KAM)。KAM 通过计算其周围像素的平均取向差异来考虑局部取向偏差。在此处的 KAM 计算中,以目标中心像素周围 3×3 阵列进行计算,且取向偏差不允许超过 5°,以排除高角度晶界。 CMA 测量晶格倾斜的方法[30]可以看作是一种非相关 KAM 方法,其中计算每个像素与晶粒中每个其他像素之间的晶格倾斜,然后将所有晶粒的晶格倾斜的累积分布绘制成威布尔图,以确定累积分布等于 0.632 时的晶格倾斜。
Table 1. Lattice misorientation and GROD variant definitions.
表 1. 晶格倾斜和 GROD 变体定义。
| Lattice misorientation 晶格倾斜 | Description 描述 |
|---|---|
| KAM | 3 × 3 nearest neighbour kernel 3×3 最近邻核 |
| CMA | Non-correlated KAM 非相关 KAM |
| GROD variants GROD 变体 | Reference orientation 参考取向 |
| Mean 平均值 | Average orientation 平均取向 |
| PQMax | Best Kikuchi pattern quality 最佳 Kikuchi 图样质量 |
| Min KAM 最小 KAM | Lowest kernel misorientation 最低晶粒取向差 |
| Mean Min 平均最小值 | Lowest GROD Mean 最低 GROD 平均值 |
| Mean Max 平均最大值 | Highest GROD Mean 最高 GROD 平均值 |
| Original orientation 原始取向 | Pre-deformation orientation 变形前取向 |
| Centroid 质心 | Euclidean grain centre 欧几里得晶粒中心 |
表 1 中的七项取向偏差测量是晶粒参考取向分布(GROD)[29]的变体。对于 GROD,每个晶粒内的每个像素的像素取向偏差是相对于参考取向计算的。这些参考取向可能处于变形或未变形状态。
- •For the GROD Mean the reference orientation is the mean orientation in the deformed state.
对于 GROD 平均值,参考取向是变形状态下的平均取向。 - •For the GROD PQMax the reference orientation is that of the pixel in the deformed state with the best Kikuchi pattern quality.
对于 GROD PQ Max ,参考取向是变形状态下 Kikuchi 图案质量最好的像素的取向。 - •For the GROD Min KAM the reference orientation is the pixel in the deformed state with the lowest 3 × 3 KAM value.
对于 GROD Min KAM,参考方向是变形状态下具有最低 3×3 KAM 值的像素。 - •For the GROD Mean Min and Max the reference orientation is the pixel in the deformed state with the minimum or maximum GROD Mean value, respectively (note that no pixel in the GROD Mean distribution will have a GROD Mean value of exactly zero).
对于 GROD Mean Min 和 Max,参考方向分别是变形状态下具有最小或最大 GROD Mean 值的像素(注意:GROD Mean 分布中没有任何像素的 GROD Mean 值恰好为零)。 - •For the GROD Original the misorientation is calculated as the pixel orientation relative to the grain mean orientation in the non-deformed state.
对于 GROD Original,晶格畸变角计算为像素方向相对于非变形状态下晶粒平均方向的角度。 - •For the GROD Centroid the reference orientation is pixel in the deformed state with the greatest Euclidean distance from the grain boundary.
对于 GROD Centroid,参考方向是变形状态下与晶界具有最大欧几里得距离的像素。
请注意,尽管此处探索的大多数晶格取向函数可以在亚晶粒尺度上进行映射,但 CMA 不能。EBSD 晶界被定义为相邻像素间晶格取向大于 6°的边界,这成功地划分了单个晶粒和孪晶。然后使用这些边界对 EBSD 和 HRDIC 数据中的晶粒进行掩膜。通过 Python 软件,使用手动选择的同源点(通常是两组数据中都很明显的三叉结点)和仿射变换(调整大小、剪切、旋转),将 EBSD 晶界映射到 HRDIC 数据上。这使得对 HRDIC 塑性应变数据进行单个晶粒分析成为可能,同时也可以将其与来自 EBSD 的晶格取向数据相关联。为了获得更连续的应变,对应变数据进行平滑处理以进行应变与取向的比较,这是通过使用 Astropy 库中的卷积包[44]将高斯核应用于应变数据来完成的。 子晶粒像素间相关性通过将晶粒应变数据分箱至 EBSD 空间分辨率,并使用 Scipy 库中的 stats 包对数据进行 Spearman 等级相关检验来执行[45]。根据常规做法[46],根据所得系数的值判断 Spearman 等级的相关性统计显著性,因为相关性中的数据点数量很大,导致显著性检验产生了不合理的较小 p 值。
3. Results 3. 结果
3.1. The spatial relationship between strain and misorientation at the mesoscale and mean grain scale
3.1. 中尺度及平均晶粒尺度下应变与取向的时空关系
有效应变(ɛ eff )图在ɛ xx ∼ 0.02 时显示于图 2,采用对数刻度。在该图中,拉伸轴为水平方向,视场范围为∼1 mm × 0.5 mm,空间分辨率为∼120 nm。补充材料中包含全分辨率图像以及该数据集的视频概览链接。图中突出了五个晶粒(G1-G5)以展示不同的滑移特征。对于每个晶粒 G1-G5,均显示了ɛ eff 数据和基于 GROD 均值(G Mean)的 EBSD 晶格取向数据ϕ。我们观察到离散的、局部的滑移带,这些滑移带存在于单个晶粒中,有时为单个滑移面(G1),有时为两个或三个滑移面(G2、G3),但始终位于{111}面上(通过利用 EBSD 晶粒取向数据的滑移迹线分析得到证实)。我们还观察到交叉滑移(G4)和晶粒内的更弥散应变(G5),后者可能为离散的,但如果是这样的话,则超出了应变数据的分辨率。重要的是,我们观察到跨越多个晶粒的弥散应变带,这些应变带与拉伸轴成∼ ±45 °,且不能归因于单个晶粒的行为。 具有复杂滑移几何的晶粒(G4)通常表现出相应的晶格取向分布复杂,而具有弥散滑移的晶粒(G5)可能导致意外的晶格取向分布,例如与塑性滑移带不对应的取向带(G5)。

Fig. 2. The HRDIC effective strain (ɛeff) map at macroscopic εxx ∼ 0.02, field of view 1 × 0.5 mm, spatial resolution 0.117 nm. The full resolution image can be found in the supplementary material. G1–G5 highlight grains with different slip character and the effect of this on HRDIC ɛeff and EBSD lattice misorientation (GROD Mean). The region of interest (ROI) is used to exemplify different ways to calculate lattice misorientation in Fig. 3.
图 2. 宏观ε~1~ ∼ 0.02 时的 HRDIC 有效应变(ɛ eff )图,视场 1 × 0.5 mm,空间分辨率 0.117 nm。完整分辨率的图像可以在补充材料中找到。G1–G5 突出显示具有不同滑移特征的晶粒及其对 HRDIC ɛ eff 和 EBSD 晶格取向(GROD Mean)的影响。感兴趣区域(ROI)用于在图 3 中举例说明晶格取向的不同计算方法。
为了研究计算取向差(ϕ)的不同方法的影响,我们从图 2 中感兴趣区域(ROI)获取了 EBSD 数据,并绘制了九种不同的晶格取向差度量,这些度量均基于相同的 EBSD 数据集,如图 3 所示。每种计算方法的名称标在图上方,这些名称与表 1 中详细描述的描述符相关。不同计算方法的晶格取向差的数值和空间分布存在显著差异。为了量化数值上的差异,我们在图 2 的全视场和表 1 中的九种计算类型中绘制了 EBSD 取向值的频率分布,如图 4a)所示,同时绘制了来自图 2 HRDIC 图的ɛ eff (虚线黑线)的分布。在这个视场长度尺度上,塑性应变的分布与取向差的分布存在显著差异。 某些取向错配的度量在应变值较低时与塑性应变数据吻合良好,而其他取向错配的度量在高应变范围内捕获更多信息,但在所有情况下,当比较应变与取向错配时,总会丢失一些信息。为了量化地图分布的相似性,我们可以使用 Kullback–Leibler 偏差[47],它是在关联两个分布时丢失信息的定量描述符。该偏差按公式(3)计算。(3)where P and Q are functions of the variable x over the probability space χ, in this case a measure of deformation as the plastic strain measured by HRDIC or the lattice misorientation calculated from EBSD orientation data, i.e. P(x) is the distribution of ɛeff and Q(x) the distribution of ϕ. While P(ɛeff) and Q(ϕ) scale at approximately 1:10 as shown in Fig. 4 part b), they do not populate the same probability space χ. Therefore, the DKL statistic calculated here should be taken as a relative measure of the agreement between the distributions of strain and misorientation, as opposed to some absolute measure of the deviation. We calculate DKL and plot the values in Fig. 4 part b). Lower DKL are a measure of less information loss and so the 3 × 3 KAM provides the best representation of the strain values when considering the map as a whole, followed by GROD Mean. Conversely, the GROD Mean Max, Centroid and the original orientation give the poorest representation of the distribution of plastic strain values, which is primarily due to their lack of range; the GROD Mean Max and Centroid functions do not cover the low strain range and the PQ Max does not cover the high strain values
其中 P 和 Q 是变量 x 在概率空间χ上的函数,在此情况下,χ是变形的度量,如 HRDIC 测量的塑性应变或从 EBSD 取向数据计算出的晶格位向,即 P(x)是ɛ eff 的分布,Q(x)是ϕ的分布。虽然 P(ɛ eff )和 Q(ϕ)在图 4 部分 b)中大约按 1:10 的比例缩放,但它们并不占据相同的概率空间χ。因此,此处计算的 D KL 统计量应被视为应变和位向分布之间一致性的相对度量,而不是偏差的绝对度量。我们计算 D KL 并在图 4 部分 b)中绘制这些值。较低的 D KL 是信息损失较少的度量,因此当将地图视为整体时,3 × 3 KAM 提供了应变值的最佳表示,其次是 GROD Mean。 相反,GROD 均值最大值、质心和原始取向对塑性应变值分布的表征最差,这主要归因于它们缺乏范围;GROD 均值最大值和质心函数未覆盖低应变范围,而 PQ 最大值未覆盖高应变值

Fig. 3. The ROI sub-region in Fig. 2 is compared here to the EBSD misorientation data, calculated nine different ways.
图 3. 这里将图 2 中的 ROI 子区域与九种不同方法计算的 EBSD 取向数据进行了比较。

Fig. 4. a) Total distribution HRDIC strain (dashed) and EBSD misorientation measures (coloured). b) The Kullbach–Lieber deviation value that compares the distribution of the strain distribution to each EBSD misorientation distribution; lower DKL indicates a better correlation between the strain and misorientation data sets.
图 4. a) 总分布 HRDIC 应变(虚线)和 EBSD 取向测量值(彩色)。b) Kullbach–Lieber 偏差值,用于比较应变分布与每种 EBSD 取向分布的关系;较低的 D KL 表示应变数据集与取向数据集之间的相关性更好。
在图 3 中,我们展示了晶格取向的计算方式如何影响晶粒内晶格取向的幅度和分布。我们知道,地图平均取向与宏观应变呈正相关。为了测试这种关系是否在晶粒尺度上成立,我们取了每个晶粒内ɛ eff 值的平均值( ),并将其与该晶粒内取向值的平均值( )在九种取向计算方法中分别绘制出来。在图 5 中,我们绘制了九种方法中每种方法约 600 个晶粒的晶粒平均相关性。大多数相关性为正,但有些的梯度高于其他,所有数据都存在显著散布。在 和 之间的多数相关性中,较大的晶粒在给定的 下显示出更高的 。然而,在图 3i)中应变与晶粒平均 3 × 3 KAM 的相关性中,最大的晶粒具有最小的平均取向。在所有ϕ度量中,KAM 对步长和晶粒尺寸最为敏感,因为核尺寸必须相对于这些长度尺度来定义。 无需核的晶粒分布测量方法(如 GROD)对步长变化非常不敏感[8,28,30]。

Fig. 5. Correlation of grain mean HRDIC effective strain and grain mean EBSD misorientation for ∼600 grains and for nine different EBSD measures of misorientation, colour-coded according to the grain's equivalent circle diameter, D.
图 5. 约 600 个晶粒的晶粒平均 HRDIC 有效应变与晶粒平均 EBSD 晶格倾斜的相关性,根据晶粒等效圆直径 D 进行颜色编码。
我们可以通过执行简单的线性回归分析来获得反映每个 - 相关性的敏感性和可靠性数值。我们通过计算 - 相关性的梯度(m)来定义 对 变化的敏感性,并通过计算相关系数(R)和移动平均的标准误差(SE)将 定义为 的指标。通过这种方式,具有高 m、高 R 和低 SE 的 - 相关性是最敏感和最可靠的。虽然可以对线性回归进行显著性检验,但得到的概率 p 值对样本量非常敏感,在这种情况下会导致不切实际的低值。相反,我们使用 R > 0.3 表示存在低但可检测的相关性的概念 [46]。在图 6 的 a) 部分,我们展示了每个九个相关性的这三个相关性描述符,并包含一条虚线绿线来显示可检测相关性的 R = 0.3 限制。 仅使用 GROD KAM 最小值、GROD PQ 最大值和 3×3 KAM 的 - 相关性会产生无法检测的相关性,这可能是由于 KAM 对晶粒/台阶/核心尺寸的敏感性以及最高模式质量像素的随机选择方式所致。其他 - 相关性,尤其是当 取自 GROD 平均值、KAM 和 CMA 时,会给出敏感且可靠的相关性。而取自 GROD 平均值最大值的 给出了最敏感的相关性,但其标准误差较大,可靠性不高。为了回答图 5 中哪个是最佳晶粒平均值相关性的问题,我们将这些相关性描述符结合为 Rm 和 Rm/SE,后者更侧重于标准误差,该误差也包含在 R 的计算中。图 6 部分 b)展示了九种 - 相关性中 Rm 和 Rm/SE 的变化情况。该组合统计量的值越大, 作为 预测器的表现就越好。 如果考虑 Rm/SE,晶粒平均应变的最佳预测因子是 GROD 均值和 CMA;需要注意的是,由于晶粒中空间分布相似,GROD 均值最小值和 GROD 质心与 GROD 均值具有相似值。然而,如果考虑 Rm,则 的最佳指标是 GROD 均值最大值,这主要归因于其陡峭的相关梯度。GROD 均值最大值是使用远离平均取向最严重的参考取向计算的,因此突出了取向的异质性;由于ɛ eff 分布高度异质,GROD 均值最大值确实可能是应变场的最合适指标。

Fig. 6. An analysis of the correlations between HRDIC effective strain and EBSD misorientation in Fig. 5. Part a) shows the gradient of the linear fit (m), the average standard error of the moving mean (SE) and the correlation gradient (R). Part b) gives the combined statistics Rm and Rm/SE for each of the grain-level correlations.
图 6. 图 5 中 HRDIC 有效应变与 EBSD 晶格倾斜相关性的分析。部分 a)显示了线性拟合的梯度(m)、移动平均的标准误差平均值(SE)以及相关梯度(R)。部分 b)给出了每个晶粒级相关性的组合统计量 Rm 和 Rm/SE。
3.2. Correlations between plastic strain and lattice misorientation at the sub-grain scale
3.2. 亚晶尺度上的塑性应变与晶格倾斜的相关性
为了探究晶粒内部取向差异的度量如何反映损伤机制,我们需要研究应变与取向差异在空间上的关系。我们通过在每个晶粒内部对ɛ和ϕ进行逐像素比较来实现这一点。在关联平均晶粒值 和 时,GROD Mean Max 和 GROD Mean 给出了最敏感和可靠的关联,因此我们将使用这些度量进行亚晶粒关联。我们还将使用 KAM,因为它本身由于核平均而具有空间分辨率,并且在文献中频繁使用[8]。在晶粒内部,塑性应变(ɛ eff )高度集中在滑移带中,但取向差异则平滑变化。我们对ɛ eff 数据进行了平滑和粗化处理,以产生连续应变( ),试图改进逐像素比较。这是通过将 2D 高斯滤波器应用于 11×11 像素的方核上的ɛ eff 实现的。我们还计算了这种粗化应变的梯度( ),作为水平和垂直方向梯度平方和的平方根。
尽管一些作者报告在亚晶尺度上塑性应变与晶格畸变之间没有相关性[8],但在某些情况下,我们观察到强烈的空间相关性,这取决于数据的处理方式以及特定晶粒的滑移特性。有些晶粒变形相对均匀,图 7 展示了一个这样的晶粒;在该晶粒中,滑移带均匀分布且强度相似,但在接近晶界时它们会逐渐减弱或改变特性。图 7 中的应变分量显示,当进行平滑处理后,应变是相当均匀的,该应变场的梯度在晶界处最高。对于这项分析,我们使用 Spearman 等级相关系数(ρ)作为相关性强度的度量,与 Pearson 系数不同,它是一种非参数方法,不假设正态分布或线性关系,仅假设单调差异。 该晶粒的像素间相关性表明,应变梯度与 KAM 之间的空间相关性最强且为正相关(ρ = 0.64),其次为 GROD 均值(ρ = 0.62)。因此,滑移与微观结构晶界之间的相互作用决定了该晶粒中塑性应变与晶格取向之间的关系。在某些晶粒中,最强的相关性为负相关,尤其是在粗化应变与 GROD 均值或 KAM 之间。这种负相关主要因为晶格取向与应变梯度呈正相关。一些晶粒变形更加异质,图 8 展示了一个这样的晶粒示例;在该晶粒中,滑移带在晶粒中心附近穿透孪晶处分叉。这种分叉与晶粒中心应变值更大有关,这在粗化应变图中得到突出显示。 该晶粒的像素间相关性表明,粗化应变与 GROD 均值最大值之间的空间相关性最强且为正(ρ = 0.75)。对于该晶粒,造成晶粒内部取向异质性的最大取向偏差指标是局部塑性应变的最佳指示器。在其他晶粒中,一个区域可能存在大量应变,随着靠近晶界而逐渐减弱,同时晶界处 GROD 均值较高,而晶粒的另一区域则无应变;在这种情况下,GROD 均值最大值将强烈但呈负相关。

Fig. 7. The pixel-to-pixel correlations within a single grain in which the strain is relatively homogeneous. Data arranged as a table; strain data at the top, horizontal, and misorientation data on the left, vertical. The correlations in parts a), b) and c) correlate the GROD Mean to the effective strain, the coarsened strain and the gradient of the strain, respectively. Similarly, parts d), e) and f) correlate the KAM to these measures of strain and parts g), h) and i) correlate the GROD Mean Max to these measures of strain. The Spearman's rank (ρ) is displayed in each part.
图 7. 单个晶粒内的像素间相关性,其中应变相对均匀。数据以表格形式排列;应变数据位于顶部,水平排列,取向数据位于左侧,垂直排列。部分 a)、b) 和 c) 分别将 GROD Mean 与有效应变、粗化应变和应变梯度相关联。类似地,部分 d)、e) 和 f) 将 KAM 与这些应变指标相关联,部分 g)、h) 和 i) 将 GROD Mean Max 与这些应变指标相关联。每个部分均显示 Spearman 秩相关系数 (ρ)。

Fig. 8. The pixel-to-pixel correlations within a single grain in which the strain is relatively heterogeneous. Data arranged as a table; strain data at the top, horizontal, and misorientation data on the left, vertical. The correlations in parts a), b) and c) correlate the GROD Mean to the effective strain, the coarsened strain and the gradient of the strain, respectively. Similarly, parts d), e) and f) correlate the KAM to these measures of strain and parts g), h) and i) correlate the GROD Mean Max to these measures of strain. The Spearman's rank (ρ) is displayed in each part.
图 8. 单个晶粒内的像素间相关性,其中应变相对异质。数据以表格形式排列;应变数据位于顶部,水平排列,取向数据位于左侧,垂直排列。部分 a)、b) 和 c) 分别将 GROD Mean 与有效应变、粗化应变和应变梯度相关联。类似地,部分 d)、e) 和 f) 将 KAM 与这些应变指标相关联,部分 g)、h) 和 i) 将 GROD Mean Max 与这些应变指标相关联。每个部分均显示 Spearman 秩相关系数 (ρ)。
我们对 613 个晶粒进行了亚晶粒像素到像素的分析,并展示了九种相关性(ɛ eff 、 和 分别与 GROD Mean、KAM 和 GROD Mean Max 相关)的斯皮尔曼等级分布,如图 9 所示。随着斯皮尔曼等级接近±1,相关性增强,垂直线标出了ρ = ±0.3 的位置,表示相关性变得可检测。很明显,ɛ eff 与取向差的相关性最差,有大量晶粒显示ρ → 0。分布最宽,因此亚晶粒空间相关性最好的是 与 GROD Mean Max,但 与 GROD Mean 和 KAM 之间也存在一些强正相关。每个 613 个晶粒的最大正相关ρ → 1 和最小负相关ρ → −1 的分布如图 10a)所示,同时显示了ρ = ±0.3 的条件下的空间相关性可检测性引导线。 从这个直方图我们可以发现,在 60.2%的晶粒中,正相关强于负相关,并且总共有 87.9%的晶粒在测量对之一(ρ > 0.3, ρ < −0.3)之间存在可检测的相关性:52.2%为正相关,35.7%为负相关。我们在图 10b)中展示了哪一对相关性给出了最强的正相关和负相关,以条形图形式呈现九对中的每一对。从这个条形图可以看出,最常见的是粗化应变与 GROD Mean Max 之间的亚晶粒像素间相关性最强。虽然图 8 是这种正相关的例子,但图 10b)中的条形图表明,这种相关性可能是正相关也可能是负相关,概率几乎相等。因此,虽然 GROD Mean Max 可能可以很好地指示晶粒内应变的幅度及其异质性,但它不能被依赖来指示应变的空间位置;对于正的空间相关性,应该使用 GROD Mean 或 KAM 来推断塑性变形梯度的空间位置。

Fig. 9. The frequency distribution of the Spearman's rank (ρ) for each of the nine sub-grain pixel-to-pixel correlations.
图 9. 九个亚晶粒像素间相关性的 Spearman 等级(ρ)的频率分布。

Fig. 10. The maximum Spearman's rank (ρ) for each grain and its associated pixel-to-pixel correlation pair. a) A histogram showing the fraction of grains that demonstrate the associated range in the absolute maximum positive and inverse Spearman's rank. b) A bar chart showing the fraction of grains in which each of the nine pixel-to-pixel correlations produces the maximum positive and inverse ρ.
图 10. 每个晶粒及其相关的像素间相关性对的最大 Spearman 等级(ρ)。a) 显示表现出相关范围内绝对最大正反 Spearman 等级的晶粒比例的直方图。b) 显示每个九个像素间相关性产生最大正反ρ的晶粒比例的柱状图。
我们证明了,虽然 GROD 均值和 KAM 取向偏差度量是局部应变梯度的最可靠指标,但由于其固有的异质性度量,GROD 均值最大值给出了最强的局部正相关和负相关。基于 EBSD 的某一特定取向偏差度量在表征塑性变形分布的适用性取决于该晶粒中活跃的滑移模式的数量及其相对强度,以及它们与晶界等微观结构特征的相互作用。相对滑移活性受晶体取向和约束的影响,在表面和体相中会不同。
3.3. The influence of grain orientation on grain deformation
3.3. 晶粒取向对晶粒变形的影响
由于相对滑移活性受取向影响,因此晶粒取向可能与局部应变和取向差度量相关。为评估晶粒取向对塑性应变幅值的影响,我们基于图 1a)中的散乱取向,在 IPF(加载方向)内用彩色标尺绘制了晶粒平均应变。该材料的织构是随机的,我们通过局部线性插值平滑了散点图,生成了图 11 中的晶粒平均 IPF。IPF 图表明晶粒平均 与晶粒取向无关。由于晶粒平均 与 呈正相关(图 5),我们也可以预期取向差 IPF 是随机的。为确认这一点,我们为九种 度量中的每一种绘制了 IPF(加载方向)(图 12),确实,晶粒取向与 幅值之间没有明显的相关性。 这是一个重要结果,因为基于全局边界条件的变形取向预测器,如泰勒因子或施密特因子,通常用于解释观察到的局部变形[48]、[49]、[50]、[51]、[52],但我们发现,在该合金表面和 0.02 的应变后,晶粒的取向与其变形程度之间没有关系。为了明确地证明这一点,我们计算了每个晶粒在原始、未变形取向下的泰勒因子和施密特因子,并分别绘制在 IPFs(加载方向)的图 13 a)和 b)中。

Fig. 11. An IPF (loading direction) of the grain average orientations from Fig. 1, colour-coded according to the grain mean HRDIC effective strain and smoothed in regards to the strain values to provide interpolation between the sampled orientations.
图 11。图 1 中晶粒平均取向的 IPF(加载方向),根据晶粒平均 HRDIC 有效应变进行颜色编码,并根据应变值进行平滑处理,以提供在采样取向之间的插值。

Fig. 12. IPFs (loading direction) of the grain average orientations from Fig. 1, colour-coded according to the grain mean lattice misorientation as calculated one of the nine different ways detailed in Table 1. The IPFs are smoothed in the misorientation values to provide interpolation between the sampled orientations.
图 12. 图 1 中晶粒平均取向的 IPFs(加载方向),根据表 1 中详细说明的九种不同方法计算的晶粒平均晶格位向进行颜色编码。IPFs 在位向值上进行了平滑处理,以提供采样取向之间的插值。

Fig. 13. a) Taylor factor and b) Schmid factor plotted on IPFs (loading direction).
图 13. a) Taylor 因子和 b) Schmid 因子在 IPFs(加载方向)上绘制。
晶粒的泰勒因子是预测使该晶粒变形所需工作量的一种指标;所有晶粒都被假定为承受相同的应变,因此较高的泰勒因子表明变形该晶粒需要更多的工作量[53,54]。因此,具有较高泰勒因子的晶粒通常被认为比具有较低泰勒因子的晶粒更硬,并且预计其应变值较低。类似地,较高的施密特因子对应于较高的滑移 Resolved 剪切应力,因此具有较高最大施密特因子的晶粒通常被认为比具有较低最大施密特因子的晶粒更软。然而,如图 13 所示,图 13 中泰勒因子和施密特因子的分布与图 11 中的应变分布以及图 12 中的九种取向分布均无相似之处。为了巩固这一点,在图 14 中,我们将晶粒平均 HRDIC 塑性有效应变(数据点位置)与晶粒原始、未变形取向计算的泰勒因子(a 部分)和施密特因子(b 部分)进行绘制,其中数据点的颜色和大小与 GROD 平均取向相关。 通过绘制 590 个晶粒的这些值,我们能够明确地表明,在宏观轴向应变ε xx ∼0.02 时,使用宏观或局部边界条件(后者参见补充材料)计算的泰勒因子与塑性应变或晶格畸变量之间没有关系。此外,Schmid 因子与有效应变之间也仅存在微弱的关系:Schmid 因子较低的晶粒倾向于变形较小,而应变较高的晶粒往往具有较高的 Schmid 因子,但 Schmid 因子较高的晶粒并不一定会发生较大应变。

Fig. 14. a) Taylor factor and b) Schmid factor plotted as a function of mean grain HRDIC effective strain and EBSD misorientation (GROD Mean, colours and marker size).
图 14. a) 泰勒因子和 b) Schmid 因子随平均晶粒 HRDIC 有效应变和 EBSD 取向(GROD Mean,颜色和标记大小)的变化图
4. Discussion 4. 讨论
全球平均晶格倾斜已被证明与宏观塑性应变线性相关[6,7,9,55],直到应变为ε xx < 0.125[28]之后,这种线性关系出现偏差。然而,在给定的应变水平下,最小和最大平均晶粒倾斜存在很大差异[7]。这是因为不同晶粒的应变不同,而且晶粒尺度的应变和倾斜度之间仅存在微弱相关性[18]。我们的结果与这些发现一致,并补充指出,倾斜度值的离散程度很大程度上取决于所使用的倾斜度测量方法。晶粒平均倾斜度的离散程度在 1°的量级,这与奥氏体不锈钢中类似幅度的单步应变所报告的离散程度[6,7]以及 Ni 合金 A600 中的离散程度[6]一致。然而,亚晶粒倾斜度可能超过 5°,具体取决于所使用的倾斜度测量方法。
HRDIC 测量表明,晶粒内晶格转位的幅度和位置不仅取决于塑性应变的幅度,还取决于该晶粒中活跃的滑移模式的数量和相对强度,以及这些滑移模式与晶界等微观结构特征的相互作用。因此,我们认为塑性应变和晶格旋转的局部变形特征源于变形过程中晶粒之间的复杂相互作用,而无法通过基于取向的全局变形张量的塑性简单预测因子(如泰勒因子或施密特因子)来确定。这种非晶体学应变局部化在考虑图 2 中±45°方向于加载方向跨越多个晶粒的中尺度应变带时尤为明显,这些应变带必然源于与变形相容性以及许多晶粒之间相互作用相关的效应。 这些高应变带,正如晶体塑性有限元模型[56]所预测的,穿过许多不同取向的晶粒,并且与晶粒尺度上局部应变和晶体取向之间缺乏相关性一致。此外,晶格取向适合描述塑性应变,取决于取向的计算方式。
KAM 是局部几何必需位错(GND)密度的指标,通常使用 Nye 张量模型[57]将其转换为 GND 密度。严格来说,GND 密度取决于活动滑移系统上塑性自旋的梯度。在多晶变形中,塑性应变的梯度通常意味着塑性自旋的梯度,因此预计塑性应变的梯度将与 KAM 相关。我们的测量显示了这种亚晶粒相关性(例如 与 KAM 之间),但它并不总是最强的相关性,这取决于晶粒内的应变异质性和滑移与微观结构特征的相互作用。
4.1. Orientation-based predictors of deformation
4.1. 基于取向的变形预测
在晶粒内部观察到的离散滑移带被认为是由镍基高温合金的低层错能引起的,这导致位错分解成部分位错,而部分位错难以跨滑移[58]。此外,γ'强化析出物的局部剪切导致滑移面软化[59],因此局部剪切带包含高应变(ɛ eff ∼0.4)。本研究采用的高空间分辨率使我们能够测量离散的塑性事件,因此我们能够验证或挑战塑性连续理论中使用的传统假设。
泰勒理论[53]在冯·米塞斯[60]之后假设所有晶粒通过激活至少五个滑移系统经历相同的形状变化。虽然已经注意到晶粒的不同部分可能表现出类似 Sachs 的单滑移行为,但通常认为晶粒总体上会满足这一五个滑移系统标准[61]。然而,我们观察到许多晶粒中只有一个滑移面是活跃的,这可能导致一个单滑移系统,最多三个。观察到的滑移系统数量有限,部分原因是表面承受的平面应力状态,正如全场晶体塑性模型[62]所预测的那样,但也因为与泰勒理论的核心假设——所有晶粒都受到完全约束——不同,晶粒彼此之间以及与宏观变形的变形方式各不相同。这并非新的观察结果,其他晶体塑性模型,无论是自洽的还是全场的,都考虑到了这一点。 然而,基于取向的变形预测因子,例如泰勒因子和施密特因子,已被用于解释例如Σ3 退火孪晶界处的疲劳预制裂纹萌生[48],表征裂纹尖端的塑性区[49],以及与局部裂纹扩展速率[50]和局部晶格取向度[51]或局部塑性应变直接相关[52]。在所有这些情况下,都假设在小应变下,局部应变与施密特因子增加或泰勒因子减少呈正相关。我们的数据显示,这种基于全局边界条件的简单预测方法不适用于该系统在低变形水平的情况。虽然已有研究表明,施密特因子的局部条件可以更好地预测该尺度上的应变累积[63],但我们的结果表明,即使局部约束也无法解释由于我们观察到的较大中尺度带状结构(非晶体学特征)导致的塑性应变幅度。 为了进一步探讨这一点,我们使用平均晶粒应变局部约束进行了泰勒因子计算,仍然观察到与塑性应变幅值的相关性较差(参见补充材料)。
我们的观察表明泰勒因子与局部塑性应变量不相关,这与双相铁素体-马氏体钢中的 HRDIC 和 EBSD 测量结果一致[64]。然而,在面心立方纯铝[65]和 BCC 铁素体-马氏体钢[66]的研究中,作者将晶粒分组为取向族,表明具有高泰勒因子的晶粒族在经历高达~0.3 的大单调塑性应变后,倾向于产生更大的晶格畸变。作者假设所有晶粒都经历相同的应变,以此论证具有更高泰勒因子的晶粒需要更多的滑移来适应相同的应变,因此它们会产生更大的晶格畸变。在其他研究中,晶粒族泰勒因子与晶粒破碎程度相关,但与畸变无关[67]。因此,我们得出结论,尽管泰勒理论可能有助于确定宏观试样的整体硬化行为,但它更适用于高应变范围,并且不能缩小到晶粒与晶粒的级别,尤其是在相对较低宏观塑性应变的情况下。
最大 Schmid 因子是变形的常用基于取向的预测因子,同样地,我们看到它与局部塑性应变或晶格畸变之间没有很好的相关性。激活的滑移系与最大 Schmid 因子之间存在强相关性,这与先前的工作[17]一致,但没有与应变幅值的相关性。这与结合了 EBSD 与比这里显示的更低分辨率的 DIC 的研究[64,[68], [69], [70]]以及用于测量滑移步高的相关 EBSD 和原子力显微镜的研究[71]一致。Schmid 因子的使用可能适用于更各向异性的晶体系统,并且已被证明在六方 Mg 合金中描述局部裂纹扩展速率[50]以及在六方 Ti 合金[72]中描述在不同滑移系上变形的晶粒之间的相对应变是有用的。因此,我们得出结论,基于取向的“硬”和“软”晶粒的概念[73]在 FCC γ/γ’镍基高温合金的小范围整体塑性变形下并不相关。 晶粒尺寸的影响被认为比取向的影响更为显著[64],并且对疲劳裂纹萌生位点同样重要[74]。在图 5 中,晶粒平均应变-晶格位向相关性数据点的颜色和大小与晶粒尺寸相关。我们观察到晶格位向与晶粒尺寸之间存在正相关关系,但这种关系在塑性应变上不太明显。有趣的是,通过晶粒平均 KAM 测量的晶格位向与晶粒尺寸呈负相关关系。这是因为在该材料中,许多晶粒包含相对较大的单一滑移带区域,导致晶粒内部几乎没有局部晶格位向。因此,较大的晶粒具有更大的对应这些区域的面积,这导致平均 KAM 值较低。重要的是,由于 KAM 是对变形的非常局部的测量,因此它依赖于步长,并且由于晶粒中的步数与晶粒尺寸成正比,KAM 也与晶粒尺寸成正比。GROD 变体和 CMA 测量不受此问题的影响[28,30]。
4.2. Sub-grain deformation localisation
4.2. 亚晶粒变形局部化
通过图 2、图 7 和图 8 中晶粒塑性变形和晶格转位的具体实例,我们表明晶粒内的晶格转位不仅取决于应变的大小,还取决于该晶粒特有的滑移特性。这意味着晶粒可能经历低但异质的塑性应变,这将导致较大的晶格转位。同样,可能存在显著的塑性应变,但仅在单个滑移系上,导致晶粒晶格旋转,但晶粒内晶格转位较低。在晶界附近,即使塑性应变很小,也可能存在显著的晶格转位。这是因为滑移带在晶界前消失,导致塑性应变梯度发生急剧变化,需要相应的晶格重新取向,以保持与晶粒中心和相邻晶粒的变形兼容性。 在塑性应变方面,先前关于塑性应变与晶界邻近关系的低分辨率 DIC 研究已经表明,靠近晶界的应变值范围更广[68,75],但相对于其质心,晶界处的平均塑性应变没有显著差异。为了进一步探索这一点,需要分析沿着单个滑移迹线朝向晶界时应变的变化[76]。
我们观察到的应变梯度与晶格转位的关联,尤其是在晶界处,得到了文献中关于晶格转位局部化的报告的支持[69,75,[77], [78], [79], [80]]。这种关系与 Ashby 对晶界处 GND 堆积导致局部晶格转位的解释[13]以及导致局部滑移抗力的背应力[81]相一致。然而,晶界处晶格转位的发生方式除了 Ashby 所述之外还有其他方式,这些变形模式已在奥氏体不锈钢的 HRDIC-EBSD 亚晶粒比较中得到充分描述[17]。例如,滑移带与晶界的碰撞可以在靠近晶界的邻近晶粒中引起晶格转位[14,15],如果滑移传递不顺利,这种现象尤为普遍[14]。此外,特殊类型的晶界,如Σ3 退火孪晶界,及其与高角度晶界相互作用,在疲劳裂纹萌生部位发展过程中对应变局部化具有重要意义[74]。 尽管这里研究的许多晶粒在应变梯度与 KAM 或 GROD 均值之间表现出强烈的空间相关性,但大多数并不如此。因此,滑移带消退、滑移带与晶界碰撞以及晶粒破碎等现象很可能在整个材料中都活跃着。晶粒邻域如何变形以及它们如何与剪切带等长程局部化相互作用,都决定了通常用于解释局部失效的应变局部化。
4.3. The suitability of different lattice misorientation calculations as a measure of local plasticity
4.3. 不同晶格取向计算方法作为局部塑性的适用性
晶格倾斜常用于计算几何必要位错密度,作为残余塑性变形的度量[82],同时也用于验证晶体塑性全场模型[63,70,[83], [84], [85], [86], [87]]。然而,图 3 中所示的不同晶格倾斜度量表明,从相同的 EBSD 数据集中可以得到广泛的幅度和空间变化范围。研究表明,对于多种 GROD 变体[29],晶格倾斜的空间变化存在偏差,以强调 GROD 参考方向作为原始方向会导致晶格倾斜包含刚体旋转和塑性应变产生的旋转,而其他 GROD 变体仅描述后者。在图 5 和图 6a)中,我们展示了这一差异的重要性;GROD 原始度量与平面内的变形度量相关性较差,这是由于刚体和塑性旋转的三维性质所致。在图 6 a) 我们表明 GROD 均值和 CMA 与晶粒平均塑性应变的幅度具有最强的相关性,而 GROD 均值最大值给出了最敏感的相关性,并且更能指示异质性。
研究表明,通过 GROD 均值计算晶格取向差比使用 KAM 均值更不敏感于 EBSD 步长[8,28,30]。作为晶粒取向差的度量,CMA 无法映射到亚晶粒尺度,但比 GROD 均值更不敏感于步长,且对整体塑性变形的变化更敏感[30]。这种改进的敏感性体现在图 6 中晶粒尺度的统计相关性分析中。在图 4 中,我们展示了整个视场(约 1×0.5 毫米)的塑性应变和取向差分布。虽然 GROD 均值和 KAM 分布具有最低的 Kullback-Leibler 偏差,因此最能代表塑性应变分布,但分布的相似性主要体现在低应变和低取向差状态。高应变状态被认为是裂纹萌生和局部退化机制的重要影响因素[74],而 GROD Mean Max 最能代表这一状态。 我们必须因此得出结论,仅使用单一的 EBSD 晶格取向差测量指标来量化应变局部化是困难的,因此,为这种目的对这些数据集进行任何解释都应谨慎进行。当仅使用局部晶格取向差或 GND 密度来解释局部失效机制时,这种情况尤其如此。正如我们的结果所示,滑移带在晶粒内部几乎不产生晶格取向差,然而在不锈钢中,腐蚀和裂纹却优先沿滑移带发生[25,88]。
4.4. The spatial distribution of slip and lattice misorientation
4.4. 滑移和晶格取向差的空間分布
这里的一个观察是,在相同空间分辨率下进行像素到像素的亚晶粒分析时,滑移和晶格转位的空间分布存在差异。在这种合金中,滑移高度局部化于滑移带,因此具有离散性。相反,这里显示的转位在同一尺度上变化平滑,只有在具有非常高的空间和角度分辨率的 EBSD 研究中才能看到滑移带[15]。对于大多数晶粒而言,滑移带承载了大部分应变,但几乎不产生局部转位。这种空间分布的性质差异表明,产生应变的位错与适应应变梯度的位错是不同的。在阿什比(Ashby)的术语中,沿滑移带储存的位错是统计储存位错(SSD),而引起转位的位错是几何储存位错(GND)。如果滑移是均匀的,那么可以假设 GND 起源于 SSD,这些 SSD 在应变异质性区域聚集。 但由于滑移以带状形式发生,大多数产生的位错环并未参与滑移,尽管它们的形成受到滑移活动的影响。这与基于连续介质力学的晶体塑性框架模拟多晶变形的方式有很大不同。在这些模型中,滑移被假定为均匀的,且不强制执行晶格旋转连续性[89][90][91]。考虑到滑移带的间距在 1 微米量级,这种建模方式与实际变形过程的差异可能会限制这些建模方法预测损伤萌生或模拟退火所需的变形状态详细描述的能力。当然,目前还没有方法能够模拟不同程度的滑移局部化,正如最近对质子辐照锆合金的实验所示[92],这可以产生非常不同的晶格旋转模式。
5. Conclusions 5. 结论
在亚晶尺度上,晶格位错是晶粒内滑移模式的数量、强度和空间分布及其与晶界等微观结构特征相互作用的结果。此外,位错计算的方式对晶格曲率的幅度和空间分布有巨大影响。我们发现,当将塑性应变粗化以平滑滑移带中的应变,并使用 GROD Mean Max 计算位错以反映异质性时,晶粒内塑性应变与位错之间的空间相关性最强。然而,在实际中,这种相关性以相同的概率可以是正向或反向,因此建议同时使用 GROD Mean 或 KAM 来识别最高应变梯度区域。
泰勒因子和施密特因子不能作为预测晶粒塑性应变或其晶格转位的指标。这是因为微观尺度上的晶粒相互作用效应,例如滑移带向晶界处的衰减、邻近晶粒对晶界的滑移阻碍以及滑移带与退火孪晶的相互作用,这些效应并不完全依赖于晶粒取向,此外还因为中尺度变形带,这种变形带并非晶体学特征。
晶粒塑性应变与其晶格转位之间的正相关性存在广泛离散,这种离散与其取向无关:局部晶粒相互作用以及高应变穿晶带的发育会消除局部塑性应变与晶体学取向之间的任何关系。
滑移和晶格转位的空间分布差异很大:滑移集中在锐利的带状区域,而晶格转位在同一尺度上平滑变化。这与连续介质晶体塑性模型中如何模拟变形非常不同,这可能对其在微观结构尺度上模拟损伤和变形状态的应用性产生影响。
Declaration of Competing Interest
利益冲突声明
作者声明他们没有已知的利益冲突或个人关系可能影响本论文中报告的工作。
Acknowledgments 致谢
作者感谢 EPSRC 资助其时间 [EP/I005420/1, EP/M005607/1, EP/M000737/1]。我们还要感谢以下人士进行有益的讨论:南安普顿大学的 Philippa Reed、Fabrice Pierron 和 Rong Jiang,拉夫堡大学的 Liuguo Zhao,罗尔斯·罗伊斯公司的 Mark Hardy 和 Duncan Maclachlan,以及通用电气动力公司的 Gordon McColvin。
Appendix. Supplementary materials
附录。补充材料
Research data for this article
本文研究数据
镍基高温合金表面高分辨率变形数据:粗大析出物
高分辨率数字图像相关(HRDIC)和背散射电子衍射(EBSD)数据,量化了含有粗大γ'析出物(250 nm 直径)的镍基高温合金在 2%拉伸应变后的表面变形情况。
关于研究数据的更多信息
References
- [1]Mechanical Metallurgy(1986)
- [2]Microstructure-sensitive computational modeling of fatigue crack formationInt. J. Fatigue, 32 (2010), pp. 1521-1542, 10.1016/j.ijfatigue.2010.01.003
- [3]Measurements of stress fields near a grain boundary: exploring blocked arrays of dislocations in 3DActa Mater., 96 (2015), pp. 229-236, 10.1016/j.actamat.2015.05.041
- [4]Evaluating deformation-induced grain orientation change in a polycrystal during in situ tensile deformation using EBSDMicrosc. Microanal., 21 (2015), pp. 969-984, 10.1017/S1431927615000677
- [5]A review of strain analysis using electron backscatter diffractionMicrosc. Microanal., 17 (2011), pp. 316-329
- [6]Quantification of plastic strain of stainless steel and nickel alloy by electron backscatter diffractionActa Mater., 54 (2006), pp. 539-548, 10.1016/j.actamat.2005.08.046
- [7]Plastic deformation and creep damage evaluations of type 316 austenitic stainless steels by EBSDMater. Charact., 61 (2010), pp. 913-922, 10.1016/j.matchar.2010.05.006
- [8]Diffraction-based misorientation mapping : a continuum mechanics descriptionJ. Mech. Phys. Solids, 133 (2019), Article 103709, 10.1016/j.jmps.2019.103709
- [9]Residual life prediction of turbine blades of aeroderivative gas turbinesAdv. Eng. Mater., 3 (2001), p. 922, 10.1002/1527-2648(200111)3:11<922::AID−ADEM922>3.0.CO;2-K
- [10]Analysis of damage behaviour based on EBSD method under creep–fatigue conditions for polycrystalline nickel base superalloysMater. Sci. Technol., 30 (2014), pp. 24-31, 10.1179/1743284713Y.0000000327
- [11]Evolution of dislocation density distributions in copper during tensile deformationActa Mater., 61 (2013), pp. 7227-7239, 10.1016/j.actamat.2013.08.027
- [12]Deformation compatibility in a single crystalline Ni superalloyProc. R. Soc. A Math. Phys. Eng. Sci., 472 (2016), Article 20150690, 10.1098/rspa.2015.0690
- [13]The deformation of plastically non-homogeneous materialsPhilos. Mag., 21 (1970), pp. 399-424, 10.1080/14786437008238426
- [14]Grain boundary – slip bands interactions: impact on the fatigue crack initiation in a polycrystalline forged Ni-based superalloyActa Mater., 99 (2015), pp. 325-336, 10.1016/j.actamat.2015.08.009
- [15]Slip band – grain boundary interactions in commercial-purity titaniumActa Mater., 76 (2014), pp. 1-12, 10.1016/j.actamat.2014.05.015
- [16]Slip transfer and plastic strain accumulation across grain boundaries in Hastelloy XJ. Mech. Phys. Solids, 60 (2012), pp. 1201-1220, 10.1016/j.jmps.2012.02.001
- [17]An experimental study of the polycrystalline plasticity of austenitic stainless steelInt. J. Plast., 74 (2015), pp. 92-109
- [18]Correlation between microstructural scale plastic strain and misorientationJ. Japan Inst. Met., 74 (2010), pp. 467-474, 10.2320/jinstmet.74.467
- [19]Microstructure development in a high-nickel austenitic stainless steel using EBSD during in situ tensile deformationMater. Charact., 135 (2018), pp. 228-237, 10.1016/j.matchar.2017.11.046
- [20]Effects of grain size and boundary structure on the dynamic tensile response of copperJ. Appl. Phys., 110 (2011), 10.1063/1.3607294
- [21]The deformation behaviour of hard and soft grains in RR1000 nickel-based superalloyIOP Conf. Ser. Mater. Sci. Eng., 82 (2015), Article 012033, 10.1088/1757-899X/82/1/012033
- [22]Fracture mode identification of low alloy steels and cast irons by electron back-scattered diffraction misorientation analysisJ. Mater. Sci. Technol., 33 (2017), pp. 1582-1595
- [23]A comparison of EBSD based strain indicators for the study of Fe-3Si steel subjected to cyclic loadingMater. Charact., 115 (2016), pp. 61-70, 10.1016/j.matchar.2016.03.020
- [24]Stress corrosion cracking initiation and short crack growth behavior in Alloy 182 weld metal under simulated BWR/HWC conditionsCorros. Sci., 131 (2018), pp. 208-222
- [25]Corrosion fatigue and microstructural characterisation of Type 316 austenitic stainless steels tested in PWR primary waterCorros. Sci., 131 (2018), pp. 57-70, 10.1016/J.CORSCI.2017.10.022
- [26]Effect of hot rolling and cooling conditions on intergranular corrosion behavior in Alloy625 clad steelCorros. Sci., 99 (2015), pp. 125-133, 10.1016/j.corsci.2015.06.028
- [27]DefDAP: Deformation Data Analysis in PythonZenodo (2020)
- [28]Measurement of local plastic strain distribution of stainless steel by electron backscatter diffractionMater. Charact., 60 (2009), pp. 125-132, 10.1016/j.matchar.2008.07.010
- [29]In situ EBSD observations of the evolution in crystallographic orientation with deformationJOM, 68 (2016), pp. 2730-2736, 10.1007/s11837-016-2084-x
- [30]On a novel strain indicator based on uncorrelated misorientation angles for correlating dislocation density to local strengthActa Mater., 150 (2018), pp. 195-205, 10.1016/j.actamat.2018.03.009
- [31]S.J. Hessell, W. Voice, A.W. James, S.A. Blackham, C.J. Small, M.R. Winstone, Nickel alloy for turbine engine components, USA6132527, 2000. doi:US005485919A.
- [32]Developing damage tolerance and creep resistance in high strength nickel alloy for disk applicationsSuperalloys (2004), pp. 83-90
- [33]The effect of y’ particle size distribution on the deformation mechanism in an advanced pollycrystalline nickel-base superalloySuperalloys. TMS, 2008 (2008), pp. 405-414
- [34]Deformation behaviour of an advanced nickel-based superalloy studied by neutron diffraction and electron microscopyActa Mater., 60 (2012), pp. 6829-6841, 10.1016/j.actamat.2012.09.005
- [35]High Resolution Deformation Data from the Surface of a Nickel-based Superalloy: Coarse PrecipitatesZenodo (2020)
- [36]Plastic strain mapping with sub-micron resolution rsing digital image correlationExp. Mech., 53 (2013), pp. 743-754, 10.1007/s11340-012-9685-2
- [37]Globally optimal stitching of tiled 3D microscopic image acquisitionsBioinformatics, 25 (2009), pp. 1463-1465, 10.1093/bioinformatics/btp184
- [38]LaVision, DaVis, (2018). http://www.lavision.de/en/company.php(accessed October 1, 2018).
- [39]The NumPy array: a structure for efficient numerical computationComput. Sci. Eng. (2011), pp. 22-30
- [40]J., Matplotlib: a 2D Graphics EnvironmentComput. Sci. Eng. (2007), pp. 90-95
- [41]Determination of a mean orientation in electron backscatter diffraction measurementsMetall. Mater. Trans. A Phys. Metall. Mater. Sci., 36 (2005), pp. 3427-3438, 10.1007/s11661-005-0016-4
- [42]Conversion of EBSD data by a quaternion based algorithm to be used for grain structure simulationsTech. Mech., 30 (2009), pp. 401-413
- [43]Consistent representations of and conversions between 3D rotationsModel. Simul. Mater. Sci. Eng., 23 (2015), 10.1088/0965-0393/23/8/083501
- [44]Astropy: a community Python package for astronomyAstron. Astrophys, 558 (2013), pp. 1-9, 10.1051/0004-6361/201322068
- [45]SciPy 1.0 Contributors, SciPy 1.0: fundamental algorithms for scientific computing in PythonNat. Methods (2020), 10.1038/s41592-019-0686-2
- [46]Statistics corner: a guide to appropriate use of correlation coefficient in medical researchMalawi Med. J., 24 (2012), pp. 69-71
- [47]On information and sufficiencyAnn. Math. Stat., 22 (1951), pp. 79-86, 10.1214/aoms/1177729694
- [48]Recent studies of local texture and its influence on failureMater. Sci. Eng. A., 257 (1998), pp. 165-170, 10.1016/S0921-5093(98)00835-1
- [49]Iterative thermomechanical processing of alloy 600 for improved resistance to corrosion and stress corrosion crackingActa Mater., 113 (2016), pp. 180-193, 10.1016/j.actamat.2016.05.009
- [50]Three-dimensional in situ observations of short fatigue crack growth in magnesiumActa Mater., 59 (2011), pp. 6761-6771, 10.1016/j.actamat.2011.07.034
- [51]Effect of cryorolling on microstructure and mechanical properties of a peak-aged AA6082 extrusionJ. Alloys Compd., 695 (2017), pp. 827-840, 10.1016/j.jallcom.2016.10.135
- [52]Digital image correlation under scanning electron microscopy: methodology and validationExp. Mech., 53 (2013), pp. 1743-1761, 10.1007/s11340-013-9782-x
- [53]Plastic strain in metalsJ. Inst. Met., 62 (1938), pp. 307-324doi:not found
- [54]Some applications of the Taylor theory of polycrystal plasticityKrist. Und Tech., 5 (1970), pp. 145-175, 10.1002/crat.19700050112
- [55]Assessment of local deformation using EBSD: quantification of accuracy of measurement and definition of local gradientUltramicroscopy, 111 (2011), pp. 1189-1199, 10.1016/j.ultramic.2011.02.004
- [56]Three-dimensional characterization of strain localization bands in high-resolution elastoplastic polycrystalsMech. Res. Commun., 36 (2009), pp. 762-768, 10.1016/j.mechrescom.2009.06.002
- [57]Some geometrical relations in dislocated crystalsActa Metall., 1 (1953), pp. 153-162
- [58]Intorduction to Dislocations(4th ed.) (2001)
- [59]On the origin of planar slip in F.C.C. alloysActa Metall., 37 (1989), pp. 2177-2183
- [60]Mechanik der plastischen formanderung von kristallenZeitschrift Fur Angew. Math. Und Mech., 8 (1928), p. 161
- [61]Microstructural evolution in a non-cell forming metal: AlMgActa Metall. Mater., 41 (1993), pp. 1421-1430, 10.1016/0956-7151(93)90251-M
- [62]Three-dimensional finite element simulation of a polycrystalline copper specimenActa Mater., 55 (2007), pp. 4121-4136, 10.1016/j.actamat.2007.01.053
- [63]An HR-EBSD and computational crystal plasticity investigation of microstructural stress distributions and fatigue hotspots in polycrystalline copperActa Mater., 115 (2016), pp. 45-57, 10.1016/j.actamat.2016.05.033
- [64]Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulationsInt. J. Plast., 63 (2014), pp. 198-210, 10.1016/j.ijplas.2014.06.004
- [65]Orientation dependence of dislocation structure evolution during cold rolling of aluminumMater. Sci. Eng. A, 494 (2008), pp. 28-35, 10.1016/j.msea.2007.10.090
- [66]Influence of plastic deformation heterogeneity on development of geometrically necessary dislocation density in dual phase steelMater. Sci. Eng. A, 667 (2016), pp. 435-443, 10.1016/j.msea.2016.05.022
- [67]EBSD study of the orientation dependence of substructure characteristics in a model Fe − 30 wt% Ni alloy subjected to hot deformationJ. Microsc., 217 (2005), pp. 138-151
- [68]Microstructure-Dependent local strain behavior in polycrystals through In-Situ scanning electron microscope tensile experimentsMetall. Mater. Trans. A Phys. Metall. Mater. Sci., 40 (2009), pp. 2363-2368, 10.1007/s11661-009-9938-6
- [69]In-situ mechanical testing for characterizing strain localization during deformation at elevated temperaturesExp. Mech., 52 (2012), pp. 405-416, 10.1007/s11340-011-9499-7
- [70]Grain-scale experimental validation of crystal plasticity finite element simulation of tantalum oligocrystalsInt. J. Plast., 60 (2014), pp. 1-18
- [71]Damage in nickel base superalloy: influence of local parameters measured by electron backscattered diffraction and atomic force microscopyScr. Mater., 60 (2009), pp. 269-272, 10.1016/j.scriptamat.2008.06.053
- [72]The effect of nanoscale a2 precipitation on strain localisation in a two-phase Ti-alloysActa Mater., 129 (2017), pp. 72-82, 10.1016/j.actamat.2016.10.035
- [73]A quantitative approach to study the effect of local texture and heterogeneous plastic strain on the deformation micromechanism in RR1000 nickel-based superalloyActa Mater., 74 (2014), pp. 110-124, 10.1016/j.actamat.2014.04.039
- [74]A combined grain scale elastic-plastic criterion for identification of fatigue crack initiation sites in a twin containing polycrystalline nickel-base superalloyActa Mater., 103 (2016), pp. 461-473, 10.1016/j.actamat.2015.09.050
- [75]Local plastic strain measurement by EBSDAppl. Mech. Mater., 7–8 (2007), pp. 173-179, 10.4028/www.scientific.net/AMM.7-8.173
- [76]D.T. Fullwood, A. Harte, J. Quinta da Fonseca, E.R. Homer, R.H. Wagoner, Slip band characteristics in the presence of grain boundaries in nickel-based superalloys, (2019).
- [77]Evaluation of intragranular misorientation parameters measured by EBSD in a hot worked austenitic stainless steelJ. Microsc., 228 (2007), pp. 373-383, 10.1111/j.1365-2818.2007.01850.x
- [78]Characterization of microstructural damage due to low-cycle fatigue by EBSD observationMater. Charact., 60 (2009), pp. 1454-1462, 10.1016/j.matchar.2009.07.003
- [79]The fundamental relationships between grain orientation, deformation-induced surface roughness and strain localization in an aluminum alloyMater. Sci. Eng. A, 530 (2011), pp. 107-116, 10.1016/j.msea.2011.09.050
- [80]Microstructure evolution and surface cracking behavior of superheavy forgings during hot forgingAdv. Mater. Sci. Eng., 2018 (2018), pp. 1-10
- [81]Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulationJ. Mech. Phys. Solids, 50 (2002), pp. 2403-2424, 10.1016/S0022-5096(02)00032-7
- [82]High resolution mapping of strains and rotations using electron backscatter diffractionMater. Sci. Technol., 22 (2006), pp. 1271-1278, 10.1179/174328406X130966
- [83]Investigation of three-dimensional aspects of grain-scale plastic surface deformation of an aluminum oligocrystalInt. J. Plast., 24 (2008), pp. 2278-2297, 10.1016/j.ijplas.2008.01.002
- [84]Polycrystal Plasticity: comparison Between Grain - Scale Observations of Deformation and SimulationsAnnu. Rev. Condens. Matter Phys., 5 (2014), pp. 317-346, 10.1146/annurev-conmatphys-031113-133846
- [85]Quantitative comparison between experimental measurements and CP-FEM predictions of plastic deformation in a tantalum oligocrystalInt. J. Mech. Sci., 92 (2015), pp. 98-108, 10.1016/j.ijmecsci.2014.12.010
- [86]Crystal plasticity modelling and HR-DIC measurement of slip activation and strain localisation in single and oligo-crystal Ni alloys under fatigueJ. Int. Plast. (2016), 10.1016/j.ijplas.2016.10.001.This
- [87]Microstructure based fatigue life prediction framework for polycrystalline nickel-base superalloys with emphasis on the role played by twin boundaries in crack initiationActa Mater., 107 (2016), pp. 152-167, 10.1016/j.actamat.2016.01.038
- [88]Multi-scale characterization of stress corrosion cracking of cold-worked stainless steels and the influence of Cr contentActa Mater., 57 (2009), pp. 5361-5381, 10.1016/j.actamat.2009.07.040
- [89]Modelling deformation microstructure with the crystal plasticity finite-element methodPhilos. Trans. R. Soc. A Math. Phys. Eng. Sci., 357 (1999), pp. 1589-1601, 10.1098/rsta.1999.0391
- [90]FEpX - finite element polycrystals: theory, finite element formulationNumer. Implement. Illustr. Exam. (2015)
- [91]DAMASK – The Düsseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scaleComput. Mater. Sci., 158 (2019), pp. 420-478, 10.1016/j.commatsci.2018.04.030
- [92]Characterisation of irradiation enhanced strain localisation in a zirconium alloyMaterialia, 5 (2019), Article 100248, 10.1016/j.mtla.2019.100248
Cited by (84)
Heterogeneous slip localization in an additively manufactured 316L stainless steel
增材制造 316L 不锈钢中的非均匀滑移局部化2022, International Journal of Plasticity
2022, 国际塑性学杂志Simulated effects of sample size and grain neighborhood on the modeling of extreme value fatigue response
样本尺寸和晶粒邻域对极端值疲劳响应建模的模拟效应2022, Acta MaterialiaCitation Excerpt : 引用摘录 :They later extended this method to consider individual and secondary slip systems [36]. Harte et al. [39] used EBSD and high-resolution DIC to measure plastic strain in Ni-based superalloy RR1000 strained to 2%. They found a weak correlation between grain plasticity and grain orientation derived metrics such as the Schmid Factor or Taylor Factor due to deformation bands at the mesoscale that were not crystallographic and complex interactions between grains.
他们后来将该方法扩展到考虑单个和次级滑移系统[36]。Harte 等人[39]使用 EBSD 和高分辨率 DIC 测量了应变至 2%的镍基高温合金 RR1000 中的塑性应变。他们发现由于中尺度变形带并非晶体学特征以及晶粒间复杂的相互作用,晶粒塑性与晶粒取向衍生指标(如 Schmid 因子或 Taylor 因子)之间存在微弱相关性。Origins of the mechanical property heterogeneity in a hybrid additive manufactured Hastelloy X
混合增材制造 Hastelloy X 的力学性能异质性的起源2021, Materials Science and Engineering A
2021,材料科学与工程 AEffects of precipitate on the slip activity and plastic heterogeneity of Mg-11Y-5Gd-2Zn-0.5Zr (wt. %) during room temperature compression
析出物对 Mg-11Y-5Gd-2Zn-0.5Zr(wt. %)在室温压缩过程中的滑移活性和塑性非均匀性的影响2021, Materials Science and Engineering A
2021, 材料科学与工程 ACitation Excerpt : 引用摘录 :The deviations were reasonably small, and they may be caused by lattice rotation during the deformation and misalignment of SEM/EBSD experiment. Lattice misorientation is developed by plastic strain gradients, thus it is an important parameter to evaluate plastic heterogeneity [48]. Therefore, the misorientation based parameters including intragranular misorientation angle (IGM) and kernel average misorientation (KAM) were used to evaluate the plastic heterogeneity at grain/subgrain scale in this work.
偏差合理地小,它们可能是由变形过程中的晶格旋转和 SEM/EBSD 实验的错位引起的。晶格旋转是由塑性应变梯度产生的,因此它是评估塑性非均匀性的重要参数[48]。因此,本研究使用了基于晶格旋转的参数,包括晶粒内旋转角(IGM)和核平均旋转角(KAM),来评估晶粒/亚晶尺度上的塑性非均匀性。Investigation on Slip Activity and Plastic Heterogeneity of Aged Mg–10Y Sheets During Compression
研究老化 Mg–10Y 板材在压缩过程中的滑移活性和塑性非均匀性2022, Metallurgical and Materials Transactions A Physical Metallurgy and Materials Science
2022, 《金属与材料学报 A:物理冶金与材料科学》
© 2020 作者. 由 Elsevier Ltd 代表 Acta Materialia Inc.出版

