This paper presents small-signal impedance modeling of grid-connected three-phase converters for wind and solar system stability analysis. In the proposed approach, a converter is modeled by a positive-sequence and a negative-sequence impedance directly in the phase domain. It is further demonstrated that the two sequence subsystems are decoupled under most conditions and can be studied independently from each other. The proposed models are verified by experimental measurements and their applications are demonstrated in a system testbed. 本文提出了用于风能和太阳能系统稳定性分析的并网三相转换器的小信号阻抗建模。在所提出的方法中,转换器直接在相域中通过正序和负序阻抗建模。进一步证明,这两个序列子系统在大多数情况下是解耦的,并且可以相互独立地进行研究。所提出的模型通过实验测量进行了验证,并在系统测试台中演示了其应用。
Index Terms-Converter stability, grid-connected converters, harmonic resonance, impedance modeling. Index Terms-转换器稳定性、并网转换器、谐波谐振、阻抗建模。
I. Introduction I. 引言
THREE-PHASE voltage-source converters (VSCs) are the basic building blocks for many applications in power systems, including grid integration of renewable energy [1] and energy storage [2], high-voltage dc transmission [3], as well as flexible ac transmission systems [4]. They are commonly referred to as grid-connected VSC in this paper. As for other power electronic circuits, external behavior of such VSC can be characterized by the impedances measured at the dc and the ac terminals. Depending on the direction of power flow, the ac terminal impedance can be considered the input impedance (in rectification mode) or the output impedance (in inversion mode), and will be simply referred to as the impedance in this study. 三相电压源转换器 (VSC) 是电力系统中许多应用的基本组成部分,包括可再生能源 [1] 和储能 [2] 的电网集成、高压直流输电 [3] 以及灵活的交流输电系统 [4]。在本文中,它们通常被称为并网 VSC。对于其他电力电子电路,这种 VSC 的外部行为可以通过在直流和交流端子处测量的阻抗来表征。根据潮流的方向,交流端子阻抗可以被认为是输入阻抗(在整流模式下)或输出阻抗(在反转模式下),在本研究中将简称为阻抗。
One important use of the impedance of a grid-connected VSC is in the analysis of stability and resonance between the converter and the grid, including that with the filter of the converter [5]. In particular, it was shown in [6] that a grid-connected VSC used for grid integration of renewable energy can be modeled as a current source in parallel with an impedance, and the invertergrid system stability can be determined by applying the Nyquist stability criterion [7] to the ratio between the grid impedance and the VSC impedance. 并网 VSC 阻抗的一个重要用途是分析转换器和电网之间的稳定性和谐振,包括与转换器滤波器的稳定性和谐振 [5]。特别是,[6] 表明,用于可再生能源并网的并网 VSC 可以建模为与阻抗并联的电流源,并且可以通过将奈奎斯特稳定性准则 [7] 应用于电网阻抗和 VSC 阻抗之间的比率来确定逆变器电网系统的稳定性。
Most grid-connected VSCs use current control in a rotating ( dqd q ) reference frame [8], which is synchronized to the fundamental component of the grid voltages by means of a phase-locked loop (PLL) [9]. Both the dqd q-domain current con- 大多数并网 VSC 在旋转 ( dqd q ) 参考系 [8] 中使用电流控制,该参考系通过锁相环 (PLL) [9] 与电网电压的基本分量同步。 dqd q -domain current con-
trol and the PLL-based grid synchronization introduce nonlinearities which cannot be removed by reduced-order modeling techniques [10]. One method to deal with the control nonlinearities is to transform the converter model into the dqd q reference frame [11]. This method, however, has several limitations and disadvantages, as discussed in [12]. The harmonic linearization method [13] overcomes these limitations by modeling threephase VSC impedance directly in the phase domain. trol 和基于 PLL 的网格同步引入了非线性,这些非线性无法通过降阶建模技术消除 [10]。处理控制非线性的一种方法是将转换器模型转换为 dqd q 参考系 [11]。然而,这种方法有几个局限性和缺点,如 [12] 所述。谐波线性化方法 [13] 通过在相域中直接模拟三相 VSC 阻抗来克服这些限制。
This paper applies the harmonic linearization technique to develop impedance models of three-phase VSCs with PLL-based grid synchronization. A key step in the development of the impedance models is the linearization of the gridsynchronization scheme. Since there exist several synchronization schemes [14], the approach taken here is to consider a basic PLL, and show how it can be incorporated into the impedance models. Possible variations are reviewed to highlight their modeling approach. The rest of this paper is organized as follows: Section II develops impedance models assuming perfect knowledge of the grid voltage angle. Section III shows how to model the PLL, and the approach to incorporate it into the impedance models. Section IV includes verifications of the proposed impedance models from both impedance measurements and their application in analysis of harmonic resonance. Section V concludes this paper. 本文应用谐波线性化技术开发了具有基于 PLL 的电网同步的三相 VSC 的阻抗模型。阻抗模型开发的一个关键步骤是网格同步方案的线性化。由于存在多种同步方案 [14],这里采用的方法是考虑一个基本的 PLL,并展示如何将其整合到阻抗模型中。回顾可能的变体以突出其建模方法。本文的其余部分组织如下:第二部分开发了阻抗模型,假设对电网电压角有完美的了解。第 III 节展示了如何对 PLL 进行建模,以及将其合并到阻抗模型中的方法。第 IV 节包括对阻抗测量中提出的阻抗模型的验证及其在谐波谐振分析中的应用。第五节对本文进行了总结。
II. Impedance Modeling Without PLL II. 不使用 PLL 的阻抗建模
The three-phase VSC considered in this paper is depicted in Fig. 1. Phase voltages are denoted as v_(a),v_(b)v_{a}, v_{b}, and v_(c)v_{c}, while phase currents as i_(a),i_(b)i_{a}, i_{b}, and i_(c)i_{c}. Considering the large dc bus capacitors, and the lower than fundamental frequency control bandwidth of the dc bus voltage, V_(dc)V_{\mathrm{dc}} is assumed constant in this study. For the same reason, the active and reactive parts of the current references ( I_(dr)I_{\mathrm{dr}} and I_(qr)I_{\mathrm{qr}} ) are assumed constant. In the time domain, the phase voltage with a small-signal perturbation can be written as 本文中考虑的三相 VSC 如图 1 所示。相电压表示为 v_(a),v_(b)v_{a}, v_{b} , 和 v_(c)v_{c} ,而相电流表示 i_(a),i_(b)i_{a}, i_{b} 为 、 和 i_(c)i_{c} 。考虑到大型直流母线电容,以及直流母线电压低于基频的控制带宽, V_(dc)V_{\mathrm{dc}} 在本研究中假设是恒定的。出于同样的原因,current references ( I_(dr)I_{\mathrm{dr}} 和 I_(qr)I_{\mathrm{qr}} ) 的 active 和 reactive 部分被假定为 constant。在时域中,具有小信号扰动的相电压可以写为
where V_(1)V_{1} corresponds to the magnitude of the fundamental voltage at frequency f_(1),V_(p)f_{1}, V_{p} with phi_(vp)\phi_{\mathrm{vp}} correspond to the magnitude and phase of the positive-sequence perturbation at frequency f_(p)f_{p}, and V_(n)V_{n} with phi_(vn)\phi_{\mathrm{vn}} correspond to the magnitude and phase of the negative-sequence perturbation at frequency f_(n)f_{n}. Other phase voltages can be inferred from (1). In the frequency domain, (1) can be written as follows: 其中 V_(1)V_{1} 对应于频率 f_(1),V_(p)f_{1}, V_{p} 处基波电压的大小 对应于 phi_(vp)\phi_{\mathrm{vp}} 频率处正序扰动的大小和相位 f_(p)f_{p} , V_(n)V_{n} 与 phi_(vn)\phi_{\mathrm{vn}} 对应于频率处负序扰动的大小和相位 f_(n)f_{n} 。其他相电压可以从 (1) 中推断出来。在频域中,(1) 可以写成如下:
Fig. 1. Block diagram of three-phase VSC for grid-connected applications. 图 1.用于并网应用的三相 VSC 框图。
where V_(p)=(V_(p)//2)e^(+-jphi_(vp))\mathbf{V}_{p}=\left(V_{p} / 2\right) e^{ \pm j \phi_{\mathrm{vp}}} and others follow the same notation. The current response to the voltage perturbation can be found from the converter averaged model where V_(p)=(V_(p)//2)e^(+-jphi_(vp))\mathbf{V}_{p}=\left(V_{p} / 2\right) e^{ \pm j \phi_{\mathrm{vp}}} 和其他 API 遵循相同的表示法。电流对电压扰动的响应可以从转换器平均模型中找到
where m_(a),m_(b)m_{a}, m_{b}, and m_(c)m_{c} are the modulating (reference) signals for the pulse width modulation (PWM), and K_(m)K_{m} is the modulator gain. The relationship between duty ratios and the modulating signal is taken as follows: 其中 m_(a),m_(b)m_{a}, m_{b} , 和 m_(c)m_{c} 是脉宽调制 (PWM) 的调制 (参考) 信号, 是 K_(m)K_{m} 调制器增益。占空比和调制信号之间的关系如下:
where d_(a1)d_{\mathrm{a} 1} and d_(a2)d_{\mathrm{a} 2} are the duty ratios of S_(a1)\mathrm{S}_{\mathrm{a} 1} and S_(a2)\mathrm{S}_{\mathrm{a} 2}, respectively. Other phases follow the same convention. 其中 d_(a1)d_{\mathrm{a} 1} 和 d_(a2)d_{\mathrm{a} 2} 分别是 S_(a1)\mathrm{S}_{\mathrm{a} 1} 和 S_(a2)\mathrm{S}_{\mathrm{a} 2} 的占空比。其他阶段遵循相同的约定。
In order to solve (3) for impedance in the frequency domain, the sequence components in the modulating signals should be found as functions of the voltage and current perturbations. Then, positive-sequence impedance is defined as the ratio of V_(p)\mathbf{V}_{p} to -I_(p)-\mathbf{I}_{p}, and negative-sequence impedance is defined as the ratio of V_(n)\mathbf{V}_{n} to -I_(n)-\mathbf{I}_{n}. Coupling should also be examined. Both phase- and dqd q-domain current control strategies will be considered here, which use Park’s transformation defined as follows: 为了求解 (3) 频域中的阻抗,调制信号中的序列分量应作为电压和电流扰动的函数。然后,正序阻抗定义为 V_(p)\mathbf{V}_{p} 的比值 , -I_(p)-\mathbf{I}_{p} 负序阻抗定义为 V_(n)\mathbf{V}_{n} 的 -I_(n)-\mathbf{I}_{n} 比值。还应检查耦合。这里将考虑相域 dqd q 和域电流控制策略,它们使用 Park 变换,定义如下:
An inductive output filter is assumed in Fig. 1. Additional filter elements (such as in the case when an LCL is used) can be handled by simply modifying (3). 图 1 中假设有一个电感输出滤波器。额外的过滤元件(例如在使用 LCL 的情况下)可以通过简单地修改 (3) 来处理。
Fig. 2. Block diagram of a phase-domain current controller. 图 2.相域电流控制器的框图。
A. Phase-Domain Current Control A. 相域电流控制
Fig. 2 depicts a phase-domain current controller. To find the frequency-domain response of the controller to the harmonic perturbation, first neglect the PLL dynamics, such that theta_("PLL ")(t)=theta_(1)(t)-=2pif_(1)t\theta_{\text {PLL }}(t)=\theta_{1}(t) \equiv 2 \pi f_{1} t. Hence the reference currents i_("ar "),i_("br ")i_{\text {ar }}, i_{\text {br }}, and i_(cr)i_{\mathrm{cr}} are not affected by the perturbation. As a result, the sequence components in the modulating signals may be found as follows: 图 2 描述了一个相域电流控制器。要找到控制器对谐波扰动的频域响应,首先忽略 PLL 动力学,使得 theta_("PLL ")(t)=theta_(1)(t)-=2pif_(1)t\theta_{\text {PLL }}(t)=\theta_{1}(t) \equiv 2 \pi f_{1} t 。因此参考电流 i_("ar "),i_("br ")i_{\text {ar }}, i_{\text {br }} , i_(cr)i_{\mathrm{cr}} 不受扰动的影响。因此,调制信号中的序列分量可以找到如下: M_(a)[f]={[-H_(i)(s)G_(i)(s)I_(p)+K_(f)(s)G_(v)(s)V_(p)",",f=+-f_(p)],[-H_(i)(s)G_(i)(s)I_(n)+K_(f)(s)G_(v)(s)V_(n)",",f=+-f_(n)]:}\mathbf{M}_{a}[f]= \begin{cases}-H_{i}(s) G_{i}(s) \mathbf{I}_{p}+K_{f}(s) G_{v}(s) \mathbf{V}_{p}, & f= \pm f_{p} \\ -H_{i}(s) G_{i}(s) \mathbf{I}_{n}+K_{f}(s) G_{v}(s) \mathbf{V}_{n}, & f= \pm f_{n}\end{cases}
where H_(i)(s)H_{i}(s) is a current control compensator, K_(f)(s)K_{f}(s) is a feedforward gain, and 其中 H_(i)(s)H_{i}(s) 是电流控制补偿器, K_(f)(s)K_{f}(s) 是前馈增益,并且
models the current sampling delay, with T_(i)T_{i} representing the sampling interval and omega_(i)\omega_{i} its ADC prefilter cutoff frequency. Similarly 对当前采样延迟进行建模, T_(i)T_{i} 表示采样间隔及其 omega_(i)\omega_{i} ADC 预滤波器截止频率。同样地
models the voltage sampling delay, with T_(v)T_{v} representing the sampling interval, omega_(v)\omega_{v} its ADC prefilter cutoff frequency, and omega_(tv)\omega_{\mathrm{tv}} its transducer delay. Since V_(p)\mathbf{V}_{p} does not result in any negativesequence response in M_(a)\mathbf{M}_{a}, and V_(n)\mathbf{V}_{n} does not result in any positivesequence response either, sequence components are decoupled from each other. Introducing (7) in the frequency-domain version of (3), impedance models can be found as follows: 对电压采样延迟进行建模, T_(v)T_{v} 表示采样间隔、 omega_(v)\omega_{v} ADC 预滤波器截止频率和 omega_(tv)\omega_{\mathrm{tv}} 传感器延迟。由于在 M_(a)\mathbf{M}_{a} 中不会导致任何 negativesequence 响应,也不会 V_(n)\mathbf{V}_{n} 产生任何 positivesequence 响应,因此 V_(p)\mathbf{V}_{p} sequence 组件彼此解耦。在 (3) 的频域版本中引入 (7),阻抗模型如下:
where Z_(p)(s)Z_{p}(s) and Z_(n)(s)Z_{n}(s) denote positive-sequence and negativesequence impedances, respectively. 其中 Z_(p)(s)Z_{p}(s) 和 Z_(n)(s)Z_{n}(s) 分别表示正序和负序阻抗。
B. Dq-Domain Current Control B. Dq 域电流控制
Fig. 3 depicts a dqd q-domain current controller. Recall that currents i_(d)i_{d} and i_(q)i_{q} are outputs of a dqd q-domain transformation, which in the frequency domain involves a convolution of the frequency components in the phase currents, with the frequency components in Park’s transformation. Taking theta_("PLL ")(t)=theta_(1)(t)\theta_{\text {PLL }}(t)=\theta_{1}(t), the frequency components in Park’s transformation are easy to 图 3 描述了一个 dqd q -domain 电流控制器。回想一下,currents i_(d)i_{d} 和 i_(q)i_{q} 是域变换的输出 dqd q ,在频域中涉及相电流中频率分量与 Park 变换中的频率分量的卷积。取 theta_("PLL ")(t)=theta_(1)(t)\theta_{\text {PLL }}(t)=\theta_{1}(t) ,Park 变换中的频率分量很容易
Fig. 3. Block diagram of a dqd q-domain current controller. 图 3. dqd q -domain 电流控制器的框图。
TABLE I 表 I
Frequency Components in DQD Q-Domain Current Controller Output NEGLECTING PLL DYNAMICS 域电流控制器输出中的 DQD Q 频率分量忽略 PLL 动态
where I_(1)I_{1} and phi_(i1)\phi_{\mathrm{i} 1} correspond to the amplitude and phase of the fundamental current. Sampling at the fundamental frequency is neglected since G_(i)(+-j2pif_(1))~~1G_{i}\left( \pm j 2 \pi f_{1}\right) \approx 1. From the control block diagram, C_(d)\mathbf{C}_{d} and C_(q)\mathbf{C}_{q} can be obtained as linear combinations of (11) and (12) using H_(i)(s)H_{i}(s) and the decoupling gain K_(d)K_{d}. A convolution of the frequency components in C_(d)\mathbf{C}_{d} and C_(q)\mathbf{C}_{q} with the frequency components in the inverse Park’s transformation gives C_(a),C_(b)\mathbf{C}_{a}, \mathbf{C}_{b}, and C_(c)\mathbf{C}_{c}. Table I shows the possible combinations to consider in the convolution. Note that V_(p)\mathbf{V}_{p} does not result in any negative-sequence response at f_(p)f_{p}, and V_(n)\mathbf{V}_{n} does not result in any positive-sequence response at f_(n)f_{n}, which means there is no impedance coupling. The nonlinear coupling at +-(f_(p)-:}\pm\left(f_{p}-\right.{:2f_(1))\left.2 f_{1}\right) and +-(f_(n)+2f_(1))\pm\left(f_{n}+2 f_{1}\right) is neglected for impedance modeling in the phase domain. Combining the controller output with the voltage feedforward yields the modulating signals to introduce in the frequency-domain version of (3), which can be solved for sequence impedances as follows: 其中 I_(1)I_{1} 和 phi_(i1)\phi_{\mathrm{i} 1} 对应于基波电流的幅度和相位。基频采样被忽略了,因为 G_(i)(+-j2pif_(1))~~1G_{i}\left( \pm j 2 \pi f_{1}\right) \approx 1 。从控制框图中, C_(d)\mathbf{C}_{d} 可以 C_(q)\mathbf{C}_{q} 得到 (11) 和 (12) 的线性组合,使用 H_(i)(s)H_{i}(s) 和去耦增益 K_(d)K_{d} 。在逆 Park 变换中 C_(d)\mathbf{C}_{d} 和 C_(q)\mathbf{C}_{q} 与 频率分量 的卷积得到 C_(a),C_(b)\mathbf{C}_{a}, \mathbf{C}_{b} 、 和 C_(c)\mathbf{C}_{c} 。表 I 显示了卷积中要考虑的可能组合。请注意,这 V_(p)\mathbf{V}_{p} 不会在 处 f_(p)f_{p} 产生任何负序响应,也不会 V_(n)\mathbf{V}_{n} 在 处 f_(n)f_{n} 产生任何正序响应,这意味着没有阻抗耦合。在 和 +-(f_(n)+2f_(1))\pm\left(f_{n}+2 f_{1}\right) 处 +-(f_(p)-:}\pm\left(f_{p}-\right.{:2f_(1))\left.2 f_{1}\right) 的非线性耦合在相域中的阻抗建模中被忽略。将控制器输出与电压前馈相结合,产生在 (3) 的频域版本中引入的调制信号,该信号可以按如下方式求解序列阻抗: Z_(p)(s)=(K_(m)V_(dc)[H_(i)(s-j2pif_(1))-jK_(d)]G_(i)(s)+sL)/(1-K_(m)V_(dc)K_(f)(s)G_(v)(s))Z_{p}(s)=\frac{K_{m} V_{\mathrm{dc}}\left[H_{i}\left(s-j 2 \pi f_{1}\right)-j K_{d}\right] G_{i}(s)+s L}{1-K_{m} V_{\mathrm{dc}} K_{f}(s) G_{v}(s)} Z_(n)(s)=(K_(m)V_(dc)[H_(i)(s+j2pif_(1))+jK_(d)]G_(i)(s)+sL)/(1-K_(m)V_(dc)K_(f)(s)G_(v)(s))Z_{n}(s)=\frac{K_{m} V_{\mathrm{dc}}\left[H_{i}\left(s+j 2 \pi f_{1}\right)+j K_{d}\right] G_{i}(s)+s L}{1-K_{m} V_{\mathrm{dc}} K_{f}(s) G_{v}(s)}.
Fig. 4. Block diagram of a basic PLL. 图 4.基本 PLL 的框图。
III. Impedance Modeling With PLL III. 使用 PLL 进行阻抗建模
A. Small-Signal Modeling of the PLL A. PLL 的小信号建模
Fig. 4 depicts a basic PLL, where H_("PLL ")(s)H_{\text {PLL }}(s) is the loop compensator. The first step to develop a small-signal model for this PLL is to model the response of v_(q)(t)v_{q}(t) to the voltage perturbation described by (1). In order to deal with the nonlinearity in Park’s transformation, we break the transformation into two parts as follows: 图 4 描述了一个基本的 PLL,其中 H_("PLL ")(s)H_{\text {PLL }}(s) 是 loop 补偿器。为此 PLL 开发小信号模型的第一步是对 (1) 中描述的电压扰动的响应 v_(q)(t)v_{q}(t) 进行建模。为了处理 Park 变换中的非线性,我们将变换分为两部分,如下所示: T(theta_("PLL ")(t))=[[cos(Delta theta(t)),sin(Delta theta(t)),0],[-sin(Delta theta(t)),cos(Delta theta(t)),0],[0,0,1]]T(theta_(1)(t))\mathbf{T}\left(\theta_{\text {PLL }}(t)\right)=\left[\begin{array}{ccc}\cos (\Delta \theta(t)) & \sin (\Delta \theta(t)) & 0 \\ -\sin (\Delta \theta(t)) & \cos (\Delta \theta(t)) & 0 \\ 0 & 0 & 1\end{array}\right] \mathbf{T}\left(\theta_{1}(t)\right)
where Delta theta(t)=theta_(PLL)(t)-theta_(1)(t)\Delta \theta(t)=\theta_{\mathrm{PLL}}(t)-\theta_{1}(t). Let v_(dv)(t)v_{\mathrm{dv}}(t) and v_(qv)(t)v_{\mathrm{qv}}(t) be defined, respectively, as the dd and qq outputs of applying T(theta_(1)(t))\mathbf{T}\left(\theta_{1}(t)\right) to (1), which in the frequency domain are easily found to be 其中 Delta theta(t)=theta_(PLL)(t)-theta_(1)(t)\Delta \theta(t)=\theta_{\mathrm{PLL}}(t)-\theta_{1}(t) .设 v_(dv)(t)v_{\mathrm{dv}}(t) 和 v_(qv)(t)v_{\mathrm{qv}}(t) 分别定义为应用于 T(theta_(1)(t))\mathbf{T}\left(\theta_{1}(t)\right) (1) 的 dd 和 qq 输出,在频域中很容易找到 V_(dv)[f]={[V_(1)",",dc],[G_(v)(s+-j2pif_(1))V_(p)",",f=+-(f_(p)-f_(1))],[G_(v)(s∓j2pif_(1))V_(n)",",f=+-(f_(n)+f_(1))]:}\mathbf{V}_{\mathrm{dv}}[f]= \begin{cases}V_{1}, & \mathrm{dc} \\ G_{v}\left(s \pm j 2 \pi f_{1}\right) \mathbf{V}_{p}, & f= \pm\left(f_{p}-f_{1}\right) \\ G_{v}\left(s \mp j 2 \pi f_{1}\right) \mathbf{V}_{n}, & f= \pm\left(f_{n}+f_{1}\right)\end{cases} V_(qv)[f]={[∓jG_(v)(s+-j2pif_(1))V_(p)",",f=+-(f_(p)-f_(1))],[+-jG_(v)(s∓j2pif_(1))V_(n)",",f=+-(f_(n)+f_(1)).]:}\mathbf{V}_{\mathrm{qv}}[f]= \begin{cases}\mp j G_{v}\left(s \pm j 2 \pi f_{1}\right) \mathbf{V}_{p}, & f= \pm\left(f_{p}-f_{1}\right) \\ \pm j G_{v}\left(s \mp j 2 \pi f_{1}\right) \mathbf{V}_{n}, & f= \pm\left(f_{n}+f_{1}\right) .\end{cases}
For simplicity, we linearize the rotation matrix in (15) around the operating point Deltatheta_(0)=0\Delta \theta_{0}=0, which is possible for balanced, nondistorted voltage conditions [9]. Then, v_(q)(t)v_{q}(t) is given by 为简单起见,我们将 (15) 中围绕工作点 Deltatheta_(0)=0\Delta \theta_{0}=0 的旋转矩阵线性化,这在平衡、不失真的电压条件下是可能的 [9]。则, v_(q)(t)v_{q}(t) 由下式给出
By the harmonic linearization principle, we can remove terms proportional to second and higher-orders of the perturbation. Hence, from (16) and the fact that Deltatheta_(0)=0\Delta \theta_{0}=0, we should only consider terms in Delta theta(t)\Delta \theta(t) proportional to the first order of the perturbation. Let 根据谐波线性化原理,我们可以去除与扰动的二阶和高阶成比例的项。因此,从 (16) 和 Deltatheta_(0)=0\Delta \theta_{0}=0 的事实来看,我们应该只考虑与扰动的一阶 Delta theta(t)\Delta \theta(t) 成比例的项。让
where G_(p)(s)G_{p}(s) and G_(n)(s)G_{n}(s) are two transfer functions that need to be determined. Then, the result of (18) is as follows: 其中 G_(p)(s)G_{p}(s) 和 G_(n)(s)G_{n}(s) 是两个需要确定的传递函数。那么,(18) 的结果如下:
where terms proportional to second or higher order of the perturbations have been removed. Note that Delta theta=H_(PLL)(s)V_(q)\boldsymbol{\Delta} \boldsymbol{\theta}=H_{\mathrm{PLL}}(s) \mathbf{V}_{q} except for f=+-f_(1)f= \pm f_{1}; then, from (20), we can solve for G_(p)(s)G_{p}(s) 其中,与扰动的二阶或更高阶成比例的项已被删除。请注意, Delta theta=H_(PLL)(s)V_(q)\boldsymbol{\Delta} \boldsymbol{\theta}=H_{\mathrm{PLL}}(s) \mathbf{V}_{q} 除了 f=+-f_(1)f= \pm f_{1} ;那么,从 (20) 中,我们可以求解 G_(p)(s)G_{p}(s)
Manuscript received October 23, 2012; revised March 8, 2013; accepted April 10, 2013. Date of current version September 18, 2013. This work was supported in part by GE Global Research Center and in part by the National Science Foundation under Award #1002265. Recommended for publication by Associate Editor M. Liserre. 手稿于 2012 年 10 月 23 日收到;2013 年 3 月 8 日修订;2013 年 4 月 10 日接受。当前版本的日期为 2013 年 9 月 18 日。这项工作部分得到了 GE 全球研究中心的支持,部分得到了美国国家科学基金会 #1002265 的支持。推荐由副主编 M. Liserre 出版。
The authors are with the Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA (e-mail: cespem@rpi.edu; jsun@rpi.edu). 作者就职于伦斯勒理工学院电气、计算机和系统工程系,特洛伊,NY 12180 USA(电子邮件:cespem@rpi.edu;jsun@rpi.edu)。