Линейное аффинное многообразие 线性仿射流形线性仿射流形 Linear affine manifold 线性仿射流形
在线性空间
V
V
V V 中,没
x
∈
V
x
∈
V
x in V x \in V -国定向量,
L
−
L
−
L- L- 集性子室间,则集合 固定何量 В линейном пространстве
V
V
V V пусть
x
∈
V
x
∈
V
x in V x \in V -фиксированный вектор,а
L
L
L L - линейное подпространство.Тогда множество 在线性空间
V
V
V V 中,设
x
∈
V
x
∈
V
x in V x \in V 为一个固定向量,
L
L
L L 为一个线性子空间。那么集合
俭移何量。
H
=
{
x
+
y
:
y
∈
L
}
线性仿射流形
H
=
{
x
+
y
:
y
∈
L
}
线性仿射流形
H={x+y:y in L}" 线性仿射流形 " H=\{x+y: y \in L\} \text { 线性仿射流形 } 线 性 仿 射 流 形
называется линейным аффинным многообразием.称为线性仿射流形 Здесь
x
x
x x -вектор сдвига,
L
L
L L -направляющее подпространство.此处
x
x
x x 为位移向量,
L
L
L L 为导向子空间 Если
dim
L
=
n
−
1
dim
L
=
n
−
1
dim L=n-1 \operatorname{dim} L=n-1 ,то многообразие
H
H
H H -это гиперплоскость.超平面如果
dim
L
=
n
−
1
dim
L
=
n
−
1
dim L=n-1 \operatorname{dim} L=n-1 ,那么流形
H
H
H H 是超平面 Линейные многообразия
H
1
=
x
1
+
L
1
H
1
=
x
1
+
L
1
H_(1)=x_(1)+L_(1) H_{1}=x_{1}+L_{1} и
H
2
=
x
2
+
L
2
H
2
=
x
2
+
L
2
H_(2)=x_(2)+L_(2) H_{2}=x_{2}+L_{2} в линейном пространстве
V
V
V V называются параллельными,если либо
L
1
⊆
L
2
L
1
⊆
L
2
L_(1)subeL_(2) L_{1} \subseteq L_{2} ,либо
L
2
⊆
L
1
L
2
⊆
L
1
L_(2)subeL_(1) L_{2} \subseteq L_{1} 。桖性室间
V
V
V V 中的体性流形
H
1
=
x
1
+
α
1
H
1
=
x
1
+
α
1
H_(1)=x_(1)+alpha_(1) H_{1}=x_{1}+\alpha_{1} 和
H
2
=
x
2
+
α
2
H
2
=
x
2
+
α
2
H_(2)=x_(2)+alpha_(2) H_{2}=x_{2}+\alpha_{2} 称为等行,如果
α
1
≤
α
2
α
1
≤
α
2
alpha_(1) <= alpha_(2) \alpha_{1} \leq \alpha_{2} 求
α
2
≤
α
1
α
2
≤
α
1
alpha_(2) <= alpha_(1) \alpha_{2} \leq \alpha_{1} 。 线性流形
H
1
=
x
1
+
L
1
H
1
=
x
1
+
L
1
H_(1)=x_(1)+L_(1) H_{1}=x_{1}+L_{1} 和
H
2
=
x
2
+
L
2
H
2
=
x
2
+
L
2
H_(2)=x_(2)+L_(2) H_{2}=x_{2}+L_{2} 在线性空间
V
V
V V 中称为平行的,如果
L
1
⊆
L
2
L
1
⊆
L
2
L_(1)subeL_(2) L_{1} \subseteq L_{2} 或者
L
2
⊆
L
1
L
2
⊆
L
1
L_(2)subeL_(1) L_{2} \subseteq L_{1} 。线性空间
V
V
V V 中的线性流形
H
1
=
x
1
+
α
1
H
1
=
x
1
+
α
1
H_(1)=x_(1)+alpha_(1) H_{1}=x_{1}+\alpha_{1} 和
H
2
=
x
2
+
α
2
H
2
=
x
2
+
α
2
H_(2)=x_(2)+alpha_(2) H_{2}=x_{2}+\alpha_{2} 称为平行,如果
α
1
≤
α
2
α
1
≤
α
2
alpha_(1) <= alpha_(2) \alpha_{1} \leq \alpha_{2} 与
α
2
≤
α
1
α
2
≤
α
1
alpha_(2) <= alpha_(1) \alpha_{2} \leq \alpha_{1} 。
Теорема.Линейные многообразия
H
1
=
x
1
+
L
1
H
1
=
x
1
+
L
1
H_(1)=x_(1)+L_(1) H_{1}=x_{1}+L_{1} и
H
2
=
x
2
+
L
2
H
2
=
x
2
+
L
2
H_(2)=x_(2)+L_(2) H_{2}=x_{2}+L_{2} совпадают тогда и только тогда,когда
L
1
=
L
2
=
L
L
1
=
L
2
=
L
L_(1)=L_(2)=L L_{1}=L_{2}=L и
x
1
−
x
2
∈
L
x
1
−
x
2
∈
L
x_(1)-x_(2)in L x_{1}-x_{2} \in L .定理:线性流形
H
1
=
x
1
+
L
1
H
1
=
x
1
+
L
1
H_(1)=x_(1)+L_(1) H_{1}=x_{1}+L_{1} 和
H
2
=
x
2
+
L
2
H
2
=
x
2
+
L
2
H_(2)=x_(2)+L_(2) H_{2}=x_{2}+L_{2} 当且仅当
L
1
=
L
2
=
L
L
1
=
L
2
=
L
L_(1)=L_(2)=L L_{1}=L_{2}=L 和
x
1
−
x
2
∈
L
x
1
−
x
2
∈
L
x_(1)-x_(2)in L x_{1}-x_{2} \in L 时重合。 Теорема.Пусть
H
1
,
H
2
H
1
,
H
2
H_(1),H_(2) H_{1}, H_{2} -параллельные аффинные многообразия в линейном пространстве
V
2
V
2
V_(2) V_{2} причем
H
1
∩
H
2
≠
∅
H
1
∩
H
2
≠
∅
H_(1)nnH_(2)!=O/ H_{1} \cap H_{2} \neq \emptyset ,то либо
H
1
⊆
H
2
H
1
⊆
H
2
H_(1)subeH_(2) H_{1} \subseteq H_{2} ,либо
H
2
⊆
H
1
H
2
⊆
H
1
H_(2)subeH_(1) H_{2} \subseteq H_{1} . 定理。设
H
1
,
H
2
H
1
,
H
2
H_(1),H_(2) H_{1}, H_{2} 是线性空间
V
2
V
2
V_(2) V_{2} 中的平行仿射流形,且
H
1
∩
H
2
≠
∅
H
1
∩
H
2
≠
∅
H_(1)nnH_(2)!=O/ H_{1} \cap H_{2} \neq \emptyset ,则要么
H
1
⊆
H
2
H
1
⊆
H
2
H_(1)subeH_(2) H_{1} \subseteq H_{2} ,要么
H
2
⊆
H
1
H
2
⊆
H
1
H_(2)subeH_(1) H_{2} \subseteq H_{1} 。
H
1
∩
H
2
≠
ϕ
⇔
[
H
1
⊆
H
2
H
2
⊆
H
1
H
1
∩
H
2
≠
ϕ
⇔
H
1
⊆
H
2
H
2
⊆
H
1
H_(1)nnH_(2)!=phi<=>[[H_(1)subeH_(2)],[H_(2)subeH_(1)]:} H_{1} \cap H_{2} \neq \phi \Leftrightarrow\left[\begin{array}{l}H_{1} \subseteq H_{2} \\ H_{2} \subseteq H_{1}\end{array}\right. Теорема.Пусть
H
i
=
x
i
+
L
i
,
i
=
1
,
…
,
k
H
i
=
x
i
+
L
i
,
i
=
1
,
…
,
k
H_(i)=x_(i)+L_(i),i=1,dots,k H_{i}=x_{i}+L_{i}, i=1, \ldots, k , и
∩
i
=
1
k
H
i
≠
∅
∩
i
=
1
k
H
i
≠
∅
nn_(i=1)^(k)H_(i)!=O/ \cap_{i=1}^{k} H_{i} \neq \emptyset .Тогда
∩
i
=
1
k
H
i
−
∩
i
=
1
k
H
i
−
nn_(i=1)^(k)H_(i)- \cap_{i=1}^{k} H_{i}- линейное многообразие с направляющим подпространством
L
=
∩
i
=
1
k
L
i
L
=
∩
i
=
1
k
L
i
L=nn_(i=1)^(k)L_(i) L=\cap_{i=1}^{k} L_{i} .定理:设
H
i
=
x
i
+
L
i
,
i
=
1
,
…
,
k
H
i
=
x
i
+
L
i
,
i
=
1
,
…
,
k
H_(i)=x_(i)+L_(i),i=1,dots,k H_{i}=x_{i}+L_{i}, i=1, \ldots, k ,且
∩
i
=
1
k
H
i
≠
∅
∩
i
=
1
k
H
i
≠
∅
nn_(i=1)^(k)H_(i)!=O/ \cap_{i=1}^{k} H_{i} \neq \emptyset 。则
∩
i
=
1
k
H
i
−
∩
i
=
1
k
H
i
−
nn_(i=1)^(k)H_(i)- \cap_{i=1}^{k} H_{i}- 是以
L
=
∩
i
=
1
k
L
i
L
=
∩
i
=
1
k
L
i
L=nn_(i=1)^(k)L_(i) L=\cap_{i=1}^{k} L_{i} 为方向子空间的线性流形。 编号 46.17
N
≤
4
G
,
2
|
a
=
(
1
,
v
,
−
2
,
−
1
)
,
1
:
{
2
x
1
−
x
2
+
2
x
4
=
b
1
−
x
1
+
3
x
3
−
x
3
−
x
4
=
b
2
x
1
+
x
3
+
2
x
4
=
b
3
b
1
=
2
⋅
1
⋅
0
+
2
⋅
(
−
1
)
=
0
b
1
=
−
1
+
3
⋅
0
−
(
−
2
)
−
(
−
1
)
=
2
b
1
=
1
+
0
+
2
(
−
2
)
=
−
3
−
x
1
+
3
x
2
−
x
2
−
x
1
=
0
x
1
+
x
2
+
2
x
3
=
0
N
≤
4
G
,
2
a
=
(
1
,
v
,
−
2
,
−
1
)
,
1
:
2
x
1
−
x
2
+
2
x
4
=
b
1
−
x
1
+
3
x
3
−
x
3
−
x
4
=
b
2
x
1
+
x
3
+
2
x
4
=
b
3
b
1
=
2
⋅
1
⋅
0
+
2
⋅
(
−
1
)
=
0
b
1
=
−
1
+
3
⋅
0
−
(
−
2
)
−
(
−
1
)
=
2
b
1
=
1
+
0
+
2
(
−
2
)
=
−
3
−
x
1
+
3
x
2
−
x
2
−
x
1
=
0
x
1
+
x
2
+
2
x
3
=
0
N <= 4G,2|[a=(1","v","-2","-1)","1:{[2x_(1)-x_(2)+2x_(4)=b_(1)],[-x_(1)+3x_(3)-x_(3)-x_(4)=b_(2)],[x_(1)+x_(3)+2x_(4)=b_(3)],[b_(1)=2*1*0+2*(-1)=0],[b_(1)=-1+3*0-(-2)-(-1)=2],[b_(1)=1+0+2(-2)=-3]:}],[-x_(1)+3x_(2)-x_(2)-x_(1)=0],[x_(1)+x_(2)+2x_(3)=0]:} N \leq 4 G, 2 \left\lvert\, \begin{aligned}
& a=(1, v,-2,-1), 1:\left\{\begin{array}{l}
2 x_{1}-x_{2}+2 x_{4}=b_{1} \\
-x_{1}+3 x_{3}-x_{3}-x_{4}=b_{2} \\
x_{1}+x_{3}+2 x_{4}=b_{3} \\
b_{1}=2 \cdot 1 \cdot 0+2 \cdot(-1)=0 \\
b_{1}=-1+3 \cdot 0-(-2)-(-1)=2 \\
b_{1}=1+0+2(-2)=-3
\end{array}\right. \\
& -x_{1}+3 x_{2}-x_{2}-x_{1}=0 \\
& x_{1}+x_{2}+2 x_{3}=0
\end{aligned}\right.
第46号。 36
Задачи 习题
No46.36.В пространстве
R
5
R
5
R^(5) \mathbb{R}^{5} дана пюскость
x
=
x
0
+
t
1
a
1
+
t
2
a
2
x
=
x
0
+
t
1
a
1
+
t
2
a
2
x=x_(0)+t_(1)a_(1)+t_(2)a_(2) x=x_{0}+t_{1} a_{1}+t_{2} a_{2} , где
x
0
=
(
2
,
3
,
−
1
,
1
,
1
)
,
a
1
=
(
3
,
−
1
,
1
,
−
1
,
1
)
,
a
2
=
(
−
1
,
1
,
1
,
1
,
−
1
)
x
0
=
(
2
,
3
,
−
1
,
1
,
1
)
,
a
1
=
(
3
,
−
1
,
1
,
−
1
,
1
)
,
a
2
=
(
−
1
,
1
,
1
,
1
,
−
1
)
x_(0)=(2,3,-1,1,1),a_(1)=(3,-1,1,-1,1),a_(2)=(-1,1,1,1,-1) x_{0}=(2,3,-1,1,1), a_{1}=(3,-1,1,-1,1), a_{2}=(-1,1,1,1,-1) .No46.36. 在空间
R
5
R
5
R^(5) \mathbb{R}^{5} 中给定平面
x
=
x
0
+
t
1
a
1
+
t
2
a
2
x
=
x
0
+
t
1
a
1
+
t
2
a
2
x=x_(0)+t_(1)a_(1)+t_(2)a_(2) x=x_{0}+t_{1} a_{1}+t_{2} a_{2} ,其中
x
0
=
(
2
,
3
,
−
1
,
1
,
1
)
,
a
1
=
(
3
,
−
1
,
1
,
−
1
,
1
)
,
a
2
=
(
−
1
,
1
,
1
,
1
,
−
1
)
x
0
=
(
2
,
3
,
−
1
,
1
,
1
)
,
a
1
=
(
3
,
−
1
,
1
,
−
1
,
1
)
,
a
2
=
(
−
1
,
1
,
1
,
1
,
−
1
)
x_(0)=(2,3,-1,1,1),a_(1)=(3,-1,1,-1,1),a_(2)=(-1,1,1,1,-1) x_{0}=(2,3,-1,1,1), a_{1}=(3,-1,1,-1,1), a_{2}=(-1,1,1,1,-1) 。 Установить,принадлежат ли ей векторы
u
=
(
1
,
6
,
4
,
4
,
−
2
)
u
=
(
1
,
6
,
4
,
4
,
−
2
)
u=(1,6,4,4,-2) u=(1,6,4,4,-2) и
v
=
(
1
,
6
,
5
,
4
,
−
2
)
v
=
(
1
,
6
,
5
,
4
,
−
2
)
v=(1,6,5,4,-2) v=(1,6,5,4,-2) . 确定向量
u
=
(
1
,
6
,
4
,
4
,
−
2
)
u
=
(
1
,
6
,
4
,
4
,
−
2
)
u=(1,6,4,4,-2) u=(1,6,4,4,-2) 和
v
=
(
1
,
6
,
5
,
4
,
−
2
)
v
=
(
1
,
6
,
5
,
4
,
−
2
)
v=(1,6,5,4,-2) v=(1,6,5,4,-2) 是否属于它
4
c
H
⇔
u
−
x
0
c
L
(
a
,
92
)
(
−
1
3
5
3
−
3
3
−
1
1
−
1
1
−
1
1
1
1
−
1
)
→
I
−
I
I
+
3
I
(
−
1
3
5
3
−
3
0
3
16
8
−
8
0
−
2
−
4
−
2
2
)
→
I
T
−
4
⋅
I
−
1
(
−
1
3
5
3
−
3
0
−
0
0
0
0
0
−
2
−
4
−
2
−
2
)
U-X⿱㇒日 numerino youngla
4
c
H
⇔
u
−
x
0
c
L
(
a
,
92
)
−
1
3
5
3
−
3
3
−
1
1
−
1
1
−
1
1
1
1
−
1
→
I
−
I
I
+
3
I
−
1
3
5
3
−
3
0
3
16
8
−
8
0
−
2
−
4
−
2
2
→
I
T
−
4
⋅
I
−
1
−
1
3
5
3
−
3
0
−
0
0
0
0
0
−
2
−
4
−
2
−
2
U-X⿱㇒日 numerino youngla
{:[{:[4cH<=>u-x_(0)cL(a","92)],[([-1,3,5,3,-3],[3,-1,1,-1,1],[-1,1,1,1,-1])rarr_("I-I")^("I+3I")([-1,3,5,3,-3],[0,3,16,8,-8],[0,-2,-4,-2,2])rarr"IT-4*I-1"([-1,3,5,3,-3],[0,-0,0,0,0],[0,-2,-4,-2,-2])]:}],[" U-X⿱㇒日 numerino youngla "]:} \begin{aligned}
& \begin{array}{l}
4 c H \Leftrightarrow u-x_{0} c L(a, 92) \\
\left(\begin{array}{ccccc}
-1 & 3 & 5 & 3 & -3 \\
3 & -1 & 1 & -1 & 1 \\
-1 & 1 & 1 & 1 & -1
\end{array}\right) \xrightarrow[I-I]{I+3 I}\left(\begin{array}{ccccc}
-1 & 3 & 5 & 3 & -3 \\
0 & 3 & 16 & 8 & -8 \\
0 & -2 & -4 & -2 & 2
\end{array}\right) \xrightarrow{I T-4 \cdot I-1}\left(\begin{array}{ccccc}
-1 & 3 & 5 & 3 & -3 \\
0 & -0 & 0 & 0 & 0 \\
0 & -2 & -4 & -2 & -2
\end{array}\right)
\end{array} \\
& \text { U-X⿱㇒日 numerino youngla }
\end{aligned} ⿱ ㇒ 日
−
1
11
⇒
u
−
x
0
∈
L
(
a
1
a
2
)
⇒
u
∈
H
c
a
1
u
a
2
⇒
u
−
x
0
c
⊥
(
a
1
a
2
)
−
1
11
⇒
u
−
x
0
∈
L
a
1
a
2
⇒
u
∈
H
c
a
1
u
a
2
⇒
u
−
x
0
c
⊥
a
1
a
2
-1quad11=>u-x_(0)in L(a_(1)a_(2))=>u in H quad ca_(1)ua_(2)=>u-x_(0)c _|_(a_(1)a_(2)) -1 \quad 11 \Rightarrow u-x_{0} \in L\left(a_{1} a_{2}\right) \Rightarrow u \in H \quad c a_{1} u a_{2} \Rightarrow u-x_{0} c \perp\left(a_{1} a_{2}\right)
v
∈
H
⇔
v
−
x
0
∈
L
(
a
1
,
a
2
)
v
−
x
0
=
(
−
1
,
3
,
6
,
3
,
−
3
)
v
∈
H
⇔
v
−
x
0
∈
L
a
1
,
a
2
v
−
x
0
=
(
−
1
,
3
,
6
,
3
,
−
3
)
v in H<=>v-x_(0)in L(a_(1),a_(2))quad v-x_(0)=(-1,3,6,3,-3) v \in H \Leftrightarrow v-x_{0} \in L\left(a_{1}, a_{2}\right) \quad v-x_{0}=(-1,3,6,3,-3)
(
−
1
3
6
3
−
3
3
−
1
1
−
1
1
−
1
1
1
1
−
1
)
→
π
−
I
I
+
3
⋅
I
(
−
1
3
6
3
−
3
0
8
19
8
−
8
0
−
2
−
5
−
2
2
)
→
π
+
4
⋅
T
(
−
1
3
6
3
−
3
0
0
−
1
0
0
0
−
2
−
5
−
2
2
)
−
1
3
6
3
−
3
3
−
1
1
−
1
1
−
1
1
1
1
−
1
→
π
−
I
I
+
3
⋅
I
−
1
3
6
3
−
3
0
8
19
8
−
8
0
−
2
−
5
−
2
2
→
π
+
4
⋅
T
−
1
3
6
3
−
3
0
0
−
1
0
0
0
−
2
−
5
−
2
2
([-1,3,6,3,-3],[3,-1,1,-1,1],[-1,1,1,1,-1])rarr_("pi-I")^("I+3*I")([-1,3,6,3,-3],[0,8,19,8,-8],[0,-2,-5,-2,2])rarr"pi+4*T"([-1,3,6,3,-3],[0,0,-1,0,0],[0,-2,-5,-2,2]) \left(\begin{array}{ccccc}
-1 & 3 & 6 & 3 & -3 \\
3 & -1 & 1 & -1 & 1 \\
-1 & 1 & 1 & 1 & -1
\end{array}\right) \xrightarrow[\pi-I]{I+3 \cdot I}\left(\begin{array}{ccccc}
-1 & 3 & 6 & 3 & -3 \\
0 & 8 & 19 & 8 & -8 \\
0 & -2 & -5 & -2 & 2
\end{array}\right) \xrightarrow{\pi+4 \cdot T}\left(\begin{array}{ccccc}
-1 & 3 & 6 & 3 & -3 \\
0 & 0 & -1 & 0 & 0 \\
0 & -2 & -5 & -2 & 2
\end{array}\right)
rank:
3
⇒
v
−
x
1
\&
L
(
a
1
,
a
2
)
⇒
v
ϕ
H
,
v
−
x
0
, number we gricican
rank:
3
⇒
v
−
x
1
\&
L
a
1
,
a
2
⇒
v
ϕ
H
,
v
−
x
0
, number we gricican
" rank: "3=>v-x_(1)" \& "L(a_(1),a_(2))=>v phi H,v-x_(0)", number we gricican " \text { rank: } 3 \Rightarrow v-x_{1} \text { \& } L\left(a_{1}, a_{2}\right) \Rightarrow v \phi H, v-x_{0} \text {, number we gricican }
c
a
1
u
a
2
⇒
v
−
k
0
ϕ
(
a
n
4
2
)
c
a
1
u
a
2
⇒
v
−
k
0
ϕ
a
n
4
2
ca_(1)ua_(2)=>v-k_(0)phi(a_(n)4^(2)) c a_{1} u a_{2} \Rightarrow v-k_{0} \phi\left(a_{n} 4^{2}\right)
编号46.41 编号 46.41
x
1
=
(
9
,
3
,
6
,
15
,
−
3
)
,
q
1
=
(
7
,
−
4
,
11
,
13
,
−
5
)
x
1
=
(
9
,
3
,
6
,
15
,
−
3
)
,
q
1
=
(
7
,
−
4
,
11
,
13
,
−
5
)
x_(1)=(9,3,6,15,-3),q_(1)=(7,-4,11,13,-5) x_{1}=(9,3,6,15,-3), q_{1}=(7,-4,11,13,-5) ,
x
2
=
(
−
7
,
2
,
−
6
,
−
5
,
3
)
,
q
2
=
(
2
,
9
,
−
10
,
−
6
,
4
)
x
2
=
(
−
7
,
2
,
−
6
,
−
5
,
3
)
,
q
2
=
(
2
,
9
,
−
10
,
−
6
,
4
)
x_(2)=(-7,2,-6,-5,3),q_(2)=(2,9,-10,-6,4) x_{2}=(-7,2,-6,-5,3), q_{2}=(2,9,-10,-6,4) .
x
2
=
(
−
7
,
2
,
−
6
,
−
5
,
3
)
,
q
2
=
(
2
,
9
,
−
10
,
−
6
,
4
)
x
2
=
(
−
7
,
2
,
−
6
,
−
5
,
3
)
,
q
2
=
(
2
,
9
,
−
10
,
−
6
,
4
)
x_(2)=(-7,2,-6,-5,3),q_(2)=(2,9,-10,-6,4) x_{2}=(-7,2,-6,-5,3), q_{2}=(2,9,-10,-6,4) .
H
1
=
x
1
+
t
g
1
H
1
=
(
9
,
3
,
6
,
15
,
−
3
)
+
t
(
7
,
−
4
,
11
,
13
,
−
5
)
H
1
=
x
1
+
t
g
1
H
1
=
(
9
,
3
,
6
,
15
,
−
3
)
+
t
(
7
,
−
4
,
11
,
13
,
−
5
)
H_(1)=x_(1)+tg_(1)quadH_(1)=(9,3,6,15,-3)+t(7,-4,11,13,-5) H_{1}=x_{1}+t g_{1} \quad H_{1}=(9,3,6,15,-3)+t(7,-4,11,13,-5)
H
2
=
x
1
+
g
2
,
H
2
=
(
−
7
,
2
,
−
6
,
−
5
,
3
)
+
t
(
2
,
9
,
−
10
,
−
6
,
4
)
H
2
=
x
1
+
g
2
,
H
2
=
(
−
7
,
2
,
−
6
,
−
5
,
3
)
+
t
(
2
,
9
,
−
10
,
−
6
,
4
)
H_(2)=x_(1)+g_(2),quadH_(2)=(-7,2,-6,-5,3)+t(2,9,-10,-6,4) H_{2}=x_{1}+g_{2}, \quad H_{2}=(-7,2,-6,-5,3)+t(2,9,-10,-6,4)
No40. 31 第 40 号。31 (
x
0
=
x
2
+
t
q
2
x
0
=
x
2
+
t
q
2
x_(0)=x_(2)+tq_(2) x_{0}=x_{2}+t q_{2} )
пересекаются,и найти их пересечение.Указать плоскость,в相交,并求出它们的交集。指出平面,在
↔
N
↔
N
harrN \leftrightarrow \mathrm{N}
13
6
-
20
我
-
54
/
8
54
/
8
54//8 54 / 8
13
6
-20
/93
-
9
(
→
→
rarr \rightarrow
0
93/13 93/13
93/13 93/13
II-T 5 型
4 11 7
10
-12
电视-I.
0
(41)
64/13 64/13
v
¯
―
+
v
―
―
v
¯
_
+
v
_
¯
bar(v)_+ bar(v_) \underline{\bar{v}}+\overline{\underline{v}} .
v
¯
―
+
v
―
―
v
¯
_
+
v
_
¯
bar(v)_+ bar(v_) \underline{\bar{v}}+\overline{\underline{v}} .
6\%/23 6%/23
5
-2
-16
-6
VV-1型
1.
分
0
0
-61/13 -61/13
-62/13 -62/13
五至二。
2/33 2/33
Доказать,что прямые
x
=
x
1
+
t
q
1
x
=
x
1
+
t
q
1
x=x_(1)+tq_(1) x=x_{1}+t q_{1} и
x
=
x
2
+
t
q
2
x
=
x
2
+
t
q
2
x=x_(2)+tq_(2) x=x_{2}+t q_{2} 证明直线
x
=
x
1
+
t
q
1
x
=
x
1
+
t
q
1
x=x_(1)+tq_(1) x=x_{1}+t q_{1} 和
x
=
x
2
+
t
q
2
x
=
x
2
+
t
q
2
x=x_(2)+tq_(2) x=x_{2}+t q_{2}
harrN 13 6 - 20 I - 54//8 13 6 -20 /93
- 9 ( rarr 0 93/13 93/13 II-T 5
4 11 7 10 -12 TV-I. 0 (41) 64/13 bar(v)_+ bar(v_) . 6\%/23
5 -2 -16 -6 VV-1 1. 分 0 0 -61/13 -62/13 V-II. 2/33
Доказать,что прямые x=x_(1)+tq_(1) и x=x_(2)+tq_(2) | $\leftrightarrow \mathrm{N}$ | 13 | 6 | - | 20 | I | - $54 / 8$ | | | 13 | 6 | | -20 | | | /93 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| - | | 9 | ( | | | $\rightarrow$ | | | 0 | 93/13 | | 93/13 | II-T 5 | | |
| | 4 11 7 | 10 | -12 | | | | TV-I. | | 0 | (41) | | 64/13 | $\underline{\bar{v}}+\overline{\underline{v}}$ . | | 6\%/23 |
| | 5 | -2 | -16 | -6 | | VV-1 | 1. | 分 | 0 | 0 | -61/13 | -62/13 | V-II. | | 2/33 |
| | | | | | | | | | | | | | | | |
| Доказать,что прямые $x=x_{1}+t q_{1}$ и $x=x_{2}+t q_{2}$ | | | | | | | | | | | | | | | |
B
№46.41. Доказать, что прямые
x
=
x
1
+
t
q
1
и
x
=
x
2
+
t
q
2
№46.41. Доказать, что прямые
x
=
x
1
+
t
q
1
и
x
=
x
2
+
t
q
2
" №46.41. Доказать, что прямые "x=x_(1)+tq_(1)" и "x=x_(2)+tq_(2) \text { №46.41. Доказать, что прямые } x=x_{1}+t q_{1} \text { и } x=x_{2}+t q_{2} 不 Д о к а з а т ь ч т о п р я м ы е и
есекаются, и -айти на дересечение テказать плоскос相交,并且-前往交叉点 告诉平面
которой лежат эти прямые.这些直线位于哪里
x
1
=
(
9
,
3
,
6
,
15
,
−
3
)
,
q
1
=
(
7
x
1
=
(
9
,
3
,
6
,
15
,
−
3
)
,
q
1
=
(
7
x_(1)=(9,3,6,15,-3),q_(1)=(7 x_{1}=(9,3,6,15,-3), q_{1}=(7 ,
qquad \qquad
z
1
+
z
2
=
a
1
+
a
2
+
x
1
+
x
2
z
1
+
z
2
=
a
1
+
a
2
+
x
1
+
x
2
z_(1)+z_(2)=a_(1)+a_(2)+x_(1)+x_(2) z_{1}+z_{2}=a_{1}+a_{2}+x_{1}+x_{2}
z
=
z
1
+
z
2
=
a
+
L
z
=
z
1
+
z
2
=
a
+
L
z=z_(1)+z_(2)=a+L z=z_{1}+z_{2}=a+L
a
=
a
1
+
a
2
a
=
a
1
+
a
2
a=a_(1)+a_(2) a=a_{1}+a_{2}
L
c
L
1
+
L
2
(
L
c
L
1
+
L
2
(
LcL_(1)+L_(2)quad( L c L_{1}+L_{2} \quad( 没有 enpegenewno
)
)
) ) cymin agapeolatid) No46.24 nyent
H
=
x
0
+
α
1
l
1
+
α
2
l
2
+
…
+
α
k
l
k
H
=
x
0
+
α
1
l
1
+
α
2
l
2
+
…
+
α
k
l
k
H=x_(0)+alpha_(1)l_(1)+alpha_(2)l_(2)+dots+alpha_(k)l_(k) H=x_{0}+\alpha_{1} l_{1}+\alpha_{2} l_{2}+\ldots+\alpha_{k} l_{k}
x
0
+
l
1
,
x
0
+
l
2
,
…
,
x
0
+
l
k
−
x
0
+
l
1
,
x
0
+
l
2
,
…
,
x
0
+
l
k
−
x_(0)+l_(1),x_(0)+l_(2),dots,x_(0)+l_(k)- x_{0}+l_{1}, x_{0}+l_{2}, \ldots, x_{0}+l_{k}- 卡科姆马比克莫帕布
β
1
(
x
0
+
l
1
)
−
β
2
(
x
0
+
l
1
)
+
…
+
β
k
(
x
0
+
l
k
)
=
θ
∑
β
1
l
i
+
(
β
1
+
β
2
+
…
+
β
k
)
x
0
=
θ
∑
β
1
l
i
=
−
(
∑
β
i
)
x
0
iproribute vina rory, uso
x
0
ve spunageoner
β
1
x
0
+
l
1
−
β
2
x
0
+
l
1
+
…
+
β
k
x
0
+
l
k
=
θ
∑
β
1
l
i
+
β
1
+
β
2
+
…
+
β
k
x
0
=
θ
∑
β
1
l
i
=
−
∑
β
i
x
0
iproribute vina rory, uso
x
0
ve spunageoner
{:[beta_(1)(x_(0)+l_(1))-beta_(2)(x_(0)+l_(1))+dots+beta_(k)(x_(0)+l_(k))=theta],[ sumbeta_(1)l_(i)+(beta_(1)+beta_(2)+dots+beta_(k))x_(0)=theta],[ sumbeta_(1)l_(i)=-(sumbeta_(i))x_(0)],[" iproribute vina rory, uso "x_(0)" ve spunageoner "]:} \begin{aligned}
& \beta_{1}\left(x_{0}+l_{1}\right)-\beta_{2}\left(x_{0}+l_{1}\right)+\ldots+\beta_{k}\left(x_{0}+l_{k}\right)=\theta \\
& \sum \beta_{1} l_{i}+\left(\beta_{1}+\beta_{2}+\ldots+\beta_{k}\right) x_{0}=\theta \\
& \sum \beta_{1} l_{i}=-\left(\sum \beta_{i}\right) x_{0} \\
& \text { iproribute vina rory, uso } x_{0} \text { ve spunageoner }
\end{aligned} Monpabstowemy nogrpocipanory
⇒
β
<
0
⇒
⇒
β
<
0
⇒
=>beta < 0=> \Rightarrow \beta<0 \Rightarrow
⇒
⇒
=> \Rightarrow 沃特斯·本罗普特。
第 46 号。
25
x
0
≤
H
25
x
0
≤
H
25quadx_(0) <= H 25 \quad x_{0} \leq H .aconpqiesouso
x
=
x
0
+
α
1
e
1
+
…
+
α
x
k
k
,
y
′
x
=
x
0
+
α
1
e
1
+
…
+
α
x
k
k
,
y
′
x=x_(0)+alpha_(1)e_(1)+dots+alpha_(x)k_(k),y^(') x=x_{0}+\alpha_{1} e_{1}+\ldots+\alpha_{x} k_{k}, y^{\prime} Ei-ans largo,raguc nogmpertianatial,
x
0
ϕ
˙
L
(
a
1
,
…
,
e
2
)
x
0
ϕ
˙
L
a
1
,
…
,
e
2
x_(0)phi^(˙)L(a_(1),dots,e_(2)) x_{0} \dot{\phi} L\left(a_{1}, \ldots, e_{2}\right)
⇒
∀
x
+
H
⇒
∀
x
+
H
=>quad AA x+H \Rightarrow \quad \forall x+H -建模的非图马格斯里亚锅
x
0
,
∑
1
2
x
0
,
∑
1
2
x_(0),sum_(1)^(2) x_{0}, \sum_{1}^{2} 迪伊
⇒
⇒
=> \Rightarrow 美国
(
k
+
c
)
(
k
+
c
)
(k+c) (k+c) 作为 beem inpreacial repy ore
k
+
i
k
+
i
k+i k+i . №46.7. Найти вектор сдвига и направляющее подпространство для линейного многообразия в第 46.7 题。求线性流形的平移向量和方向子空间
R
4
R
4
R^(4) \mathbb{R}^{4} , описанного системой №46.7. 找出线性流形在
R
4
R
4
R^(4) \mathbb{R}^{4} 中的平移向量和方向子空间,该流形由以下方程组描述:
特解
{
x
1
+
2
x
2
−
x
3
=
0
x
1
−
x
2
+
2
x
3
−
3
x
4
=
3
,
2
x
1
+
x
2
−
3
x
3
+
3
x
4
=
−
1
,
№46.
x
1
+
2
x
2
−
x
3
=
0
x
1
−
x
2
+
2
x
3
−
3
x
4
=
3
,
2
x
1
+
x
2
−
3
x
3
+
3
x
4
=
−
1
,
№46.
{[x_(1)+2x_(2)-x_(3)=0],[x_(1)-x_(2)+2x_(3)-3x_(4)=3","],[2x_(1)+x_(2)-3x_(3)+3x_(4)=-1","]:}" №46. " \left\{\begin{array}{l}
x_{1}+2 x_{2}-x_{3}=0 \\
x_{1}-x_{2}+2 x_{3}-3 x_{4}=3, \\
2 x_{1}+x_{2}-3 x_{3}+3 x_{4}=-1,
\end{array}\right. \text { №46. } 不
X
X
X X - Ormo racmbre perieruel cacone use L - подространсть решений ogropogroú coconesure- Ormo racmbre perieruel cacone use L - 项目解决方案的子空间 ogropogroú coconesure
Задачи 任务
№46.17. Построить систему линейных уравнений,第 46.17 题。建立线性方程组, описывающую линейное многообразие со следующим вектором сдвига и направляющим подпространством , натянутым на указанные векторы .描述一个具有如下平移向量和由指定向量张成的导向子空间的线性流形,
H
=
a
+
L
H
=
a
+
L
H=a+L H=a+L
a
a
a a
L
L
L L
e
1
,
e
2
,
e
3
e
1
,
e
2
,
e
3
e_(1),e_(2),e_(3) e_{1}, e_{2}, e_{3}
e
1
=
(
0
,
1
,
3
,
−
4
)
,
e
2
=
(
2
,
−
1
,
0
,
2
)
,
e
3
=
(
2
,
1
,
6
,
−
6
)
,
a
=
(
1
,
−
2
,
−
1
,
0
)
.
№46.17
Pешение:
(
0
1
3
−
4
2
−
1
0
2
2
1
6
−
6
)
→
I
−
π
(
0
1
3
−
4
2
−
1
0
2
0
2
6
−
8
)
→
U
−
2
⋅
J
(
0
1
3
−
4
2
−
1
0
2
0
0
0
0
)
=
2
e
1
=
(
0
,
1
,
3
,
−
4
)
,
e
2
=
(
2
,
−
1
,
0
,
2
)
,
e
3
=
(
2
,
1
,
6
,
−
6
)
,
a
=
(
1
,
−
2
,
−
1
,
0
)
.
№46.17
Pешение:
0
1
3
−
4
2
−
1
0
2
2
1
6
−
6
→
I
−
π
0
1
3
−
4
2
−
1
0
2
0
2
6
−
8
→
U
−
2
⋅
J
0
1
3
−
4
2
−
1
0
2
0
0
0
0
=
2
{:[e_(1)=(0","1","3","-4)","e_(2)=(2","-1","0","2)","e_(3)=(2","1","6","-6)", "],[a=(1","-2","-1","0)". "],[" №46.17 "],[" Pешение: "([0,1,3,-4],[2,-1,0,2],[2,1,6,-6])rarr"I-pi"([0,1,3,-4],[2,-1,0,2],[0,2,6,-8])rarr"U-2*J"([0,1,3,-4],[2,-1,0,2],[0,0,0,0])=2]:} \begin{aligned}
& e_{1}=(0,1,3,-4), e_{2}=(2,-1,0,2), e_{3}=(2,1,6,-6) \text {, } \\
& a=(1,-2,-1,0) \text {. } \\
& \text { №46.17 } \\
& \text { Pешение: }\left(\begin{array}{cccc}
0 & 1 & 3 & -4 \\
2 & -1 & 0 & 2 \\
2 & 1 & 6 & -6
\end{array}\right) \xrightarrow{\mathbb{I}-\pi}\left(\begin{array}{cccc}
0 & 1 & 3 & -4 \\
2 & -1 & 0 & 2 \\
0 & 2 & 6 & -8
\end{array}\right) \xrightarrow{\mathbb{U}-2 \cdot J}\left(\begin{array}{cccc}
0 & 1 & 3 & -4 \\
2 & -1 & 0 & 2 \\
0 & 0 & 0 & 0
\end{array}\right)=2
\end{aligned} 不 е ш е н и е
Задачи 任务
№46.21. Построить систему линейных уравнений, описывающую линейное многообразие
H
=
a
+
L
H
=
a
+
L
H=a+L H=a+L со следующим вектором сдвига
a
a
a a и направляющим подпространством
L
L
L L , заданным однородной системой 第 46.21 题。建立一个线性方程组,描述具有如下平移向量
H
=
a
+
L
H
=
a
+
L
H=a+L H=a+L 和由齐次方程组给出的导向子空间
a
a
a a 的线性流形
a
=
(
1
,
0
,
−
2
,
−
1
)
,
L
:
{
2
x
1
−
x
2
+
2
x
4
=
0
,
−
x
1
+
3
x
2
−
x
3
−
x
4
=
0
,
x
1
+
x
2
+
2
x
3
=
0
.
a
=
(
1
,
0
,
−
2
,
−
1
)
,
1
:
{
2
x
1
−
x
2
+
2
x
4
=
0
−
x
1
+
3
x
2
−
x
2
−
x
4
=
0
x
1
+
x
2
+
2
x
3
=
0
N
≅
4
G
,
21
{
2
x
1
−
x
2
+
2
x
n
=
b
1
−
x
1
+
3
x
1
−
x
3
−
x
2
=
x
2
x
1
+
x
2
+
2
x
2
=
b
2
{
2
x
1
−
x
2
+
2
x
1
=
0
−
x
1
+
3
x
2
−
x
3
−
x
4
−
2
x
1
+
x
2
+
3
x
3
=
−
3
b
1
=
2
⋅
1
−
0
+
2
⋅
(
−
1
)
=
0
hos
=
−
1
+
3
⋅
0
−
(
−
2
)
−
(
−
1
)
=
2
h
=
1
+
0
+
2
(
−
2
)
=
−
3
a
=
(
1
,
0
,
−
2
,
−
1
)
,
L
:
2
x
1
−
x
2
+
2
x
4
=
0
,
−
x
1
+
3
x
2
−
x
3
−
x
4
=
0
,
x
1
+
x
2
+
2
x
3
=
0
.
a
=
(
1
,
0
,
−
2
,
−
1
)
,
1
:
2
x
1
−
x
2
+
2
x
4
=
0
−
x
1
+
3
x
2
−
x
2
−
x
4
=
0
x
1
+
x
2
+
2
x
3
=
0
N
≅
4
G
,
21
2
x
1
−
x
2
+
2
x
n
=
b
1
−
x
1
+
3
x
1
−
x
3
−
x
2
=
x
2
x
1
+
x
2
+
2
x
2
=
b
2
2
x
1
−
x
2
+
2
x
1
=
0
−
x
1
+
3
x
2
−
x
3
−
x
4
−
2
x
1
+
x
2
+
3
x
3
=
−
3
b
1
=
2
⋅
1
−
0
+
2
⋅
(
−
1
)
=
0
hos
=
−
1
+
3
⋅
0
−
(
−
2
)
−
(
−
1
)
=
2
h
=
1
+
0
+
2
(
−
2
)
=
−
3
{:[a=(1","0","-2","-1)","L:{[2x_(1)-x_(2)+2x_(4)=0","],[-x_(1)+3x_(2)-x_(3)-x_(4)=0","],[x_(1)+x_(2)+2x_(3)=0.]:}],[a=(1","0","-2","-1)","1:{[2x_(1)-x_(2)+2x_(4)=0],[-x_(1)+3x_(2)-x_(2)-x_(4)=0],[x_(1)+x_(2)+2x_(3)=0]:}],[N~=4G","21quad{[2x_(1)-x_(2)+2x_(n)=b_(1)],[-x_(1)+3x_(1)-x_(3)-x_(2)=x_(2)],[x_(1)+x_(2)+2x_(2)=b_(2)]:}],[{[2x_(1)-x_(2)+2x_(1)=0],[-x_(1)+3x_(2)-x_(3)-x_(4)-2],[x_(1)+x_(2)+3x_(3)=-3]:}],[b_(1)=2*1-0+2*(-1)=0],[" hos "=-1+3*0-(-2)-(-1)=2],[h=1+0+2(-2)=-3]:} \begin{aligned}
& a=(1,0,-2,-1), L:\left\{\begin{array}{l}
2 x_{1}-x_{2}+2 x_{4}=0, \\
-x_{1}+3 x_{2}-x_{3}-x_{4}=0, \\
x_{1}+x_{2}+2 x_{3}=0 .
\end{array}\right. \\
& a=(1,0,-2,-1), 1:\left\{\begin{array}{l}
2 x_{1}-x_{2}+2 x_{4}=0 \\
-x_{1}+3 x_{2}-x_{2}-x_{4}=0 \\
x_{1}+x_{2}+2 x_{3}=0
\end{array}\right. \\
& N \cong 4 G, 21 \quad\left\{\begin{array}{l}
2 x_{1}-x_{2}+2 x_{n}=b_{1} \\
-x_{1}+3 x_{1}-x_{3}-x_{2}=x_{2} \\
x_{1}+x_{2}+2 x_{2}=b_{2}
\end{array}\right. \\
& \left\{\begin{array}{l}
2 x_{1}-x_{2}+2 x_{1}=0 \\
-x_{1}+3 x_{2}-x_{3}-x_{4}-2 \\
x_{1}+x_{2}+3 x_{3}=-3
\end{array}\right. \\
& b_{1}=2 \cdot 1-0+2 \cdot(-1)=0 \\
& \text { hos }=-1+3 \cdot 0-(-2)-(-1)=2 \\
& h=1+0+2(-2)=-3
\end{aligned}
Задачи 任务
No46.36. В пространстве
R
5
R
5
R^(5) \mathbb{R}^{5} дана плоскость
x
=
x
0
+
t
1
a
1
+
t
2
a
2
x
=
x
0
+
t
1
a
1
+
t
2
a
2
x=x_(0)+t_(1)a_(1)+t_(2)a_(2) x=x_{0}+t_{1} a_{1}+t_{2} a_{2} , где
x
0
=
(
2
,
3
,
−
1
,
1
,
1
)
,
a
1
=
(
3
,
−
1
,
1
,
−
1
,
1
)
,
a
2
=
(
−
1
,
1
,
1
,
1
,
−
1
)
x
0
=
(
2
,
3
,
−
1
,
1
,
1
)
,
a
1
=
(
3
,
−
1
,
1
,
−
1
,
1
)
,
a
2
=
(
−
1
,
1
,
1
,
1
,
−
1
)
x_(0)=(2,3,-1,1,1),a_(1)=(3,-1,1,-1,1),a_(2)=(-1,1,1,1,-1) x_{0}=(2,3,-1,1,1), a_{1}=(3,-1,1,-1,1), a_{2}=(-1,1,1,1,-1) . Установить, принадлежат ли ей векторы
u
=
(
1
,
6
,
4
,
4
,
−
2
)
u
=
(
1
,
6
,
4
,
4
,
−
2
)
u=(1,6,4,4,-2) u=(1,6,4,4,-2) и
v
=
(
1
,
6
,
5
,
4
,
−
2
)
v
=
(
1
,
6
,
5
,
4
,
−
2
)
v=(1,6,5,4,-2) v=(1,6,5,4,-2) . 第 46.36 题。在空间
R
5
R
5
R^(5) \mathbb{R}^{5} 中给定平面
x
=
x
0
+
t
1
a
1
+
t
2
a
2
x
=
x
0
+
t
1
a
1
+
t
2
a
2
x=x_(0)+t_(1)a_(1)+t_(2)a_(2) x=x_{0}+t_{1} a_{1}+t_{2} a_{2} ,其中
x
0
=
(
2
,
3
,
−
1
,
1
,
1
)
,
a
1
=
(
3
,
−
1
,
1
,
−
1
,
1
)
,
a
2
=
(
−
1
,
1
,
1
,
1
,
−
1
)
x
0
=
(
2
,
3
,
−
1
,
1
,
1
)
,
a
1
=
(
3
,
−
1
,
1
,
−
1
,
1
)
,
a
2
=
(
−
1
,
1
,
1
,
1
,
−
1
)
x_(0)=(2,3,-1,1,1),a_(1)=(3,-1,1,-1,1),a_(2)=(-1,1,1,1,-1) x_{0}=(2,3,-1,1,1), a_{1}=(3,-1,1,-1,1), a_{2}=(-1,1,1,1,-1)
u
=
(
1
,
6
,
4
,
4
,
−
2
)
u
=
(
1
,
6
,
4
,
4
,
−
2
)
u=(1,6,4,4,-2) u=(1,6,4,4,-2) 和
v
=
(
1
,
6
,
5
,
4
,
−
2
)
v
=
(
1
,
6
,
5
,
4
,
−
2
)
v=(1,6,5,4,-2) v=(1,6,5,4,-2) 。
u
∈
H
⇔
u
−
x
0
⊂
L
(
a
1
,
a
2
)
u
∈
H
⇔
u
−
x
0
⊂
L
a
1
,
a
2
u in H<=>u-x_(0)sub L(a_(1),a_(2)) u \in H \Leftrightarrow u-x_{0} \subset L\left(a_{1}, a_{2}\right)
ran
L
=
2
⇒
u
−
x
0
∈
L
(
a
1
,
a
2
)
⇒
u
∈
H
ran
L
=
2
⇒
u
−
x
0
∈
L
a
1
,
a
2
⇒
u
∈
H
ran L=2=>u-x_(0)in L(a_(1),a_(2))=>u in H \operatorname{ran} L=2 \Rightarrow u-x_{0} \in L\left(a_{1}, a_{2}\right) \Rightarrow u \in H
c
a
1
u
a
2
⇒
u
−
x
0
c
⊥
(
a
1
,
a
2
)
c
a
1
u
a
2
⇒
u
−
x
0
c
⊥
a
1
,
a
2
ca_(1)ua_(2)=>u-x_(0)c _|_(a_(1),a_(2)) c a_{1} u a_{2} \Rightarrow u-x_{0} c \perp\left(a_{1}, a_{2}\right)
v
∈
H
⇔
v
−
x
0
∈
L
(
a
1
,
a
2
)
v
∈
H
⇔
v
−
x
0
∈
L
a
1
,
a
2
v in H<=>v-x_(0)in L(a_(1),a_(2)) v \in H \Leftrightarrow v-x_{0} \in L\left(a_{1}, a_{2}\right)
(
−
1
3
6
3
−
3
3
−
1
1
−
1
1
−
1
1
1
1
−
1
)
→
π
−
I
π
+
3
⋅
I
(
−
1
3
6
3
−
3
0
8
19
8
−
8
0
−
2
−
5
−
2
2
)
→
π
+
4
⋅
π
(
−
1
3
6
3
−
3
0
0
−
1
0
0
0
−
2
−
5
−
2
2
)
−
1
3
6
3
−
3
3
−
1
1
−
1
1
−
1
1
1
1
−
1
→
π
−
I
π
+
3
⋅
I
−
1
3
6
3
−
3
0
8
19
8
−
8
0
−
2
−
5
−
2
2
→
π
+
4
⋅
π
−
1
3
6
3
−
3
0
0
−
1
0
0
0
−
2
−
5
−
2
2
([-1,3,6,3,-3],[3,-1,1,-1,1],[-1,1,1,1,-1])rarr_("pi-I")^("pi+3*I")([-1,3,6,3,-3],[0,8,19,8,-8],[0,-2,-5,-2,2])rarr"pi+4*pi"([-1,3,6,3,-3],[0,0,-1,0,0],[0,-2,-5,-2,2]) \left(\begin{array}{ccccc}-1 & 3 & 6 & 3 & -3 \\ 3 & -1 & 1 & -1 & 1 \\ -1 & 1 & 1 & 1 & -1\end{array}\right) \xrightarrow[\pi-I]{\pi+3 \cdot I}\left(\begin{array}{ccccc}-1 & 3 & 6 & 3 & -3 \\ 0 & 8 & 19 & 8 & -8 \\ 0 & -2 & -5 & -2 & 2\end{array}\right) \xrightarrow{\pi+4 \cdot \pi}\left(\begin{array}{ccccc}-1 & 3 & 6 & 3 & -3 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & -2 & -5 & -2 & 2\end{array}\right) 排:
3
⇒
v
−
x
0
3
⇒
v
−
x
0
3=>v-x_(0) 3 \Rightarrow v-x_{0} 之
L
(
a
1
,
a
2
)
⇒
v
∉
H
L
a
1
,
a
2
⇒
v
∉
H
L(a_(1),a_(2))=>v!in H L\left(a_{1}, a_{2}\right) \Rightarrow v \notin H ,
v
−
x
0
v
−
x
0
v-x_(0) v-x_{0} Numerno we gabucum
c
a
1
u
a
2
⇒
v
−
x
0
d
′
H
(
a
1
a
4
)
c
a
1
u
a
2
⇒
v
−
x
0
d
′
H
a
1
a
4
ca_(1)ua_(2)=>v-x_(0)d^(')H(a_(1)a^(4)) c a_{1} u a_{2} \Rightarrow v-x_{0} d^{\prime} H\left(a_{1} a^{4}\right)
(
−
1
3
6
3
−
3
3
−
1
1
−
1
1
−
1
1
1
1
−
1
)
→
π
−
I
π
+
3
⋅
I
(
−
1
3
6
3
−
3
0
8
19
8
−
8
0
−
2
−
5
−
2
2
)
→
π
+
4
⋅
π
(
−
1
3
6
3
−
3
0
0
−
1
0
0
0
−
2
−
5
−
2
2
)
−
1
3
6
3
−
3
3
−
1
1
−
1
1
−
1
1
1
1
−
1
→
π
−
I
π
+
3
⋅
I
−
1
3
6
3
−
3
0
8
19
8
−
8
0
−
2
−
5
−
2
2
→
π
+
4
⋅
π
−
1
3
6
3
−
3
0
0
−
1
0
0
0
−
2
−
5
−
2
2
([-1,3,6,3,-3],[3,-1,1,-1,1],[-1,1,1,1,-1])rarr_("pi-I")^("pi+3*I")([-1,3,6,3,-3],[0,8,19,8,-8],[0,-2,-5,-2,2])rarr"pi+4*pi"([-1,3,6,3,-3],[0,0,-1,0,0],[0,-2,-5,-2,2]) \left(\begin{array}{ccccc}-1 & 3 & 6 & 3 & -3 \\ 3 & -1 & 1 & -1 & 1 \\ -1 & 1 & 1 & 1 & -1\end{array}\right) \xrightarrow[\pi-I]{\pi+3 \cdot I}\left(\begin{array}{ccccc}-1 & 3 & 6 & 3 & -3 \\ 0 & 8 & 19 & 8 & -8 \\ 0 & -2 & -5 & -2 & 2\end{array}\right) \xrightarrow{\pi+4 \cdot \pi}\left(\begin{array}{ccccc}-1 & 3 & 6 & 3 & -3 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & -2 & -5 & -2 & 2\end{array}\right) 排:
3
⇒
v
−
x
0
3
⇒
v
−
x
0
3=>v-x_(0) 3 \Rightarrow v-x_{0} 之
L
(
a
1
,
a
2
)
⇒
v
∉
H
L
a
1
,
a
2
⇒
v
∉
H
L(a_(1),a_(2))=>v!in H L\left(a_{1}, a_{2}\right) \Rightarrow v \notin H ,
v
−
x
0
v
−
x
0
v-x_(0) v-x_{0} Numerno we gabucum
c
a
1
u
a
2
⇒
v
−
x
0
d
′
H
(
a
1
a
4
)
c
a
1
u
a
2
⇒
v
−
x
0
d
′
H
a
1
a
4
ca_(1)ua_(2)=>v-x_(0)d^(')H(a_(1)a^(4)) c a_{1} u a_{2} \Rightarrow v-x_{0} d^{\prime} H\left(a_{1} a^{4}\right)
No46.41. Доказать, что прямые
x
=
x
1
+
t
q
1
x
=
x
1
+
t
q
1
x=x_(1)+tq_(1) x=x_{1}+t q_{1} и
x
=
x
2
+
t
q
2
x
=
x
2
+
t
q
2
x=x_(2)+tq_(2) x=x_{2}+t q_{2} пересекаются, и найти их пересечение.Указать плоскость, в которой лежат эти прямые. No46.41. 证明直线
x
=
x
1
+
t
q
1
x
=
x
1
+
t
q
1
x=x_(1)+tq_(1) x=x_{1}+t q_{1} 和
x
=
x
2
+
t
q
2
x
=
x
2
+
t
q
2
x=x_(2)+tq_(2) x=x_{2}+t q_{2} 相交,并求出它们的交点。指出这两条直线所在的平面。
x
1
=
(
9
,
3
,
6
,
15
,
−
3
)
,
q
1
=
(
7
,
−
4
,
11
,
13
,
−
5
)
x
1
=
(
9
,
3
,
6
,
15
,
−
3
)
,
q
1
=
(
7
,
−
4
,
11
,
13
,
−
5
)
x_(1)=(9,3,6,15,-3),q_(1)=(7,-4,11,13,-5) x_{1}=(9,3,6,15,-3), q_{1}=(7,-4,11,13,-5) ,
x
2
=
(
−
7
,
2
,
−
6
,
−
5
,
3
)
,
q
2
=
(
2
,
9
,
−
10
,
−
6
,
4
)
x
2
=
(
−
7
,
2
,
−
6
,
−
5
,
3
)
,
q
2
=
(
2
,
9
,
−
10
,
−
6
,
4
)
x_(2)=(-7,2,-6,-5,3),q_(2)=(2,9,-10,-6,4) x_{2}=(-7,2,-6,-5,3), q_{2}=(2,9,-10,-6,4) .
H
1
=
x
1
+
t
g
1
H
1
=
(
9
,
3
,
6
,
15
,
−
3
)
+
t
(
7
,
−
4
,
11
,
13
,
−
5
)
H
1
=
x
1
+
t
g
1
H
1
=
(
9
,
3
,
6
,
15
,
−
3
)
+
t
(
7
,
−
4
,
11
,
13
,
−
5
)
H_(1)=x_(1)+tg_(1)quadH_(1)=(9,3,6,15,-3)+t(7,-4,11,13,-5) H_{1}=x_{1}+t g_{1} \quad H_{1}=(9,3,6,15,-3)+t(7,-4,11,13,-5)
H
2
=
x
1
+
t
q
2
,
H
2
=
(
−
7
,
2
,
−
6
,
−
5
,
3
)
+
t
(
2
,
9
,
−
10
,
−
6
,
4
)
H
2
=
x
1
+
t
q
2
,
H
2
=
(
−
7
,
2
,
−
6
,
−
5
,
3
)
+
t
(
2
,
9
,
−
10
,
−
6
,
4
)
H_(2)=x_(1)+tq_(2),quadH_(2)=(-7,2,-6,-5,3)+t(2,9,-10,-6,4) H_{2}=x_{1}+t q_{2}, \quad H_{2}=(-7,2,-6,-5,3)+t(2,9,-10,-6,4)
x
1
+
t
1
q
1
=
x
2
+
t
2
q
2
x
1
+
t
1
q
1
=
x
2
+
t
2
q
2
x_(1)+t_(1)q_(1)=x_(2)+t_(2)q_(2) x_{1}+t_{1} q_{1}=x_{2}+t_{2} q_{2}
{
7
t
1
−
2
t
2
=
−
16
4
t
1
+
9
t
2
=
1
11
t
1
+
16
t
2
=
−
12
13
t
1
+
6
t
2
=
−
20
5
t
1
+
4
t
2
=
−
6
7
t
1
−
2
t
2
=
−
16
4
t
1
+
9
t
2
=
1
11
t
1
+
16
t
2
=
−
12
13
t
1
+
6
t
2
=
−
20
5
t
1
+
4
t
2
=
−
6
{[7t_(1)-2t_(2),=-16],[4t_(1)+9t_(2),=1],[11t_(1)+16t_(2),=-12],[13t_(1)+6t_(2),=-20],[5t_(1)+4t_(2),=-6]:} \left\{\begin{array}{ll|c}7 t_{1}-2 t_{2} & =-16 \\ 4 t_{1}+9 t_{2} & =1 \\ 11 t_{1}+16 t_{2} & =-12 \\ 13 t_{1}+6 t_{2} & =-20 \\ 5 t_{1}+4 t_{2} & =-6\end{array}\right.
(
7
−
2
−
16
11
10
1
13
6
−
12
5
4
−
6
)
7
−
2
−
16
11
10
1
13
6
−
12
5
4
−
6
([7,-2,-16],[11,10,1],[13,6,-12],[5,4,-6]) \left(\begin{array}{cc|c}7 & -2 & -16 \\ 11 & 10 & 1 \\ 13 & 6 & -12 \\ 5 & 4 & -6\end{array}\right)
→
(
13
6
−
20
6
93
/
13
93
/
13
0
0
0
6
0
0
0
0
0
)
{
12
t
1
+
6
t
2
=
−
20
93
/
13
t
2
=
93
/
13
13
t
1
=
−
26
t
2
=
1
→
13
6
−
20
6
93
/
13
93
/
13
0
0
0
6
0
0
0
0
0
12
t
1
+
6
t
2
=
−
20
93
/
13
t
2
=
93
/
13
13
t
1
=
−
26
t
2
=
1
rarr([13,6,-20],[6,93//13,93//13],[0,0,0],[6,0,0],[0,0,0]){[12t_(1)+6t_(2)=-20],[93//13t_(2)=93//13],[13t_(1)=-26],[t_(2)=1]:} \rightarrow\left(\begin{array}{cc|c}13 & 6 & -20 \\ 6 & 93 / 13 & 93 / 13 \\ 0 & 0 & 0 \\ 6 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\left\{\begin{array}{l}12 t_{1}+6 t_{2}=-20 \\ 93 / 13 t_{2}=93 / 13 \\ 13 t_{1}=-26 \\ t_{2}=1\end{array}\right.
x
0
=
x
n
+
t
1
q
1
=
(
−
5
,
11
,
−
16
,
−
11
,
7
)
x
0
=
x
n
+
t
1
q
1
=
(
−
5
,
11
,
−
16
,
−
11
,
7
)
x_(0)=x_(n)+t_(1)q_(1)=(-5,11,-16,-11,7) x_{0}=x_{n}+t_{1} q_{1}=(-5,11,-16,-11,7) - 普拉·内佩库伦
{
t
1
=
−
2
t
2
=
1
t
1
=
−
2
t
2
=
1
{[t_(1)=-2],[t_(2)=1]:} \left\{\begin{array}{l}t_{1}=-2 \\ t_{2}=1\end{array}\right.
(
x
0
=
x
2
+
t
2
q
2
x
0
=
x
2
+
t
2
q
2
x_(0)=x_(2)+t2q_(2) x_{0}=x_{2}+t 2 q_{2} )
x
0
+
L
(
q
1
,
q
2
)
x
0
+
L
q
1
,
q
2
x_(0)+L(q_(1),q_(2)) x_{0}+L\left(q_{1}, q_{2}\right) -诺克罗森,
b
b
b b Coropour Nemas npe une
Задачи 任务
No46.31. Суммой
H
1
+
H
2
H
1
+
H
2
H_(1)+H_(2) H_{1}+H_{2} линейных многообразий
H
1
=
a
1
+
L
1
H
1
=
a
1
+
L
1
H_(1)=a_(1)+L_(1) H_{1}=a_{1}+L_{1} и
H
2
=
a
2
+
L
2
H
2
=
a
2
+
L
2
H_(2)=a_(2)+L_(2) H_{2}=a_{2}+L_{2} называется множество всех векторов вида
z
1
+
z
2
z
1
+
z
2
z_(1)+z_(2) z_{1}+z_{2} , где
z
1
∈
H
1
,
z
2
∈
H
2
z
1
∈
H
1
,
z
2
∈
H
2
z_(1)inH_(1),z_(2)inH_(2) z_{1} \in H_{1}, z_{2} \in H_{2} .Доказать, что сумма линейных многообразий
H
1
H
1
H_(1) H_{1} и
H
2
H
2
H_(2) H_{2} также является многообразием.Найти его направляющее подпространство. 第 46.31 题。线性流形
H
1
=
a
1
+
L
1
H
1
=
a
1
+
L
1
H_(1)=a_(1)+L_(1) H_{1}=a_{1}+L_{1} 和
H
2
=
a
2
+
L
2
H
2
=
a
2
+
L
2
H_(2)=a_(2)+L_(2) H_{2}=a_{2}+L_{2} 的和是指所有形如
z
1
+
z
2
z
1
+
z
2
z_(1)+z_(2) z_{1}+z_{2} 的向量的集合,其中
z
1
∈
H
1
,
z
2
∈
H
2
z
1
∈
H
1
,
z
2
∈
H
2
z_(1)inH_(1),z_(2)inH_(2) z_{1} \in H_{1}, z_{2} \in H_{2} 。证明线性流形
H
1
H
1
H_(1) H_{1} 和
H
2
H
2
H_(2) H_{2} 的和也是一个流形。求出它的方向子空间。
z
1
+
z
2
=
a
1
+
a
2
+
x
1
+
x
2
z
=
z
1
+
z
2
=
a
+
L
a
=
a
1
+
a
2
L
=
L
1
+
L
2
(
no onpegenemor
)
cymnn negmpocipand).
z
1
+
z
2
=
a
1
+
a
2
+
x
1
+
x
2
z
=
z
1
+
z
2
=
a
+
L
a
=
a
1
+
a
2
L
=
L
1
+
L
2
(
no onpegenemor
)
cymnn negmpocipand).
{:[z_(1)+z_(2)=a_(1)+a_(2)+x_(1)+x_(2)],[z=z_(1)+z_(2)=a+L],[a=a_(1)+a_(2)],[L=L_(1)+L_(2)quad(" no onpegenemor ")],[" cymnn negmpocipand). "]:} \begin{aligned}
z_{1}+z_{2}= & a_{1}+a_{2}+x_{1}+x_{2} \\
z=z_{1}+z_{2}= & a+L \\
& a=a_{1}+a_{2} \\
& L=L_{1}+L_{2} \quad(\text { no onpegenemor }) \\
& \text { cymnn negmpocipand). }
\end{aligned}
Задачи 任务
№46.24. Доказать, что в линейном многообразии размерности
k
k
k k , не являющемся подпространством, можно найти линейно независимую систему, состоящую из
k
+
1
k
+
1
k+1 k+1 векторов.第 46 号。24 向量。第 46 号。24
nyent
H
=
x
0
+
α
1
l
1
+
α
2
l
1
+
…
+
α
k
l
k
nyent
H
=
x
0
+
α
1
l
1
+
α
2
l
1
+
…
+
α
k
l
k
" nyent "H=x_(0)+alpha_(1)l_(1)+alpha_(2)l_(1)+dots+alpha_(k)l_(k) \text { nyent } H=x_{0}+\alpha_{1} l_{1}+\alpha_{2} l_{1}+\ldots+\alpha_{k} l_{k}
x
0
+
l
1
,
x
0
+
l
2
,
…
,
x
0
+
l
k
−
camena beximupob
β
1
(
x
0
+
l
1
)
+
β
2
(
x
0
+
l
1
)
+
…
+
β
k
(
x
0
+
l
k
)
=
θ
∑
β
1
l
i
+
(
β
1
+
β
2
+
…
+
β
k
)
x
0
=
θ
∑
β
i
l
i
=
−
(
∑
β
i
)
x
0
x
0
+
l
1
,
x
0
+
l
2
,
…
,
x
0
+
l
k
−
camena beximupob
β
1
x
0
+
l
1
+
β
2
x
0
+
l
1
+
…
+
β
k
x
0
+
l
k
=
θ
∑
β
1
l
i
+
β
1
+
β
2
+
…
+
β
k
x
0
=
θ
∑
β
i
l
i
=
−
∑
β
i
x
0
{:[x_(0)+l_(1)","x_(0)+l_(2)","dots","x_(0)+l_(k)-" camena beximupob "],[beta_(1)(x_(0)+l_(1))+beta_(2)(x_(0)+l_(1))+dots+beta_(k)(x_(0)+l_(k))=theta],[sum_(beta_(1)l_(i))+(beta_(1)+beta_(2)+dots+beta_(k))x_(0)=theta],[sum_(beta_(i)l_(i))=-(sum_(beta_(i)))x_(0)]:} \begin{aligned}
& x_{0}+l_{1}, x_{0}+l_{2}, \ldots, x_{0}+l_{k}-\text { camena beximupob } \\
& \beta_{1}\left(x_{0}+l_{1}\right)+\beta_{2}\left(x_{0}+l_{1}\right)+\ldots+\beta_{k}\left(x_{0}+l_{k}\right)=\theta \\
& \sum_{\beta_{1} l_{i}}+\left(\beta_{1}+\beta_{2}+\ldots+\beta_{k}\right) x_{0}=\theta \\
& \sum_{\beta_{i} l_{i}}=-\left(\sum_{\beta_{i}}\right) x_{0}
\end{aligned}
nporaboperist 罗米,200 岁
K
0
K
0
K_(0) K_{0} ve spunagramerat monpabistonsemy nogmpocipancily
⇒
β
i
<
0
⇒
⇒
β
i
<
0
⇒
=>beta i < 0=> \Rightarrow \beta i<0 \Rightarrow nporaboperist 罗米,200 岁
K
0
K
0
K_(0) K_{0} 并且我用西班牙语说“monpabistonsemy nogmpocipancily”
⇒
β
i
<
0
⇒
⇒
β
i
<
0
⇒
=>beta i < 0=> \Rightarrow \beta i<0 \Rightarrow
⇒
⇒
=> \Rightarrow Waiens bescroped neinesismo negrimanta。
Задачи 任务
证明,在维度为
k
k
k k 的线性流形中,每个由
k
+
2
k
+
2
k+2 k+2 个何量组成的系统都是 13 。№46.25.Доказать,что в линейном многообразии размерности
k
k
k k всякая система,состоящая из
k
+
2
k
+
2
k+2 k+2 векторов,линейно зависима. 证明,在维度为 0 的线性流形中,每个由 1 个向量组成的系统都是线性相关。第 46 题。25. 证明,在维度为 2 的线性流形中,任何由 3 个向量组成的系统都是线性相关的。
第 46 号。
25
x
,
∈
H
25
x
,
∈
H
25quad x,in H 25 \quad x, \in H , wo onpegelemen
x
=
x
0
+
α
1
l
1
+
…
+
α
k
l
k
x
=
x
0
+
α
1
l
1
+
…
+
α
k
l
k
x=x_(0)+alpha_(1)l_(1)+dots+alpha_(k)l_(k) x=x_{0}+\alpha_{1} l_{1}+\ldots+\alpha_{k} l_{k} 通用 电气 第 46 号。
25
x
,
∈
H
25
x
,
∈
H
25quad x,in H 25 \quad x, \in H , wo onpegelemen
x
=
x
0
+
α
1
l
1
+
…
+
α
k
l
k
x
=
x
0
+
α
1
l
1
+
…
+
α
k
l
k
x=x_(0)+alpha_(1)l_(1)+dots+alpha_(k)l_(k) x=x_{0}+\alpha_{1} l_{1}+\ldots+\alpha_{k} l_{k} 通用电气
e
i
e
i
e_(i) e_{i} -ans laropn,raguc nognportanctial,
x
0
⧸
ϕ
˙
L
(
a
,
…
,
e
a
)
x
0
⧸
ϕ
˙
L
a
,
…
,
e
a
x_(0)""⧸""phi^(˙)L(a,dots,e_(a)) x_{0} \not \dot{\phi} L\left(a, \ldots, e_{a}\right)
⇒
∀
x
∈
H
⇒
∀
x
∈
H
=>quad AA x in H \Rightarrow \quad \forall x \in H -Minelinare contanagues Learpod
x
0
,
∑
1
n
α
i
e
i
x
0
,
∑
1
n
α
i
e
i
x_(0),sum_(1)^(n)alpha_(i)e_(i) x_{0}, \sum_{1}^{n} \alpha_{i} e_{i}
⇒
⇒
=> \Rightarrow 尿罗
(
k
+
2
)
−
1
(
k
+
2
)
−
1
(k+2)^(-1) (k+2)^{-1} Beemp Inpanacial Repy矿石
k
+
1
k
+
1
k+1 k+1 .
⇒
∀
x
∈
H
⇒
∀
x
∈
H
=>quad AA x in H \Rightarrow \quad \forall x \in H -Minelinare contanagues Learpod
x
0
,
∑
1
n
α
i
e
i
x
0
,
∑
1
n
α
i
e
i
x_(0),sum_(1)^(n)alpha_(i)e_(i) x_{0}, \sum_{1}^{n} \alpha_{i} e_{i}
⇒
⇒
=> \Rightarrow 尿罗
(
k
+
2
)
−
1
(
k
+
2
)
−
1
(k+2)^(-1) (k+2)^{-1} Beemp Inpanacial Repy 矿石
k
+
1
k
+
1
k+1 k+1 .
Домашнее задание: 家庭作业:
否否
46.16
,
46.49
,
46.54
,
46.26
,
46.1
−
46.5
,
46.11
,
46.15
,
46.58
−
46.61
46.16
,
46.49
,
46.54
,
46.26
,
46.1
−
46.5
,
46.11
,
46.15
,
46.58
−
46.61
46.16,46.49,46.54,46.26,46.1-46.5,46.11,46.15,46.58-46.61 46.16,46.49,46.54,46.26,46.1-46.5,46.11,46.15,46.58-46.61 . 编号
46.16
,
46.49
,
46.54
,
46.26
,
46.1
−
46.5
,
46.11
,
46.15
,
46.58
−
46.61
46.16
,
46.49
,
46.54
,
46.26
,
46.1
−
46.5
,
46.11
,
46.15
,
46.58
−
46.61
46.16,46.49,46.54,46.26,46.1-46.5,46.11,46.15,46.58-46.61 46.16,46.49,46.54,46.26,46.1-46.5,46.11,46.15,46.58-46.61 。