这是用户在 2025-8-5 13:17 为 https://www.science.org/doi/10.1126/sciadv.abf1798 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
Skip to main content
跳至主要内容
Main content starts here
Open access
Research Article  研究论文
HEALTH AND MEDICINE  健康与医学

Anti–USAG-1 therapy for tooth regeneration through enhanced BMP signaling
通过增强 BMP 信号传导进行牙齿再生的抗 USAG-1 疗法

Science Advances
12 Feb 2021
Vol 7, Issue 7

Abstract  抽象

Uterine sensitization–associated gene-1 (USAG-1) deficiency leads to enhanced bone morphogenetic protein (BMP) signaling, leading to supernumerary teeth formation. Furthermore, antibodies interfering with binding of USAG-1 to BMP, but not lipoprotein receptor–related protein 5/6 (LRP5/6), accelerate tooth development. Since USAG-1 inhibits Wnt and BMP signals, the essential factors for tooth development, via direct binding to BMP and Wnt coreceptor LRP5/6, we hypothesized that USAG-1 plays key regulatory roles in suppressing tooth development. However, the involvement of USAG-1 in various types of congenital tooth agenesis remains unknown. Here, we show that blocking USAG-1 function through USAG-1 knockout or anti–USAG-1 antibody administration relieves congenital tooth agenesis caused by various genetic abnormalities in mice. Our results demonstrate that USAG-1 controls the number of teeth by inhibiting development of potential tooth germs in wild-type or mutant mice missing teeth. Anti–USAG-1 antibody administration is, therefore, a promising approach for tooth regeneration therapy.
子宫致敏相关基因-1USAG-1) 缺乏导致骨形态发生蛋白 (BMP) 信号传导增强,从而导致多生牙形成。此外,干扰 USAG-1 与 BMP 结合的抗体,但不干扰脂蛋白受体相关蛋白 5/6 (LRP5/6) 的抗体会加速牙齿发育。由于 USAG-1 通过直接结合 BMP 和 Wnt 辅助受体 LRP5/6 来抑制牙齿发育的重要因素 Wnt 和 BMP 信号,因此我们假设 USAG-1 在抑制牙齿发育方面起着关键的调节作用。然而,USAG-1 在各种类型的先天性牙齿发育不全中的参与仍然未知。在这里,我们表明,通过 USAG-1 敲除或抗 USAG-1 抗体给药阻断 USAG-1 功能可以缓解由小鼠各种遗传异常引起的先天性牙齿发育不全。我们的结果表明,USAG-1 通过抑制缺牙野生型或突变小鼠潜在牙菌的发展来控制牙齿数量。因此,抗 USAG-1 抗体给药是一种很有前途的牙齿再生治疗方法。

INTRODUCTION  介绍

Like beaks, nails, horns, and several eccrine glands, teeth are ectodermal organs. Tooth morphogenesis is regulated by a signal transduction network involving interactions between the epithelium and mesenchyme (13). Interactions involving positive and negative loops among bone morphogenetic protein (BMP), fibroblast growth factors, Sonic hedgehog, and Wnt pathways regulate the morphogenesis of individual teeth (1, 4). While the number of teeth is usually strictly controlled in individual species (5), it can increase or decrease congenitally in about 1% of individuals (68). Conditions of decreases and increases in the usual number of teeth are called tooth agenesis and supernumerary teeth, respectively. Analyses of mouse models have begun to clarify the genetic factors and molecular and pathological mechanisms underlying these conditions (4, 9).
与喙、指甲、角和几个小汗腺一样,牙齿是外胚层器官。牙齿形态发生受涉及上皮和间充质之间相互作用的信号转导网络的调节 (1-3)。 骨形态发生蛋白 (BMP)、成纤维细胞生长因子、Sonic hedgehog 和 Wnt 通路之间涉及正负环的相互作用调节单个牙齿的形态发生 (14)。虽然个别物种的牙齿数量通常受到严格控制 (5),但大约 1% 的个体的牙齿数量可能会先天增加或减少 (6-8)。 通常牙齿数量减少和增加的情况分别称为牙齿发育不全和多生牙。对小鼠模型的分析已经开始阐明这些病症背后的遗传因素以及分子和病理机制 (49)。
Investigations of single-gene knockout (KO) mice have demonstrated that loss of function of Usag-1, also referred to as Sclerostin domain containing 1 (SOSTDC1), ectodin, or Wnt modulator in surface ectoderm (WISE), CCAAT/enhancer-binding protein beta (CEBPB), Sprouty homolog 2 (SPRY2), sprouty homolog 3 (SPRY3), or Epiprofin (EPFN), result in the production of supernumerary teeth (1014). Results from these studies suggest that de novo tooth formation may be regulated by a single candidate gene. Supernumerary teeth may result from the rescue of arrested teeth germ (10, 15); we have previously reported the transformation of the residual deciduous incisor into supernumerary teeth in USAG-1deficient mice (10). USAG-1 is a bifunctional protein that antagonizes BMP and Wnt, the two signaling molecules essential for tooth development (4, 9). The importance of BMP in supernumerary tooth formation was demonstrated by transplantation of incisor explants supplemented with BMP7 in USAG-1+/− mice, which induced the development of supernumerary teeth (16). Hence, the administration of candidate molecules can result in whole tooth formation in suitable conditions. Furthermore, it has been suggested that BMP signaling is essential for morphogenesis of extra teeth (16, 17), while Wnt signaling is important for supernumerary tooth formation (15, 18). However, it is unknown whether BMP or Wnt signaling is required for the determination of tooth number.
对单基因敲除 (KO) 小鼠的研究表明,表面外胚层 (WISE) 中的 Usag-1(也称为含有 1 (SOSTDC1)、 外胚蛋白Wnt 调节剂Usag-1(也称为硬化蛋白结构域 )、外胚蛋白或 Wnt 调节剂、CCAAT/增强子结合蛋白 βCEBPB)、 芽同系物 2 (SPRY2)、 芽同源物 3SPRY3) 或表丙芬 EPFN) 的功能丧失 ),导致多生牙的产生 (10-14)。 这些研究的结果表明,新牙形成可能受单个候选基因的调节。多生牙可能是由于拯救停滞的牙胚而产生的 (1015);我们之前报道过 USAG-1 缺陷小鼠残余乳切牙转化为多生牙 (10)。USAG-1 是一种双功能蛋白,可拮抗 BMP 和 Wnt,这两种信号分子对牙齿发育至关重要 (49)。通过在 USAG-7+/− 小鼠中移植补充有 BMP1 的门牙外植体,证明了 BMP 在多生牙形成中的重要性,这诱导了多生牙的发育 (16)。因此,候选分子的施用可以在合适的条件下导致整颗牙齿的形成。此外,有人认为 BMP 信号传导对于额外牙齿的形态发生至关重要 (1617),而 Wnt 信号传导对于多生牙齿的形成很重要 (1518)。 然而,尚不清楚确定牙数是否需要 BMP 或 Wnt 信号传导。
Tooth agenesis is the result of arrested tooth development. Several genes responsible for congenital tooth ageneses, such as Msx1, Runx2, Ectodysplasin A (EDA), or Pax9 (4, 6, 7), have been identified primarily using KO mouse models (1924). We previously reported that tooth development arrested in Runx2−/− mice, a mouse model for congenital tooth agenesis (24), was rescued in Runx2−/−/USAG-1−/− mice, a supernumerary mouse model (25). While a clear link between USAG-1 and rescue of congenital agenesis has been established, it remains unknown whether local inhibition of USAG-1 function is sufficient to rescue tooth development. Clinical applications of targeted molecular drugs based on antibody preparations for a variety of diseases, such as rheumatoid arthritis and cancer, are increasingly common (26, 27). The genetic mechanisms of supernumerary tooth formation suggest that a targeted molecular therapy for tooth regeneration can be a viable therapeutic approach.
牙齿发育不全是牙齿发育受阻的结果。主要使用 KO 小鼠模型鉴定了导致先天性牙齿发育不良的几个基因,例如 Msx1Runx2Ectodysplasin AEDA) 或 Pax9467)。 我们之前报道过,Runx2−/− 小鼠(一种先天性牙齿发育不全的小鼠模型(24)的牙齿发育停止,在 Runx2−/−/USAG-1−/− 小鼠(一种多余小鼠模型)中被挽救(25)。虽然 USAG-1 与先天性发育不全的挽救之间已经建立了明确的联系,但目前尚不清楚局部抑制 USAG-1 功能是否足以挽救牙齿发育。基于抗体制剂的靶向分子药物在类风湿性关节炎和癌症等多种疾病中的临床应用越来越普遍(26,27)。 多生牙形成的遗传机制表明,靶向分子治疗牙齿再生可能是一种可行的治疗方法。
This investigation aimed to generate and use a monoclonal anti–USAG-1 antibody, rather than genetic inhibition, for the local arrest and recovery of tooth development. To this end, we also performed experiments to determine whether BMP or Wnt signaling is dominant during tooth development.
这项研究旨在生成和使用单克隆抗 USAG-1 抗体,而不是基因抑制,用于牙齿发育的局部停滞和恢复。为此,我们还进行了实验以确定 BMP 或 Wnt 信号传导在牙齿发育过程中是否占主导地位。

RESULTS  结果

Tooth formation recovery using murine models
使用小鼠模型恢复牙齿形成

Phenotypic changes in an Msx1−/−/USAG-1−/− mouse generated by mating mouse models of congenital tooth agenesis and supernumerary teeth were investigated. The development of both the maxilla and the mandible was arrested in the early stages. However, a cleft palate was additionally observed in USAG-1+/+/Msx1−/− mice (Fig. 1, F and G). Although mouse offspring with a USAG-1−/−/Msx1−/− background should have theoretically been obtained with one-sixteenth incidence, only 3 of 151 littermate mice had the USAG-1−/−/Msx1−/− genotype (Fig. 1A). Histological evaluation revealed that all USAG-1−/−/Msx1−/− mice had normal third maxillary molar teeth (Fig. 1, H and I).
研究了先天性牙齿发育不全和多生牙交配小鼠模型产生的 Msx1−/−/USAG-1−/− 小鼠的表型变化。上颌骨和下颌骨的发育在早期阶段都受到阻碍。然而,在 USAG-1+/+/Msx1−/− 小鼠中还观察到腭裂( 图 1,F 和 G)。尽管理论上应该以十六分之一的发生率获得具有 USAG-1−/−/Msx1−/− 背景的小鼠后代,但 151 只同窝小鼠中只有 3 只具有 USAG-1−/−/Msx1−/− 基因型( 图 1A)。组织学评估显示,所有 USAG-1−/−/Msx1−/− 小鼠的第三上颌磨牙正常( 图 1,H 和 I)。
Fig. 1 Recovery of tooth formation in double KO mice with congenital tooth agenesis and supernumerary teeth.
图 1 先天性牙齿发育不全和多生牙的双 KO 小鼠牙齿形成的恢复。
(A) Number of mice with indicated genotypes. (B to I) Frontal hematoxylin and eosin–stained sections of the left maxillary incisor and third molar (M3) in USAG-1−/−/Msx1−/− mice immediately after birth. (J) Summary of tooth phenotypes in 8-month-old F2 generation EDA1/USAG-1 double-mutant mice. (K to R′) Representative tooth phenotypes in dry skulls of 8-month-old F2 generation EDA1/USAG-1 double-mutant mice. (S to V) Ear hair, tail hair, and tail tip phenotypes. ST, supernumerary teeth; FT, fused teeth; Def., defect of teeth. Photo credit: H. Kiso, Kyoto University.
A)具有指定基因型的小鼠数量。(BIUSAG-1−/−/Msx1−/− 小鼠出生后立即左上颌切牙和第三磨牙(M3)的额苏木精和伊红染色切片。(J)8 月龄 F2EDA1/USAG-1 双突变小鼠牙齿表型总结。(KR′)8 个月大的 F2EDA1/USAG-1 双突变小鼠干颅骨中的代表性牙齿表型。(SV) 耳毛、尾毛和尾尖表型。ST,多生齿;FT,融合齿;定义,牙齿缺陷。图片来源:H. Kiso,京都大学。
Next, we analyzed EDA1−/−/USAG-1−/− mice. As EDA1 is located on the X chromosome, female EDA1−/−/USAG-1−/− and male EDA1+/−/USAG-1−/− mice are null for USAG-1 and EDA1. These double KO mice had normal teeth, hyperdontia, or fused mandibular molars, whereas 75% of the female USAG-1+/+/EDA1−/− and male USAG-1+/+/EDA1+/− mice had molar hypodontia in the mandible (Fig. 1, J to R′, and fig. S2). Hair loss behind the ear and tail kink, which are the typical phenotypes associated with tabby mice, were present in all USAG-1 and EDA1 double KO mice (Fig. 1V). These results suggest that Usag-1−/− can rescue congenital tooth agenesis during early tooth development and promote morphogenesis of the whole tooth structure arrested in the late stage.
接下来,我们分析了 EDA1−/−/USAG-1−/− 小鼠。由于 EDA1 位于 X 染色体上,雌性 EDA1−/−/USAG-1−/− 和雄性 EDA1+/−/USAG-1−/− 小鼠对 USAG-1EDA1 无效。这些双 KO 小鼠具有正常的牙齿,牙根过多或下颌磨牙融合,而 75%的雌性 USAG-1+/+/EDA1−/− 和雄性 USAG-1+/+/EDA1+/− 小鼠的下颌骨有臼齿牙欠位( 图 1,J 至 R′,图 S2)。耳后脱毛和尾巴扭结是与虎斑小鼠相关的典型表型,存在于所有 USAG-1EDA1 双 KO 小鼠中( 图 1V)。这些结果表明,Usag-1−/− 可以挽救早期牙齿发育过程中的先天性牙齿发育不全,促进晚期停滞的整个牙齿结构的形态发生。

Usag-1–neutralizing antibody recovers missing teeth and generates a whole tooth
Usag-1 中和抗体可恢复缺失的牙齿并生成整颗牙齿

To investigate whether inhibition of USAG-1 function rescues congenital tooth agenesis, we purified five mouse USAG-1 monoclonal antibodies (#12, #16, #37, #48, and #57) using a bioactive human USAG-1 recombinant protein derived from Escherichia coli as an antigen and USAG-1−/− mice. USAG-1 is suggested to inhibit Wnt and BMP signals via direct binding to BMP and the Wnt coreceptor LRP5/6 (28, 29). Therefore, these five antibodies were categorized into three different classes, based on their interfering abilities of the binding to both BMP and Wnt (#57), BMP (#12 and #37), or Wnt (#16 and #48) (Fig. 2, A and B). We confirmed that all antibodies could bind the mouse and human USAG-1 recombinant proteins (Fig. 2C), although #16 and #48 showed low affinity (Fig. 2, D and E). These results enabled the investigation of the function of USAG-1 with respect to BMP and Wnt signaling pathways for the determination of the number of teeth.
为了研究抑制 USAG-1 功能是否能挽救先天性牙齿发育不全,我们使用源自大肠杆菌的生物活性人 USAG-1 重组蛋白作为抗原和 USAG-1−/− 小鼠纯化了五种小鼠 USAG-1 单克隆抗体(#12、#16、#37、#48 和#57)。建议 USAG-1 通过直接结合 BMP 和 Wnt 辅助受体 LRP5/6 来抑制 Wnt 和 BMP 信号 (2829)。因此,根据它们与 BMP 和 Wnt(#57)、BMP(#12 和#37)或 Wnt(#16 和#48)结合的干扰能力,这五种抗体被分为三个不同的类别( 图 2,A 和 B)。我们证实所有抗体都可以结合小鼠和人 USAG-1 重组蛋白( 图 2C),尽管#16 和#48 表现出低亲和力( 图 2,D 和 E)。这些结果使 USAG-1 能够研究 BMP 和 Wnt 信号通路的功能,以确定牙齿数量。
Fig. 2 In vitro analyses of five types of USAG-1–neutralizing antibodies (#12, #16, #37, #48, and #57).
图 2 对五种类型的 USAG-1 中和抗体(#12、#16、#37、#48 和 #57)进行体外分析。
(A) Neutralization of the antagonistic activity of BMP signaling by USAG-1 antibodies as assessed by alkaline phosphatase assay. (B) Neutralization of the antagonistic activity of Wnt signaling by USAG-1 antibodies in a Wnt reporter assay. (C) Binding between anti–USAG-1 antibody and human/mouse-PA-USAG-1 protein in pull-down assays. (D) Immunocytochemistry of human embryonic kidney (HEK) 293–expressing FLAG-tagged human USAG-1 protein. (E) KD values of each USAG-1 antibody toward the mouse USAG-1 protein. mAb, monoclonal antibody; Ab, antibody; DAPI, 4′,6-diamidino-2-phenylindole.
A)通过碱性磷酸酶测定评估的 USAG-1 抗体对 BMP 信号传导拮抗活性的中和。(B)在 Wnt 报告基因测定中,USAG-1 抗体中和 Wnt 信号传导的拮抗活性。(C)在下拉测定中抗 USAG-1 抗体与人/小鼠 PA-USAG-1 蛋白之间的结合。(D)表达 FLAG 标记的人 USAG-1 蛋白的人胚胎肾(HEK)293 的免疫细胞化学。(E)每种 USAG-1 抗体对小鼠 USAG-1 蛋白的 Kd 值。单克隆抗体,单克隆抗体;抗体,抗体;DAPI,4′,6-二脒基-2-苯基吲哚。
Each USAG-1–neutralizing antibody was systemically administered to EDA1 pregnant mice. Low birth and survival rates were observed in mice administered USAG-1–neutralizing antibodies #12, #16, or #48 (Fig. 3A). USAG-1–neutralizing antibodies #16, #37, #48, and #57 rescued molar hypodontia in the mandible of EDA1−/− mice compared with control mice (Fig. 3, B and C, and fig. S3). USAG-1–neutralizing antibody #37 reversed hypodontia at a high rate and in a dose-dependent manner (Fig. 3B). In addition, USAG-1–neutralizing antibodies #12, #16, #37, and #57 led to the production of supernumerary teeth in the maxillary incisor, mandibular incisor, or molar of EDA1 KO/hetero mice (Fig. 3, B and C, and fig. S3). Unexpectedly, USAG-1–neutralizing antibody #57 induced the formation of supernumerary teeth in the maxillary incisor, mandibular incisor, or molar of wild-type mice at a high rate and a dose-dependent manner (Fig. 3, B and C, and fig. S3). However, fused molars were observed instead of supernumerary teeth in the maxillary molar region (Fig. 3C and fig. S3). Both antibodies neutralized BMP signaling antagonistic function, at least in vitro (Fig. 3, B and C, and fig. S3). These results indicate that BMP signaling is essential for determining the number of teeth in mice. Furthermore, a single systemic administration of a neutralizing antibody can generate a whole tooth.
将每种 USAG-1 中和抗体系统施用于 EDA1 怀孕小鼠。在给予 USAG-1 中和抗体#12,#16 或#48 的小鼠中观察到低出生率和存活率( 图 3A)。与对照小鼠相比,USAG-1-中和抗体#16,#37,#48 和#57 挽救了 EDA1−/- 小鼠下颌骨的磨牙牙缺症( 图 3,B 和 C,以及图 S3)。USAG-1-中和抗体 #37 以剂量依赖性方式高速逆转牙髓不足( 图 3B)。此外,USAG-1 中和抗体#12,#16,#37 和#57 导致 EDA1 KO /异种小鼠的上颌切牙,下颌切牙或臼齿产生多生牙( 图 3,B 和 C,以及图 S3)。出乎意料的是,USAG-1-中和抗体#57 以高速和剂量依赖性方式诱导野生型小鼠的上颌切牙、下颌切牙或磨牙中多生牙的形成( 图 3、B 和 C,以及图 S3)。然而,在上颌磨牙区域观察到融合的臼齿而不是多生牙( 图 3C 和图 S3)。两种抗体至少在体外中和了 BMP 信号传导拮抗功能( 图 3,B 和 C,以及图 S3)。这些结果表明,BMP 信号传导对于确定小鼠的牙齿数量至关重要。此外,单次全身给药中和抗体可以产生整颗牙齿。
Fig. 3 Recovery of tooth defects in EDA1 mutant mice and whole tooth regeneration upon administration of USAG-1–neutralizing antibodies.
图 3EDA1 突变小鼠的牙齿缺损恢复和给予 USAG-1 中和抗体后整颗牙齿再生。
(A) Offspring birth and survival rates. (B) Summary of incidence of tooth phenotypes, including supernumerary teeth and fused teeth (ST and FT), recovery of teeth (Rec.), and defect of teeth (Def.). (C) Representative tooth phenotype in dry skulls of 8-month-old mice. Photo credit: A. Murashima-Suginami, Kyoto University.
A) 后代出生率和存活率。(B) 牙齿表型发生率的总结,包括多生牙和融合牙(ST 和 FT)、牙齿恢复(Rec.)和牙齿缺损(Def.)。(C)8 个月大小鼠干颅骨中的代表性牙齿表型。图片来源:A. Murashima-Suginami,京都大学。

USAG-1–neutralizing activity generates a whole tooth by affecting BMP signaling
USAG-1 中和活性通过影响 BMP 信号传导产生整颗牙齿

To determine the epitope of USAG-1–neutralizing antibodies #37 and #57, we performed epitope mapping using 169 linear peptides, including 20 sequential amino acids (Fig. 4, A and D). USAG-1–neutralizing antibody #37 specifically reacted with six overlapping peptides (D16-D21) spanning the region Q129EWRCVNDKTRTQRIQLQCQ148, suggesting that the epitope is localized within the central 10-residue segment containing the sequence VNDKTRTQRI (Fig. 4B). Although the three-dimensional (3D) structure of USAG-1 is unknown, its high sequence homology with sclerostin (SOST) that belongs to the same BMP antagonist DAN family enabled us to build a homology model of mouse USAG-1 using the nuclear magnetic resonance structure of SOST (Fig. 4E) (28). It was revealed that the epitope recognized by antibody #37 lies on the surface-exposed edge strand of the central β sheet of USAG-1, consistent with the ability of #37 to recognize native USAG-1. This region is located far from the NXI motif, which is the binding site for LRP5/6 (Fig. 4E) (29), suggesting that this antibody does not block USAG-1 interaction with the Wnt coreceptor LRP5/6. Antibody #37 did not affect the Wnt1-antagonizing activity of USAG-1 (Fig. 2B). In contrast to #37, antibody #57 did not show reactivity toward any of the USAG-1–derived overlapping peptides (Fig. 4C), indicating that it recognizes a 3D epitope present on the USAG-1 surface.
为了确定 USAG-1 中和抗体#37 和#57 的表位,我们使用 169 个线性肽(包括 20 个连续氨基酸)进行了表位图谱分析( 图 4,A 和 D)。USAG-1-中和抗体 #37 与横跨 Q129EWRCVNDKTRTQRIQQCQ148 区域的六个重叠肽 (D16-D21) 特异性反应,表明表位位于包含序列 VNDKTRTQRI 的中央 10 残基片段内( 图 4B)。尽管 USAG-1 的三维(3D)结构尚不清楚,但其与属于同一 BMP 拮抗剂 DAN 家族的硬化蛋白(SOST)的高序列同源性使我们能够利用 SOST 的核磁共振结构构建小鼠 USAG-1 的同源模型( 图 4E)(28)。结果表明,抗体 #37 识别的表位位于 USAG-1 中央β片的表面暴露边缘链上,与 #37 识别天然 USAG-1 的能力一致。该区域远离 NXI 基序,NXI 基序是 LRP5/6 的结合位点( 图 4E)(29),表明该抗体不会阻断 USAG-1 与 Wnt 辅助受体 LRP5/6 的相互作用。抗体#37 不影响 USAG-1 的 Wnt1 拮抗活性( 图 2B)。与#37 相比,抗体#57 对任何 USAG-1 衍生的重叠肽均未表现出反应性( 图 4C),表明它识别存在于 USAG-1 表面的 3D 表位。
Fig. 4 Epitope mapping of neutralizing USAG-1 antibodies #37 and #57.
图 4 中和 USAG-1 抗体 #37 和 #57 的表位图谱。
(A) The pattern of 14-mer peptide spots on the membrane from A1 to F19 [recombinant USAG-1 protein from: 1, mammalian cells; 2, Baculovirus; and 3, E. coli; USAG-1 antibodies (A) #37 and (B) #57]. (B) The peptide array probed with USAG-1 antibody #37. (C) The peptide array probed with USAG-1 antibody #57. (D) The number and sequence of the 14-mer peptide from A1 to F19. (E) Suggested 3D nuclear magnetic resonance structure model of mouse USAG-1 protein. Green, the epitope for USAG-1 antibody #37. Sky blue, the binding site for LRP5/6 (NX1 motif).
A)膜上从 A1 到 F19 的 14 聚体肽斑点的模式[重组 USAG-1 蛋白来自:1,哺乳动物细胞;2,杆状病毒;和 3, 大肠杆菌 ;USAG-1 抗体 (A) #37 和 (B) #57]。(B)用 USAG-1 抗体#37 探测的肽阵列。(C)用 USAG-1 抗体#57 探测的肽阵列。(D)从 A1 到 F19 的 14 聚体肽的数量和序列。(E)建议的小鼠 USAG-1 蛋白的三维核磁共振结构模型。绿色,USAG-1 抗体 #37 的表位。天蓝色,LRP5/6(NX1 基序)的结合位点。
It has been established that the endogenous Wnt pathway inhibitor SOST exerts its inhibitory effect by binding to the “E1” domain of Wnt coreceptor LRP6 (30). As described in the previous section, the conservation of the LRP6-binding motif NXI in USAG-1 strongly suggests that it binds to the same domain of LRP6 as well. We evaluated the USAG-1 binding to the human LRP6 ectodomain fragments of varying lengths. As shown in Fig. 5A, stoichiometric binding of USAG-1 was observed with the E1-E2 domain fragment of LRP6, confirming the prediction that the binding site was located in the E1 domain. In contrast, no binding was observed with E1-E4 or E3-E4 fragments. The lack of binding with E1-containing E1-E4 fragment can be explained by the fact that the NXI-binding surface of E1 is occluded in the context of the whole ectodomain of LRP6, which shows a highly curved “C-shape” in the electron microscopic images (31). We then investigated whether the USAG-1–neutralizing antibodies can interfere with the LRP6–USAG-1 interaction. As shown in Fig. 5B, near-complete inhibition was observed with antibody #16, while #48 exhibited partial inhibition. This finding was consistent with their ability to inhibit the Wnt-modulating activity of USAG-1 (Fig. 2B). Three other antibodies (#12, #37, and #57) did not affect the binding of USAG-1 to LRP6 E1-E2, corroborating their inability to counteract the Wnt-modulating capability of USAG-1 (Fig. 2B). On the basis of these results, we conclude that neutralizing the antagonizing effect of USAG-1 on BMP rather than Wnt signals is more effective in achieving substantial phenotypic changes in mice, i.e., recovering missing teeth or making a whole tooth.
已经确定,内源性 Wnt 通路抑制剂 SOST 通过与 Wnt 辅助受体 LRP6 的“E1”结构域结合来发挥其抑制作用(30)。如上一节所述,USAG-1 中 LRP6 结合基序 NXI 的保守强烈表明它也与 LRP6 的同一结构域结合。我们评估了 USAG-1 与不同长度的人 LRP6 胞外结构域片段的结合。如图 5A 所示,观察到 USAG-1 与 LRP6 的 E1-E2 结构域片段的化学计量结合,证实了结合位点位于 E1 结构域的预测。相比之下,未观察到与 E1-E4 或 E3-E4 片段的结合。与含 E1 的 E1-E4 片段缺乏结合可以通过以下事实来解释:E1 的 NXI 结合表面在 LRP6 的整个胞外结构域的背景下被遮挡,这在电子显微镜图像中显示出高度弯曲的“C 形”(31)。然后,我们研究了 USAG-1 中和抗体是否会干扰 LRP6-USAG-1 相互作用。如图 5B 所示,抗体#16 观察到近乎完全的抑制,而#48 表现出部分抑制。这一发现与它们抑制 USAG-1 的 Wnt 调节活性的能力一致( 图 2B)。其他三种抗体(#12、#37 和#57)不影响 USAG-1 与 LRP6 E1-E2 的结合,证实了它们无法抵消 USAG-1 的 Wnt 调节能力( 图 2B)。基于这些结果,我们得出结论,中和 USAG-1 对 BMP 的拮抗作用比 Wnt 信号更有效地实现小鼠的实质性表型变化,即恢复缺失的牙齿或制作整颗牙齿。
Fig. 5 USAG-1–neutralizing antibodies sufficient for generating a whole tooth (#37 and #57) inhibit the antagonistic function of BMP but not Wnt signaling.
图 5USAG-1 中和抗体足以产生整颗牙齿(#37 和 #57)可抑制 BMP 的拮抗功能,但不会抑制 Wnt 信号传导。
(A) Interaction between the extracellular E1/E2 domain of LRP6 and mouse USAG-1 protein. (B) Blocking of the interaction between the extracellular domain of LRP6 E1/E2 and mouse USAG-1 protein by USAG-1 antibodies (#16). IgG, immunoglobulin G. (C) Dendrogram of DAN family proteins that are BMP antagonists. (D) Cross-reactivity of the USAG-1 antibody #57 to the SOST protein expressed in HEK293 cells. (E) Phenotype of the mandibular molar in the dry skull of a USAG-1−/− mouse. (F) Phenotype of the mandibular molar in the dry skull of a USAG-1−/− mouse administered a mix of USAG-1 antibodies (#12, #16, #37, #48, and #57). White arrowheads indicate supernumerary teeth; black arrowheads indicate enlarged fused teeth. Photo credit: A. Murashima-Suginami, Kyoto University.
A)LRP6 的细胞外 E1/E2 结构域与小鼠 USAG-1 蛋白之间的相互作用。(B)USAG-1 抗体阻断 LRP6 E1/E2 细胞外结构域与小鼠 USAG-1 蛋白之间的相互作用(#16)。IgG,免疫球蛋白 G. (C) 作为 BMP 拮抗剂的 DAN 家族蛋白的树状图。(D)USAG-1 抗体#57 与 HEK293 细胞中表达的 SOST 蛋白的交叉反应性。(EUSAG-1−/− 小鼠干颅骨中下颌磨牙的表型。(F)施用 USAG-1 抗体混合物(#12,#16,#37,#48 和#57)的 USAG-1−/− 小鼠干燥颅骨中下颌磨牙的表型。白色箭头表示多生牙齿;黑色箭头表示扩大的融合牙齿。图片来源:A. Murashima-Suginami,京都大学。
To investigate the functional differences between antibodies #37 and #57 with respect to BMP signaling, we analyzed the cross-reactivity of these antibodies with members of the DAN subfamily (Fig. 5C). We detected a faint signal for SOST in transfected human embryonic kidney (HEK) 293 cells using immunohistochemistry with antibody #57 but not with #37 (Fig. 5D and fig. S4). This weak cross-reactivity with SOST is likely due to the similarities in the 3D structures of SOST and USAG-1 (28). Furthermore, systemic administration of an antibody mixture containing antibodies #12, #16, #37, #48, and #57 increased the number of supernumerary teeth and the size of fused teeth in the mandible of USAG-1−/− mice (Fig. 5, E and F). These results suggest that antibody #57 may inhibit the genetic redundancy responsible for supernumerary tooth formation by affecting SOST, a BMP antagonist.
为了研究抗体#37 和#57 在 BMP 信号传导方面的功能差异,我们分析了这些抗体与 DAN 亚家族成员的交叉反应性( 图 5C)。我们使用抗体#57 的免疫组织化学在转染的人胚胎肾(HEK)293 细胞中检测到 SOST 的微弱信号,但没有使用#37( 图 5D 和图 S4)。这种与 SOST 的微弱交叉反应性可能是由于 SOST 和 USAG-1 的 3D 结构相似 (28)。此外,全身施用含有抗体#12,#16,#37,#48 和#57 的抗体混合物增加了 USAG-1−/− 小鼠下颌骨中多生牙的数量和融合牙齿的大小( 图 5,E 和 F)。这些结果表明,抗体 #57 可能通过影响 BMP 拮抗剂 SOST 来抑制导致多生牙齿形成的遗传冗余。
Last, to confirm that USAG-1–neutralizing activity affects BMP signaling to generate a whole tooth in a nonrodent model, we systemically administered antibody #37 to postnatal ferrets that had both deciduous and permanent teeth. We observed supernumerary tooth formation in maxillary incisor like the third dentition, although a five times higher concentration, three administrations of antibody #37, and immunosuppression were required (Fig. 6, A to D). The supernumerary tooth was likely to have a similar shape to the usual permanent incisor, located to the lingual side of permanent teeth, whereas a shorter root seemed to be growing (Fig. 6, E to G). Therefore, this supernumerary incisor might be categorized as the third dentition (32). Furthermore, phosphorylated Smad-positive cells were observed within pulp of supernumerary tooth (Fig. 6, H and I).
最后,为了确认 USAG-1 中和活性影响 BMP 信号传导以在非啮齿动物模型中产生整颗牙齿,我们系统地将抗体 #37 施用于同时具有乳牙和恒牙的出生后雪貂。我们观察到上颌切牙(如第三牙列)多生牙的形成,尽管需要高出五倍的浓度、三次抗体#37 和免疫抑制( 图 6,A 至 D)。多生牙的形状可能与通常的恒门牙相似,位于恒牙的舌侧,而较短的牙根似乎正在生长( 图 6,E 至 G)。因此,该多生切牙可归类为第三牙列 (32)。此外,在多生牙的牙髓内观察到磷酸化的 Smad 阳性细胞( 图 6,H 和 I)。
Fig. 6 Supernumerary tooth of maxillary incisors of ferrets upon administration of USAG-1–neutralizing antibody #37.
图 6 施用 USAG-1 中和抗体 #37 后雪貂上颌切牙的多生牙。
(A to D) Maxillary incisors of ferrets to different doses of administration USAG-1–neutralizing antibody #37. (E to G) Micro-computed tomography (micro-CT) image of Fig. 6D. (H and I) Immunolocalization of phosphorylated Smad1/5/8 (pSmad1/5/8) for supernumerary teeth. Arrowheads indicate supernumerary teeth. IS, immunosuppression. Photo credit: A. Murashima-Suginami, Kyoto University.
AD) 雪貂的上颌切牙对不同剂量的给药 USAG-1 中和抗体 #37。(EG 图 6D 的显微计算机断层扫描(micro-CT)图像。(HI) 多生牙磷酸化 Smad1/5/8 (pSmad1/5/8) 的免疫定位。箭头表示多生牙齿。IS,免疫抑制。图片来源:A. Murashima-Suginami,京都大学。

DISCUSSION  讨论

Single systemic administration of USAG-1–neutralizing antibodies that interfere mainly with BMP signaling (#37 and #57) rescued tooth agenesis in EDA1-deficient mice and led to the efficient formation of a whole tooth in a dose-dependent manner in wild-type mice. To the best of our knowledge, the identification of targeted antibodies that can promote tooth regeneration has not been reported earlier. The antibodies generated in the present study neutralized the antagonistic action of USAG-1 on BMP signaling, and reduced LRP5/6 dosage rescued the USAG-1–null phenotype, including supernumerary tooth formation (15). However, Wnt signaling involvement cannot be excluded based on these findings because several mice were not born or did not survive. Thus, it is necessary to perform further experiments such as epitope binning involving higher numbers of USAG-1–neutralizing antibodies and detailed analyses of recombinant USAG-1 protein epitopes.
单次全身施用主要干扰 BMP 信号传导的 USAG-1 中和抗体(#37 和#57)挽救了 EDA1 缺陷小鼠的牙齿发育不成,并导致野生型小鼠以剂量依赖性方式有效形成整颗牙齿。据我们所知,早期尚未鉴定出可以促进牙齿再生的靶向抗体。本研究中产生的抗体中和了 USAG-1 对 BMP 信号传导的拮抗作用,并减少了 LRP5/6 剂量,挽救了 USAG-1-null 表型,包括多生牙形成 (15)。然而,根据这些发现不能排除 Wnt 信号传导参与,因为几只小鼠没有出生或没有存活。因此,有必要进行进一步的实验,例如涉及更多数量的 USAG-1 中和抗体的表位分箱和重组 USAG-1 蛋白表位的详细分析。
We observed links between several causative genes, including Msx1 and USAG-1, with the recovery of congenital tooth agenesis but not cleft palate in Msx1-deficient mice (Fig. 1J). A single systemic administration of USAG-1–neutralizing antibodies targeting only the BMP signaling pathway rescued tooth agenesis in EDA1 deficient mice but did not affect other phenotypes associated with this lineage. Conversely, USAG-1 abrogation only rescued cleft palate development in Pax9-deficient mice, which modulated Wnt but not BMP signaling (33). Small-molecule Wnt agonists also corrected the cleft palate in Pax9-deficient mice (34). This indicates that the USAG-1–neutralizing antibody did not cure all tooth agenesis cases but that the mutations in causative genes for congenital tooth agenesis may constitute biomarkers for patient selection. Nevertheless, extensive studies are warranted for future clinical applications. EDA controls BMP activity (35), whereas EDAR acts on Wnt target genes (36, 37). Congenital tooth agenesis may be rescued by administering a USAG-1–neutralizing antibody for BMP and not Wnt signaling. Furthermore, a single systemic administration of an EDA agonistic antibody in an EDA-deficient dog after birth rescued congenital tooth agenesis (38). Application of USAG-1–targeted neutralizing antibodies for tooth regeneration must be focused on congenital tooth agenesis with mutations of specific causative genes.
我们观察到几个致病基因(包括 Msx1USAG-1)与 Msx1 缺陷小鼠先天性牙齿发育不全的恢复之间的联系,但没有恢复腭裂( 图 1J)。单次全身施用仅靶向 BMP 信号通路的 USAG-1 中和抗体挽救了 EDA1 缺陷小鼠的牙齿发育不全,但不影响与该谱系相关的其他表型。相反,USAG-1 消除仅挽救了 Pax9 缺陷小鼠的腭裂发育,这调节了 Wnt,但不能调节 BMP 信号传导 (33)。小分子 Wnt 激动剂还纠正了 Pax9 缺陷小鼠的腭裂 (34)。这表明 USAG-1 中和抗体并不能治愈所有牙齿发育不全病例,但先天性牙齿发育不全致病基因的突变可能构成患者选择的生物标志物。尽管如此,未来的临床应用仍需要进行广泛的研究。EDA 控制 BMP 活性 (35),而 EDAR 作用于 Wnt 靶基因 (3637)。先天性牙齿发育不全可以通过施用 USAG-1 中和抗体来缓解 BMP 而不是 Wnt 信号传导。此外,在出生后对 EDA 缺陷的狗进行单次全身施用 EDA 激动抗体可挽救先天性牙齿发育不全 (38)。USAG-1 靶向中和抗体在牙齿再生中的应用必须集中在具有特定致病基因突变的先天性牙齿发育不全上。
Further, we succeeded in obtaining USAG-1–neutralizing antibodies with the potential to generate a whole new tooth, even in wild-type mice. The phenotypic changes in these mice were similar to those in USAG-1-KO mice, suggesting that this antibody may rescue the rudimental tooth primordia in USAG-1–deficient mice. Human teeth, except for the permanent molars, are diphyodont (32). The first (deciduous) and second (permanent) generation of teeth are sometimes accompanied by a “third dentition” of rudimental teeth that can occur in addition to the permanent teeth (32). On the basis of an analysis of 78 patients with supernumerary teeth, we previously reported that the third dentition is a cause of supernumerary teeth in humans (32). Stimulation of the third dentition by targeted molecular therapy may be a viable approach for whole tooth regeneration. In the current study, we showed that systemic application of a USAG-1–neutralizing antibody could regenerate a whole tooth like the third dentition in ferrets, which are diphyodont animals with the similar dental pattern to human. However, the clinical application of this modality will require further investigation in nonrodent models, such as suncuses, dogs, or pigs, in addition to ferrets.
此外,我们成功地获得了 USAG-1 中和抗体,即使在野生型小鼠中也有可能产生全新的牙齿。这些小鼠的表型变化与 USAG-1-KO 小鼠相似,表明该抗体可以挽救 USAG-1 缺陷小鼠的基本牙齿原基。人类的牙齿,除了恒磨牙外,都是双齿兽 (32)。第一代(乳牙)和第二代(恒牙)有时伴随着除恒牙之外还可能出现的初生牙列的“第三牙列”(32)。根据对 78 名多生牙患者的分析,我们之前报道过第三牙列是人类多生牙的原因 (32)。通过靶向分子疗法刺激第三牙列可能是全牙再生的可行方法。在目前的研究中,我们表明,全身应用 USAG-1 中和抗体可以再生整颗牙齿,就像雪貂的第三牙列一样,雪貂是与人类具有相似牙齿模式的双齿动物。然而,除了雪貂之外,这种方式的临床应用还需要在非啮齿动物模型中进一步研究,例如太阳猫、狗或猪。
The development of a treatment method using cell-based tissue engineering is common in mainstream regenerative medicine. Although extensive research has been done in the field of tooth regeneration using tissue engineering techniques (39, 40), none of the available therapies are clinically applicable due to cost and safety issues. Although it is considered necessary to generate a new original tooth germ, in our investigation, we observed the presence of rudimental tooth primordia. Therefore, we did not have to create new tooth primordia even in the wild-type animals. The growth of tooth primordia is inhibited by USAG-1. Besides, congenital tooth agenesis associated with various genetic abnormalities is caused by arrested tooth development. For this reason, the conventional tissue engineering approach is not suitable for tooth regeneration. Our study outcomes show that cell-free molecular therapy targeting USAG-1 is effective in the treatment of a wide range of congenital tooth agenesis and the induction of third dentition.
使用基于细胞的组织工程开发治疗方法在主流再生医学中很常见。尽管已经在使用组织工程技术的牙齿再生领域进行了广泛的研究 (3940),但由于成本和安全问题,没有一种可用的疗法在临床上适用。尽管被认为有必要产生新的原始牙胚,但在我们的调查中,我们观察到了基本牙齿原基的存在。因此,即使在野生型动物中,我们也不必创造新的牙齿原基。USAG-1 抑制牙原基的生长。此外,与各种遗传异常相关的先天性牙齿发育不全是由牙齿发育受阻引起的。因此,传统的组织工程方法不适合牙齿再生。我们的研究结果表明,针对 USAG-1 的无细胞分子疗法可有效治疗多种先天性牙齿发育不全和第三牙列诱导。

MATERIALS AND METHODS  材料和方法

Study design  学习规划

This study’s main objectives included the generation and use of a monoclonal anti–USAG-1 antibody to locally arrest and recover tooth development in mice. We also performed experiments to determine whether BMP or Wnt signaling modulated tooth development. This study was approved by the Animal Research Committee of Kyoto University (reference number: Med Kyo 11518), KAC Co. Ltd. (reference number: 19-1103), and the Recombinant DNA Experiment Safety Committee of Kyoto University (reference number: 180211). Experiments were performed in accordance with approved guidelines. All experiments were repeated at least three times. Sample sizes were chosen empirically to ensure adequate statistical power. All valid measurements were included in our analysis. No outliers were excluded. Primary data are provided in the figures or the Supplementary Materials.
本研究的主要目标包括生成和使用单克隆抗 USAG-1 抗体来局部阻止和恢复小鼠的牙齿发育。我们还进行了实验以确定 BMP 或 Wnt 信号是否调节牙齿发育。本研究获得京都大学动物研究委员会(参考编号:Med Kyo 11518)、KAC Co. Ltd.(参考编号:19-1103)和京都大学重组 DNA 实验安全委员会(参考编号:180211)的批准。实验是根据批准的指南进行的。所有实验至少重复三次。样本量是根据经验选择的,以确保足够的统计功效。所有有效的测量值都包含在我们的分析中。没有排除异常值。主要数据见图或补充材料。

Animals  动物

USAG-1−/− mice with a 106-bp deletion in exon 1 were produced using the CRISPR-Cas system with a C57BL/6J genetic background (fig. S1) (Macrogen Co. Ltd., Seoul, South Korea). Dental anomalies similar to those described in previous reports (10), including incisal supernumerary teeth, fused maxillary molars, and supernumerary mandibular molars, were observed in USAG-1−/− mice. EDA1-deficient mice (Tabby6: C57BL/6J Aw-J-EdaTa-6J/J) were obtained from the Jackson Laboratory (JAX stock #000338). Msx1-deficient mice with a 129S4/SvJae genetic background were provided by the Mutant Mouse Resource and Research Centers (MMRRC stock #000068-UCD). We interbred heterozygous USAG-1 and Msx1 mice and analyzed the F2 generation. To eliminate the influence of the mouse background, only F2 progeny USAG-1−/−/Msx1−/− mice were analyzed. Polymerase chain reaction was performed using KOD FX NEO polymerase (KFX-201; TOYOBO, Osaka, Japan) and specific primers. Embryos were obtained by timed mating; day E0 started from midnight, before finding a vaginal plug. Outbred pregnant ferrets were purchased from Marshall BioResources Japan Co. Ltd. A subgroup of the offspring was maintained in immunosuppressive condition, as previously reported (41).
使用具有 C57BL / 6J 遗传背景的 CRISPR-Cas 系统(图 S1)生产外显子 1 中缺失 106-bp 的 USAG-1−/− 小鼠(Macrogen Co. Ltd.,首尔,韩国)。在 USAG-1−/− 小鼠中观察到与先前报告(10)中描述的牙齿异常相似,包括切牙多生牙、融合上颌磨牙和多生下颌磨牙。EDA1 缺陷小鼠(Tabby6:C57BL / 6J Aw-J-Eda Ta-6J / J)从杰克逊实验室获得(JAX 库存#000338)。具有 129S4/SvJae 遗传背景的 Msx1 缺陷小鼠由突变小鼠资源和研究中心(MMRRC 库存 #000068-UCD)提供。我们杂交了杂合的 USAG-1Msx1 小鼠,并分析了 F2 代。为了消除小鼠背景的影响,仅分析了 F2 后代 USAG-1−/−/Msx1−/− 小鼠。使用 KOD FX NEO 聚合酶(KFX-201;TOYOBO, Osaka, Japan)和特定引物。胚胎是通过定时交配获得的;E0 天从午夜开始,然后找到阴道塞。近交怀孕雪貂购自 Marshall BioResources Japan Co. Ltd.。正如之前报道的那样,后代的一个亚群维持在免疫抑制状态 (41)。

Plasmid and recombinant proteins
质粒和重组蛋白

Preparation of PA-tagged mouse USAG-1 recombinant protein from mammalian cells was performed as previously reported (42). Other tagged USAG-1 recombinant proteins, derived from E. coli or baculoviral expression systems (R&D systems Inc., MN, USA; MyBiosource, CA, USA), were used for the production of antibodies, as antigens, and in the solid phase and/or sandwich enzyme-linked immunosorbent assay (ELISA). Preparation of the E1-E4 domain of LRP6 was performed as previously reported (30). Expression vectors for mouse DAN family proteins were purchased from OriGene Technologies Inc. (Rockville, MD, USA).
如先前报道的那样,从哺乳动物细胞制备 PA 标记的小鼠 USAG-1 重组蛋白(42)。其他标记的 USAG-1 重组蛋白,源自大肠杆菌或杆状病毒表达系统(R&D systems Inc.,明尼苏达州,美国;MyBiosource, CA, USA)用于生产抗体、抗原以及固相和/或夹心酶联免疫吸附测定 (ELISA)。LRP6 的 E1-E4 结构域的制备如先前报道 (30)。小鼠 DAN 家族蛋白的表达载体购自 OriGene Technologies Inc.(美国马里兰州罗克维尔)。

Generation and purification of anti–USAG-1 monoclonal antibodies
抗 USAG-1 单克隆抗体的生成和纯化

The anti–USAG-1 monoclonal antibodies were generated by ITM Co. Ltd. (Matsumoto, Japan) as previously described (43). Briefly, USAG-1−/− mice were immunized with recombinant human USAG-1 protein. Two weeks later, the lymphocytes obtained from iliac lymph nodes were fused with SP2/0 mouse myeloma cells in the presence of 50% polyethylene glycol solution and were selected for 1 week on GIT medium (Wako Pure Chemical Corporation, Osaka, Japan) containing HAT as a supplement. The resultant hybridomas were screened by ELISA, and those secreting anti–USAG-1 monoclonal antibodies were identified. The culture supernatant (10 ml) was loaded onto a Protein G column (GE Healthcare, Chicago, IL, USA), and the antibody was adsorbed onto the column. Bound antibody was eluted using the elution buffer from the MAbTrap Kit (GE Healthcare). The eluted antibody was loaded on a centrifugal filter (Amicon Ultra-15; Millipore, Burlington, MA, USA) for buffer exchange with phosphate-buffered saline (PBS), and concentration was determined. Antibodies were stored at −80°C until use.
如前所述,抗 USAG-1 单克隆抗体由 ITM Co. Ltd.(日本松本)生产 (43)。简而言之,用重组人 USAG-1 蛋白免疫 USAG-1−/ 小鼠。两周后,将从髂淋巴结获得的淋巴细胞在 50%聚乙二醇溶液存在下与 SP2/0 小鼠骨髓瘤细胞融合,并在含有 HAT 的 GIT 培养基(Wako Pure Chemical Corporation,Osaka,Japan)上选择 1 周作为补充剂。通过 ELISA 筛选所得杂交瘤,并鉴定出分泌抗 USAG-1 单克隆抗体的杂交瘤。将培养上清液(10 ml)加载到蛋白 G 色谱柱(GE Healthcare,Chicago,IL,USA)上,并将抗体吸附到色谱柱上。使用 MAbTrap 试剂盒 (GE Healthcare) 中的洗脱缓冲液洗脱结合的抗体。将洗脱的抗体加载到离心过滤器(Amicon Ultra-15;Millipore, Burlington, MA, USA)与磷酸盐缓冲盐水(PBS)进行缓冲液交换,并测定浓度。抗体储存在 -80°C 直至使用。

Alkaline phosphatase assay
碱性磷酸酶测定

For determination of alkaline phosphatase (ALP) activity, C2C12 cells were seeded at a density of 6 × 104 cells per well in 96-well plates. After the cells reached confluency, they were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Sigma-Aldrich, St. Louis, MO, USA) supplemented with 15% fetal bovine serum (FBS), penicillin G (100 U/ml), streptomycin (100 μg/ml), recombinant mouse BMP7 protein (30 ng/ml or 300 ng/ml) (R&D systems), and recombinant mouse USAG-1 protein (0 to 3000 ng/ml) for 48 hours. Cells were washed twice with PBS and scraped in 0.05% Triton X-100. The cell suspension was sonicated on ice. Aliquots of supernatants were assayed for protein concentration and ALP activity (LabAssay ALP, FUJIFILM Wako Pure Chemical Corporation) as described.
为了测定碱性磷酸酶 (ALP) 活性,将 C2C12 细胞以每孔 6 × 104 个细胞的密度接种在 96 孔板中。细胞达到汇合后,在 Dulbecco 改良的 Eagle 培养基(DMEM;Sigma-Aldrich,圣路易斯,密苏里州,美国)补充 15%胎牛血清(FBS),青霉素 G(100 U / ml),链霉素(100μg / ml),重组小鼠 BMP7 蛋白(30 ng / ml 或 300 ng / ml)(研发系统)和重组小鼠 USAG-1 蛋白(0 至 3000 ng / ml)48 小时。用 PBS 洗涤细胞两次,并在 0.05%Triton X-100 中刮擦。将细胞悬液在冰上超声处理。如所述,测定上清液等分试样的蛋白质浓度和 ALP 活性(LabAssay ALP,FUJIFILM Wako Pure Chemical Corporation)。

Luciferase reporter assay
荧光素酶报告测定

To assess the neutralizing effects of the anti–USAG-1 antibodies on Wnt/β-catenin signaling modulated by recombinant mouse USAG-1, we used the TOP reporter system based on the dual-luciferase reporter assay system (Promega, Madison, WI, USA). Briefly, HEK293 cells (1.0 × 104 cells per well in a 48-well plate) were transiently transfected with constitutively active herpes simplex virus thymidine kinase promoter-driven Renilla luciferase (20 ng per well) as an internal control, a β-catenin–responsive firefly luciferase reporter plasmid TopFlash (50 ng per well) (Millipore), and Wnt1 expression plasmid (1 ng per well) using Lipofectamine 3000 (Thermo Fisher Scientific, Waltham, MA, USA). After 4-hour incubation, the plasmids and the transfection reagent in DMEM supplemented with 10% FBS were replaced with a fresh medium containing recombinant mouse USAG-1 protein (1 μg/ml). Cells were harvested after 20 to 24 hours, and both firefly and Renilla luciferase activity were measured in duplicate or triplicate according to the manufacturer’s instructions. The firefly luciferase activity was normalized against the Renilla luciferase activity.
为了评估抗 USAG-1 抗体对重组小鼠 USAG-1 调节的 Wnt/β-catenin 信号传导的中和作用,我们使用了基于双荧光素酶报告基因测定系统的 TOP 报告基因系统(Promega,Madison,WI,USA)。简而言之,使用 Lipofectamine 3000 瞬时转染组成型活性单纯疱疹病毒胸苷激酶启动子驱动的海肾荧光素酶(每孔 20 ng)、一种 β-连环蛋白反应性萤火虫荧光素酶报告质粒 TopFlash(每孔 50 ng)(Millipore)和 Wnt1 表达质粒(每孔 1 ng)瞬时转染 HEK293 细胞×(48 孔板中 10 ng4 个细胞 )作为内部对照、连环蛋白反应萤火虫荧光素酶报告质粒 TopFlash(每孔 50 ng)(Millipore)和 Wnt1 表达质粒(每孔 1 ng)(Thermo Fisher Scientific, 美国马萨诸塞州沃尔瑟姆)。孵育 4 小时后,将补充有 10%FBS 的 DMEM 中的质粒和转染试剂替换为含有重组小鼠 USAG-1 蛋白(1μg/ml)的新鲜培养基。20 至 24 小时后收获细胞,并根据制造商的说明一式两份或一式三份测量萤火虫和海肾荧光素酶活性。萤火虫荧光素酶活性与海肾荧光素酶活性标准化。

Epitope mapping  表位图谱

Epitope mapping was performed by Kinexus Co Ltd. (Vancouver, Canada). Briefly, SPOT synthesis of two copies of a peptide array (15-mer peptide scan of a protein with 183 amino acids; human Sostdc1 without signal peptide) was performed on a cellulose membrane. Two of the synthesized copies of the peptide array were incubated with primary mouse USAG-1 antibodies (0.3 g/ml), and the bound antibody was detected by incubating the arrays with the detection reagent (1:25,000 dilution; HRPalpaca anti-mouse antibody) and subsequent treatment with electrochemiluminescence reagent.
表位图谱由 Kinexus Co Ltd.(加拿大温哥华)进行。简而言之,在纤维素膜上进行肽阵列的两个拷贝的 SPOT 合成(具有 183 个氨基酸的蛋白质的 15 聚体肽扫描;没有信号肽的人 Sostdc1)。将两个合成的肽阵列拷贝与原代小鼠 USAG-1 抗体(0.3 g/ml)一起孵育,并通过将阵列与检测试剂(1:25,000 稀释;HRPalpaca 抗小鼠抗体)和随后用电化学发光试剂处理。

Immunoprecipitation  免疫沉淀

Reactivity of each monoclonal antibody (mAb) with native USAG-1 in solution was evaluated by immunoprecipitation. Briefly, 5 μg of purified anti–USAG-1 mAbs was incubated with 15 μl of Protein A-Sepharose (GE Healthcare) for 2.5 hours at 15° to 25°C, followed by a brief wash with PBS. The beads were incubated with the culture supernatants of the Expi293F cells transiently transfected with either mouse or human USAG-1 containing N-terminal PA tag (42). After extensive washing with PBS, the bound proteins were eluted from the beads by adding SDS sample buffer and then analyzed by SDS–polyacrylamide gel electrophoresis (PAGE) using 5 to 20% gradient gel under nonreducing conditions.
通过免疫沉淀评估每种单克隆抗体 (mAb) 与溶液中天然 USAG-1 的反应性。简而言之,将 5 μg 纯化的抗 USAG-1 mAb 与 15 μl 蛋白 A-琼脂糖 (GE Healthcare) 在 15° 至 25°C 下孵育 2.5 小时,然后用 PBS 短暂洗涤。将珠子与瞬时转染含有 N 端 PA 标签的小鼠或人 USAG-1 的 Expi293F 细胞的培养上清液一起孵育 (42)。用 PBS 广泛洗涤后,通过添加 SDS 样品缓冲液从珠子中洗脱结合的蛋白质,然后在非还原条件下使用 5%至 20%梯度凝胶通过 SDS-聚丙烯酰胺凝胶电泳(PAGE)进行分析。

Bio-layer interferometry  生物层干涉测量

Binding kinetics of anti–USAG-1 antibodies were analyzed using bio-layer interferometry with Octet RED system (ForteBio, Fremont, CA, USA). Binding assays were performed in 96-well microtiter plates at 25°C with orbital sensor agitation at 1000 rpm. Amine reactive (AR2G) sensors were immobilized with each antibody dissolved at 10 to 20 μg/ml in 10 mM sodium acetate buffer (pH 6.0) followed by quenching with 1 M ethanolamine (pH 8.5). Purified mouse USAG-1 was serially diluted in a running buffer [20 mM Hepes and 150 mM NaCl (pH 7.2) containing 0.005% Tween 20] and added to different wells (final volume: 200 μl). The binding was monitored by dipping the sensors into the wells for 120 s, followed by dissociation in the running buffer for 120 s. After each binding experiment cycle, antibody-immobilized biosensors were regenerated by dipping in a regeneration buffer [10 mM glycine-HCl (pH 3.0)]. The KD values were determined using Octet Data Analysis Software 7.1 (ForteBio) using a 1:1 global fitting model.
使用生物层干涉测量法和 Octet RED 系统(ForteBio,Fremont,CA,USA)分析抗 USAG-1 抗体的结合动力学。在 25°C 的 96 孔微量滴定板中进行结合测定,并以 1000 rpm 的速度搅拌轨道传感器。将胺反应性(AR2G)传感器固定化,将每种抗体以 10 至 20μg/ml 溶解在 10 mM 乙酸钠缓冲液(pH 6.0)中,然后用 1 M 乙醇胺(pH 8.5)淬灭。将纯化的小鼠 USAG-1 在运行缓冲液[含有 0.005%吐温 20]的 20mM Hepes 和 150mM NaCl(pH 7.2)中连续稀释,并加入不同的孔中(最终体积:200μl)。通过将传感器浸入孔中 120 秒,然后在运行缓冲液中解离 120 秒来监测结合。在每个结合实验周期之后,通过浸入再生缓冲液 [10 mM 甘氨酸-盐酸 (pH 3.0)] 中再生抗体固定化生物传感器。KD 值是使用 Octet Data Analysis Software 7.1 (ForteBio) 使用 1:1 全局拟合模型确定的。

LRP6-binding assay  LRP6 结合测定

Binding between USAG-1 and LRP6 ectodomain was evaluated as follows. The soluble human LRP6 ectodomain fragments containing different regions (E1-E4, residues 1 to 1244; E1-E2, residues 1 to 629; E3-E4, residues 630 to 1244) were C-terminally His-tagged and transiently expressed in Expi293F cells as described previously (44). After immobilizing onto Ni-NTA beads, they were further incubated with the culture supernatants of the Expi293F cells stably expressing mouse USAG-1 established previously (42). The bound USAG-1 was eluted together with the LRP6 fragments by SDS and analyzed by nonreducing SDS-PAGE. For the assessment of the ability of anti–USAG-1 antibodies to compete with LRP6 binding, Protein A beads were incubated with each antibody (step 1), followed by incubation with USAG-1 (step 2), and lastly with LRP6 E1-E2 fragment (step 3) to allow the formation of a ternary complex. The bound proteins were analyzed by nonreducing SDS-PAGE. The diminished intensity of the signal corresponding to the LRP6 E1-E2 fragment indicated the overlap of the binding sites for the antibody and LRP6.
USAG-1 和 LRP6 胞外结构域之间的结合评估如下。含有不同区域(E1-E4,残基 1-1244;E1-E2,残基 1 至 629;E3-E4,残基 630 至 1244)在 C 端 His 标记并在 Expi293F 细胞中瞬时表达,如前所述 (44)。固定在 Ni-NTA 珠子上后,将它们与先前建立的稳定表达小鼠 USAG-1 的 Expi293F 细胞的培养上清液进一步孵育(42)。将结合的 USAG-1 与 LRP6 片段一起通过 SDS 洗脱,并通过非还原 SDS-PAGE 进行分析。为了评估抗 USAG-1 抗体与 LRP6 结合竞争的能力,将蛋白 A 珠与每种抗体一起孵育(步骤 1),然后与 USAG-1 孵育(步骤 2),最后与 LRP6 E1-E2 片段孵育(步骤 3)以形成三元复合物。通过非还原 SDS-PAGE 分析结合蛋白。与 LRP6 E1-E2 片段相对应的信号强度降低表明抗体和 LRP6 的结合位点重叠。

Analysis of teeth phenotypes
牙齿表型分析

Pregnant EDA1 mice at E13 of gestation (4 to 6 weeks) were intraperitoneally injected with anti–USAG-1 antibodies (16 μg/g). Offspring were analyzed at 5 weeks of age. After removing the skin, dissected maxillae and mandibles from the heads of the offspring were soaked in 0.02% proteinase K prepared in PBS at 37°C for 4 days and cleaned with 5% H2O2 at 15° to 25°C for 5 min. Last, they were rinsed in H2O and air-dried. Neonates were fixed in 4% paraformaldehyde and embedded in paraffin. Sections (7 mm) were cut and stained with hematoxylin and eosin. Offspring of ferrets at 1 and 3 weeks after birth or 1, 3, and 5 weeks were intraperitoneally injected with anti–USAG-1 antibodies (16 or 80 μg/g). They were analyzed by taking photographs and micro-computed tomography (micro-CT).
在妊娠 E13(4 至 6 周)的怀孕 EDA1 小鼠腹腔注射抗 USAG-1 抗体(16μg/g)。在 5 周龄时对后代进行分析。去除皮肤后,将从后代头部解剖的上颌骨和下颌骨浸泡在 PBS 中制备的 0.02%蛋白酶 K 中,在 37°C 下浸泡 4 天,并用 5%H2O2 在 15°至 25°C 下清洁 5 分钟。最后,将它们在 H2O 中冲洗并风干。新生儿固定在 4%多聚甲醛中并包埋在石蜡中。切片(7 mm)被切割并用苏木精和伊红染色。在出生后 1 周和 3 周或 1、3 和 5 周时,腹腔注射抗 USAG-1 抗体(16 或 80 μg/g)的雪貂后代。通过拍照和显微计算机断层扫描 (micro-CT) 对其进行分析。

Micro-CT analysis  显微 CT 分析

We performed 3D micro-CT scans (inspeXio SMX-100CT; Shimadzu, Kyoto, Japan) on the maxillary incisors of ferrets, 13 weeks after birth. We converted CB files [512 × 512 pixels, 8 bits; voxel size, x:y:z = 1:1:1 (~0.06 mm per side)] to TIFF files, and 3D images were reconstructed and analyzed using computer imaging software (VGSTUDIO MAX; Volume Graphics GmbH., Heidelberg, Germany).
我们进行了 3D 显微 CT 扫描(inspeXio SMX-100CT;Shimadzu, Kyoto, Japan)在雪貂的上颌切牙上,出生后 13 周。我们将 CB 文件[512 × 512 像素,8 位;体素大小,xyz = 1:1:1(每边~0.06 mm)]转换为 TIFF 文件,并使用计算机成像软件(VGSTUDIO MAX;Volume Graphics GmbH.,德国海德堡)。

Immunocytochemistry  免疫细胞化学

Immunocytochemistry was performed using standard techniques. Briefly, HEK293 cells were seeded on poly-l-lysine–coated coverslips (Matsunami Glass Ind. Ltd., Osaka, Japan). FLAG-tagged DAN family protein expression plasmids were transfected (1 μg per well) into the cells using Lipofectamine 3000. After transfection (24 hours), the cells were fixed with 4% paraformaldehyde/PBS (Sigma-Aldrich) for 30 min. Next, the cells were washed with PBS three times and incubated in blocking buffer (10% bovine serum albumin/PBS) for 1 hour, followed by incubation in the mouse monoclonal anti–USAG-1 antibody or anti-FLAG antibody (4 ng/ml) (Sigma-Aldrich) in the blocking buffer overnight at 4°C. To visualize the immunoreactivity, the cells were incubated with Cy3-labeled secondary antibody (Jackson ImmunoResearch Laboratories, West Grove, PA, USA)/PBS (1:400) after being washed three times with PBS. Nuclear staining was performed using 4′,6-diamidino-2-phenylindole (Thermo Fisher Scientific).
使用标准技术进行免疫细胞化学。简而言之,将 HEK293 细胞接种在聚左旋赖氨酸涂层的盖玻片上(Matsunami Glass Ind. Ltd.,大阪,日本)。使用 Lipofectamine 3000 将 FLAG 标记的 DAN 家族蛋白表达质粒转染(每孔 1 μg)到细胞中。转染后(24 小时),用 4%多聚甲醛/ PBS(Sigma-Aldrich)固定细胞 30 分钟。接下来,用 PBS 洗涤细胞 3 次,并在封闭缓冲液(10%牛血清白蛋白/ PBS)中孵育 1 小时,然后在小鼠单克隆抗 USAG-1 抗体或抗 FLAG 抗体(4 ng / ml)中孵育在封闭缓冲液中,在 4°C 下过夜。 为了可视化免疫反应性,在用 PBS 洗涤 3 次后,将细胞与 Cy3 标记的二抗(Jackson ImmunoResearch Laboratories,West Grove,PA,USA)/PBS(1:400)一起孵育。使用 4',6-二脒基-2-苯基吲哚(Thermo Fisher Scientific)进行核染色。

Immunohistochemistry  免疫组化

Paraffin-embedded sections of ferret was immunostained with primary rabbit polyclonal antibodies against phosphorylated Smad 1/5/8 (1:50; Merck KGaA, Darmstadt, Germany) and secondary biotinylated anti-rabbit/mouse antibodies (Nichirei Bioscience, Tokyo, Japan), as previously described (11, 32). Sections were then counter-stained with hematoxylin, dehydrated in a graded series of ethanol and xylene, and covered with coverslips.
用针对磷酸化 Smad 的兔一级多克隆抗体对雪貂的石蜡包埋切片进行免疫染色 1/5/8 (1:50;如前所述,Merck KGaA,达姆施塔特,德国)和二级生物素化抗兔/小鼠抗体(Nichirei Bioscience,东京,日本)(11,32)。 然后用苏木精复染切片,在一系列分级乙醇和二甲苯中脱水,并用盖玻片覆盖。

Statistical analysis  统计分析

Data are shown as means ± SEs. For comparing multiple conditions, a one-way analysis of variance (ANOVA) was performed, followed by two-tailed Dunnett’s multiple comparisons test. Statistical significance of differences was assessed as follows: *P < 0.05, **P < 0.01. Statistical analyses were performed using the SAS statistical software, version 9.4 (SAS Institute, Cary, NC).
数据显示为均值± SE。为了比较多种条件,进行了单因素方差分析(ANOVA),然后进行了双尾 Dunnett 多重比较检验。差异的统计学显着性评估如下:*P < 0.05,**P < 0.01。使用 SAS 统计软件 9.4 版(SAS Institute,Cary,NC)进行统计分析。

Acknowledgments  确认

We thank others for any contributions. Funding: This study was supported by Grants-in-Aid for Scientific Research [(C):25463081 and 17K118323], AMED under Grant Numbers JP17nk0101334 and JP20ek0109397, and Kyoto University the fourth GAP Fund and Incubation Program. This research was partially supported by the Platform Project for Supporting Drug Discovery and Life Science Research [Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)] from AMED under Grant Number 19am0101075 to J.T. Author contributions: K.T., Y.To., J.T., and M.S. designed the research plan. A.M.-S., H.K., E.M., Y.N., R.U., and Y.To. performed all the experiments. Analysis and interpretation of data were performed by K.T., Y.To., J.T., M.S., Y.Ta., Y.N., and K.B. A.M.-S., R.U., K.T., Y.To, J.T., and M.S. wrote the main manuscript text. A.M.-S., H.K., E.M., and Y.To. prepared all figures. All authors reviewed and approved the manuscript. Competing interests: This study was funded by Toregem BioPharma Co. Ltd. Kyoto University, Fukui University, and Aichi Prefecture, and Osaka University has a patent related to this work. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.
我们感谢其他人的任何贡献。 资金: 本研究得到了科学研究补助金 [(C):25463081 和 17K118323]、资助号 JP17nk0101334 和 JP20ek0109397 的 AMED,以及京都大学第四届 GAP 基金和孵化计划的支持。这项研究得到了 AMED 的“支持药物发现和生命科学研究平台项目 [支持创新药物发现和生命科学研究的基础 (BINDS)]的部分支持,授权号为 19am0101075 给 J.T. 作者贡献:K.T.、Y.To.、J.T. 和 M.S. 设计了研究计划。A.M.-S.、H.K.、E.M.、Y.N.、R.U. 和 Y.To。进行了所有实验。数据的分析和解释由 K.T.、Y.To.、J.T.、M.S.、Y.Ta.、Y.N. 和 K.B. A.M.-S.、R.U.、K.T.、Y.To、J.T. 和 M.S. 撰写了主要稿件文本。A.M.-S.、H.K.、E.M. 和 Y.To。准备好了所有数字。所有作者都审阅并批准了稿件。 利益争夺: 这项研究由 Toregem BioPharma Co. Ltd.京都大学、福井大学和爱知县资助,大阪大学拥有与这项工作相关的专利。 数据和材料可用性: 评估论文结论所需的所有数据都存在于论文和/或补充材料中。作者可能会要求作者提供与本文相关的其他数据。

Supplementary Material  补充材料

File (abf1798_sm.pdf)
文件 (abf1798_sm.pdf)

REFERENCES AND NOTES  参考资料和注释

1
J. Pispa, I. Thesleff, Mechanisms of ectodermal organogenesis. Dev. Biol. 262, 195–205 (2003).
J. Pispa, I. Thesleff,外胚层器官发生的机制。 开发生物学。262, 195–205 (2003)。
2
Y.-Y. Tai, R.-S. Chen, Y. Lin, T.-Y. Ling, M.-H. Chen, FGF-9 accelerates epithelial invagination for ectodermal organogenesis in real time bioengineered organ manipulation. Cell Commun. Signal 10, 34 (2012).
Y.-Y. Tai, R.-S.陈,Y. Lin,T.-Y.林,M.-H.Chen,FGF-9 在实时生物工程器官作中加速上皮内陷以进行外胚层器官发生。 细胞公社。信号 10, 34 (2012)。
3
M. Hirayama, M. Oshima, T. Tsuji, Development and prospects of organ replacement regenerative therapy. Cornea 32 (Suppl. 1), S13–S21 (2013).
M. Hirayama、M. Oshima、T. Tsuji,器官替代再生疗法的发展和前景。 角膜 32(增刊 1),S13–S21 (2013)。
4
I. Thesleff, The genetic basis of tooth development and dental defects. Am. J. Med. Genet. A 140, 2530–2535 (2006).
I. Thesleff,牙齿发育和牙齿缺陷的遗传基础。 美国医学博士。A140, 2530–2535 (2006)。

(0)eLetters  电子信件

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Neither embedded figures nor equations with special characters can be submitted, and we discourage the use of figures and equations within eLetters in general. If a figure or equation is essential, please include within the text of the eLetter a link to the figure, equation, or full text with special characters at a public repository with versioning, such as Zenodo. Please read our Terms of Service before submitting an eLetter.
eLetters 是一个持续同行评审的论坛。电子信件不会被编辑、校对或索引,但会被筛选。电子信件应对文章提供实质性和学术性评论。嵌入的图形或带有特殊字符的方程都不能提交,我们不鼓励在电子信件中使用数字和方程。如果图形或方程式是必不可少的,请在电子信件的文本中包含指向带有版本控制的公共存储库(例如 Zenodo)中的图形、方程式或带有特殊字符的全文的链接。请在提交电子信件之前阅读我们的服务条款

Log In to Submit a Response  登录以提交回复

No eLetters have been published for this article yet.
本文尚未发布任何电子信件。

Recommended articles from TrendMD
TrendMD 推荐文章