这是用户在 2025-8-1 20:59 为 https://app.immersivetranslate.com/pdf-pro/ab049c33-3511-498c-a109-2af154f21bcd/ 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

  特性

-宽输入电压范围:2.5 V 至 6 V
-输出电压可调范围:0.4 V 至 VIN
-连续输出电流高达 6A
-恒定导通时间(COT)控制
  -轻载模式:
-M0606:轻载时的强制连续导通模式(FCCM)
-M0606L:节能模式(PSM),实现优异的轻载效率
-使用低 ESR 陶瓷电容实现稳定运行
100 % 100 % 100%100 \% 占空比操作,适用于低压差条件
-结温范围从 40 C 40 C -40^(@)C-40^{\circ} \mathrm{C} 125 C 125 C 125^(@)C125^{\circ} \mathrm{C}
-1.2 毫秒内部软启动
-电源良好(PG)指示器
-逐周期输出电流限制保护
-短路和过载的打嗝模式保护
-热关断保护
  -LGA-13( 2.5 mm × 2.5 mm × 1.4 mm 2.5 mm × 2.5 mm × 1.4 mm 2.5mmxx2.5mmxx1.4mm2.5 \mathrm{~mm} \times 2.5 \mathrm{~mm} \times 1.4 \mathrm{~mm} )封装
  -无铅-符合 RoHS 标准

  产品描述

M0606 是一款 6A 降压开关模式电源 SoC(片上系统),集成了功率 MOSFET 和电感,采用 LGA-13 封装。输入电压范围为 2.5V 至 6V。输出电压可通过调整外部反馈分压电阻,编程设定在 0.4V 至 VIN 之间。
M0606 采用 COT 控制模式,提供高效率,具备快速瞬态响应和良好的环路稳定性。
M0606 通过 PG 信号指示故障,并提供全面的保护功能,包括短路保护(SCP)、过流保护(OCP)和过温保护(OTP)。

  应用领域

  -光模块
  -PoL 电源供应
-固态硬盘和机械硬盘驱动器

  订购信息

  零件编号   顶标记 PACKAGE MOQ MSL
M0606DLBB M0606 LGA-13 ( 2.5 mm × 2.5 mm × 1.4 mm 2.5 mm × 2.5 mm × 1.4 mm 2.5mmxx2.5mmxx1.4mm2.5 \mathrm{~mm} \times 2.5 \mathrm{~mm} \times 1.4 \mathrm{~mm}   1000/卷带包装 3
M0606DLBB-L M0606L LGA-13 ( 2.5 mm × 2.5 mm × 1.4 mm 2.5 mm × 2.5 mm × 1.4 mm 2.5mmxx2.5mmxx1.4mm2.5 \mathrm{~mm} \times 2.5 \mathrm{~mm} \times 1.4 \mathrm{~mm}   1000/卷带包装 3
PART NUMBER TOP MARKING PACKAGE MOQ MSL M0606DLBB M0606 LGA-13 ( 2.5mmxx2.5mmxx1.4mm ) 1000/ Tape \&Reel 3 M0606DLBB-L M0606L LGA-13 ( 2.5mmxx2.5mmxx1.4mm ) 1000/ Tape \&Reel 3| PART NUMBER | TOP MARKING | PACKAGE | MOQ | MSL | | :--- | :--- | :--- | :--- | :--- | | M0606DLBB | M0606 | LGA-13 ( $2.5 \mathrm{~mm} \times 2.5 \mathrm{~mm} \times 1.4 \mathrm{~mm}$ ) | 1000/ Tape \&Reel | 3 | | M0606DLBB-L | M0606L | LGA-13 ( $2.5 \mathrm{~mm} \times 2.5 \mathrm{~mm} \times 1.4 \mathrm{~mm}$ ) | 1000/ Tape \&Reel | 3 |

  备注:

1) Y:年份,WW:周数,LLL:批号

  封装参考

  引脚功能

  引脚编号 NAME DESCRIPTION
1,13 GND   电源地
2 NC   未连接
3,4,5 VIN 输入电压。VIN 为所有内部控制电路和功率开关供电。强烈建议连接一个去耦电容到地平面,并应放置在 VIN 引脚附近。
6 EN 使能控制。将此引脚拉低以禁用芯片。将其拉高以启用芯片。
7 PG 电源良好。PG 的输出为开漏输出,使用时需要一个上拉电阻连接到电源。如果芯片正常工作,PG 被拉高,否则 PG 保持低电平。
8 FB 反馈。将此引脚连接到输出与地之间外部分压电阻的中点,以设置输出电压
9,10,11,12 VOUT 输出电压。将此引脚连接到负载。建议在 VOUT 和 GND 之间放置输出电容。
PIN \# NAME DESCRIPTION 1,13 GND Power Ground. 2 NC Not Connected. 3,4,5 VIN Input Voltage.VIN supplies power to all the internal control circuitry and the power switch.A decoupling capacitor connected to the ground plane is highly recommended and should be placed close to the VIN pin. 6 EN Enable Control.Pull this pin low to disable the chip.Pull it high to enable the chip. 7 PG Power Good.The output of PG is an open drain,a pull-up resistor to power source is needed if used.If the chip works normally,PG is pulled high,else,PG is latched low. 8 FB Feedback.Connect this pin to the center tap of an external resistor divider between the output and GND to set the output voltage. 9,10,11,12 VOUT Output Voltage.Connect this pin with the load.Output capacitors are recommended to be placed between VOUT and GND.| PIN \# | NAME | DESCRIPTION | | :--- | :--- | :--- | | 1,13 | GND | Power Ground. | | 2 | NC | Not Connected. | | 3,4,5 | VIN | Input Voltage.VIN supplies power to all the internal control circuitry and the power switch.A decoupling capacitor connected to the ground plane is highly recommended and should be placed close to the VIN pin. | | 6 | EN | Enable Control.Pull this pin low to disable the chip.Pull it high to enable the chip. | | 7 | PG | Power Good.The output of PG is an open drain,a pull-up resistor to power source is needed if used.If the chip works normally,PG is pulled high,else,PG is latched low. | | 8 | FB | Feedback.Connect this pin to the center tap of an external resistor divider between the output and GND to set the output voltage. | | 9,10,11,12 | VOUT | Output Voltage.Connect this pin with the load.Output capacitors are recommended to be placed between VOUT and GND. |

功能框图

绝对最大额定值

SYMBOL MIN MAX UNIT
  引脚电压 V IN V IN  V_("IN ")\mathrm{V}_{\text {IN }}   -0.3 6.5 V
其他引脚电压   -0.3 6.5 V
  引脚电压 V NC ( 10 ns ) V NC ( 10 ns ) V_(NC)(10ns)\mathrm{V}_{\mathrm{NC}}(10 \mathrm{~ns}) -3 8 V
结温范围 T J T J T_(J)\mathrm{T}_{\mathrm{J}} -40 125 C C ^(@)C{ }^{\circ} \mathrm{C}
存储温度范围 T S T S T_(S)\mathrm{T}_{\mathrm{S}} -55 150 C C ^(@)C{ }^{\circ} \mathrm{C}
峰值焊接回流体温度 245 C C ^(@)C{ }^{\circ} \mathrm{C}
SYMBOL MIN MAX UNIT Voltage at Pins V_("IN ") -0.3 6.5 V Voltage at Other Pins -0.3 6.5 V Voltage at Pins V_(NC)(10ns) -3 8 V Junction Temperature Range T_(J) -40 125 ^(@)C Storage Temperature Range T_(S) -55 150 ^(@)C Peak Solder Reflow Body Temperature 245 ^(@)C| | SYMBOL | MIN | MAX | UNIT | | :--- | :--- | :--- | :--- | :--- | | Voltage at Pins | $\mathrm{V}_{\text {IN }}$ | -0.3 | 6.5 | V | | Voltage at Other Pins | | -0.3 | 6.5 | V | | Voltage at Pins | $\mathrm{V}_{\mathrm{NC}}(10 \mathrm{~ns})$ | -3 | 8 | V | | Junction Temperature Range | $\mathrm{T}_{\mathrm{J}}$ | -40 | 125 | ${ }^{\circ} \mathrm{C}$ | | Storage Temperature Range | $\mathrm{T}_{\mathrm{S}}$ | -55 | 150 | ${ }^{\circ} \mathrm{C}$ | | Peak Solder Reflow Body Temperature | | | 245 | ${ }^{\circ} \mathrm{C}$ |
SYMBOL MIN MAX UNIT
  输入电压范围 V IN V IN  V_("IN ")\mathrm{V}_{\text {IN }} 2.5 6 V
  输出电压范围 V Out V Out  V_("Out ")\mathrm{V}_{\text {Out }} 0.4 V IN V IN  V_("IN ")\mathrm{V}_{\text {IN }} V
  输出电流   输出电流 6 A
结温范围 T J T J T_(J)\mathrm{T}_{\mathrm{J}} -40 125 C C ^(@)C{ }^{\circ} \mathrm{C}
SYMBOL MIN MAX UNIT Input Voltage Range V_("IN ") 2.5 6 V Output Voltage Range V_("Out ") 0.4 V_("IN ") V Output Current Iout 6 A Junction Temperature Range T_(J) -40 125 ^(@)C| | SYMBOL | MIN | MAX | UNIT | | :--- | :--- | :--- | :--- | :--- | | Input Voltage Range | $\mathrm{V}_{\text {IN }}$ | 2.5 | 6 | V | | Output Voltage Range | $\mathrm{V}_{\text {Out }}$ | 0.4 | $\mathrm{V}_{\text {IN }}$ | V | | Output Current | Iout | | 6 | A | | Junction Temperature Range | $\mathrm{T}_{\mathrm{J}}$ | -40 | 125 | ${ }^{\circ} \mathrm{C}$ |

  热阻

SYMBOL MIN MAX UNIT
  结点到环境 θ JA Notes 2) θ JA  Notes 2) theta_("JA ")^("Notes 2)")\theta_{\text {JA }}{ }^{\text {Notes 2)}} 31.3 C / W C / W ^(@)C//W{ }^{\circ} \mathrm{C} / \mathrm{W}
  结点到外壳 θ JC Notes 2) θ JC  Notes 2) theta_("JC ")^("Notes 2)")\theta_{\text {JC }}{ }^{\text {Notes 2)}} 1.4 C / W C / W ^(@)C//W{ }^{\circ} \mathrm{C} / \mathrm{W}
SYMBOL MIN MAX UNIT Junction to Ambient theta_("JA ")^("Notes 2)") 31.3 ^(@)C//W Junction to Case theta_("JC ")^("Notes 2)") 1.4 ^(@)C//W | | SYMBOL | MIN | MAX | UNIT | | :--- | :---: | :---: | :---: | :---: | | Junction to Ambient | $\theta_{\text {JA }}{ }^{\text {Notes 2)}}$ | 31.3 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | | | Junction to Case | $\theta_{\text {JC }}{ }^{\text {Notes 2)}}$ | 1.4 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | |

  注释:

1)在任意环境温度( T A T A T_(A)T_{A} )下,最大允许的连续功率耗散由 P D ( max ) = ( T J ( max ) T A ) / θ J A P D ( max ) = T J ( max ) T A / θ J A P_(D)(max)=(T_(J)(max)-T_(A))//theta_(JA)P_{D}(\max )=\left(T_{J}(\max )-T_{A}\right) / \theta_{J A} 计算。超过最大允许功率耗散将导致芯片温度过高,功率模块将进入热关断状态
2)在 EVB 上测量,4 层 PCB,2 盎司铜厚。

电气特性

V IN = 5 V , T A = 25 C V IN  = 5 V , T A = 25 C V_("IN ")=5V,T_(A)=25^(@)C\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ,除非另有说明。
PARAMETERS SYMBOL CONDITION MIN TYP MAX UNIT
  输入电压 V IN V IN  V_("IN ")\mathrm{V}_{\text {IN }} 2.5 6 V
输入欠压锁定阈值 V UVLO V UVLO  V_("UVLO ")\mathrm{V}_{\text {UVLO }}   V IN IN  _("IN "){ }_{\text {IN }} 上升 2.3 V
VIN 欠压锁定迟滞 VIN UV_Hys UV_Hys  _("UV_Hys ")_{\text {UV_Hys }}_ 200   毫伏
  关断电流 I SD I SD  I_("SD ")\mathrm{I}_{\text {SD }} V EN = 0 V V EN = 0 V V_(EN)=0V\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V} 2 μ A μ A muA\mu \mathrm{A}
  使能开启阈值 V EN_R EN_R  _("EN_R "){ }_{\text {EN_R }}_   V EN EN  _("EN "){ }_{\text {EN }} 上升 1.25 V
  使能关闭阈值 V EN_F EN_F  _("EN_F "){ }_{\text {EN_F }}_   V EN EN  _("EN "){ }_{\text {EN }} 下降 1 V
  反馈电压 V FB_REF V FB_REF  V_("FB_REF ")\mathrm{V}_{\text {FB_REF }}_ 400   毫伏
  开关频率 F SW F SW F_(SW)\mathrm{F}_{\mathrm{SW}} 1.2   兆赫兹
  软启动时间 T SS T SS  T_("SS ")\mathrm{T}_{\text {SS }} 1.2   毫秒
  谷电流限制 I LIM I LIM  I_("LIM ")\mathrm{I}_{\text {LIM }} 6.3 A
  PG 高阈值 PG VTH_H_R VTH_H_R  _("VTH_H_R "){ }_{\text {VTH_H_R }}__ V FB V FB V_(FB)\mathrm{V}_{\mathrm{FB}} 上升, V FB V FB V_(FB)\mathrm{V}_{\mathrm{FB}} 相对于 V FB _ REF V FB _ REF  V_(FB_"REF ")\mathrm{V}_{\mathrm{FB} \_ \text {REF }} 93 \%
PG VTH_H_F VTH_H_F  _("VTH_H_F "){ }_{\text {VTH_H_F }}__ V FB V FB V_(FB)\mathrm{V}_{\mathrm{FB}} 下降,关于 V FB _ Ref V FB _ Ref V_(FB_Ref)\mathrm{V}_{\mathrm{FB} \_\mathrm{Ref}} V FB V FB V_(FB)\mathrm{V}_{\mathrm{FB}} 105 \%
  PG 低阈值 PG VTH_L_R VTH_L_R  _("VTH_L_R "){ }_{\text {VTH_L_R }}__ V FB V FB V_(FB)\mathrm{V}_{\mathrm{FB}} 上升, V FB V FB V_(FB)\mathrm{V}_{\mathrm{FB}} 相对于 V FB _ REF V FB _ REF V_(FB_REF)\mathrm{V}_{\mathrm{FB} \_\mathrm{REF}} 110 \%
PG VTH_L_F VTH_L_F  _("VTH_L_F "){ }_{\text {VTH_L_F }}__ V FB V FB V_(FB)\mathrm{V}_{\mathrm{FB}} 下降,关于 V FB _ Ref V FB _ Ref V_(FB_Ref)\mathrm{V}_{\mathrm{FB} \_\mathrm{Ref}} V FB V FB V_(FB)\mathrm{V}_{\mathrm{FB}} 90 \%
  热关断 160 C C ^(@)C{ }^{\circ} \mathrm{C}
热关断迟滞 30 C C ^(@)C{ }^{\circ} \mathrm{C}
PARAMETERS SYMBOL CONDITION MIN TYP MAX UNIT Input Voltage V_("IN ") 2.5 6 V Input Undervoltage Lockout Threshold V_("UVLO ") V _("IN ") Increasing 2.3 V VIN Undervoltage Lockout Hysteresis VIN _("UV_Hys ") 200 mV Shutdown Current I_("SD ") V_(EN)=0V 2 muA EN On Threshold V _("EN_R ") V _("EN ") Rising 1.25 V EN Off Threshold V _("EN_F ") V _("EN ") Falling 1 V Feedback Voltage V_("FB_REF ") 400 mV Switching Frequency F_(SW) 1.2 MHz Soft-Start Time T_("SS ") 1.2 ms Valley Current Limit I_("LIM ") 6.3 A PG High threshold PG _("VTH_H_R ") V_(FB) Rising, V_(FB) in respect to V_(FB_"REF ") 93 \% PG _("VTH_H_F ") V_(FB) Falling, V_(FB) in respect to V_(FB_Ref) 105 \% PG Low threshold PG _("VTH_L_R ") V_(FB) Rising, V_(FB) in respect to V_(FB_REF) 110 \% PG _("VTH_L_F ") V_(FB) Falling, V_(FB) in respect to V_(FB_Ref) 90 \% Thermal Shutdown 160 ^(@)C Thermal Shutdown Hysteresis 30 ^(@)C| PARAMETERS | SYMBOL | CONDITION | MIN | TYP | MAX | UNIT | | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Input Voltage | $\mathrm{V}_{\text {IN }}$ | | 2.5 | | 6 | V | | Input Undervoltage Lockout Threshold | $\mathrm{V}_{\text {UVLO }}$ | V ${ }_{\text {IN }}$ Increasing | | 2.3 | | V | | VIN Undervoltage Lockout Hysteresis | VIN $_{\text {UV_Hys }}$ | | | 200 | | mV | | Shutdown Current | $\mathrm{I}_{\text {SD }}$ | $\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$ | | | 2 | $\mu \mathrm{A}$ | | EN On Threshold | V ${ }_{\text {EN_R }}$ | V ${ }_{\text {EN }}$ Rising | | 1.25 | | V | | EN Off Threshold | V ${ }_{\text {EN_F }}$ | V ${ }_{\text {EN }}$ Falling | | 1 | | V | | Feedback Voltage | $\mathrm{V}_{\text {FB_REF }}$ | | | 400 | | mV | | Switching Frequency | $\mathrm{F}_{\mathrm{SW}}$ | | | 1.2 | | MHz | | Soft-Start Time | $\mathrm{T}_{\text {SS }}$ | | | 1.2 | | ms | | Valley Current Limit | $\mathrm{I}_{\text {LIM }}$ | | | 6.3 | | A | | PG High threshold | PG ${ }_{\text {VTH_H_R }}$ | $\mathrm{V}_{\mathrm{FB}}$ Rising, $\mathrm{V}_{\mathrm{FB}}$ in respect to $\mathrm{V}_{\mathrm{FB} \_ \text {REF }}$ | | 93 | | \% | | | PG ${ }_{\text {VTH_H_F }}$ | $\mathrm{V}_{\mathrm{FB}}$ Falling, $\mathrm{V}_{\mathrm{FB}}$ in respect to $\mathrm{V}_{\mathrm{FB} \_\mathrm{Ref}}$ | | 105 | | \% | | PG Low threshold | PG ${ }_{\text {VTH_L_R }}$ | $\mathrm{V}_{\mathrm{FB}}$ Rising, $\mathrm{V}_{\mathrm{FB}}$ in respect to $\mathrm{V}_{\mathrm{FB} \_\mathrm{REF}}$ | | 110 | | \% | | | PG ${ }_{\text {VTH_L_F }}$ | $\mathrm{V}_{\mathrm{FB}}$ Falling, $\mathrm{V}_{\mathrm{FB}}$ in respect to $\mathrm{V}_{\mathrm{FB} \_\mathrm{Ref}}$ | | 90 | | \% | | Thermal Shutdown | | | | 160 | | ${ }^{\circ} \mathrm{C}$ | | Thermal Shutdown Hysteresis | | | | 30 | | ${ }^{\circ} \mathrm{C}$ |

典型性能特征

V IIN = 5 V , V OUT = 1.2 V , T A = 25 C V IIN  = 5 V , V OUT  = 1.2 V , T A = 25 C V_("IIN ")=5V,V_("OUT ")=1.2V,T_(A)=25^(@)C\mathrm{V}_{\text {IIN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ,除非另有说明。

  线路调整率

   V Out = 1 V / 1.2 V / 1.8 V , I OUT = 6 A V Out  = 1 V / 1.2 V / 1.8 V , I OUT  = 6 A V_("Out ")=1V//1.2V//1.8V,I_("OUT ")=6A\mathrm{V}_{\text {Out }}=1 \mathrm{~V} / 1.2 \mathrm{~V} / 1.8 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=6 \mathrm{~A} ,M0606
V IN = 2.5 V 6 V V IN  = 2.5 V 6 V V_("IN ")=2.5V∼6V\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V} \sim 6 \mathrm{~V}

  线路调整率

   V OUT = 1 V / 1.2 V / 1.8 V , I OUT = 6 A V OUT  = 1 V / 1.2 V / 1.8 V , I OUT  = 6 A V_("OUT ")=1V//1.2V//1.8V,I_("OUT ")=6A\mathrm{V}_{\text {OUT }}=1 \mathrm{~V} / 1.2 \mathrm{~V} / 1.8 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=6 \mathrm{~A} ,M0606L
V IN = 2.5 V 6 V V IN  = 2.5 V 6 V V_("IN ")=2.5V∼6V\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V} \sim 6 \mathrm{~V}

  负载调整率

   V IN = 5 V , V OUT = 1 V / 1.2 V / 1.8 V / 3.3 V V IN  = 5 V , V OUT  = 1 V / 1.2 V / 1.8 V / 3.3 V V_("IN ")=5V,V_("OUT ")=1V//1.2V//1.8V//3.3V\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V} / 1.2 \mathrm{~V} / 1.8 \mathrm{~V} / 3.3 \mathrm{~V} ,M0606
I OUT = 0 6 A I OUT  = 0 6 A I_("OUT ")=0∼6A\mathrm{I}_{\text {OUT }}=0 \sim 6 \mathrm{~A}

  负载调整率

   V IN = 5 V , V OUT = 1 V / 1.2 V / 1.8 V / 3.3 V V IN  = 5 V , V OUT  = 1 V / 1.2 V / 1.8 V / 3.3 V V_("IN ")=5V,V_("OUT ")=1V//1.2V//1.8V//3.3V\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V} / 1.2 \mathrm{~V} / 1.8 \mathrm{~V} / 3.3 \mathrm{~V} ,M0606L
I OUT = 0 6 A I OUT  = 0 6 A I_("OUT ")=0∼6A\mathrm{I}_{\text {OUT }}=0 \sim 6 \mathrm{~A}

典型性能特征(续)

V IIN = 5 V , V OUT = 1.2 V , T A = 25 C V IIN  = 5 V , V OUT  = 1.2 V , T A = 25 C V_("IIN ")=5V,V_("OUT ")=1.2V,T_(A)=25^(@)C\mathrm{V}_{\text {IIN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ,除非另有说明

  效率

V IN = 5 V , V OUT = 1 V / 1.2 V / 1.8 V / 3.3 V , M 0606 V IN  = 5 V , V OUT  = 1 V / 1.2 V / 1.8 V / 3.3 V , M 0606 V_("IN ")=5V,V_("OUT ")=1V//1.2V//1.8V//3.3V,quadM0606\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V} / 1.2 \mathrm{~V} / 1.8 \mathrm{~V} / 3.3 \mathrm{~V}, \quad \mathrm{M} 0606 I OUT = 0 A 6 A I OUT  = 0 A 6 A I_("OUT ")=0A∼6A\mathrm{I}_{\text {OUT }}=0 \mathrm{~A} \sim 6 \mathrm{~A}

  效率

V IN = 5 V , V Out = 1 V / 1.2 V / 1.8 V / 3.3 V , M 0606 L V IN  = 5 V , V Out  = 1 V / 1.2 V / 1.8 V / 3.3 V , M 0606 L V_("IN ")=5V,V_("Out ")=1V//1.2V//1.8V//3.3V,quadM0606L\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {Out }}=1 \mathrm{~V} / 1.2 \mathrm{~V} / 1.8 \mathrm{~V} / 3.3 \mathrm{~V}, \quad \mathrm{M} 0606 \mathrm{~L} I OUT = 0 A 6 A I OUT  = 0 A 6 A I_("OUT ")=0A∼6A\mathrm{I}_{\text {OUT }}=0 \mathrm{~A} \sim 6 \mathrm{~A}

  效率

V IN = 3.3 V , V OUT = 1 V / 1.2 V / 1.8 V , M 0606 V IN  = 3.3 V , V OUT  = 1 V / 1.2 V / 1.8 V , M 0606 V_("IN ")=3.3V,V_("OUT ")=1V//1.2V//1.8V,quadM0606\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V} / 1.2 \mathrm{~V} / 1.8 \mathrm{~V}, \quad \mathrm{M} 0606
I out = 0 A 6 A I out  = 0 A 6 A I_("out ")=0A∼6A\mathrm{I}_{\text {out }}=0 \mathrm{~A} \sim 6 \mathrm{~A}
  效率
V IN = 3.3 V , V OUT = 1 V / 1.2 V / 1.8 V , V IN  = 3.3 V , V OUT  = 1 V / 1.2 V / 1.8 V , V_("IN ")=3.3V,V_("OUT ")=1V//1.2V//1.8V,quad\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V} / 1.2 \mathrm{~V} / 1.8 \mathrm{~V}, \quad M0606L
I OUT = 0 A 6 A I OUT  = 0 A 6 A I_("OUT ")=0A∼6A\mathrm{I}_{\text {OUT }}=0 \mathrm{~A} \sim 6 \mathrm{~A}

典型性能特征

M0606, V IN = 5 V , V OUT = 1.2 V , T A = 25 C V IN  = 5 V , V OUT  = 1.2 V , T A = 25 C V_("IN ")=5V,V_("OUT ")=1.2V,T_(A)=25^(@)C\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ,除非另有说明。

  VIN 启动 I OUT = 0 A I OUT  = 0 A I_("OUT ")=0A\mathrm{I}_{\text {OUT }}=0 \mathrm{~A}

  VIN 关闭
I OUT = 0 A I OUT  = 0 A I_("OUT ")=0A\mathrm{I}_{\text {OUT }}=0 \mathrm{~A}

  VIN 启动 I OUT = 6 A I OUT  = 6 A I_("OUT ")=6A\mathrm{I}_{\text {OUT }}=6 \mathrm{~A}

  VIN 关断
I OUT = 6 A I OUT  = 6 A I_("OUT ")=6A\mathrm{I}_{\text {OUT }}=6 \mathrm{~A}
  EN 启动
I OUT = 0 A I OUT  = 0 A I_("OUT ")=0A\mathrm{I}_{\text {OUT }}=0 \mathrm{~A}
  EN 启动
I OUT = 6 A I OUT  = 6 A I_("OUT ")=6A\mathrm{I}_{\text {OUT }}=6 \mathrm{~A}

典型性能特性(续)

M0606, V IN = 5 V , V OUT = 1.2 V , T A = 25 C V IN  = 5 V , V OUT  = 1.2 V , T A = 25 C V_("IN ")=5V,V_("OUT ")=1.2V,T_(A)=25^(@)C\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ,除非另有说明。

  EN 关闭 I OUT = 0 A I OUT  = 0 A I_("OUT ")=0A\mathrm{I}_{\text {OUT }}=0 \mathrm{~A}

  SCP 入口
I OUT = 0 A I OUT  = 0 A I_("OUT ")=0A\mathrm{I}_{\text {OUT }}=0 \mathrm{~A}
  EN 关闭
I OUT = 6 A I OUT  = 6 A I_("OUT ")=6A\mathrm{I}_{\text {OUT }}=6 \mathrm{~A}
  SCP 条目
I OUT = 6 A I OUT  = 6 A I_("OUT ")=6A\mathrm{I}_{\text {OUT }}=6 \mathrm{~A}
  SCP 恢复
I OUT = 0 A I OUT  = 0 A I_("OUT ")=0A\mathrm{I}_{\text {OUT }}=0 \mathrm{~A}
  SCP 恢复
I OUT = 6 A I OUT  = 6 A I_("OUT ")=6A\mathrm{I}_{\text {OUT }}=6 \mathrm{~A}

典型性能特性(续)

M0606, V IN = 5 V , V OUT = 1.2 V , T A = 25 C V IN  = 5 V , V OUT  = 1.2 V , T A = 25 C V_("IN ")=5V,V_("OUT ")=1.2V,T_(A)=25^(@)C\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ,除非另有说明。

  输出电压纹波

I OUT = 0 A I OUT  = 0 A I_("OUT ")=0A\mathrm{I}_{\text {OUT }}=0 \mathrm{~A}

  负载瞬态

   I OUT = 0 A I OUT  = 0 A I_("OUT ")=0A\mathrm{I}_{\text {OUT }}=0 \mathrm{~A} 3 A , 1 A / μ s 3 A , 1 A / μ s 3A,1A//mus3 \mathrm{~A}, 1 \mathrm{~A} / \mu \mathrm{s}

  输出电压纹波 I OUT = 6 A I OUT  = 6 A I_("OUT ")=6A\mathrm{I}_{\text {OUT }}=6 \mathrm{~A}

  负载瞬态

   I OUT = 3 A I OUT  = 3 A I_("OUT ")=3A\mathrm{I}_{\text {OUT }}=3 \mathrm{~A} 6 A , 1 A / μ s 6 A , 1 A / μ s 6A,1A//mus6 \mathrm{~A}, 1 \mathrm{~A} / \mu \mathrm{s}

  负载瞬态

   I Out = 0 A I Out  = 0 A I_("Out ")=0A\mathrm{I}_{\text {Out }}=0 \mathrm{~A} 6 A , 1 A / μ s 6 A , 1 A / μ s 6A,1A//mus6 \mathrm{~A}, 1 \mathrm{~A} / \mu \mathrm{s}

典型性能特征(续)

M0606L, V IN = 5 V , V OUT = 1.2 V , T A = 25 C V IN  = 5 V , V OUT  = 1.2 V , T A = 25 C V_("IN ")=5V,V_("OUT ")=1.2V,T_(A)=25^(@)C\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ,除非另有说明。

  输出电压纹波

I OUT = 0 A I OUT  = 0 A I_("OUT ")=0A\mathrm{I}_{\text {OUT }}=0 \mathrm{~A}

  负载瞬态

   I Out = 0 A I Out  = 0 A I_("Out ")=0A\mathrm{I}_{\text {Out }}=0 \mathrm{~A} 3 A , 1 A / μ s 3 A , 1 A / μ s 3A,1A//mus3 \mathrm{~A}, 1 \mathrm{~A} / \mu \mathrm{s}

  输出电压纹波

I Out = 6 A I Out  = 6 A I_("Out ")=6A\mathrm{I}_{\text {Out }}=6 \mathrm{~A}

  负载瞬态

   I OUT = 3 A I OUT  = 3 A I_("OUT ")=3A\mathrm{I}_{\text {OUT }}=3 \mathrm{~A} 6 A , 1 A / μ s 6 A , 1 A / μ s 6A,1A//mus6 \mathrm{~A}, 1 \mathrm{~A} / \mu \mathrm{s}

  负载瞬态

   I Out = 0 A I Out  = 0 A I_("Out ")=0A\mathrm{I}_{\text {Out }}=0 \mathrm{~A} 6 A , 1 A / μ s 6 A , 1 A / μ s 6A,1A//mus6 \mathrm{~A}, 1 \mathrm{~A} / \mu \mathrm{s}

  操作

M0606 是一款 6A 同步降压开关电源 SoC,集成了高端和低端功率 MOSFET 及电感,封装为 LGA-13。仅需 FB 电阻、输入和输出电容即可完成设计,输入电压范围为 2.5V 至 6V。M0606 支持 0.4V 至 VIN 的输出电压,固定开关频率为 1.2MHz。M0606 采用 COT 控制模式,在宽输入电压范围内提供优异的瞬态响应。当输入与输出之间的压差较低时,M0606 可工作在 0%占空比。M0606 内部软启动时间为 1.2ms。完全集成的保护功能包括短路保护(SCP)、过流保护(OCP)和过温保护(OTP),所有保护状态均由 PG 信号指示。保护功能详情如下。
过流保护(OCP)
M0606 具有逐周期低端电流限制保护,以防止电感电流失控。当低端开关达到电流限制时,器件将进入过流保护模式,高端开关将不允许导通,直到电感电流降至谷值电流限制阈值。同时,M0606 将启动 256 周期电流限制模式。256 周期结束后,器件将进入打嗝模式。
过温保护(OTP)
当结温超过 160 C 160 C 160^(@)C160^{\circ} \mathrm{C} 时,M0606 将停止开关。当结温降至 130 C 130 C 130^(@)C130^{\circ} \mathrm{C} 以下时,器件将重新上电。

  用户指南

  输出电压

输出电压由外部反馈电阻分压器设定,如第1页的典型应用电路所示。对于任意选定的 R 2 R 2 R_(2)\mathrm{R}_{2} ,顶部反馈电阻 R 1 R 1 R_(1)\mathrm{R}_{1} 可按以下公式计算:
R 1 = R 2 × ( V OUT V FB 1 ) R 1 = R 2 × V OUT V FB 1 R_(1)=R_(2)xx((V_(OUT))/(V_(FB))-1)\mathrm{R}_{1}=\mathrm{R}_{2} \times\left(\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{FB}}}-1\right)
表1列出了常见输出电压的推荐反馈电阻值。
表1:常见输出电压的反馈电阻值
V out ( V ) V out  ( V ) V_("out ")(V)\mathbf{V}_{\text {out }}(\mathbf{V}) R 1 ( k Ω ) R 1 ( k Ω ) R_(1)(kOmega)\mathbf{R}_{\mathbf{1}}(\mathbf{k} \boldsymbol{\Omega}) R 2 ( k Ω ) R 2 ( k Ω ) R_(2)(kOmega)\mathbf{R}_{\mathbf{2}}(\mathbf{k} \boldsymbol{\Omega})
3.3 1.1
1.8 8.2 2.3
1.2 4.1
1.0 5.5
0.4 0 NC
V_("out ")(V) R_(1)(kOmega) R_(2)(kOmega) 3.3 1.1 1.8 8.2 2.3 1.2 4.1 1.0 5.5 0.4 0 NC| $\mathbf{V}_{\text {out }}(\mathbf{V})$ | $\mathbf{R}_{\mathbf{1}}(\mathbf{k} \boldsymbol{\Omega})$ | $\mathbf{R}_{\mathbf{2}}(\mathbf{k} \boldsymbol{\Omega})$ | | :---: | :---: | :---: | | 3.3 | | 1.1 | | 1.8 | 8.2 | 2.3 | | 1.2 | | 4.1 | | 1.0 | | 5.5 | | 0.4 | 0 | NC |

输入电容选择

由于降压转换器的输入电流是不连续且具有陡峭的变化,输入滤波电容是必不可少的。为了获得最佳性能,强烈推荐使用具有 X5R 或 X7R 介电材料的低等效串联电阻(ESR)陶瓷电容器,因为它们的温度变化最小。输入电容的有效值电流(RMS 电流)计算公式为:
I CIN_RMS = I OUTT D ( 1 D ) I CIN_RMS  = I OUTT  D ( 1 D ) I_("CIN_RMS ")=I_("OUTT ")sqrt(D(1-D))\mathrm{I}_{\text {CIN_RMS }}=\mathrm{I}_{\text {OUTT }} \sqrt{\mathrm{D}(1-\mathrm{D})}
其中 D 为占空比,当电流连续时, D = V OUT / V IN D = V OUT  / V IN  D=V_("OUT ")//V_("IN ")\mathrm{D}=\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }} I OUT I OUT  I_("OUT ")\mathrm{I}_{\text {OUT }} 为输出负载电流。根据上述公式,当 D 为 0.5 时,最高的 RMS 电流约为:
I CIN_RMS = 1 2 × I OUT I CIN_RMS  = 1 2 × I OUT  I_("CIN_RMS ")=(1)/(2)xxI_("OUT ")\mathrm{I}_{\text {CIN_RMS }}=\frac{1}{2} \times \mathrm{I}_{\text {OUT }}
因此,建议选择 RMS 电流额定值高于 1 / 2 I out 1 / 2 I out  1//2I_("out ")1 / 2 \mathrm{I}_{\text {out }} 的电容器。
输入电容的功率损耗可以根据 RMS 电流和 ESR 值进行估算。也可以使用电解电容或钽电容。由电容引起的输入电压纹波可计算为:
Δ V CIN = I OUT F SW × C IN × V OUT V IN × ( 1 V OUT V IN ) Δ V CIN = I OUT F SW × C IN × V OUT V IN × 1 V OUT V IN DeltaV_(CIN)=(I_(OUT))/(F_(SW)xxC_(IN))xx(V_(OUT))/(V_(IN))xx(1-(V_(OUT))/(V_(IN)))\Delta \mathrm{V}_{\mathrm{CIN}}=\frac{\mathrm{I}_{\mathrm{OUT}}}{\mathrm{~F}_{\mathrm{SW}} \times \mathrm{C}_{\mathrm{IN}}} \times \frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}} \times\left(1-\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}\right)
其中, F SW F SW F_(SW)\mathrm{F}_{\mathrm{SW}} 是 1.2 MHz 的开关频率。

输出电容选择

需要输出电容器以保持输出电压稳定。为了最小化输出电压纹波,应使用低等效串联电阻(ESR)的陶瓷电容器。输出电压纹波可以估算为:
Δ V OUT = V OUT 8 × F SW 2 × C OUT × L × ( 1 V OUT V IN ) Δ V OUT = V OUT 8 × F SW 2 × C OUT × L × 1 V OUT V IN DeltaV_(OUT)=(V_(OUT))/(8xxF_(SW)^(2)xxC_(OUT)xxL)xx(1-(V_(OUT))/(V_(IN)))\Delta \mathrm{V}_{\mathrm{OUT}}=\frac{\mathrm{V}_{\mathrm{OUT}}}{8 \times \mathrm{F}_{\mathrm{SW}}^{2} \times \mathrm{C}_{\mathrm{OUT}} \times \mathrm{L}} \times\left(1-\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}\right)
如果使用电解电容或钽电容,ESR 将主导输出电压纹波,计算公式为:
Δ V OUT = R E S R × V OUT F S W × L × ( 1 V OUT V IN ) Δ V OUT  = R E S R × V OUT  F S W × L × 1 V OUT  V IN  DeltaV_("OUT ")=R_(ESR)xx(V_("OUT "))/(F_(SW)xx L)xx(1-(V_("OUT "))/(V_("IN ")))\Delta V_{\text {OUT }}=R_{E S R} \times \frac{V_{\text {OUT }}}{F_{S W} \times L} \times\left(1-\frac{V_{\text {OUT }}}{V_{\text {IN }}}\right)

  使能控制

当输入电压超过欠压锁定阈值时,通过将 EN 引脚提升到 1.25 V 以上可以使 M0606 使能,拉低至 1 V 以下则可禁用。建议使用约 100 k Ω 100 k Ω 100kOmega100 \mathrm{k} \Omega 的电阻上拉至 VIN。

  电源良好指示

M0606 具有开漏式 PG 指示器。当 FB 电压高于参考电压的 93 % 93 % 93%93 \% 且低于 110 % 110 % 110%110 \% 时,PG 将被拉高;否则,当 FB 电压超出此范围时,PG 将被拉至地。若使用 PG,需外接上拉电阻至 VIN,建议选择约 100 k Ω 100 k Ω 100kOmega100 \mathrm{k} \Omega 的电阻。

  PCB 布局指南

为了优化电气和热性能,应考虑以下 PCB 布局指南:
1.对大电流路径使用宽导线,并尽可能缩短路径长度。这有助于减少 PCB 的导电损耗和热应力。
2.建议将 M0606 的输入去耦电容器放置在 VIN 和 GND 附近,以最小化电源回路,如图(a)所示。
3.将所有反馈网络尽量短地连接到 FB 端
4.将敏感元件远离 NC。
5.GND 应连接到实地平面,以提高散热和抗噪能力。
图1提供了推荐布局设计的示例说明。
图1 推荐布局

  典型应用

图 2.M0606 典型应用电路,1.2V@6A 输出
VOUT CIN COUT R1 R2 C7
3.3 V 3 × 10 uF 3 × 10 uF 3xx10uF3 \times 10 \mathrm{uF} 3 × 22 uF 3 × 22 uF 3xx22uF3 \times 22 \mathrm{uF} 8.2 k Ω 8.2 k Ω 8.2kOmega8.2 \mathrm{k} \Omega 1.1 k Ω 1.1 k Ω 1.1kOmega1.1 \mathrm{k} \Omega 2.2 nF
1.8 V 2 × 10 uF 2 × 10 uF 2xx10uF2 \times 10 \mathrm{uF} 3 × 22 uF 3 × 22 uF 3xx22uF3 \times 22 \mathrm{uF} 8.2 k Ω 8.2 k Ω 8.2kOmega8.2 \mathrm{k} \Omega 2.3 k Ω 2.3 k Ω 2.3kOmega2.3 \mathrm{k} \Omega
1.2 V 2 × 10 uF 2 × 10 uF 2xx10uF2 \times 10 \mathrm{uF} 3 × 22 uF 3 × 22 uF 3xx22uF3 \times 22 \mathrm{uF} 8.2 k Ω 8.2 k Ω 8.2kOmega8.2 \mathrm{k} \Omega 4.1 k Ω 4.1 k Ω 4.1kOmega4.1 \mathrm{k} \Omega
1 V 2 × 10 uF 2 × 10 uF 2xx10uF2 \times 10 \mathrm{uF} 3 × 22 uF 3 × 22 uF 3xx22uF3 \times 22 \mathrm{uF} 8.2 k Ω 8.2 k Ω 8.2kOmega8.2 \mathrm{k} \Omega 5.5 k Ω 5.5 k Ω 5.5kOmega5.5 \mathrm{k} \Omega
0.4 V 2 × 10 uF 2 × 10 uF 2xx10uF2 \times 10 \mathrm{uF} 3 × 22 uF 3 × 22 uF 3xx22uF3 \times 22 \mathrm{uF} 0 NC
VOUT CIN COUT R1 R2 C7 3.3 V 3xx10uF 3xx22uF 8.2kOmega 1.1kOmega 2.2 nF 1.8 V 2xx10uF 3xx22uF 8.2kOmega 2.3kOmega 1.2 V 2xx10uF 3xx22uF 8.2kOmega 4.1kOmega 1 V 2xx10uF 3xx22uF 8.2kOmega 5.5kOmega 0.4 V 2xx10uF 3xx22uF 0 NC | VOUT | CIN | COUT | R1 | R2 | C7 | | :--- | :--- | :--- | :--- | :--- | :--- | | 3.3 V | $3 \times 10 \mathrm{uF}$ | $3 \times 22 \mathrm{uF}$ | $8.2 \mathrm{k} \Omega$ | $1.1 \mathrm{k} \Omega$ | 2.2 nF | | 1.8 V | $2 \times 10 \mathrm{uF}$ | $3 \times 22 \mathrm{uF}$ | $8.2 \mathrm{k} \Omega$ | $2.3 \mathrm{k} \Omega$ | | | 1.2 V | $2 \times 10 \mathrm{uF}$ | $3 \times 22 \mathrm{uF}$ | $8.2 \mathrm{k} \Omega$ | $4.1 \mathrm{k} \Omega$ | | | 1 V | $2 \times 10 \mathrm{uF}$ | $3 \times 22 \mathrm{uF}$ | $8.2 \mathrm{k} \Omega$ | $5.5 \mathrm{k} \Omega$ | | | 0.4 V | $2 \times 10 \mathrm{uF}$ | $3 \times 22 \mathrm{uF}$ | 0 | NC | |

  封装信息

  LGA-13( 2.5 mm × 2.5 mm × 1.4 mm 2.5 mm × 2.5 mm × 1.4 mm 2.5mmxx2.5mmxx1.4mm2.5 \mathrm{~mm} \times 2.5 \mathrm{~mm} \times 1.4 \mathrm{~mm} )封装
  底视图
注:所有尺寸单位为毫米(MM)