这是用户在 2025-7-10 17:41 为 https://app.immersivetranslate.com/word/ 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

α-Terpineol overcomes MCR-mediated colistin resistance in Gram-negative pathogens by disrupt bacterial iron homestasis
α-松油醇通过破坏细菌铁稳态来克服革兰氏阴性病原体中 MCR 介导的粘菌素耐药性

Abstract
抽象

In the face of the alarming rise in global antimicrobial resistance, only a handful of novel antibiotics have been developed in recent decades, necessitating innovations in therapeutic strategies to fill the void of antibiotic discovery. Here, by screening plant essential oil components, we found that α-Terpineol significantly enhances colistin's antibacterial effect. Mechanistic studies indicate that α-Terpineol disrupts iron and membrane homeostasis in drug-resistant bacteria by causing intrabacterial ferrous ion accumulation and increasing lipid membrane fluidity. The excess ferrous ions not only inhibit LPS modification by interfering with the two-component system PmrAB but also enhance the Fenton reaction. This restores colistin's hydroxyl-mediated death pathway, resulting in bacterial oxidative damage. The potentiation of these α-Terpineol was further confirmed in an in vivo infection model. Collectively, the current study provided a colistin adjuvant to replenish our arsenals for combating bacterial infections and shed the light on the bacterial iron signaling as a promising target for antibacterial therapies.
面对全球抗微生物药物耐药性惊人上升, 近几十年来只有少数新型抗生素被开发出来,因此需要创新治疗策略来填补抗生素发现的空白。在这里 ,通过筛选植物精油成分,我们发现 α-松油醇显着增强了粘菌素的抗菌作用。机制研究表明,α-松油醇通过引起细菌内亚铁离子积累和增加脂质膜流动性来破坏耐药细菌的铁和膜稳态。过量的亚铁离子不仅通过干扰双组分系统 PmrAB 来抑制 LPS 修饰,而且还增强了 Fenton 反应。这恢复了粘菌素的羟基介导的死亡途径,导致细菌氧化损伤。 这些 α-松油醇的增强 作用在体内感染模型中得到进一步证实。总的来说,目前的研究提供了一种粘菌素佐剂 ,以补充我们对抗细菌感染的武器库,并阐明细菌铁信号作为抗菌疗法的有前途的靶点。

关键字

1. Introduction
1. 引言

Antibiotic resistance is a growing problem that threatens conventional regimens for treating bacterial infectious diseases [1], [2]. It has been predicted that the antibiotic resistant bacteria would kill 10 million lives per year and lead to 100 trillion USD of economic loss worldwide by 2050 [3]. Colistin, a nonribosomal peptide antibiotic, is one of last-resort antibiotics against multidrug-resistant Gram-negative pathogens, particularly for carbapenem-resistant Enterobacteriaceae [4]. The bactericidal activity of colistin is mainly dependent on the induction of membrane lysis and O2- (superoxide) generation [5]. Although colistin demonstrates a rapid bacterial clearance, using it in excess is also not possible due to its nephrotoxicity [6]. Unfortunately, the situation has been exacerbated by the emergence of chromosome-mediated and mobile element-mediated colistin resistance, which confer colistin resistance by modulating membrane charge [7]. Therefore, there is an urgent need to identify novel strategies to overcome such intrinsic or acquired colistin resistance in Gram-negative pathogens.
抗生素耐药性是一个日益严重的问题,威胁着治疗细菌传染病的传统方案 [1],[2]。预测,到 2050 年,抗生素耐药细菌每年将杀死 1000 万人的生命,并导致全球 100 万亿美元的经济损失 [3]。 粘菌素是一种非核糖体肽抗生素,是针对多重耐药革兰氏阴性病原体的最后抗生素之一,特别是对于耐碳青霉烯类杆菌科 [4]。 粘菌素的杀菌活性主要取决于膜 lysis 和 O2(超氧化物) 生成的诱导 [5] 尽管粘菌素表现出快速的细菌清除,但由于其肾毒性,也不能过量使用 [6]。 不幸的是,染色体介导和移动元件介导的粘菌素耐药的出现加剧了这种情况,它们通过调节膜电荷赋予粘菌素耐药 [7] 因此,迫切需要确定新的策略来克服革兰氏阴性病原体中的这种内在或获得性粘菌素耐药。

Compared with the time and money-consuming development of novel antibiotics, antibiotic adjuvant strategy offers a more cost-effective approach by preventing bacterial resistance or enhancing antibiotic modes of action. For example, Liu and co-workers identified that melatonin, a neurohormone, resensitizes the Gram-negative bacteria to colistin by targeting the bacterial membrane and promoting oxidative damage [8]. In a recent report, Zhong et al. screened a large number of plant secondary metabolites and found that flavonoids break the resistance to colistin by disrupting bacterial intracellular iron homeostasis to a larger extent [9]. These efforts demonstrated that combinations of colistin with rational adjuvants are of great potential to enhance current treatment paradigms based on colistin.
与耗时耗费金钱的新型抗生素开发相比,抗生素辅助策略通过防止细菌耐药性或增强抗生素作用模式提供了一种更具成本效益的方法。例如,Liu 及其同事发现褪黑激素是一种神经激素,通过靶向细菌膜和促进氧化损伤,使革兰氏阴性菌对粘菌素重新敏感 [8] 在最近的一份报告中,Zhong 等人。 筛选了大量植物次生代谢物,发现黄酮类化合物通过更大程度地破坏细菌细胞内铁稳态来打破对粘菌素的抵抗 [9]。 这些努力表明,粘菌素与合理佐剂的组合在增强当前基于粘菌素的治疗范式方面具有巨大潜力。

α-Terpineol (α-terpinen-4-ol) is a monocyclic monoterpene tertiary alcohol which are naturally present in plant species. It has a pleasant odor similar to lilacs and it is a common ingredient in perfumes, cosmetics, and aromatic scents [10]. In addition, α-terpineol attracts great interest as it has a wide range of biological applications as an anticancer [11], anticonvulsant [12], antiulcer [13], antihypertensive [14], anti-nociceptive [15] compound. Although multiple beneficial effects of melatonin have been uncovered, its potential application in treatment of pathogenic bacteria has not been fully explored. Herein, we focused on the potency of α-Terpineol as a novel antibiotic adjuvant. Our mechanstic analysis demonstrated that these α-Terpineol disrupt bacterial membrane fluidity and subsequent accumulation of colistin. Collectively, the current study unveiled the great potential of α-Terpineol as a colistin adjuvant and highlighted iron signaling as an ideal target for colistin treatment.
α-松油醇 (α-terpinen-4-ol) 是一种天然存在于植物物种中的单环单萜叔醇。它具有类似于丁香花的宜人气味,是香水、化妆品和芳香气味中的常见成分 [10] 此外,α-松油醇引起了极大的兴趣,因为它具有广泛的生物学应用,如抗癌 [11] 抗惊厥[12] 抗溃疡 [13] 抗高血压 [14] 抗伤害性 [15] 复合。尽管已经发现了褪黑激素的多种有益作用 ,但其在治疗病原菌方面的潜在应用尚未得到充分探索。 在此,我们专注于 α-松油醇作为新型抗生素佐剂的效力。我们的机械分析表明,这些 α-松油醇会破坏细菌膜流动性和随后的粘菌素积累。 总的来说,目前的研究揭示了 α-松油醇作为粘菌素佐剂的巨大潜力,并强调了铁信号转导是粘菌素治疗的理想靶点。

2. Materials and methods
2. 材料和材料理念

2.1. Bacterial strains and chemical reagents
2.1. 细菌菌株和化学试剂

The strains used in this study are listed in Table S1. Unless otherwise noted, strains were inoculated onto Mueller-Hinton agar (MHA, Beijing Land Bridge Technology) containing 2μg/mL colistin. Positive colonies were grown in Mueller-Hinton Broth (MHB, Beijing Land Bridge Technology) and confirmed for the mcr-1 gene by PCR analysis. RAW264.7 cells were grown in Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco) supplemented with 10% heat-inactivated fetal bovine serum (FBS, Opcel Company). α-Terpineol and colistin were purchased from Aladdin Company (Shanghai, China).
本研究中使用的 s 序列列于表 S1 中。 除非另有说明,否则将菌株接种到含有 2μg/mL 粘菌素Mueller-Hinton 琼脂 (MHA,北京陆桥科技) 上。 阳性菌落在 Mueller-Hinton 肉汤 (MHB,北京陆桥科技) 中生长,并通过 PCR 分析确认 mcr-1 基因。 RAW264.7 细胞在补充有 10% 热灭活胎牛血清 (FBS, Opcel Company) 的 Dulbecco 改良 Eagle 培养基 (DMEM, Gibco) 中生长。α-松油醇和粘菌素购自 Aladdin Company(中国上海)。

2.2. Antimicrobial susceptibility testing
2.2. 药敏试验

Compound MICs were measured using the standard broth microdilution method, according to the CLSI 2016 guideline and previous report. All drugs were two-fold diluted in MHB and equally mixed with bacterial suspensions in a 96-well microtiter plate. MIC values were defined as the lowest concentrations of drugs with invisible turbidity of bacteria after 24 h incubation at 37 ℃.
根据 CLSI 2016 指南和之前的报告,使用标准肉汤微量稀释法测量化合物 MIC。将所有药物在 MHB 中稀释两倍,并在 96 孔微量滴定板中与细菌悬浮液等量混合 。MIC 值定义为在 37 °C 下孵育 24 小时后细菌不可见浑浊的药物的最低浓度。

2.3. 棋盘检测

The synergistic activity of antibiotics and α-Terpineol was evaluated by checkerboard assays with two-fold serial dilution of drugs (8 × 8 matrix). Overnight Co-incubation with bacterial suspension (OD600=0.5), which was diluted 1/2000 in MHB, the absorbance of bacterial culture at 600 nm was measured by a Microplate reader. Two biological replicates were performed for each combination, and the means were used for FIC index (FICI) calculation according to the formula as follows [16]
通过用药物的两倍连续稀释 (8 × 8 基质) 的棋盘格测定来评估抗生素和 α-松油醇的协同活性。与在 MHB 中以 1/2000 稀释的细菌悬浮液 (OD 600 = 0.5) 共孵育过夜,通过酶标仪测量细菌培养物在 600 nm 处的吸光度。对每个组合进行两次生物学重复,并根据以下公式使用平均值进行 FIC 指数 (FICI) 计算 [16]
.

FIC 指数 = FICIa + FICIb = MICab / MICb + MICba / MICb

MICa is the MIC of compound A alone; MICab is the MICab of compound A in combination with compound B. By parity of reasoning, the synergy is defined as an FIC index of ≤ 0.5.
MICa 是化合物 A 的单独 MIC;MICab 化合物 A 与化合物 B 组合的 MIC ab。根据奇偶校验推理,协同作用定义为 ≤ 0.5 的 FIC 指数。

2.3. 时间依赖性杀伤试验

Overnight culture of strains was diluted ~104 CFU/mL into fresh MHB, which were subsequently treated with subinhibitory concentrations of colistin (8 μg/mL), the α-Terpineol (200 μg/mL), or their combination. At time points 0, 3, 6, 9, and 24 hours, a 100 μL aliquot of each treatment was removed, diluted, and plated to determine bacterial survivors.
将菌株过夜培养物稀释到新鲜 MHB 中 ~10 4 CFU/mL 中,随后用亚抑制浓度的粘菌素 (8 μg/mL)、α-松油醇 200 μg/mL) 或其组合处理。在时间点 0、3、6、9 和 24 小时,取出每种处理的 100 μL 等分试样,稀释并铺板以确定细菌存活者。

2.4. 抗性发展研究

Overnight culture of strains was diluted ~104 CFU/mL into fresh MHB, which were incubated at 37 in MHB containing sublethal colistin with or without α-Terpineol under continuous shaking at 200 rpm for 24 hours. The cultures were serially passaged for 28 days, during which the MIC of evolved bacterial subpopulation of each strain was monitored [17]
将菌株过夜培养物稀释到新鲜 MHB 中 ~104 CFU/mL 中,在 37 °C 下在含有亚致死性粘菌素的 MHB 中以 200 rpm 连续振荡孵育 24 小时,含或不含 α-松油醇。连续传代培养物 28 天,在此期间监测每个菌株进化的细菌亚群的 MIC [17]
.

2.5. 转录组学分析

The E. coli LN175 was grown in MHB to the exponential phase and incubated with colistin (4 μg/mL) alone or combined with α-Terpineol (200 μg/mL) for 1 hour. The bacterial cells were then washed three times. The total RNA of samples was extracted and quantified by Novogene company (Beijing, China). After quality control, different libraries were pooled based on the effective concentration and targeted data amount and then subjected to Illumina sequencing. In brief, during the second strand cDNA synthesis, dUTPs were replaced with dTTPs in the reaction buffer. The directional library was ready after end repair, A-tailing, adapter ligation, size selection, amplification, and purification. The library was checked with Qubit and real-time PCR for quantification and bioanalyzer for size distribution detection. Raw sequencing reads were subjected to filtration by quality control and then mapped against the genome of a reference strain E. coli K12. Differentially expressed genes (DEGs) were identified by gene expression-level analysis using the FPKM (Fragments Per Kilobase of transcript per Million mapped reads) method with P values ≤ 0.05 and fold change (FC) values 1 (log2 FC ≥ 1 or log2 FC ≤ -1). Differential expression analyses between these two treatments were performed using the NovoMagic program (http://magic.novogene.com/).
肠杆菌 LN175 在 MHB 中生长至指数期,并与粘菌素 (4 μg/mL) 单独孵育或 α-松油醇 (200 μg/mL) 联合孵育 1 小时 。然后将细菌细胞洗涤 3 次样品的总 RNA 由 Novogene 公司(中国北京)提取和定量 。质量控制后,根据有效浓度和目标数据量合并不同的文库,然后进行 Illumina 测序。简而言之,在第二链 cDNA 合成过程中,反应缓冲液中的 dUTP 被 dTTP 取代。在末端修复、A 尾、接头连接、大小选择、扩增和纯化后,方向文库已准备就绪。使用 Qubit 和实时 PCR 检查文库以进行定量,并使用生物分析仪进行大小分布检测 。通过质量控制对原始测序读数进行过滤,然后与参考菌株肠杆菌 K12 的基因组进行定位 。使用 FPKM (每百万映射读取每千碱基转录本片段数) 方法通过基因表达水平分析鉴定差异表达基因 (DEGs),P 值≤ 0.05,倍数变化 (FC) 1(log2 FC ≥ 1 或 log2 FC ≤ -1)。 使用 NovoMagic 程序 (http://magic.novogene.com/ 进行这两种处理之间的差异表达分析

2.6 定量逆转录 PCR (RT-qPCR) 分析

A single E. coli LN175 colony was grown overnight in MHB. Then, bacterial cultures were diluted 1/100 into fresh MHB for 6 h until the bacterial cells were grown to exponential phase and incubated with colistin (4 μg/mL) alone or combined with α-Terpineol (200 μg/mL) for 1 hour, then total RNA was extracted using the Unizol Total RNA Extraction Regent Plus (Genesand, Beijing, China) and quantified by the ratio of absorbance (260 nm/280 nm) with a . Next, total RNA was used to reverse transcription reaction using the Tgem Ultra Spectrophotometer (TianGen, Beijing, China).
单个肠杆菌 LN175 菌落在 MHB 中生长过夜。然后,将细菌培养物以 1/100 1 稀释到新鲜的 MHB 中 6 小时,直到细菌细胞生长至指数期 ,并与粘菌素 (4 μg/mL) 单独孵育或与 α-松油醇 (200 μg/mL) 联合孵育 1 小时 ,然后使用 Unizol 总 RNA 提取 Regent PlusGenesand, 中国北京 ),并通过吸光度 (260 nm/280 nm) 与 .接下来 ,使用 Tgem Ultra 分光光度计 TianGen,Beijing,China) 使用总 RNA 进行逆转录反应

The mRNA levels of all representative genes versus those reported as 2-ΔΔCt relative to the control genes (16 S RNA) in E. coli. A two-step PCR amplification standard procedure was shown as following:95 ℃ for 180 s, 40 cycles of 95 ℃ for 15 s and 60 ℃ for 60 s. The RT-qPCR test was performed using a LightCycler® 96 Instrument (Roche, Sweden).
大肠杆菌,所有代表性基因的 mRNA 水平与相对于对照基因 (16 S RNA) 报告为 2-ΔΔCt 的 mRNA 水平。 两步法 PCR 扩增标准程序如下:95 °C 180 s,95 °C 15 s 和 60 °C 60 s 40 个循环。 使用 LightCycler® 96 仪器(瑞典罗氏) 进行 RT-qPCR 检测

2.7. 生化参数测定

E. coli LN175 was chosen as the indicator strain in the biochemical parameters assay. Cells were pretreated with the following protocols. The overnight E. coli LN175 cultures were diluted 1/100 into fresh MHB for 6 h until the bacterial cells were grown to exponential phase. Then, bacteria density was adjusted with 5 mM HEPES (pH 7.0, plus 5 mM glucose) to the OD600 of 0.5. In fluorescence analysis, different fluorescent probes were pre-added to bacteria cultures at 37 ℃ for 30 min to endow the cells with fluorescent label. Next, bacterial cells were added to a 96-well plate with a consistent volume of 190 μL, and α-Terpineol alone, colistin alone or their combination were applied. After incubation at 37 ℃ for 1 h, fluorescence intensity was measured using a Cytation5 Microplate reader (Biotek)
选择大肠杆菌 LN175 作为生化参数测定的指示菌株。使用以下方案预处理细胞。将过夜的大肠杆菌 LN175 培养物以 1/100 稀释到新鲜的 MHB 中 6 小时,直到细菌细胞生长至指数期。然后,用 5 mM HEPES (pH 7.0,加 5 mM 葡萄糖) 将细菌密度调节至 OD600 为 0.5。在荧光分析中,将不同的荧光探针预先添加到细菌培养物中,在 37 °C 下 30 分钟,以赋予细胞荧光标记。接下来,将细菌细胞加入体积一致为 190 μL 的 96 孔板中,单独施用 α-松油醇、单独施用粘菌素或它们的组合。在 37 °C 下孵育 1 小时后,使用 Cytation5 酶标仪 (Biotek) 测量荧光强度
.

2.7.1. Outer membrane permeability assay
2.7.1.外膜通透性测定

Fluorescent probe 1-N-phenylnaphthylamine (NPN) (10 μM) was used to assess outer membrane integrity of E. coli LN175, and the fluorescence units were immediately measured at an excitation wavelength of 350 nm and emission wavelength of 420 nm.
使用荧光探针 1-N-苯基萘胺 (NPN) (10 μM) 评估大肠杆菌 LN175 的外膜完整性,并立即在 350 nm 的激发波长和 420 nm 的发射波长下测量荧光单位。

2.7.2. 内膜通透性测定

Fluorescent probe propidium iodide (PI) (0.5 μM) served as an indicator to evaluate the inner membrane permeability of E. coli LN175. Fluorescence units were measured with the excitation wavelength at 535 nm and emission wavelength at 615 nm.
荧光探针碘化丙啶 (PI) (0.5 μM) 用作评估大肠杆菌 LN175 内膜通透性的指示剂 。荧光单位是用 535 nm 的激发波长和 615 nm 的发射波长测量的。

2.7.3. Outer membrane permeability assay
2.7.3. 外膜通透性测定

Fluorescent probe 3,3’-dipropylthiadicarbocyanine iodide DiSC3(5) (MaoKang, Shanghai, China) was added to the bacteria cultures at 5 μM for detection, and real-time changes of membrane potential were monitored by the SpectraMax M5e Microplate reader (Molecular Devices, USA) with excitation wavelength at 622nm and emission wavelength at 670 nm.
荧光探针 3,3'-二丙基噻二羰花青碘化物 DiSC3(5)(MaoKang,Shanghai,China)以 5 μM 的浓度添加到细菌培养物 中进行检测,并通过激发波长为 622 nm 和发射波长为 670 nm 的 SpectraMax M5e 酶标仪(Molecular Devices,美国)监测膜电位的实时变化。

2.7.4. 膜相

Treated bacteria resuspension was loaded with Laurdan (Macklin, Shanghai, China) to 10 μM for detection. The real-time change of Fluorescence was measured by the SpectraMax M5e Microplate reader (Molecular Devices, USA). The excitation wavelength was 350 nm and emission wavelengths were at 440 and 490 nm. GP was calculated by:
将处理过的细菌重悬液用 Laurdan(Macklin,中国上海)加载至 10 μM 进行检测。通过 SpectraMax M5e 酶标仪 (Molecular Devices, USA) 测量荧光的实时变化。激发波长为 350 nm,发射波长为 440 和 490 nm。GP 的计算公式为:

GP = I440 - I490 / I440 + I490

2.7.5. 细胞内 ATP

Intracellular ATP levels of E. coli LN175 were determined by the Enhanced ATP Assay Kit (Meilun, China). According to the specifications, bacterial precipitates were lysed by lysozyme, and the supernatant was prepared for the measurement of intracellular ATP levels. Detecting solution was added to a 96-well plate and incubated at room temperature for 5 min. Promptly, the luminescence of supernatants was monitored by Cytation5 Microplate reader (Biotek) and the ATP levels were calculated by the luminescence signals.
通过增强型 ATP 测定试剂盒 (Meilun, China) 测定大杆菌 LN175 的细胞内 ATP 水平 。根据规格,用溶菌酶裂解细菌沉淀物,制备上清液用于测量细胞内 ATP 水平 。将检测溶液加入 96 孔板中,并在室温下孵育 5 分钟。立即通过 Cytation5 酶标仪 (Biotek) 监测上清液的发光,并通过发光信号计算 ATP 水平。

2.7.6. 细胞内铁分析

The bacterial cultures were harvested after coincubation with α-Terpineol, colistin or combination and then were homogenized by soniction. The cell lysates were collected for the determination of intacellular iron content using a previous method with minor modifications. The Cell Ferrous Iron Colormetric Assay Kit (E-BC-K881-M, Elabscience, USA) was used to estimate the iron in ferrous from.
α-松油醇 、粘菌素或组合孵育后收获细菌培养物 ,然后通过超声处理匀浆。收集细胞裂解物,使用以前的方法测定细胞内铁含量,并稍作修改。使用细胞亚铁比色测定试剂盒(E-BC-K881-M,Elabscience,USA)估计亚铁中的铁。

2.7.7.总 ROS

2’,7’-dichlorodihydrofluorescein diacetate (DCFH-DA, 10 μM) was applied to monitor levels of ROS in E. coli LN175, following the manufacturer’s instruction (Biosharp). Fluorescence intensity was measured with the excitation wavelength of 488 nm and emission wavelength of 525 nm.
按照制造商的说明 (Biosharp), 使用 2',7'-二氯二氢荧光素二乙酸酯 (DCFH-DA, 10 μM) 监测大肠杆菌 LN175 中 ROS 的水平 。用 488 nm 的激发波长和 525 nm 的发射波长测量荧光强度。

2.7.8. 杀菌因子抑制

Conduct the experiment according to the previous checkerboard dilution method. Add 1% Dimethyl sulfoxide (DMSO) to the culture medium to eliminate the effects of ROS on resistant bacteria. Incubate overnight at 37℃ and absorbance of bacterial culture at 600 nm was measured by a Microplate reader
按照前面的棋盘稀释法进行实验。向培养基中加入 1% 二甲基亚砜 (DMSO),以消除 ROS 对耐药细菌的影响。在 37°C 下孵育过夜,并通过酶标仪测量细菌培养物在 600 nm 处的吸光度
.

2.8.动物研究

2.8.1. Galleria mellonella 感染模型

Galleria mellonella larvae were randomly divided into six groups (n = 16 per group) and infected with E. coli LN175 suspension (10 μL, 10 × 105 CFUs per larvae) at the left posterior gastropoda. At one-hour post-infection, Galleria mellonella larvae were injected with NS, colistin (30 mg/kg), α-Terpineol (1622 mg/kg), or the combination of colistin (30 mg/kg) with α-Terpineol (1622 mg/kg) at the same position. Survival rates of Galleria mellonella larvae were recorded for 120 hours
将 Galleria mellonella 幼虫随机分为 6 组 (每组 n = 16),并在左侧后腹足处感染大肠杆菌 LN175 混悬液 (10 μL,每只幼虫 10 × 105 CFU)。感染后 1 小时,在同一位置注射 NS、粘菌素 (30 mg/kg)、α-松油醇 (1622 mg/kg) 或粘菌素 (30 mg/kg) 与 α-松油醇 (1622 mg/kg) 的组合。记录 Galleria mellonella 幼虫的存活率为 120 小时
.

2.8.2. Galleria mellonella 感染模型

Female KM mice (n = 12 per group) were intraperitoneally infected with a dose of 3 × 108 CFUs E. coli LN175 suspension. At one-hour post-infection, mice were treated with a single dose of colistin (8 mg/kg), α-Terpineol (3 mg/kg), or combination of colistin plus α-Terpineol (3 or 6 mg/kg) via intraperitoneally injection. Survival rates of mice were recorded for 48 hours
雌性 KM 小鼠 (每组 n = 12) 用 3 × 108 CFU 大肠杆菌 LN175 混悬液腹膜内感染。感染后 1 小时,通过腹膜内注射单剂量粘菌素 (8 mg/kg)、α-松油醇 (3 mg/kg) 或粘菌素加 α-松油醇 (3 或 6 mg/kg) 的组合治疗小鼠。记录小鼠 48 小时的存活率
.

标准分析

Results are presented as means ± SD. The statistical analysis was performed using Graphpad prism soft ware. Unless stated ohterwise, the statistical significance of comparison was assessed using the unpaierd T test or one-way analysis of variance (ANOVA) (*P < 0.05, ** P < 0.01, *** P < 0.001, and **** P < 0.0001).
结果以 SD ± 平均值表示。使用 Graphpad prism 软件进行统计分析。除非特别说明,否则使用 unpaierd T 检验或单因素方差分析 (ANOVA) 评估比较的统计显着性(*P < 0.05,** P < 0.01,*** P < 0.001 和 **** P < 0.0001)。

3. Results
3. 结果

3.1. α-松油醇增强粘菌素对 mcr-1 阳性大肠杆菌的免疫力

To evaluate the potential efficacy of the combination of α-Terpineol and colistin, checkerboard dilution assays between it and four classes of antibiotic resistance strains were performed, including ESBL carrier (G1), tet carrier (Cg071), NDM-5 carrier (AD21R), and mcr-1 carrier (LN175) (Fig. 1A). Interestingly, we found that α-Terpineol potentiated colistin activities against mcr-1 or ESBL positive E. coli. Notably, α-Terpineol displayed the highest synergistic activity with colistin (FICI = 0.375), accompanied by an 8-fold decrease in MIC values from 8 μg/mL to 1 μg/mL, which is below the clinical breakpoint (2 μg/mL, according to EUCAST 2017 and CLSI 2016). We next tested this synergistic effect in other mcr-1 positive pathogens. As expected, we observed a significant synergy in mcr-1 carrying Enterobacteriaceae (Table 1), suggesting a targeted potentiation of α-Terpineol with colistin against mcr-carrying pathogens.
为了评估 α-松油醇和粘菌素组合的潜在疗效, 对其进行它与 抗生素耐药菌株之间的棋盘稀释试验 ,包括 ESBL 载体 (G1) tet carrier (Cg071) NDM-5 载体 (AD21R) mcr-1 载体 (LN175)( 1A)。 有趣的是,我们发现 α-松油醇增强了mcr-1ESBL 阳性大肠杆菌的粘菌素活性值得注意的是 α-松油醇与粘菌素显示出最高的协同活性 (FICI = 0.375),伴随着 MIC 值从 8 μg/mL 降低 8 倍到 1 μg/mL,低于临床断点(2 μg/mL,根据 EUCAST 2017 和 CLSI 2016).接下来,我们在其他 mcr-1 阳性病原体中测试了这种协同作用 。正如预期的那样,我们在 携带肠杆菌科mcr-1 中观察到显着的协同作用 (表 1), 这刺激α-松油醇与粘菌素对携带 mcr 的病原体的靶向增强

To further investigate their synergistic bactericidal activity, time-dependent killing curves for mcr-1 positive bacteria were determined. It has been demonstrated that many severe human and animal infections are caused by quiescent or slow-growing bacteria, which are difficult to treat by traditional regimens [18]. We found that neither colistin nor α-Terpineol monotreatment killed or inhibited growing E. coli LN175. In contrast, the combination led to a reduction and inhibition of exponential phase bacteria approximate to a germ-free condition (Fig. 1B)
为了进一步研究它们的协同杀菌活性,确定了 mcr-1 阳性细菌的时间依赖性杀灭曲线。已经证明,许多严重的人类和动物感染是由静止或生长缓慢的细菌引起的,传统方案难以治疗[18]。我们发现粘菌素和 α-松油醇单药治疗均未杀死或抑制大肠杆菌 LN175 的生长。相比之下,该组合导致指数期细菌的减少和抑制,接近无菌状态(图 1B)
.

To gain insights on resistance development, both colistin-sensitive and colistin-resistant strains (LN175) were serially passaged in the medium supplemented with colistin with or without α-Terpineol. The development of resistance to colistin was observed to be reduced by the application of α-Terpineol in tested strains, whereas colistin alone rapidly resulted in an increment of MIC up to thirty-two-fold (Fig. 1C). These results collectively suggested that the synergistic combinations of colistin with α-Terpineol were an efficient approach to eliminate and inhibit the bacteria, which also minimizes the potential emergence of resistance.
为了获得耐药性发展的见解,将粘菌素敏感和粘菌素耐药菌株 (LN175) 在补充有粘菌素(含或不含 α-松油醇)的培养基中连续传代。观察到在测试菌株中施用 α-松油醇减少了对粘菌素耐药性的发展 ,而单独的粘菌素迅速导致 MIC 增加高达 32 倍 (图 1C)。 这些结果共同表明,粘菌素与 α-松油醇的协同组合是消除和抑制细菌的有效方法,这也最大限度地减少耐药性的潜在出现。

Fig. 1. α-Terpineol (α-Ter) enhances colistin lethality against mcr-1 positive bacteria. (A) Checkerboard broth microdilution assays between colistin and α-Terpineol against different classes of antibiotic resistance E. coli. (B) Time-dependent killing curve of mcr-1 positive bacteria (LN175) by the combination of colistin and α-Terpineol. (C) The addition of α-Terpineol prevented the development of colistin resistance in vitro.
图 1.α-松油醇 (α-Ter) 增强粘菌素对 mcr-1 阳性细菌的致死率。(A) 粘菌素和 α-松油醇对不同类别的抗生素耐药性大肠杆菌的棋盘肉汤微量稀释测定。(B) 粘菌素和 α-松油醇联合对 mcr-1 阳性菌 (LN175) 的时间依赖性杀伤曲线。(C) 添加 α-松油醇可防止粘菌素在体外产生耐药性。

3.2. α-Terpineol facilitates the intracellular accumulation of Colistin through increased membrane fluidity
3.2. α-松油醇通过增加膜流动性促进粘菌素的细胞内积累

With the confirmed role of the iron-sulfur cluster in α-Terpineol synergism, we next sought to depict what induced colistin sensitivity in response to iron-sulfur cluster dysregulation. Colistin resistance is primarily related to modified LPS and decreased affinity between colistin and components of the bacterial outer membrane. Thus, we first speculated as to whether the addition of α-Terpineol would restore bacterial susceptibility to colistin by disrupting the bacterial membrane. To validate our hypothesis, we investigated the morphological changes of E. coli treated by sub-MIC of colistin or α-Terpineol and their combination by SEM analysis. Interestingly, we found that α-terpinolene treatment can cause the bacterial outer membrane to wrinkle and collapse, and this effect becomes increasingly apparent when combined with colistin (Fig. 2A)
随着铁硫簇在 α-松油醇协同作用中的作用得到证实,我们接下来试图描述是什么诱导了对铁硫簇失调的粘菌素敏感性。粘菌素耐药主要与修饰的 LPS 以及粘菌素与细菌外膜成分之间的亲和力降低有关。因此,我们首先推测添加 α-松油醇是否会通过破坏细菌膜来恢复细菌对粘菌素的易感性。为了验证我们的假设,我们通过 SEM 分析研究了粘菌素或 α-松油醇亚 MIC 处理的大肠杆菌及其组合的形态变化。有趣的是,我们发现α-萜品油烯处理会导致细菌外膜起皱和塌陷,当与粘菌素联合使用时,这种效果会越来越明显(图 2A)
.

To further confirm this, we investigated the membrane permeability by propidium iodide (PI) (Fig. 2C), outer membrane permeability by means of 1-N-phenylnaphthylamine (NPN) (Fig. 2D), membrane fluidity by 6-Dodecanonyl-2-Dimethylaminonaphthalene (Laurdan) (Fig. 2B) and the membrane potential using 3,3-dipropylthiadicarbocyanine iodide (DiSC3(5)) (Fig. 2E) in E. coli LN175 (mcr-1). Consistently, we found that the α-Terpineol significantly increased whole membrane permeability and membrane fluidity alone, but also had glaringly obvious effects with colistin in cased dissipation of the cytoplasmic membrane potential. Taken together, these results demonstrated that α-Terpineol disrupts the membrane permeability, therefore influence the colistin accumulation.
为了进一步证实这一点,我们研究了碘化丙啶 (PI) 的膜通透性 (图 D)。 2C) 的外膜通透性,通过 1-N-苯基萘胺 (NPN) 实现外膜通透性 (图 D)。 2D) 中,6-十二烷基-2-二甲基氨基萘 (Laurdan) 的膜流动性 (图 D)。 2B) 和使用 3,3-二丙基噻二羰花青碘化物的膜电位 (DiSC3(5)) (图 D. 2E) 大肠杆菌 LN175 (mcr-1) 中。一致地,我们发现 α-松油醇单独显着增加了全膜通透性和膜流动性,但与粘菌素在细胞质膜电位的病例消散方面也有明显的明显影响。综上所述,这些结果表明 α-松油醇会破坏膜通透性,从而影响粘菌素的积累。

Fig. 2. α-Terpineol facilitates the intracellular accumulation of Colistin through increased membrane fluidity. (A) Morphological changes of E. coli LN175 treated with sub-MIC of colistin or α-Terpineol or their combination visualized with SEM. (B) α-Terpineol increases the fluidity of the membrane. Fluidity of the membrane was evaluated by measuring Generalized Polarization (GP) of Laurdan after exposure to sub-MIC of α-Terpineol, colistin or combination. (C) α-Terpineol permeabilizes the outer membrane. Permeability was evaluated by measuring the fluorescence intensity of 1-N-phenylnaphthylamine (NPN) after 1 h exposure to either increasing concentrations of α-Terpineol, colistin or α-Terpineol plus colistin (1 μg/mL). (D) α-Terpineol increases the membrane permeability. Permeability was evaluated by measuring the fluorescence intensity of propidium iodide (PI) after 1 h exposure to either increasing concentrations of α-Terpineol, colistin or α-Terpineol plus colistin (1 μg/mL). All experiments were performed with biological replicates and presented as mean ±SD. Unpaired one-way ANOVA among multiple groups was used to calculate P-values (*P < 0.05, **P < 0.01, ***P < 0.001)
图 2. α-松油醇通过增加膜流动性促进粘菌素的细胞内积累。 (A) 用粘菌素或 α-松油醇的亚 MIC 处理的大肠杆菌 LN175 的形态变化,或通过 SEM 观察它们的组合。(B) α-松油醇增加膜的流动性 通过测量暴露于 α-松油醇、粘菌素或组合的 Laurdan 的广义极化 (GP) 来评估膜的流动性 (C) α-松油醇透化外膜 。通过测量 1-N-苯基萘胺 (NPN) 暴露于浓度递增的 α-松油醇、粘菌素或 α-松油醇加粘菌素 (1 μg/mL) 1 小时后的荧光强度来评估渗透性。(D) α-松油醇增加膜通透性。通过测量碘化丙啶 (PI) 暴露于浓度增加α-松油醇、粘菌素或 α-松油醇加粘菌素 (1 μg/mL) 1 小时后的荧光强度来评估通透性。 所有实验均以生物学重复进行,并以平均值 ±SD 表示。多组之间的未配对单因素方差分析用于计算 P 值(*P < 0.05,**P < 0.01,***P < 0.001)

3.3. α-Terpineol synergizes with colistin by disrupting intracellular iron homeostasis
3.3. α-松油醇通过破坏细胞内铁稳态与粘菌素协同作用

鉴于 α-松油醇和粘菌素之间有希望的协同作用,我们试图确定潜在的机制。我们首先对用单一粘菌素或粘菌素与 α-松油醇联合处理的细菌进行 RNA 测序 (RNA-seq)。转录组数据显示,与单独用粘菌素处理的细胞相比,α-松油醇-粘菌素组合处理后共有 1412 个基因受到差异调节 (图 3A)。基因本体论 (GO) 富集分析表明,差异表达基因 (DEGs) 与生物过程、细胞成分和分子功能中的多个途径高度相关。值得注意的是,如图 3B 所示,铁硫簇中涉及的途径显著富集。考虑到粘菌素可能通过芬顿反应产生的羟基自由基 (∙OH) 的积累诱导细胞快速死亡 [5],α-松油醇有可能通过恢复其羟基自由基死亡机制使细菌对粘菌素重新敏感。在这方面,我们发现表达增加的基因参与铁摄入、铁硫簇以及多药外排泵、ABC 转运蛋白、LPS 修饰和抗氧化功能中抑制的基因表达(图 3C)值得注意的是,铁硫簇对氧化损伤特别敏感,需要保护免受细胞氧化损伤,需要保护免受细胞氧化应激保护系统。soxRS 调节子包括十几个氧化应激和抗生素耐药基因。 SoxR 包含一个富含半胱氨酸残基的 [2Fe-2S] 簇,控制调节子的转录激活 [19]粘菌素通过破坏 Fe-S(铁硫)簇表现出对细菌的杀菌活性,并通过 Fenton 反应诱导 ∙OH(羟基自由基)[20]通过 RT-PCR 分析对代表性基因的表达谱与转录结果一致。因此,我们首先推测了添加 α-松油醇是否通过破坏铁硫簇来恢复粘菌素产生羟基自由基的能力.

图 3.用粘菌素或粘菌素加 α-松油醇的组合处理的大肠杆菌 LN175 的转录组学分析。 (A) 火山图,(B) GO,(C) 参与铁摄入、ABC 转运蛋白、抗氧化剂、多药外排泵、LPS 修饰、铁硫簇的选定 DEG。C, 单独粘菌素;C+T,粘菌素和 α-松油醇的组合。

为了进一步验证与单独使用粘菌素相比,粘菌素和 α-松油醇组合是否影响铁稳态,测定了大肠杆菌 LN175 中的细胞内亚铁。一致地,我们发现添加 α-松油醇显着增加了细胞内亚铁(图 4A)。在细菌中,游离亚铁总是伴随着增强的细菌 LPS 修饰抑制和 ROS 的产生[21]、[22]此外,转录分析显示多种途径参与大肠杆菌的氧化剂损伤。因此,我们假设 α-松油醇和粘菌素的组合可能导致氧化损伤增强。为此,我们首先确定了在粘菌素 (1 μg/mL) 的亚 MIC 不存在和存在的情况下,α-松油醇产生 ROS。因此,我们发现与单独使用粘菌素相比,粘菌素和 α-松油醇的组合极大地促进了总 ROS 的产生(图 4B)。然而,单独的 α-松油醇对总 ROS 水平没有直接影响。据假设,当多粘菌素分子进入并穿过 OM 和 IM 时,会诱导 O2,然后 O2 会被细胞中存在的超氧化物歧化酶 (SOD) 转化为 H2O2,这会将亚铁氧化成三价铁并诱导 ·OH [22] 一致地,添加包括二甲基亚砜[23] (DMSO) 在内的 ROS 清除剂部分消除了 α-松油醇对粘菌素的增强作用(图 4C),表明 ROS 参与了它们的协同活性。考虑到 RNA 测序 (Fig. 3D) 显示添加 α-松油醇抑制了 LPS 修饰相关基因表达,我们测定了用 α-松油醇联合或不联合粘菌素处理后的 mcr-1 表达。正如预期的那样,E. 大肠杆菌 LN175 在 α-松油醇存在下调(图 4D)。由于补充 α-松油醇下调了 ABC 转运蛋白和多药外排泵,我们假设 α-松油醇可能会增强细胞内粘菌素的积累。为了证明这一点,我们评估了与不同剂量的 α-松油醇和粘菌素共孵育后大肠杆菌中的膜电位和细胞内 ATP。我们发现 α-松油醇的添加显着导致细胞质膜电位(图 4E)和细胞内 ATP(图 4F)的耗散 PMF 与参与细胞内能量转化和跨膜物质运输的呼吸链密切相关[24]。综上所述,我们得出结论,α-松油醇在细胞中积累亚铁和粘菌素,并恢复羟基自由基死亡途径,与粘菌素协同作用(图 4G).

图 4.α-松油醇与粘菌素对大肠杆菌 (A) α-松油醇的协同分子机制迅速将细胞内铁形式转化为亚铁形式。(B) 补充 α-松油醇可显着恢复粘菌素诱导的 ROS 水平的产生,而单独补充 ROS 水平不会影响 ROS 水平。 用 2',7'-二氯二氢荧光素二乙酸酯 (DCFH-DA) 探测大肠杆菌 LN175,并在不存在或存在 α-松油醇的情况下暴露于粘菌素 (1 μg/mL)。 孵育 1 小时后 ,测量 DCF 的荧光。(C) α-松油醇抑制抗性基因 mcr-1 的表达 。(D) α-松油醇引起膜电位的耗散,并且 d 大大增强了粘菌素对膜电位的影响。荧光染料 DiSC(5) 用于评估 α-松油醇、粘菌素或组合诱导的膜电位变化。(E) α-松油醇显著抑制粘菌素引起的能量应激反应。(F) (G) 总结粘菌素和 α-松油醇协同机制的方案。所有实验均以生物学重复进行,并以平均值 ±SD 表示。多组之间的未配对单因素方差分析用于计算 P 值 (*P < 0.05, **P < 0.01, ***P < 0.001)。

3.5. α-松油醇增强粘菌素体内疗效

鉴于粘菌素和 α-松油醇的组合在体外对活性病原体表现出优异的协同杀菌活性,我们推断 α-松油醇将在体内逆转 MCR 介导的粘菌素耐药性,从而恢复其临床疗效。为此,我们在三种动物感染模型中测试了这种组合的体内疗效。在 Galleria mellonella 感染模型中,用 PBS 或粘菌素感染大肠杆菌 LN175 (mcr-1) 后的昆虫幼虫都在 48 小时内死亡。然而,联合疗法的生存率为 100%,显著高于单药治疗(图 5A)。这种生存优势也在使用大肠杆菌 LN175 (mcr-1) 的小鼠腹膜炎-脓毒症模型中得到验证。值得注意的是,尽管单独使用粘菌素或 α-松油醇并不能预防 MCR-1 阳性大肠杆菌的致命感染,但单剂量的联合治疗导致小鼠在感染后 7 天的存活率增加(图 5B)。同时,我们检测到肝脏(图 5C)、肾脏(图 5D)、脾脏(图 5E)和腹水(图 5F)中的细菌载量同样,与粘菌素单一疗法相比,粘菌素和 α-松油醇的两种组合显着降低了小鼠器官中的细菌载量这些数据证实,α-松油醇在体内显着拯救了粘菌素活性.

图 5. α-松油醇在两种动物感染模型中挽救粘菌素活性。 (A) 粘菌素单一疗法 (30 mg/kg) 相比, 粘菌素 (30 mg/kg) 和 α-松油醇 (1162 mg/kg) 的组合显着提高了粘菌素耐药大肠杆菌 (mcr-16) 感染的梅洛氏杆菌幼虫 (n=16/组) 的存活率 (30 mg/kg)。(B) 粘菌素和 α-松油醇的组合以剂量依赖性方式在感染后 7 天内显着提高了受粘菌素耐药大肠杆菌 mcr-1) 感染的小鼠的存活率 。给予 KM 小鼠 (每组 n = 12) 致死剂量的大肠杆菌 (3×108 CFU),并用单剂量粘菌素 (8 mg/kg)、α-松油醇 (6 mg/kg)、α-松油醇加粘菌素的组合 (3 + 8 mg/kg 和 6 + 8 mg/kg) 或腹腔注射 PBS 处理。 同时检测小鼠内脏器官中的细菌载量:肝脏 (C) 、肾脏 (D) 、脾脏 (E) 、腹水 (F)。所有实验均使用生物学重复进行,并以平均值 ±SD 表示。多组之间的未配对单因素方差分析用于计算 P 值 (*P < 0.05, **P < 0.01, ***P < 0.001)。

4. 讨论

自 Waksman 平台开创的抗生素发现黄金时代以来,新抗生素的开发规模急剧缩小。与此同时,病原体耐药性的出现和迅速传播使得临床迫切需要寻求替代疗法来弥补无效抗生素治疗的不足。在这些方法中,恢复或增强现有抗生素疗效的抗生素辅助剂被认为是可行的解决方案 [25]。 粘菌素长期以来一直被认为是临床上用于对抗革兰氏阴性菌的关键抗生素。 然而,由于 MCR 质粒介导的获得性耐药和 PmrAB 双组分系统介导的内在耐药,其临床疗效已严重降低 [7],[26]。 因此,鉴定有效的佐剂以挽救粘菌素的抗菌活性具有重要意义。在长达数千年的与细菌的斗争中,植物已经进化出无数具有抗菌特性的生物活性分子,使其成为抗生素佐剂的理想来源 [27]。 在本研究中,通过筛选植物精油中的成分,我们意外地发现,α-松油醇和粘菌素的组合在各种耐药菌株中对 mcr-1 -阳性大肠杆菌表现出最强的协同作用。α-松油醇是一种化合物,已被广泛证明具有多种生物学功能,如抗癌、抗惊厥、抗溃疡、抗高血压和镇痛特性。然而,它对抗细菌传染病的潜力被忽视了。 据我们所知,本研究将首次将 α-松油醇和粘菌素的组合应用于 MCR 阳性耐药菌引起的感染,并阐明其潜在机制。

铁是大多数生物体必需的微量元素,参与各种生物过程,包括呼吸、三羧酸循环、氧运输和信号转导[28]、[29]、[30]。细菌严格调节铁的摄取、利用、储存和外排,因为过量的亚铁离子会在 Fenton 反应中与过氧化氢反应,产生细胞毒性羟基自由基,破坏细胞内脂质、蛋白质和 DNA [31],[32]。研究表明,粘菌素在穿过细菌膜时诱导 O2− 产生,并且 O2− 可以通过超氧化物歧化酶 (SOD) 转化为 H2O2,这是芬顿反应的底物 [20]。此外,调节细菌内在抗性 PmrAB 双组分系统依赖于细菌内部正常的铁代谢来激活 [33]。鉴于此,细菌铁代谢是开发粘菌素佐剂的一个有前途的靶点。然而,很少有研究探讨这种方法。最近的一个例外是 Zhong 等人的工作,他们发现儿茶酚结构的类黄酮可以通过将不稳定的铁池还原成亚铁离子来破坏细菌铁稳态,从而削弱耐药细菌对粘菌素的防御能力 [9].

在我们的研究中,我们发现 α-松油醇还可以靶向细菌体内不稳定的铁库,导致产生大量亚铁离子。过量的亚铁离子会导致相应的信号通路瘫痪。PmrAB 不仅是铁信号通路的重要组成部分,而且还控制细菌外膜中 LPS 的修饰。α-松油醇介导的铁破坏会阻止 PmrA 被磷酸化成其活性形式,从而抑制 arnTeptA。在没有带正电荷的分子(如 pEtN)的情况下,粘菌素可以更好地靶向 LPS,从而导致细菌膜破坏和细菌死亡。然而,与类黄酮的机制不同,α-松油醇还可以增加膜的流动性。膜粘度的稳态对于许多重要的膜相关功能至关重要,例如被动渗透性、主动运输和蛋白质-蛋白质相互作用 [34]。 因此,α-松油醇引起的膜破裂会影响膜通透性并抑制膜上多药物外排泵的正常功能。这最终使粘菌素能够更好地穿透细菌内膜和外膜并在细胞内积累,通过 Fenton 反应产生致命的 ROS [35](图 4G)。 此外,α-松油醇介导的铁破坏也可以增强杀菌作用,这会导致亚铁离子的积累, 为 Fenton 反应提供足够的底物并促进协同作用。这也解释了为什么与单独的 α-松油醇不同,联合治疗会增加细胞内 ROS 水平。

总之,我们的数据表明,从植物精油中分离的 α-松油醇在体内和体外对 mcr-1 阳性耐药细菌都表现出与粘菌素的强烈协同活性。α-松油醇作为一种新型粘菌素佐剂的发现,可以破坏细菌膜流动性和铁稳态,凸显了植物化学物质在细菌传染病中的巨大潜力。我们认为 α-松油醇及其类似物可能是有吸引力的抗生素佐剂铅化合物,为植物化学物质在解决粘菌素耐药革兰氏阴性细菌感染威胁中的应用奠定了基础。

5. 参考资料

[2] I. Yelin 和 R.Kishony, 《抗生素耐药性》, Cell, 卷 172, 期 5, 页 1136-1136.e1, 2 月 2018, doi: 10.1016/j.cell.2018.02.018.

[10] 《常用香精香料原料》 |Wiley Online Books》的作者。见于: 2025 年 5 月 31 日.[在线].载于: https://onlinelibrary.wiley.com/doi/book/10.1002/3527608214

[11] S. B. Hassan, H. Gali-Muhtasib, H. Göransson 和 R.Larsson,《α 松油醇:一种通过抑制 NF-kappaB 信号传导起作用的潜在抗癌剂》, 抗癌研究。, 卷 30, 期 6, 页 1911–1919, 6 月 2010.

[14] 《α-松油醇对高血压大鼠的心血管影响 - Sabino - 2013 - 香精香料杂志 - Wiley 在线图书馆》。见于: 2025 年 5 月 31 日。[在线].载于: https://onlinelibrary.wiley.com/doi/abs/10.1002/ffj.3159

[15] S. Golshani, F. Karamkhani, H. R. Monsef-Esfehani 和 M.Abdollahi,《Antinociceptive》,2004 年。