From Mind to Machine: The Rise of Manus AI as a Fully Autonomous Digital Agent 从思维到机器:Manus AI 作为完全自主数字代理的崛起
Minjie Shen ^(1){ }^{1}, Yanshu Li ^(2){ }^{2}, Lulu Chen ^(1){ }^{1}, and Qikai Yang ^(3){ }^{3} 沈敏捷 ^(1){ }^{1} ,李彦舒 ^(2){ }^{2} ,陈露露 ^(1){ }^{1} ,杨启凯 ^(3){ }^{3}^(1){ }^{1} Department of Electrical and Computer Engineering, Virginia Tech ^(1){ }^{1} 弗吉尼亚理工大学电气与计算机工程系^(2){ }^{2} Department of Computer Science, Brown University ^(2){ }^{2} 布朗大学计算机科学系^(3){ }^{3} Department of Computer Science, University of Illinois at Urbana-Champaign ^(3){ }^{3} 伊利诺伊大学香槟分校计算机科学系
Abstract 摘要
Manus AI is a general-purpose AI agent introduced in early 2025 as a breakthrough in autonomous artificial intelligence. Developed by the Chinese startup Monica.im, Manus is designed to bridge the gap between “mind” and “hand” - it not only thinks and plans like a large language model, but also executes complex tasks end-to-end to deliver tangible results. This paper provides a comprehensive overview of Manus AI, examining its underlying technical architecture, its wide-ranging applications across industries (including healthcare, finance, manufacturing, robotics, gaming, and more), as well as its advantages, limitations, and future prospects. Ultimately, Manus AI is positioned as an early glimpse into the future of AI - one where intelligent agents could revolutionize work and daily life by turning high-level intentions into actionable outcomes, auguring a new paradigm of human-AI collaboration. Manus AI 是一款通用人工智能代理,于 2025 年初推出,是自主人工智能领域的一项突破。Manus 由中国初创公司 Monica.im 开发,旨在弥合“思想”与“行动”之间的鸿沟——它不仅能像大型语言模型一样思考和规划,还能端到端地执行复杂任务以交付切实的成果。本文全面概述了 Manus AI,探讨了其底层技术架构、在各行各业(包括医疗保健、金融、制造业、机器人、游戏等)的广泛应用,以及其优势、局限性和未来前景。最终,Manus AI 被定位为人工智能未来的早期一瞥——智能代理将通过将高级意图转化为可操作的结果,彻底改变工作和日常生活,预示着人机协作的新范式。
1 Introduction 1 引言
Recent years have witnessed tremendous breakthroughs in artificial intelligence (AI), from the rise of deep neural networks to large language models that can converse and solve complex problems. Models like OpenAI’s GPT-4 1 have demonstrated unprecedented language understanding, yet such systems typically operate as assistants that respond to queries rather than autonomously acting on tasks. The next evolution in AI is the development of general-purpose AI agents that can bridge the gap between decision-making and action. Manus AI is a prominent new example, described as one of the world’s first truly autonomous AI agents capable of “thinking” and executing tasks much like a human assistant [2]. 近年来,人工智能(AI)取得了巨大突破,从深度神经网络的兴起到能够对话和解决复杂问题的大型语言模型。OpenAI 的 GPT-4 等模型展示了前所未有的语言理解能力,但此类系统通常作为响应查询的助手运行,而不是自主执行任务。人工智能的下一次演进是开发能够弥合决策与行动之间差距的通用人工智能代理。Manus AI 是一个突出的新例子,被描述为世界上首批能够像人类助手一样“思考”和执行任务的真正自主人工智能代理之一 [2]。
Manus AI, developed by the Chinese startup Monica in 2025, has quickly drawn global attention for its ability to perform a wide array of real-world jobs with minimal human guidance. Unlike traditional chatbots that strictly provide information or suggestions, Manus can plan solutions, invoke tools, and carry out multi-step procedures on its own [3]. For example, rather than just giving travel advice, Manus can autonomously plan an entire trip itinerary, gather relevant information from the web, and present a finalized plan to the user, all without step-by-step prompts [3]. This agent-centric approach represents a significant leap in AI capabilities and has fueled speculation that systems like Manus herald the next stage in AI evolution toward artificial general intelligence (AGI). Manus AI 由中国初创公司 Monica 于 2025 年开发,因其能够在最少的人工指导下执行各种现实世界任务而迅速引起全球关注。与严格提供信息或建议的传统聊天机器人不同,Manus 可以自行规划解决方案、调用工具并执行多步骤程序 [3]。例如,Manus 不仅仅提供旅行建议,还可以自主规划整个旅行行程,从网络收集相关信息,并向用户呈现最终计划,所有这些都无需逐步提示 [3]。这种以代理为中心的方法代表了人工智能能力的一次重大飞跃,并引发了人们的猜测,即像 Manus 这样的系统预示着人工智能向通用人工智能(AGI)发展的下一阶段。
In benchmark evaluations for general AI agents, Manus AI has reportedly achieved state-of-the-art results. On the GAIA test-a comprehensive benchmark assessing an AI’s ability to reason, use tools, and automate real-world tasks-Manus outperformed leading models including OpenAI’s GPT-4 4. In fact, early reports suggest Manus exceeded the previous GAIA leaderboard champion’s score of 65%65 \%, setting a new performance record [4]. Such achievements underscore the importance of Manus AI as a breakthrough system in the competitive landscape of AI. 据报道,在通用人工智能(AI)代理的基准评估中,Manus AI 取得了最先进的成果。在 GAIA 测试中——一项评估 AI 推理、使用工具和自动化现实世界任务能力的综合基准测试——Manus 的表现优于包括 OpenAI 的 GPT-4 在内的领先模型。事实上,早期报告显示,Manus 超越了之前 GAIA 排行榜冠军的 65%65 \% 分,创造了新的性能记录[4]。这些成就凸显了 Manus AI 作为人工智能竞争格局中突破性系统的重要性。
This paper provides a detailed examination of Manus AI. Section 2 explains how Manus AI works, delving into its model architecture, core algorithms, training process, and unique features. Section 3 explores Manus AI’s applications across various industries - ranging from healthcare and finance to robotics and education-illustrating its versatility. In Section 4, we compare Manus AI with other cutting-edge AI technologies (including offerings from OpenAI, Google DeepMind, and Anthropic) to analyze how Manus stands out. Section 5 discusses the strengths of Manus AI as well as its limitations and ongoing challenges. Section 6 considers future prospects for Manus AI and its broader implications 本文详细探讨了 Manus AI。第二节解释了 Manus AI 的工作原理,深入探讨了其模型架构、核心算法、训练过程和独特功能。第三节探讨了 Manus AI 在医疗、金融、机器人和教育等各个行业的应用,展示了其多功能性。在第四节中,我们将 Manus AI 与其他尖端人工智能技术(包括 OpenAI、Google DeepMind 和 Anthropic 的产品)进行比较,分析 Manus 的突出之处。第五节讨论了 Manus AI 的优势、局限性以及面临的挑战。第六节展望了 Manus AI 的未来前景及其对
for the field. Finally, Section 7 concludes with a summary of findings and reflections on Manus AI’s significance in the trajectory of AI development. 该领域的更广泛影响。最后,第七节总结了研究结果,并反思了 Manus AI 在人工智能发展轨迹中的重要性。
Feature 特点
Manus AI Monica
Operator OpenAI 操作员 OpenAI
Computer Use Anthropic 计算机使用 Anthropic
Mariner Google
Agent Type 代理类型
Browser-based (operates in Linux sandboxs) 基于浏览器(在 Linux 沙盒中运行)
Feature Manus AI Monica Operator OpenAI Computer Use Anthropic Mariner Google
Agent Type Browser-based (operates in Linux sandboxs) Browser-based API-based Browser-based (Chrome extension)
Autonomous web browsing Yes Yes Yes* Yes
Form filling and data entry Yes Yes Yes* Yes
Online shopping and reservations Yes Yes Yes* Yes
Multi-modal input/output (text, images) Yes Limited Limited* Yes
Integration with external APIs No No Yes N/A
Availability Beta (invite-only) Subscribers Beta (API access) Research phase| Feature | Manus AI Monica | Operator OpenAI | Computer Use Anthropic | Mariner Google |
| :--- | :--- | :--- | :--- | :--- |
| Agent Type | Browser-based (operates in Linux sandboxs) | Browser-based | API-based | Browser-based (Chrome extension) |
| Autonomous web browsing | Yes | Yes | Yes* | Yes |
| Form filling and data entry | Yes | Yes | Yes* | Yes |
| Online shopping and reservations | Yes | Yes | Yes* | Yes |
| Multi-modal input/output (text, images) | Yes | Limited | Limited* | Yes |
| Integration with external APIs | No | No | Yes | N/A |
| Availability | Beta (invite-only) | Subscribers | Beta (API access) | Research phase |
Table 1: Feature comparison of Manus AI, OpenAI’s Operator, Anthropic’s Computer Use, and Google’s Mariner. Note: Features marked with * require integration through the API. 表 1:Manus AI、OpenAI 的 Operator、Anthropic 的 Computer Use 和 Google 的 Mariner 的功能比较。注意:标有 * 的功能需要通过 API 集成。
2 How Manus AI Works 2 Manus AI 的工作原理
Architecture and Model Design 架构和模型设计
Figure 1: Architecture and Model Design 图 1:架构和模型设计
Manus AI is built on a sophisticated architecture that combines large-scale machine learning models with an intelligent agent framework. At its core is a transformer-based large language model (LLM) that has been trained on vast amounts of textual and multi-modal data. This core model provides the general intelligence, language understanding, and reasoning ability of Manus. However, Manus AI goes beyond a single model by employing a multi-agent architecture that organizes its cognitive processes Manus AI 建立在复杂的架构之上,该架构将大规模机器学习模型与智能代理框架相结合。其核心是一个基于 Transformer 的大型语言模型 (LLM),该模型已在海量文本和多模态数据上进行训练。这个核心模型提供了 Manus 的通用智能、语言理解和推理能力。然而,Manus AI 通过采用多代理架构来组织其认知过程,超越了单一模型
into specialized modules [5. In particular, Manus consists of at least three coordinated agents working in concert: 成为专业模块[5]。具体来说,Manus 至少由三个协同工作的协调代理组成:
Planner Agent: This module functions as the strategist. When a user gives a request or goal, the Planner breaks the problem down into manageable sub-tasks and formulates a step-by-step plan or strategy to achieve the desired outcome. 规划代理:此模块充当策略师。当用户提出请求或目标时,规划代理将问题分解为可管理的子任务,并制定分步计划或策略以实现预期结果。
Execution Agent: This is the action module. The Execution agent takes the Planner’s plan and carries it out by invoking the necessary operations or tools. It interacts with external systems (for example, web browsers, databases, code execution environments) to gather information, perform calculations, or execute commands needed for each sub-task. 执行代理:这是行动模块。执行代理接收规划代理的计划,并通过调用必要的操作或工具来执行该计划。它与外部系统(例如,网络浏览器、数据库、代码执行环境)交互,以收集信息、执行计算或执行每个子任务所需的命令。
Verification Agent: Acting as quality control, this module reviews and verifies the outcomes of the Execution agent’s actions. It checks results for accuracy and completeness, ensuring that each step meets the requirements before finalizing the output or moving on. The Verification agent can correct errors or trigger re-planning if needed. 验证代理:作为质量控制,此模块审查并验证执行代理操作的结果。它检查结果的准确性和完整性,确保每一步都符合要求,然后才最终确定输出或继续进行。验证代理可以纠正错误或在需要时触发重新规划。
This multi-agent system runs within a controlled runtime environment (a kind of cloud-based sandbox), essentially creating a “digital workspace” for each task request. By dividing responsibilities among Planner, Execution, and Verification sub-agents [6], Manus AI achieves a level of efficiency and parallelism in task handling. Complex jobs can be tackled by decomposing them and processing components simultaneously, which accelerates completion time compared to a single monolithic model. The architecture is analogous to a small team: one agent plans, another executes, and a third reviews, enabling robust and reliable performance even on complicated, multi-step tasks. 这个多智能体系统在一个受控的运行时环境(一种基于云的沙盒)中运行,本质上为每个任务请求创建了一个“数字工作区”。通过在规划、执行和验证子智能体之间划分职责[6],Manus AI 在任务处理中实现了效率和并行性。复杂的任务可以通过分解并同时处理组件来解决,这与单一的整体模型相比,缩短了完成时间。该架构类似于一个小型团队:一个智能体负责规划,另一个负责执行,第三个负责审查,即使在复杂的多步骤任务中也能实现稳健可靠的性能。
Algorithms and Training Process 算法和训练过程
The intelligence of Manus AI’s agents is powered by advanced machine learning algorithms. The system leverages deep neural networks for natural language understanding and decision-making, and it has been refined through techniques like reinforcement learning to operate effectively in open-ended scenarios [7]. Unlike AI systems that follow fixed rules or only respond to static training data, Manus adapts to unfamiliar situations in real time. During development, the Manus team likely trained the model on a wide range of task demonstrations and used reinforcement learning from human feedback (RLHF) [8] to align its actions with desired outcomes. This approach allows Manus to dynamically adjust its strategy when encountering new problems, guided by a reward mechanism for successfully completed objectives [7]. Manus AI 智能体的智能由先进的机器学习算法提供支持。该系统利用深度神经网络进行自然语言理解和决策,并通过强化学习等技术进行了改进,以在开放式场景中有效运行[7]。与遵循固定规则或仅响应静态训练数据的 AI 系统不同,Manus 能够实时适应不熟悉的情况。在开发过程中,Manus 团队可能对模型进行了广泛的任务演示训练,并使用人类反馈强化学习(RLHF)[8]来使其行动与预期结果保持一致。这种方法允许 Manus 在遇到新问题时动态调整其策略,并以成功完成目标的奖励机制为指导[7]。
One distinguishing aspect of Manus AI is its context-aware decision making. Rather than executing single-step commands, Manus maintains an internal memory of context and intermediate results as it works through a problem. This means it can take into account the evolving state of a task and user-specific preferences when deciding the next action. The underlying models use sequence-to-sequence predictions to determine the most logical next step, and they update an internal plan as new information is obtained. Manus’s algorithms incorporate elements of human-like reasoning, attempting to infer what a user ultimately wants and making judgment calls to meet those goals [7]. For example, if a user asks Manus to “analyze sales data and suggest strategies,” Manus will not only compute trends but also decide what types of analyses and visualizations are relevant, and then proceed to generate actionable insights, much as a human analyst might. Manus AI 的一个显著特点是其上下文感知决策。Manus 不仅仅执行单步命令,而是在解决问题时保持对上下文和中间结果的内部记忆。这意味着它在决定下一步行动时可以考虑任务的演变状态和用户特定的偏好。底层模型使用序列到序列的预测来确定最合乎逻辑的下一步,并在获得新信息时更新内部计划。Manus 的算法融入了类似人类的推理元素,试图推断用户最终想要什么,并做出判断以实现这些目标[7]。例如,如果用户要求 Manus“分析销售数据并提出策略”,Manus 不仅会计算趋势,还会决定哪些类型的分析和可视化是相关的,然后继续生成可操作的见解,就像人类分析师一样。
To support such complex behavior, Manus AI’s training likely involved multi-modal and multitask learning. Reports indicate Manus can handle text, images, and even audio or code as inputs and outputs [7, 4. This was made possible by training the model on diverse data (e.g. documents, pictures, programming code) and by using a scalable neural network architecture that can fuse information from different modalities. The result is an AI agent capable of interpreting a medical image, reading a scientific article, writing a block of code, and cross-referencing these heterogeneous inputs within a single workflow if a task requires it. 为支持如此复杂的行为,Manus AI 的训练可能涉及多模态和多任务学习。报告显示,Manus 可以处理文本、图像,甚至音频或代码作为输入和输出 [7, 4]。这得益于对模型进行多样化数据(例如文档、图片、编程代码)的训练,以及使用可扩展的神经网络架构,该架构可以融合来自不同模态的信息。结果是,如果任务需要,该 AI 代理能够解释医学图像、阅读科学文章、编写代码块,并在单个工作流程中交叉引用这些异构输入。
Another key component is Manus AI’s tool integration capability. The Execution agent is designed to interface with external applications and APIs. During training, Manus was equipped with the ability to call functions or tools using natural language (a concept similar to “tool use” in other AI agents). For instance, if part of a plan requires getting up-to-date stock prices, Manus knows to invoke a web browsing tool to retrieve the data [4]. If the task involves working with structured data, Manus can use a database query tool or a spreadsheet editor. This extensible tool-use framework was likely developed by fine-tuning Manus on examples of how to use various tools and by incorporating APIs for external services. It allows Manus to extend its capabilities beyond what is stored in its neural weights, giving 另一个关键组成部分是 Manus AI 的工具集成能力。执行代理旨在与外部应用程序和 API 接口。在训练期间,Manus 被赋予了使用自然语言调用函数或工具的能力(一个类似于其他 AI 代理中“工具使用”的概念)。例如,如果计划的一部分需要获取最新的股票价格,Manus 知道调用网络浏览工具来检索数据 [4]。如果任务涉及处理结构化数据,Manus 可以使用数据库查询工具或电子表格编辑器。这种可扩展的工具使用框架可能是通过在如何使用各种工具的示例上对 Manus 进行微调,并整合外部服务的 API 来开发的。它允许 Manus 将其能力扩展到其神经权重中存储的内容之外,从而
it access to real-time information and specialized functions (like running code or searching the internet) on-the-fly 4 . 使其能够即时访问实时信息和专业功能(如运行代码或搜索互联网)[4]。
Unique Features and Capabilities 独特功能和能力
Through its architecture and training, Manus AI exhibits several unique features that distinguish it from conventional AI assistants: Manus AI 通过其架构和训练,展现出几个独特的特性,使其有别于传统的 AI 助手:
Autonomous Task Execution: Manus AI can carry out complex sequences of actions with minimal user intervention. Once given a high-level goal, it will plan, execute, and finalize the task largely on its own. This goes far beyond the typical AI, which would require the user to break down the problem or confirm each step. Manus “excels at various tasks in work and life, getting everything done while you rest,” as its creators put it 2 . For example, it can generate a detailed report (with visuals and text) from raw data entirely autonomously, or perform all steps of booking a trip after a user simply requests a vacation plan. 自主任务执行:Manus AI 能够以最少的用户干预执行复杂的行动序列。一旦给定一个高级目标,它将主要依靠自身来规划、执行和完成任务。这远远超出了典型的 AI,后者需要用户分解问题或确认每一步。正如其创造者所说,Manus“擅长工作和生活中的各种任务,让您在休息时完成所有事情”2。例如,它可以完全自主地从原始数据生成详细报告(包含视觉和文本),或者在用户简单请求度假计划后执行预订旅行的所有步骤。
Multi-Modal Understanding: Manus AI 4 is designed to process and generate multiple types of data, including: 多模态理解:Manus AI 4 旨在处理和生成多种类型的数据,包括:
Text (e.g., generating reports, answering queries) 文本(例如,生成报告、回答查询)
This versatility means Manus can tackle tasks like reading a diagram or X-ray and then writing an explanation of it, or debugging a piece of software based on both the code and error screenshots. 这种多功能性意味着 Manus 可以处理诸如阅读图表或 X 光片并撰写解释,或者根据代码和错误截图调试软件等任务。
Advanced Tool Use: Manus AI is adept at integrating with external tools and software applications to augment its abilities. It has built-in support for web browsing, so it can fetch up-to-theminute information from the internet. It can interface with productivity software (for instance, creating or editing spreadsheets and documents) and query databases. This ability to interact with external applications makes Manus AI an ideal tool for businesses looking to automate workflows. Integrating tool use into an AI agent is challenging, and Manus’s effective tool usage is a major innovation in bridging AI with practical automation tasks. 高级工具使用:Manus AI 擅长与外部工具和软件应用程序集成,以增强其能力。它内置了网页浏览支持,因此可以从互联网获取最新信息。它可以与生产力软件(例如,创建或编辑电子表格和文档)交互,并查询数据库。这种与外部应用程序交互的能力使 Manus AI 成为寻求自动化工作流程的企业的理想工具。将工具使用集成到 AI 代理中具有挑战性,而 Manus 有效的工具使用是连接 AI 与实际自动化任务的一项重大创新。
Continuous Learning and Adaptation: Manus AI continuously learns from user interactions and optimizes its processes to provide personalized and efficient responses. This ensures that over time, the AI becomes more tailored to the specific needs of the user [4]. For example, if a user consistently prefers data presented in a certain format or tone, Manus will adapt to those preferences in future outputs. This adaptive learning happens during use, complementing its initial offline training. Additionally, the developers emphasize ethical safeguards and transparency, meaning the system is designed to adjust its actions to avoid unsafe outcomes and to align with human intentions as it gains experience. 持续学习和适应:Manus AI 不断从用户交互中学习并优化其流程,以提供个性化和高效的响应。这确保了随着时间的推移,AI 将更符合用户的特定需求 [4]。例如,如果用户始终偏好以某种格式或语气呈现数据,Manus 将在未来的输出中适应这些偏好。这种自适应学习在使用过程中发生,补充了其初始的离线训练。此外,开发人员强调道德保障和透明度,这意味着该系统旨在随着经验的增长调整其行动,以避免不安全的结果并与人类意图保持一致。
In summary, Manus AI’s inner workings combine a powerful general AI model with a clever agent framework that enables autonomous operation. Through specialized sub-agents for planning and verification, reinforcement learning for decision-making, multi-modal and tool-using proficiencies, and adaptive behavior, Manus achieves a level of autonomy and versatility that is at the cutting edge of AI technology. These technical foundations empower the wide-ranging applications of Manus AI discussed in the next section. 总而言之,Manus AI 的内部运作结合了强大的通用 AI 模型和巧妙的代理框架,从而实现了自主操作。通过用于规划和验证的专业子代理、用于决策的强化学习、多模态和工具使用能力以及自适应行为,Manus 实现了 AI 技术前沿的自主性和多功能性水平。这些技术基础为下一节中讨论的 Manus AI 的广泛应用提供了支持。
3 Applications in Various Industries 3 在各行业的应用
One of the most compelling aspects of Manus AI is its potential to transform numerous industries by automating and augmenting complex tasks. Because it is not confined to a single domain, Manus can be deployed wherever there is a need for intelligent decision-making and task execution. Below we explore how Manus AI can be applied in a variety of sectors, highlighting use cases in healthcare, finance, robotics, entertainment, customer service, manufacturing, education, and more. In each of these, Manus’s combination of data analysis, reasoning, and autonomous action has the capacity to improve efficiency and unlock new capabilities. Manus AI 最引人注目的方面之一是其通过自动化和增强复杂任务来改变众多行业的潜力。由于它不局限于单一领域,因此 Manus 可以部署在任何需要智能决策和任务执行的地方。下面我们探讨 Manus AI 如何应用于各个领域,重点介绍医疗保健、金融、机器人、娱乐、客户服务、制造业、教育等领域的用例。在所有这些领域中,Manus 的数据分析、推理和自主行动相结合的能力可以提高效率并释放新的能力。
Figure 2: Unique Features and Capabilities 图 2:独特的功能和能力
3.1 Healthcare 3.1 医疗保健
In healthcare, Manus AI could serve as a powerful assistant to medical professionals and researchers. Its multi-modal abilities enable it to analyze patient records, medical literature, and even diagnostic images in tandem. For example, Manus could review a patient’s history, lab results, and radiology scans to assist doctors in diagnosing complex conditions, providing a second opinion with supporting evidence from relevant medical data. Manus’s long-term memory and analytical skills can potentially improve diagnostic accuracy by cross-referencing comprehensive patient information; by continuously learning from new cases, it might reduce oversight errors in interpreting results. 在医疗保健领域,Manus AI 可以成为医疗专业人员和研究人员的强大助手。其多模态能力使其能够同时分析患者记录、医学文献甚至诊断图像。例如,Manus 可以审查患者病史、实验室结果和放射扫描,以协助医生诊断复杂疾病,并根据相关医疗数据提供支持证据的第二意见。Manus 的长期记忆和分析能力可以通过交叉引用全面的患者信息来提高诊断准确性;通过不断从新病例中学习,它可能会减少解释结果时的疏忽错误。
Beyond diagnostics, Manus AI can contribute to personalized treatment planning. It can synthesize information from vast databases of medical knowledge and patient-specific factors (such as genomics or lifestyle) to propose tailored treatment options. For instance, given a cancer patient’s profile, Manus could collate the latest research on effective treatments for that cancer subtype, cross-reference clinical trial results, and provide oncologists with ranked recommendations for therapy, all annotated with source evidence. This aligns with the vision of precision medicine, where AI helps identify the right treatment for the right patient by considering many variables simultaneously. 除了诊断,Manus AI 还可以为个性化治疗计划做出贡献。它可以综合来自庞大医学知识数据库和患者特定因素(如基因组学或生活方式)的信息,以提出量身定制的治疗方案。例如,给定癌症患者的资料,Manus 可以整理有关该癌症亚型有效治疗的最新研究,交叉引用临床试验结果,并为肿瘤学家提供按优先级排序的治疗建议,所有建议都附有来源证据。这与精准医疗的愿景相符,即人工智能通过同时考虑许多变量来帮助为正确的患者确定正确的治疗方案。
Another promising application is in drug discovery and biomedical research. Manus AI’s autonomous research capabilities mean it could formulate and test hypotheses by mining scientific papers and databases. A pharmaceutical company could task Manus with finding novel drug targets for a disease: Manus would scan millions of publications, identify patterns in biological pathways, propose potential targets, and even design virtual screening experiments [9]. Its ability to reason across modalities (textual hypotheses, chemical structures, experimental data) and plan experiments could dramatically accelerate the R&D process in medicine. Another promising application is in drug discovery and biomedical research. Manus AI’s autonomous research capabilities mean it could formulate and test hypotheses by mining scientific papers and databases. A pharmaceutical company could task Manus with finding novel drug targets for a disease: Manus would scan millions of publications, identify patterns in biological pathways, propose potential targets, and even design virtual screening experiments. Its ability to reason across modalities (textual hypotheses, chemical structures, experimental data) and plan experiments could dramatically 另一个有前景的应用是在药物发现和生物医学研究领域。Manus AI 的自主研究能力意味着它可以通过挖掘科学论文和数据库来制定和测试假设。制药公司可以委托 Manus 寻找疾病的新药靶点:Manus 将扫描数百万份出版物,识别生物通路中的模式,提出潜在靶点,甚至设计虚拟筛选实验 [9]。它跨模态(文本假设、化学结构、实验数据)推理和规划实验的能力可以极大地加速医学领域的研发过程。另一个有前景的应用是在药物发现和生物医学研究领域。Manus AI 的自主研究能力意味着它可以通过挖掘科学论文和数据库来制定和测试假设。制药公司可以委托 Manus 寻找疾病的新药靶点:Manus 将扫描数百万份出版物,识别生物通路中的模式,提出潜在靶点,甚至设计虚拟筛选实验。它跨模态(文本假设、化学结构、实验数据)推理和规划实验的能力可以极大地
Figure 3: Applications in Various Industries 图 3:在各行各业的应用
accelerate the R&D process in medicine [10, 11, 12, 13]. 加速医学领域的研发过程 [10, 11, 12, 13]。
Finally, Manus can play a role in clinical operations and patient care. As an AI assistant, it could handle routine but time-consuming tasks like writing medical reports or summarizing doctor-patient conversations, allowing clinicians to focus more on direct patient interaction. It might operate as a 24//724 / 7 virtual health agent that answers patient questions, monitors symptoms via connected devices, and alerts human providers when intervention is needed. Such an AI agent, capable of autonomous monitoring and decision support, could improve healthcare delivery by augmenting an overburdened workforce [14]. 最后,Manus 可以在临床操作和患者护理中发挥作用。作为人工智能助手,它可以处理常规但耗时的任务,例如撰写医疗报告或总结医患对话,从而让临床医生将更多精力放在直接的患者互动上。它可能作为 24//724 / 7 虚拟健康代理,回答患者问题,通过连接设备监测症状,并在需要干预时提醒人类提供者。这种能够自主监测和决策支持的人工智能代理,通过增强不堪重负的劳动力,可以改善医疗服务 [14]。
3.2 Finance 3.2 金融
The finance industry, with its huge volumes of data and critical need for fast, accurate decisions, is ripe for disruption by general AI agents like Manus. One key application is in algorithmic trading and investment analysis 15, 16. Manus AI can continuously ingest financial news, market data, and historical trends, using that information to autonomously formulate trading strategies or investment recommendations. Unlike conventional trading algorithms that follow fixed rules, Manus can dynamically adjust strategies as new information arrives - for example, it might detect a subtle change in consumer sentiment from social media and decide to re-balance a portfolio before competitors do. In a demonstration of its financial acumen, Manus has been shown to analyze stock data, generate charts of key indicators, and produce professional-grade analyst reports complete with actionable insights [5]. Such comprehensive analysis would normally require a team of human analysts; Manus can do it in a fraction of the time and update its findings in real time as conditions change. 金融业数据量庞大,对快速、准确决策的需求至关重要,因此像 Manus 这样的通用人工智能代理有望对其进行颠覆。一个关键应用是算法交易和投资分析 [15, 16]。Manus AI 可以持续摄取金融新闻、市场数据和历史趋势,并利用这些信息自主制定交易策略或投资建议。与遵循固定规则的传统交易算法不同,Manus 可以随着新信息的到来动态调整策略——例如,它可能会从社交媒体中检测到消费者情绪的细微变化,并决定在竞争对手之前重新平衡投资组合。在展示其金融敏锐度时,Manus 已被证明能够分析股票数据,生成关键指标图表,并制作包含可操作见解的专业级分析师报告 [5]。这种全面的分析通常需要一个人类分析师团队;Manus 可以在极短的时间内完成,并随着情况的变化实时更新其发现。
In the realm of risk management and fraud detection, Manus AI offers significant advantages. Financial institutions struggle with detecting fraudulent transactions or assessing credit risks quickly enough 17. Manus can be tasked with monitoring thousands of transactions per second, identifying anomalous patterns that suggest fraud, and autonomously initiating protective measures (like blocking a transaction or flagging an account) much faster than manual review. Its adaptive learning means it can evolve with emerging fraud tactics. Similarly, for credit and risk assessments, Manus could integrate diverse data (customer financial history, macroeconomic indicators, even news about that customer’s industry) to make granular risk predictions, improving on traditional credit scoring models. Because Manus can explain the factors behind its decisions, it can help risk officers understand the rationale for 在风险管理和欺诈检测领域,Manus AI 具有显著优势。金融机构在足够快地检测欺诈性交易或评估信用风险方面面临困难 [17]。Manus 可以被指派每秒监控数千笔交易,识别表明欺诈的异常模式,并自主启动保护措施(如阻止交易或标记账户),比人工审查快得多。其自适应学习意味着它可以随着新兴欺诈策略而发展。同样,对于信用和风险评估,Manus 可以整合各种数据(客户财务历史、宏观经济指标,甚至有关该客户行业的最新消息)以进行精细的风险预测,从而改进传统的信用评分模型。由于 Manus 可以解释其决策背后的因素,因此它可以帮助风险官员理解
a flagged risk, satisfying regulatory demands for transparency. 被标记风险的理由,满足监管机构对透明度的要求。
Another financial application is in customer service and personalized finance. Manus AI could serve as a financial advisor chatbot that not only chats with customers but actually takes actions on their behalf. For instance, a customer might ask, “Help me optimize my monthly budget and invest the surplus.” Manus could analyze the person’s spending patterns (by accessing transaction data with permission), identify areas to save, and automatically move funds into an investment account, selecting appropriate investments based on the customer’s profile and goals. All of this could be done autonomously while keeping the customer informed, effectively acting as a personal financial planner that works continuously in the background. 另一个金融应用是在客户服务和个性化金融领域。Manus AI 可以充当金融顾问聊天机器人,不仅与客户聊天,还能代表客户实际采取行动。例如,客户可能会问:“帮我优化每月预算,并将盈余投资。”Manus 可以分析客户的消费模式(经许可访问交易数据),识别可节省的领域,并根据客户的个人资料和目标,自动将资金转入投资账户,选择合适的投资。所有这些都可以自主完成,同时让客户随时了解情况,有效地充当一个在后台持续工作的个人理财规划师。
3.3 Robotics and Autonomous Systems 3.3 机器人和自主系统
While Manus AI exists primarily as a software agent, its capabilities can extend into the physical realm when paired with robotic systems. In robotics, Manus can function as the high-level “brain” that gives intelligent direction to machines. One application is in industrial automation, where Manus oversees fleets of robots on a factory floor. Because it can plan and coordinate complex sequences of actions, Manus could dynamically assign tasks to different robots, schedule their activities to optimize throughput, and adapt plans on the fly if one robot encounters a problem. For example, if a manufacturing robot goes down for maintenance, Manus would detect the issue and immediately reroute tasks to other machines or adjust the assembly sequence to prevent an assembly line halt. Its ability to integrate real-time sensor data means Manus can make context-aware decisions to keep operations running smoothly. 虽然 Manus AI 主要作为软件代理存在,但当与机器人系统结合时,其能力可以扩展到物理领域。在机器人领域,Manus 可以充当高级“大脑”,为机器提供智能指令。一个应用是在工业自动化中,Manus 监督工厂车间的机器人群。由于它能够规划和协调复杂的动作序列,Manus 可以动态地将任务分配给不同的机器人,安排它们的活动以优化吞吐量,并在一个机器人遇到问题时即时调整计划。例如,如果一个制造机器人因维护而停机,Manus 将检测到问题并立即将任务重新分配给其他机器或调整装配顺序,以防止装配线停顿。它集成实时传感器数据的能力意味着 Manus 可以做出情境感知决策,以保持操作顺利运行。
Another domain is autonomous vehicles and drones [18, 19, 20, 21. Manus AI’s decision-making algorithms, especially its reinforcement learning backbone, are well-suited for navigation and control problems. In principle, Manus could serve as the central AI for a self-driving car network, processing traffic data, mapping information, and even verbal passenger requests to plan safe and efficient driving routes. It would execute control commands (through the car’s interface) and verify outcomes, analogous to how its Execution and Verification agents work in digital tasks. The human-like reasoning component helps in scenarios that need judgment-such as negotiating an unfamiliar construction zone or deciding how to adjust when an emergency vehicle approaches. Similarly, a fleet of delivery drones could be managed by Manus AI, which would optimize their routes, handle exceptions (like a drone encountering bad weather) by recalculating missions, and learn from each delivery to improve performance over time. 另一个领域是自动驾驶汽车和无人机 [18, 19, 20, 21]。Manus AI 的决策算法,特别是其强化学习骨干,非常适合导航和控制问题。原则上,Manus 可以作为自动驾驶汽车网络的中央 AI,处理交通数据、地图信息,甚至乘客的口头请求,以规划安全高效的驾驶路线。它将执行控制命令(通过汽车的界面)并验证结果,类似于其执行和验证代理在数字任务中的工作方式。类人推理组件有助于需要判断的场景——例如,在不熟悉的施工区域中协商或决定当紧急车辆接近时如何调整。同样,一支送货无人机队可以由 Manus AI 管理,它将优化它们的路线,通过重新计算任务来处理异常(例如无人机遇到恶劣天气),并从每次送货中学习以随着时间的推移提高性能。
Crucially, Manus can also facilitate human-robot collaboration [22. Many robots lack sophisticated on-board intelligence and rely on either pre-programmed routines or manual control for complex tasks. By giving such robots access to Manus AI, they gain a form of common sense and high-level understanding. Consider a scenario in a hospital: a service robot is tasked with fetching items for nurses. With Manus, the robot can understand a request like “We need more IV stands in Room 12, and then take this medication to Room 7 if the patient is awake.” Manus would break this down: navigate to storage for IV stands, prioritize if multiple tasks conflict, interpret patient status from hospital databases to know if the patient in Room 7 is ready for medication, and so forth. It essentially allows robots to follow multi-step spoken or written instructions and carry them out intelligently, asking for clarification only when necessary. 至关重要的是,Manus 还可以促进人机协作 [22]。许多机器人缺乏复杂的板载智能,对于复杂任务,它们要么依赖预编程例程,要么依赖手动控制。通过让这些机器人访问 Manus AI,它们获得了一种常识和高层次理解。设想一个医院场景:一个服务机器人被分配任务为护士取物品。有了 Manus,机器人可以理解诸如“我们需要 12 号房间更多的输液架,如果病人醒着,就把这种药送到 7 号房间”之类的请求。Manus 会将其分解:导航到储藏室取输液架,在多项任务冲突时进行优先级排序,从医院数据库解释病人状态以了解 7 号房间的病人是否准备好用药,等等。它本质上允许机器人遵循多步骤的口头或书面指令并智能地执行它们,仅在必要时才要求澄清。
Early experiments integrating large language models with robotics support this vision. Researchers have shown that language models can translate high-level instructions into low-level robotic actions, aiding human-robot task planning [23. With a system like Manus overseeing robots, we move closer to general-purpose home or workplace robots that can be given abstract goals (“clean up this room and then set the table for dinner”) and execute them reliably by combining vision, manipulation, and reasoning. This could revolutionize sectors from warehouse logistics to eldercare, where flexible automation is in high demand. 将大型语言模型与机器人技术相结合的早期实验支持了这一愿景。研究人员已经表明,语言模型可以将高级指令转化为低级机器人动作,从而辅助人机任务规划 [23]。通过像 Manus 这样的系统监督机器人,我们离通用家庭或工作场所机器人更近了一步,这些机器人可以被赋予抽象目标(“打扫这个房间,然后摆好餐桌准备晚餐”),并通过结合视觉、操作和推理可靠地执行这些目标。这可能会彻底改变从仓储物流到老年护理等对灵活自动化需求旺盛的行业。
3.4 Entertainment and Media Production 3.4 娱乐和媒体制作
The entertainment industry stands to be profoundly influenced by AI agents like Manus, which can contribute to creative processes and production workflows. In game development, Manus AI could be used to design more intelligent and adaptive non-player characters (NPCs) or even entire game narratives 24. Game designers could specify world settings and objectives, and Manus would autonomously generate quest lines, dialogues, and dynamic events, effectively co-creating game content. Because Manus can simulate decision-making, NPCs powered by Manus could exhibit human-like strategic behavior or dialogue that evolves based on player actions, leading to games with unprecedented depth and replayability. 娱乐业将受到像 Manus 这样的 AI 代理的深刻影响,它们可以为创意过程和生产工作流程做出贡献。在游戏开发中,Manus AI 可以用于设计更智能、适应性更强的非玩家角色 (NPC),甚至整个游戏叙事 [24]。游戏设计师可以指定世界设置和目标,Manus 将自主生成任务线、对话和动态事件,有效地共同创作游戏内容。由于 Manus 可以模拟决策,由 Manus 驱动的 NPC 可以表现出类人战略行为或根据玩家行动演变的对话,从而带来具有前所未有深度和可重玩性的游戏。
In film and content creation, generative AI is already emerging as a tool for script writing, visual effects, and editing [25, 26, 27. Manus AI takes this further by acting as a coordinator and creator in the production pipeline. For instance, a film writer could ask Manus to draft several plot outlines given a premise; Manus would not only write summaries but might also suggest key scenes and even camera angles, integrating knowledge of what makes a compelling story. In post-production, an AI like Manus could autonomously perform tasks such as editing raw footage into a coherent sequence according to a desired pacing, or generating placeholder special effects and then refining them based on director feedback. Manus’s multi-modal generation means it could create storyboards (as images) from a text script, or propose music for a scene after analyzing its emotional tone. 在电影和内容创作领域,生成式人工智能已开始作为剧本创作、视觉效果和剪辑的工具出现 [25, 26, 27]。Manus AI 更进一步,在制作流程中充当协调者和创作者。例如,电影编剧可以要求 Manus 根据一个前提起草几个情节大纲;Manus 不仅会撰写摘要,还可能提出关键场景甚至摄像机角度,整合关于如何创作引人入胜的故事的知识。在后期制作中,像 Manus 这样的人工智能可以自主执行任务,例如根据所需的节奏将原始素材剪辑成连贯的序列,或者生成占位符特效,然后根据导演的反馈进行完善。Manus 的多模态生成意味着它可以根据文本脚本创建故事板(作为图像),或者在分析场景的情感基调后为场景推荐音乐。
Another area is personalized entertainment. Because Manus can understand individual preferences, it could curate media or even generate custom content on the fly. Imagine an interactive storytelling app [28] where Manus is the storyteller: it takes a user’s inputs (preferred genre, characters they like) and spins up a personalized short story or even a short animated movie by controlling generative models for images and voices. As the user reacts or provides feedback, Manus adjusts the narrative, essentially improvising a film or game tailored to one person. This kind of AI-directed experience blurs the line between creator and audience, opening up new entertainment formats. 另一个领域是个性化娱乐。由于 Manus 能够理解个人偏好,它可以策划媒体内容,甚至即时生成定制内容。想象一个互动讲故事应用程序 [28],其中 Manus 是讲故事者:它接收用户的输入(偏好的类型、喜欢的角色),并通过控制图像和语音的生成模型,创作一个个性化的短篇故事,甚至一部短动画电影。当用户做出反应或提供反馈时,Manus 会调整叙事,本质上是即兴创作一部或一个游戏,专为一个人量身定制。这种由人工智能主导的体验模糊了创作者和观众之间的界限,开辟了新的娱乐形式。
Moreover, in media production environments, Manus can help with supporting tasks that are often time-consuming: subtitling and translating content, generating marketing materials (trailers, posters) from source content, analyzing viewer feedback and box office data to inform sequels or edits. An agent that autonomously sifts through audience comments or critiques and then suggests concrete improvements for a show would be extremely valuable. Some studios are already using AI to provide data-driven predictions on how unusual story elements will land with viewers [29]. An AI like Manus could take those predictions and directly implement changes in the script or edit, creating a more efficient feedback loop. 此外,在媒体制作环境中,Manus 可以协助处理通常耗时的支持性任务:内容字幕和翻译、从源内容生成营销材料(预告片、海报)、分析观众反馈和票房数据以指导续集或剪辑。一个能够自主筛选观众评论或批评,然后为节目提出具体改进建议的代理将非常有价值。一些工作室已经在使用人工智能来提供数据驱动的预测,以了解不寻常的故事元素将如何被观众接受 [29]。像 Manus 这样的人工智能可以利用这些预测,直接在剧本或剪辑中实施更改,从而创建更高效的反馈循环。
While creative fields have understandable reservations about AI, Manus AI’s role in entertainment can be seen as a powerful assistant - speeding up mundane tasks and offering a wellspring of ideas - while leaving final creative judgments to human artists. The net effect could be faster production timelines and new forms of interactive content that were previously impractical to produce. 尽管创意领域对人工智能抱有可以理解的保留,但 Manus AI 在娱乐中的作用可以被视为一个强大的助手——加快日常任务并提供丰富的创意源泉——同时将最终的创意判断留给人类艺术家。最终效果可能是更快的制作周期和以前难以实现的新型互动内容。
3.5 Customer Service and Support 3.5 客户服务与支持
Customer service is an industry that has rapidly adopted AI in the form of chatbots and virtual assistants, and Manus AI represents the next leap for this domain. Traditional customer service bots can answer FAQs or do simple ticket routing, but Manus can handle far more complex interactions and even execute service tasks start-to-finish. As a chatbot, Manus would be highly conversational and context-aware, remembering earlier parts of a dialogue and handling multi-turn inquiries with ease. But it would also be able to take actions on behalf of the customer: for example, a customer might contact support saying their smart home device isn’t working. Manus could walk through troubleshooting steps conversationally and simultaneously interface with diagnostic tools in the background (checking the device’s status online, pushing a firmware update, etc.). If a return or repair is needed, Manus could autonomously initiate that process-filling out a return authorization, scheduling a pickup, and confirming with the customer-all within the same chat session. 客户服务是一个迅速采用人工智能(以聊天机器人和虚拟助手的形式)的行业,而 Manus AI 代表着该领域的又一次飞跃。传统的客户服务机器人可以回答常见问题或进行简单的工单路由,但 Manus 可以处理更复杂的交互,甚至可以从头到尾执行服务任务。作为聊天机器人,Manus 将具有高度的对话性和上下文感知能力,能够记住对话的早期部分并轻松处理多轮查询。但它也能代表客户采取行动:例如,客户可能会联系支持部门,说他们的智能家居设备无法正常工作。Manus 可以通过对话方式引导客户完成故障排除步骤,同时在后台与诊断工具进行交互(检查设备的在线状态、推送固件更新等)。如果需要退货或维修,Manus 可以自主启动该流程——填写退货授权、安排取货并与客户确认——所有这些都在同一个聊天会话中完成。
The benefit of such autonomy in customer service is significantly improved resolution time and consistency. Studies have shown AI-driven support can lead to faster resolution and round-the-clock availability, with one analysis reporting a 3.5x increase in support capacity for businesses using AI solutions. Manus AI can not only offer 24//724 / 7 service, but handle many issues without ever needing a human agent, freeing human representatives to focus on the most challenging cases that truly require empathy or complex judgment. Because Manus can integrate with internal company databases and knowledge bases, it can retrieve a customer’s purchase history, account status, and relevant policies instantly, allowing it to personalize interactions and solve issues more efficiently than a human who must lookup information. 客户服务中这种自主性的好处是显著缩短了解决时间和提高了服务一致性。研究表明,人工智能驱动的支持可以加快问题解决速度并提供全天候可用性,一项分析报告称,使用人工智能解决方案的企业支持能力提高了 3.5 倍。Manus AI 不仅可以提供 24//724 / 7 服务,而且无需人工代理即可处理许多问题,从而使人工代表能够专注于真正需要同理心或复杂判断的最具挑战性的案例。由于 Manus 可以与公司内部数据库和知识库集成,因此它可以即时检索客户的购买历史、账户状态和相关政策,从而比需要查找信息的人工更有效地个性化交互和解决问题。
In addition to reactive support, Manus enables proactive customer service. For instance, it might monitor user account activity or device logs (with permission) to predict issues. If Manus detects that a user is frequently encountering an error in a software product, it could reach out to offer help or silently implement a fix. In e-commerce, Manus could act as a personal shopping assistant that not only recommends products but handles the entire purchasing process via conversation (“I found a better price for this item at another store and placed the order for you, shall I proceed?”). 除了被动支持,Manus 还支持主动客户服务。例如,它可能会(在获得许可的情况下)监控用户账户活动或设备日志以预测问题。如果 Manus 检测到用户在软件产品中频繁遇到错误,它可以主动提供帮助或静默实施修复。在电子商务中,Manus 可以充当个人购物助手,不仅推荐产品,还可以通过对话处理整个购买过程(“我发现这个商品在另一家商店有更好的价格,并已为您下单,是否继续?”)。
There is also an application in training and assisting human agents. Manus can observe interactions between customers and human support staff (with appropriate privacy safeguards) and provide 在培训和协助人工座席方面,它也有应用。Manus 可以观察客户与人工支持人员之间的互动(在适当的隐私保护下),并提供
real-time suggestions to the human agent on how to resolve issues or upsell services, based on what it has learned from past interactions. It can also be used to train new support staff by simulating customer queries of varying difficulty and providing feedback. 根据从过往互动中学习到的经验,实时向人工座席提供解决问题或推销服务的建议。它还可以通过模拟不同难度的客户查询并提供反馈,用于培训新的支持人员。
One challenge in customer service is maintaining a high level of quality and empathy, which purely automated systems can struggle with. Manus’s advanced language model and context retention help it to handle nuanced queries with appropriate tone. However, companies would likely use Manus in a hybrid approach: the AI handles routine queries fully and assists with complex ones, with an easy escalation path to humans when needed. This approach yields the best of both worlds - speed and efficiency from the AI, and human touch where it matters. As AI continues to improve, a system like Manus could eventually resolve the majority of customer issues instantly, fundamentally changing how customer service centers operate. 客户服务面临的一个挑战是保持高水平的质量和同理心,而纯粹的自动化系统可能难以做到这一点。Manus 先进的语言模型和上下文保留能力有助于它以恰当的语气处理细致入微的查询。然而,公司可能会采用混合方式使用 Manus:人工智能完全处理常规查询,并协助处理复杂查询,在需要时可轻松升级至人工服务。这种方法兼顾了人工智能的速度和效率以及人工服务的温度,实现了两全其美。随着人工智能的不断改进,像 Manus 这样的系统最终可以即时解决大多数客户问题,从根本上改变客户服务中心的运作方式。
3.6 Manufacturing and Industry 4.0 3.6 制造业与工业 4.0
Manufacturing is undergoing a digital transformation often referred to as Industry 4.0, and AI agents such as Manus can be at the heart of this evolution. One key application is predictive maintenance [30, 31, 32, 33, 34, 35. Factory equipment and machines generate a wealth of sensor data that, if analyzed properly, can predict when a part is likely to fail or when maintenance is needed. Manus AI can autonomously monitor this data in real time and detect subtle signals of wear and tear-perhaps a vibration pattern in a motor or a slight temperature increase in a turbine bearing. By catching these early, Manus can schedule maintenance before a breakdown occurs, thus avoiding costly downtime. According to a PwC study, manufacturers using AI-based predictive maintenance have seen up to a 9%9 \% increase in equipment uptime and 12%12 \% reduction in maintenance costs 36 . Manus’s ability to both analyze data and act (by generating work orders or alerts to technicians) makes it a full-cycle solution for maintenance optimization. 制造业正在经历一场数字化转型,通常被称为工业 4.0,而像 Manus 这样的人工智能代理可以成为这场变革的核心。其中一个关键应用是预测性维护[30, 31, 32, 33, 34, 35]。工厂设备和机器会产生大量的传感器数据,如果分析得当,可以预测部件何时可能失效或何时需要维护。Manus AI 可以实时自主监控这些数据,并检测磨损的细微信号——也许是电机中的振动模式,或者是涡轮轴承中轻微的温度升高。通过及早发现这些问题,Manus 可以在故障发生前安排维护,从而避免代价高昂的停机时间。根据普华永道的一项研究,使用基于人工智能的预测性维护的制造商,设备正常运行时间提高了 9%9 \% ,维护成本降低了 12%12 \% [36]。Manus 既能分析数据又能采取行动(通过生成工单或向技术人员发出警报),这使其成为维护优化的全周期解决方案。
In process optimization, Manus can serve as a real-time decision agent on the production line. Modern manufacturing involves complex coordination of supply chains, production schedules, and quality control [37. Manus could take in live data about raw material availability, machine performance, and order deadlines, and then dynamically adjust the production plan. For example, if a supply shipment is delayed, Manus might re-order the assembly sequence to prioritize products that do have all components ready, or instruct machines to switch to a different batch that can be completed, thereby keeping the factory productive. Similarly, Manus can monitor quality metrics (via sensors or machine vision on the line) and if it detects the production of substandard units, it can adjust machine settings or call for human inspection. Over time, by learning from output data and yields, Manus could continuously refine how machines are configured, pushing production efficiency to new highs that would be hard to achieve with static, pre-programmed logic. 在流程优化方面,Manus 可以作为生产线上的实时决策代理。现代制造业涉及供应链、生产计划和质量控制的复杂协调[37]。Manus 可以接收关于原材料可用性、机器性能和订单截止日期的实时数据,然后动态调整生产计划。例如,如果一批供应品延迟,Manus 可能会重新安排装配顺序,优先处理所有组件都已准备好的产品,或者指示机器切换到可以完成的不同批次,从而保持工厂的生产力。同样,Manus 可以监控质量指标(通过传感器或生产线上的机器视觉),如果检测到生产出不合格产品,它可以调整机器设置或要求人工检查。随着时间的推移,通过从输出数据和产量中学习,Manus 可以不断优化机器配置,将生产效率推向新的高度,而这对于静态的、预编程的逻辑来说是难以实现的。
Another significant area is supply chain and logistics management. A manufacturing AI agent could seamlessly connect to suppliers, track inventory levels, and even negotiate orders or delivery schedules. Manus might predict that a certain component will run out in two weeks based on the current burn rate and automatically place an order while also arranging the most cost-effective shipping. In warehousing, Manus can guide autonomous forklifts or robots to manage inventory placement and order fulfillment optimally, as discussed in the robotics section. By having a global view of the entire manufacturing ecosystem and the autonomy to make decisions, Manus AI can eliminate much of the latency and inefficiency in supply chain responses. Manufacturers using such AI could react to market changes or disruptions almost instantly - for instance, scaling back production ahead of a forecasted dip in demand, or quickly sourcing alternatives if a supplier fails - thus saving money and staying agile. 另一个重要领域是供应链和物流管理。制造人工智能代理可以无缝连接供应商,跟踪库存水平,甚至协商订单或交货时间。Manus 可以根据当前的消耗率预测某个组件将在两周内用完,并自动下订单,同时安排最具成本效益的运输。在仓储方面,Manus 可以引导自动叉车或机器人优化库存放置和订单履行,如机器人部分所述。通过对整个制造生态系统拥有全局视野和自主决策能力,Manus AI 可以消除供应链响应中的大部分延迟和低效率。使用此类人工智能的制造商可以几乎即时地对市场变化或中断做出反应——例如,在预测需求下降之前缩减生产,或者在供应商出现问题时迅速寻找替代品——从而节省资金并保持敏捷。
One can envision a future “lights-out” factory where human oversight is minimal: Manus AI schedules production, runs the robots, ensures maintenance, manages supply chain logistics, and only pings humans when a strategic decision or a truly novel situation arises. While completely autonomous factories are still rare, the components of this vision are falling into place, and Manus exemplifies the kind of general AI agent that could coordinate all these pieces under one umbrella of intelligence. 人们可以设想一个未来的“黑灯工厂”,其中人类监督极少:Manus AI 安排生产,运行机器人,确保维护,管理供应链物流,并且只在出现战略决策或真正新颖的情况时才向人类发出提示。虽然完全自主的工厂仍然罕见,但这一愿景的组成部分正在逐步实现,而 Manus 正是那种能够将所有这些部分协调在一个智能伞下的通用人工智能代理的典范。
3.7 Education 3.7 教育
Education is another field where Manus AI’s capabilities can be transformative by enabling highly personalized and interactive learning experiences. As a tutor or teaching assistant, Manus can adapt to the learning style and pace of each student. It can explain difficult concepts in multiple ways, generate practice problems tailored to a student’s weak spots, and provide instant feedback on answers. Unlike a 教育是 Manus AI 能力可以带来变革的另一个领域,它能够实现高度个性化和交互式的学习体验。作为一名导师或助教,Manus 可以适应每个学生的学习风格和节奏。它可以以多种方式解释难懂的概念,生成针对学生薄弱环节的练习题,并对答案提供即时反馈。与一个
human teacher who must divide attention among many students, Manus could potentially give one-onone tutoring to every student simultaneously. It can remember each student’s progress in detail, ensuring that no concept is left misunderstood. For example, if a student is struggling with a calculus problem, Manus can recognize confusion from the student’s queries or mistakes and switch strategies-perhaps using a visual demonstration or drawing on an analogy from a subject the student excels in - to make the concept click. 与人类教师必须将注意力分散给许多学生不同,Manus 可以同时为每个学生提供一对一辅导。它可以详细记住每个学生的学习进度,确保没有概念被误解。例如,如果一个学生在微积分问题上遇到困难,Manus 可以从学生的疑问或错误中识别出困惑,并改变策略——也许使用视觉演示或从学生擅长的科目中类比——以使概念清晰。
This goes hand-in-hand with personalized curriculum generation [38]. Manus AI can design a learning plan optimized for an individual’s goals and current knowledge. Suppose a student wants to learn programming for web development. Manus can assess the student’s current math and logic skills and then create a sequence of lessons and projects that teach the necessary programming concepts, adjusting difficulty as the student improves. It can integrate multimedia (text, code examples, video explanations) and even interactive coding environments as part of the curriculum. As the student advances, Manus continuously updates the learning plan, maybe introducing more challenges or circling back to reinforce earlier topics that were troublesome. 这与个性化课程生成[38]相辅相成。Manus AI 可以设计一个针对个人目标和当前知识优化的学习计划。假设一个学生想学习用于网络开发的编程。Manus 可以评估学生当前的数学和逻辑技能,然后创建一系列课程和项目来教授必要的编程概念,并随着学生的进步调整难度。它可以将多媒体(文本、代码示例、视频解释)甚至交互式编码环境整合到课程中。随着学生的进步,Manus 会不断更新学习计划,可能会引入更多挑战或回顾并巩固之前有困难的主题。
For teachers and educational content creators, Manus can serve as a content generation and grading assistant [39]. It can generate quiz questions or exam papers covering specific topics with varying difficulty levels. It can also grade free-form answers or essays by applying rubrics-providing not just a score but also detailed feedback. This is particularly useful in large open online courses or education at scale, where subjective grading is a bottleneck. Additionally, Manus could help in creating illustrative examples, diagrams, or even educational games on the fly to help explain topics, functioning like a creative partner for educators. 对于教师和教育内容创作者,Manus 可以充当内容生成和评分助手[39]。它可以生成涵盖特定主题且难度各异的测验问题或试卷。它还可以通过应用评分标准来批改自由形式的答案或论文——不仅提供分数,还提供详细的反馈。这在大型开放式在线课程或大规模教育中特别有用,因为主观评分是一个瓶颈。此外,Manus 可以帮助即时创建说明性示例、图表甚至教育游戏,以帮助解释主题,充当教育工作者的创意伙伴。
The classroom of the future might involve each student having an AI tutor like Manus on their device or available in the classroom. The AI tutor can handle routine instruction and practice, while the human teacher focuses on higher-level mentoring, motivation, and social-emotional learning. AI like Manus can also assist students with disabilities by offering tailored support-for instance, converting lesson content to more accessible formats or giving extra practice in areas of difficulty-thus supporting inclusive education. 未来的课堂可能涉及每个学生在他们的设备上或课堂中拥有一个像 Manus 这样的 AI 导师。AI 导师可以处理常规教学和练习,而人类教师则专注于更高层次的指导、激励和社交情感学习。像 Manus 这样的 AI 还可以通过提供量身定制的支持来帮助残疾学生——例如,将课程内容转换为更易于访问的格式或在困难领域提供额外练习——从而支持包容性教育。
It is worth noting that early forms of AI tutors have shown promise in improving learning outcomes by providing students with immediate, individualized feedback. Manus’s advanced reasoning and memory could amplify these benefits, as it not only answers questions but can figure out why a student made a mistake and address the root cause. As a concept demonstration, an AI agent like Manus might generate personalized learning plans for students and provide on-demand explanations, effectively acting as a tireless teaching aide. The potential scale of impact in education is huge: Manus-like AI assistants could democratize access to high-quality tutoring and help reduce educational inequities by giving every student a personal tutor attuned to their needs. 值得注意的是,早期形式的人工智能导师已显示出通过为学生提供即时、个性化反馈来改善学习成果的潜力。Manus 的高级推理和记忆能力可以放大这些益处,因为它不仅能回答问题,还能找出学生犯错的原因并解决根本问题。作为概念演示,像 Manus 这样的人工智能代理可以为学生生成个性化学习计划并提供按需解释,有效地充当一个不知疲倦的教学助手。在教育领域,其潜在影响规模巨大:类似 Manus 的人工智能助手可以使高质量辅导的获取民主化,并通过为每个学生提供一个适应其需求的私人导师来帮助减少教育不平等。
3.8 Other Fields 3.8 其他领域
Beyond the industries detailed above, Manus AI’s general capabilities open opportunities in many other areas: 除了上述详细介绍的行业,Manus AI 的通用能力还在许多其他领域开辟了机会:
Legal Services: Manus can function as a paralegal aide by reviewing lengthy legal documents and contracts, highlighting key points or inconsistencies, and even drafting initial versions of legal briefs. Given a query, it can research case law and compile relevant precedents. This automation can drastically reduce the time lawyers spend on research and document preparation. Demonstrations have shown Manus handling legal contract review from end-to-end, ensuring no clause is overlooked [40. 法律服务:Manus 可以作为律师助理,审查冗长的法律文件和合同,突出重点或不一致之处,甚至起草法律摘要的初稿。给定一个查询,它可以研究判例法并汇编相关先例。这种自动化可以大大减少律师在研究和文件准备上花费的时间。演示表明,Manus 可以端到端地处理法律合同审查,确保没有遗漏任何条款 [40]。
Human Resources: In recruitment, Manus AI can screen résumés and job applications at high speed, identifying the most suitable candidates based on a company’s criteria. It doesn’t just keyword-match; Manus can interpret descriptions of experience and skills contextually, making judgments much like a human recruiter. One use case had Manus parse and evaluate a stack of résumés, extracting key qualifications and ranking applicants efficiently [5, 41. Additionally, Manus can assist in employee training by providing personalized learning modules and answering policy-related questions for staff. 人力资源:在招聘中,Manus AI 可以高速筛选简历和求职申请,根据公司的标准识别最合适的候选人。它不仅仅是关键词匹配;Manus 可以根据上下文解释经验和技能描述,像人类招聘人员一样做出判断。一个用例是 Manus 解析和评估一堆简历,提取关键资质并高效地对申请人进行排名 [5, 41]。此外,Manus 还可以通过提供个性化学习模块和回答员工政策相关问题来协助员工培训。
Real Estate and Planning: Manus can automate real estate analysis by scanning property listings, comparing them against a buyer’s preferences and budget, and producing a shortlist of best matches complete with pros/cons and investment outlooks 42 . It can also generate property valuation reports and even draft offer letters or rental agreements. As noted in one example, Manus was tasked with real estate research and managed to compile detailed reports on available properties meeting specific criteria, saving clients from hours of search and comparison [5]. 房地产和规划:Manus 可以通过扫描房产列表,将其与买家的偏好和预算进行比较,并生成一份最佳匹配的候选清单,其中包含优缺点和投资前景,从而实现房地产分析的自动化 [42]。它还可以生成房产估价报告,甚至起草要约函或租赁协议。正如一个例子中提到的,Manus 负责房地产研究,并成功地汇编了符合特定标准的可用房产的详细报告,为客户节省了数小时的搜索和比较时间 [5]。
Scientific Research: Researchers can use Manus as an analytical assistant to simulate experiments or analyze experimental data. For instance, in a physics lab, Manus could control equipment via software, gather data, fit it to theoretical models, and suggest interpretations. It can also automatically write up initial drafts of research papers by organizing the experimental context, method, results, and related work from references it has read. Such capabilities could accelerate the research cycle in fields from biology to engineering [43]. 科学研究:研究人员可以使用 Manus 作为分析助手来模拟实验或分析实验数据。例如,在物理实验室中,Manus 可以通过软件控制设备,收集数据,将其拟合到理论模型中,并提出解释。它还可以通过组织实验背景、方法、结果以及从其阅读的参考文献中获取的相关工作,自动撰写研究论文的初稿。这些能力可以加速从生物学到工程学等领域的研究周期 [43]。
Public Sector and Smart Cities: Governments and city planners might use Manus AI to optimize public services [44. For example, Manus could analyze traffic patterns, public transit usage, and events schedules to optimize traffic light timings or recommend changes in transit routes in real time, improving urban mobility. In public health, Manus could monitor epidemiological data and coordinate responses to health crises by suggesting where to allocate resources. Its autonomy means it could continuously manage and adjust city systems (water, power distribution, emergency services deployment) based on current data, aiming for maximal efficiency and rapid response to incidents. 公共部门和智慧城市:政府和城市规划者可能会使用 Manus AI 来优化公共服务 [44]。例如,Manus 可以分析交通模式、公共交通使用情况和活动时间表,以实时优化交通灯时间或建议更改交通路线,从而改善城市交通。在公共卫生领域,Manus 可以监测流行病学数据,并通过建议资源分配来协调对健康危机的响应。它的自主性意味着它可以根据当前数据持续管理和调整城市系统(水、电力分配、应急服务部署),旨在实现最高效率和对事件的快速响应。
These examples only scratch the surface. Virtually any field that involves complex decision processes, large datasets, or multi-step workflows could leverage Manus AI to some extent. The common thread is that Manus brings a combination of cognitive skills (understanding context, learning, reasoning) and the ability to act (through tool usage or executing instructions). This makes it a kind of universal problem-solver assistant that can be pointed at tasks in any domain and, with minimal adaptation, start contributing productively. 这些例子只是冰山一角。几乎任何涉及复杂决策过程、大型数据集或多步骤工作流程的领域,都可以在某种程度上利用 Manus AI。其共同点在于,Manus 结合了认知技能(理解语境、学习、推理)和行动能力(通过工具使用或执行指令)。这使其成为一种通用的问题解决助手,可以应用于任何领域的任务,只需少量调整,即可开始高效地做出贡献。
4 Comparison with Other AI Technologies 4 与其他人工智能技术的比较
Manus AI’s emergence comes at a time when many organizations are racing to build more advanced AI systems. It stands out in comparison to existing technologies from leading AI labs like OpenAI, Google DeepMind, and Anthropic, among others. In this section, we analyze how Manus differs from and potentially surpasses these contemporaries, highlighting unique aspects as well as any trade-offs. Manus AI 的出现正值许多组织竞相构建更先进的人工智能系统之际。与 OpenAI、Google DeepMind 和 Anthropic 等领先人工智能实验室的现有技术相比,它脱颖而出。在本节中,我们将分析 Manus 与这些同期技术有何不同,以及它可能在哪些方面超越它们,同时强调其独特之处和任何权衡。
Manus AI vs. OpenAI's GPT-4 and Agents Manus AI 与 OpenAI 的 GPT-4 和 Agents
OpenAI’s GPT-4, released in 2023, is one of the most well-known AI models, demonstrating remarkable abilities in language understanding and generation 45. GPT-4 can solve problems, write code, and hold conversations at a high level of fluency. However, GPT-4 (and its publicly deployed form, ChatGPT) operates primarily as an interactive assistant that replies to user inputs. It does not inherently have the capacity to execute multi-step plans autonomously without continuous prompting. Manus AI was built to overcome this limitation. Unlike GPT-4 which provides suggestions or information, Manus is designed to take initiative and carry out tasks end-to-end [4. For instance, GPT-4 might tell you how to analyze a dataset, but Manus will actually perform the analysis, create charts, and deliver a report without further prompting. OpenAI 于 2023 年发布的 GPT-4 是最著名的 AI 模型之一,在语言理解和生成方面展现出卓越的能力 45。GPT-4 能够解决问题、编写代码并进行高水平的流畅对话。然而,GPT-4(及其公开部署形式 ChatGPT)主要作为交互式助手运行,回复用户输入。它本身不具备在没有持续提示的情况下自主执行多步骤计划的能力。Manus AI 的构建旨在克服这一限制。与 GPT-4 提供建议或信息不同,Manus 旨在主动采取行动并端到端地执行任务 [4]。例如,GPT-4 可能会告诉你如何分析数据集,但 Manus 会实际执行分析、创建图表并交付报告,无需进一步提示。
In internal evaluations like the GAIA benchmark [46], Manus AI demonstrated stronger performance on practical task execution than GPT-4 [4]. GPT-4, augmented with plug-in tools, has started to move in Manus’s direction by allowing limited web browsing or code execution, but those features are not as seamlessly integrated or generally capable as Manus’s tool use. Manus effectively has the tool-using and action-taking parts woven into its core architecture rather than tacked on. This means Manus plans when and how to use tools as part of its natural reasoning process, whereas GPT-4 relies on external orchestration to do something similar. Indeed, Manus achieved higher task completion rates on GAIA than a version of GPT-4 with plug-ins enabled, which scored significantly lower [4]. 在 GAIA 基准测试 [46] 等内部评估中,Manus AI 在实际任务执行方面的表现优于 GPT-4 [4]。GPT-4 借助插件工具,已开始朝着 Manus 的方向发展,允许有限的网页浏览或代码执行,但这些功能不如 Manus 的工具使用那样无缝集成或通用。Manus 有效地将工具使用和行动执行部分融入其核心架构,而不是附加的。这意味着 Manus 在其自然推理过程中规划何时以及如何使用工具,而 GPT-4 则依赖外部协调来做类似的事情。事实上,Manus 在 GAIA 上的任务完成率高于启用了插件的 GPT-4 版本,后者得分显著较低 [4]。
Another distinction is accessibility and openness. OpenAI’s models, while proprietary, are widely available via APIs or consumer-facing apps, enabling extensive independent evaluation by the community. Manus AI, in contrast, has been kept relatively closed (invitation-only beta at this stage). This means independent benchmarks are limited to what the developers report. Some experts have expressed skepticism about Manus’s claimed superiority until more public testing is possible. Nonetheless, the available evidence (demos and benchmark reports) indicates Manus’s novel architecture gives it an edge in autonomy that even GPT-4 doesn’t have out-of-the-box. 另一个区别是可访问性和开放性。OpenAI 的模型虽然是专有的,但通过 API 或面向消费者的应用程序广泛可用,从而使社区能够进行广泛的独立评估。相比之下,Manus AI 相对封闭(目前仅限邀请测试版)。这意味着独立基准测试仅限于开发人员报告的内容。一些专家对 Manus 声称的优越性表示怀疑,直到可以进行更多公开测试。尽管如此,现有证据(演示和基准报告)表明 Manus 的新颖架构使其在自主性方面具有优势,即使是 GPT-4 也无法开箱即用。
It’s also worth noting that OpenAI has been developing its own agent-like frameworks (such as the open-source AutoGPT [47] or internal projects to make GPT models more agentive). Manus can be seen as part of the same paradigm shift, but it appears to have leapfrogged into a more advanced 还值得注意的是,OpenAI 一直在开发自己的类代理框架(例如开源的 AutoGPT [47] 或使 GPT 模型更具代理性的内部项目)。Manus 可以被视为同一范式转变的一部分,但它似乎已跃升到更高级的阶段。
implementation first. If GPT-4 is an exceptional problem-solver when guided, Manus is an independent problem-solver that can figure out what needs doing with minimal guidance [48]. 先实现。如果说 GPT-4 在引导下是一个出色的问题解决者,那么 Manus 则是一个独立的、只需最少指导就能弄清需要做什么的问题解决者 [48]。
Manus AI vs. Google DeepMind's AI Manus AI 与 Google DeepMind 的 AI
Google’s DeepMind division has produced some of the most impressive AI breakthroughs, from AlphaGo (which mastered the game of Go) [49, 50] to AlphaFold (which solved protein folding) [51, 52, and they have experimented with generalist models like Gato that can perform multiple kinds of tasks. DeepMind is also collaborating with Google Brain on next-generation models (e.g., the upcoming multimodal model Gemini). However, many of DeepMind’s systems, until now, have been highly specialized or confined to specific environments (like games or simulations) rather than being user-facing general agents. Google 的 DeepMind 部门已经取得了一些最令人印象深刻的 AI 突破,从 AlphaGo(掌握了围棋游戏)[49, 50] 到 AlphaFold(解决了蛋白质折叠问题)[51, 52],他们还尝试了像 Gato 这样可以执行多种任务的通用模型。DeepMind 还在与 Google Brain 合作开发下一代模型(例如,即将推出的多模态模型 Gemini)。然而,DeepMind 的许多系统迄今为止都是高度专业化或局限于特定环境(如游戏或模拟),而不是面向用户的通用代理。
Where Manus AI distinguishes itself is in being a broad, user-interactive agent capable of open-ended tasks in the real world. DeepMind’s Sparrow 53 and other chatbots focus on dialogue and factual accuracy, but they do not execute physical or digital tasks for the user. A more analogous DeepMind project might be their research on adaptive agents that can use tools (DeepMind has published work on combining language models with tool use and reasoning as well). However, those are research prototypes, whereas Manus is positioned as a deployable product. Manus AI 的独特之处在于它是一个广泛的、用户交互式代理,能够在现实世界中执行开放式任务。DeepMind 的 Sparrow 53 和其他聊天机器人专注于对话和事实准确性,但它们不为用户执行物理或数字任务。一个更类似的 DeepMind 项目可能是他们关于可以使用工具的自适应代理的研究(DeepMind 也发表了关于将语言模型与工具使用和推理相结合的工作)。然而,这些都是研究原型,而 Manus 则被定位为可部署的产品。
DeepMind has a track record of emphasizing fundamental research and optimal performance (for example, AlphaGo was extremely optimized for Go). Manus, by comparison, might not match a specialized DeepMind model in a narrow domain (for instance, it won’t play Go as well as AlphaGo), but it brings a breadth of competence that DeepMind’s individual models don’t have. It is akin to the difference between a champion sprinter and a decathlete; Manus is trying to be a decathlete in the AI sense. DeepMind 在强调基础研究和优化性能方面有着良好的记录(例如,AlphaGo 在围棋方面表现出色)。相比之下,Manus 在狭窄领域可能无法与专门的 DeepMind 模型相媲美(例如,它下围棋不如 AlphaGo),但它带来了 DeepMind 单个模型所不具备的广泛能力。这类似于短跑冠军和十项全能运动员之间的区别;Manus 试图成为人工智能领域的十项全能运动员。
One area to compare is reasoning and safety. DeepMind models often incorporate heavy doses of reinforcement learning and have excelled at planning in simulated environments (like game strategies). Manus also uses reinforcement learning for real-world task planning [7], effectively bringing that paradigm into more practical settings. Regarding safety, DeepMind has been cautious - for instance, Sparrow was designed with constraints to avoid unsafe answers. Manus claims to implement ethical constraints and transparency as well, but until more public data is available, it is hard to gauge how its safety mechanisms compare to DeepMind’s alignment work. It is likely that Manus’s developers have integrated rule-based filters or reward signals to discourage undesirable behavior, but OpenAI and DeepMind have had the advantage of iterative refinement in the public eye. 一个可以比较的领域是推理和安全性。DeepMind 模型通常包含大量的强化学习,并在模拟环境(如游戏策略)中的规划方面表现出色。Manus 也使用强化学习进行现实世界任务规划 [7],有效地将这种范式引入更实际的场景。在安全性方面,DeepMind 一直很谨慎——例如,Sparrow 的设计就带有避免不安全答案的限制。Manus 声称也实施了道德约束和透明度,但在获得更多公开数据之前,很难衡量其安全机制与 DeepMind 的对齐工作相比如何。Manus 的开发者很可能已经集成了基于规则的过滤器或奖励信号来阻止不良行为,但 OpenAI 和 DeepMind 在公众的关注下拥有迭代改进的优势。
In summary, while DeepMind (and Google’s AI efforts) might have more pure research power and resources behind them, Manus’s significance is in showing a working general AI agent tackling everyday tasks now. It stands as a proof of concept that the gap between experimental AI and practical general agents is closing. It remains to be seen if DeepMind’s upcoming systems (like Gemini) will incorporate similar agentive features and how they will stack up against Manus. 总而言之,虽然 DeepMind(以及谷歌的人工智能工作)可能拥有更纯粹的研究实力和资源,但 Manus 的重要性在于展示了一个正在运行的通用人工智能代理,它正在处理日常任务。它证明了实验性人工智能和实用通用代理之间的差距正在缩小。DeepMind 即将推出的系统(如 Gemini)是否会包含类似的代理功能以及它们将如何与 Manus 竞争,仍有待观察。
Manus AI vs. Anthropic's Claude and Others Manus AI 与 Anthropic 的 Claude 及其他模型
Anthropic, an AI safety and research company, has developed the Claude series of language models, which are direct competitors to OpenAI’s GPT models. Claude is known for its large context window and a training focus on helpfulness and harmlessness through a method called Constitutional AI 54. When comparing Manus AI to Anthropic’s Claude, one notes a similar dichotomy as with GPT-4: Claude is an extremely capable conversational model, but it does not natively perform multi-step tool-using tasks without external frameworks. Manus has been touted as surpassing Anthropic’s Claude on combined benchmarks of reasoning and action (being described as having capabilities beyond “Claude + tool use” in some commentaries). This is plausible given Claude was not primarily designed as an autonomous agent. Anthropic 是一家专注于人工智能安全和研究的公司,开发了 Claude 系列语言模型,这些模型是 OpenAI GPT 模型的直接竞争对手。Claude 以其大上下文窗口和通过一种名为“宪法式人工智能 54”的方法,专注于有用性和无害性训练而闻名。将 Manus AI 与 Anthropic 的 Claude 进行比较时,会发现与 GPT-4 类似的二分法:Claude 是一个功能强大的对话模型,但它不能在没有外部框架的情况下原生执行多步骤工具使用任务。Manus 被吹捧为在推理和行动的综合基准测试中超越了 Anthropic 的 Claude(在一些评论中被描述为具有超越“Claude + 工具使用”的能力)。考虑到 Claude 的主要设计目的并非作为自主代理,这是合理的。
Another perspective is that Manus was described as a fusion of “OpenAI’s DeepResearch [55] and Claude’s computer-use capabilities [56,” implying it took inspiration from strengths of both OpenAI and Anthropic models. Enthusiasts suggested that Manus combined OpenAI-level reasoning with Claude-like tool use, plus the added ability to write and execute its own code - resulting in what one observer called a “monster” of AI capability that arrived sooner than expected. 另一种观点是,Manus 被描述为“OpenAI 的 DeepResearch [55] 和 Claude 的计算机使用能力 [56]”的融合,这意味着它从 OpenAI 和 Anthropic 模型的优势中汲取了灵感。爱好者们认为,Manus 结合了 OpenAI 级别的推理能力和类似 Claude 的工具使用能力,再加上编写和执行自身代码的额外能力——导致一位观察者称之为“怪物”级的人工智能能力,且比预期更早出现。
Outside of Anthropic, there are other emerging AI systems. For example, new startups and big tech companies are launching their own general AI agents: Amazon’s experimental Nova project [57, or Elon Musk’s xAIx A I initiative with a model called Grok, are aimed at similar goals. Manus’s advantage of being first to showcase a fully autonomous general agent could be challenged as these players catch up. That said, according to industry commentary, compared to competitors like xAI’s Grok and Anthropic’s 除了 Anthropic,还有其他新兴的人工智能系统。例如,新的初创公司和大型科技公司正在推出自己的通用人工智能代理:亚马逊的实验性 Nova 项目 [57],或埃隆·马斯克的 xAIx A I 计划及其名为 Grok 的模型,都旨在实现类似的目标。Manus 作为首个展示完全自主通用代理的优势可能会受到挑战,因为这些参与者正在迎头赶上。尽管如此,根据行业评论,与 xAI 的 Grok 和 Anthropic 的
Claude, Manus’s autonomy and task completion capabilities are seen as differentiating advantages in this early stage [58]. Manus has set a high bar that others will now aim for. Claude 等竞争对手相比,Manus 的自主性和任务完成能力被视为在早期阶段的差异化优势 [58]。Manus 设定了一个高标准,其他公司现在将以此为目标。
It’s also worth mentioning smaller but notable contributors: H2O.ai’s h2oGPT-based agent [59] was leading the GAIA benchmark before Manus, demonstrating that even less prominent players can innovate. Manus overtook that score, highlighting the rapid progress in this area. In China, another project called DeepSeek gained attention earlier for an AI chatbot that became very popular 60. Manus is often compared as the next “DeepSeek moment,” but focusing on autonomy rather than just conversation. The Chinese tech ecosystem, backed by strong investment, means Manus might soon face domestic competition as well. 值得一提的是,还有一些规模较小但贡献显著的参与者:H2O.ai 基于 h2oGPT 的代理 [59] 在 Manus 之前一直引领 GAIA 基准测试,这表明即使是不太知名的参与者也能进行创新。Manus 超越了这一分数,凸显了该领域的快速进展。在中国,另一个名为 DeepSeek 的项目早些时候因其广受欢迎的 AI 聊天机器人而受到关注 60。Manus 经常被比作下一个“DeepSeek 时刻”,但它更侧重于自主性而非仅仅是对话。在中国科技生态系统强大的投资支持下,Manus 可能很快也会面临国内竞争。
In summary, the competitive landscape is vibrant. Manus AI sets itself apart with a focus on true autonomy and generality, whereas most other AI products currently excel either in conversational intelligence (like GPT-4, Claude) or in narrow domain mastery (like AlphaGo). Manus attempts to do both - to understand and to act - which is why it is seen as a step toward general AI agents. It is not necessarily that Manus has a fundamentally different kind of AI “brain” - it still relies on large language model technology similar to others - but it has an innovative system design that makes that brain much more usefully applied. If Manus’s approach proves effective, we can expect other AI leaders to integrate more agent-like behaviors into their systems. Manus has, in a sense, thrown down a gauntlet: showing what a focused team can accomplish by tightly integrating existing AI techniques (LLMs, RL, tool interfaces) into a single agent. The ultimate winners are likely to be users and businesses, who will gain access to increasingly powerful AI agents from multiple sources. 总而言之,竞争格局充满活力。Manus AI 凭借对真正自主性和通用性的关注而脱颖而出,而目前大多数其他 AI 产品要么擅长对话智能(如 GPT-4、Claude),要么擅长狭窄领域精通(如 AlphaGo)。Manus 试图两者兼顾——理解和行动——这就是为什么它被视为迈向通用 AI 代理的一步。这不一定意味着 Manus 拥有根本不同的 AI“大脑”——它仍然依赖于与其他 AI 类似的大语言模型技术——但它拥有创新的系统设计,使该大脑的应用更加有效。如果 Manus 的方法被证明有效,我们可以预期其他 AI 领导者会将更多代理类行为整合到他们的系统中。从某种意义上说,Manus 已经发出了挑战:展示了一个专注的团队如何通过将现有 AI 技术(LLMs、强化学习、工具接口)紧密集成到单个代理中来取得成就。最终的赢家很可能是用户和企业,他们将能够从多个来源获得越来越强大的 AI 代理。
5 Pros and Cons of Manus AI Manus AI 的 5 大优缺点
As an advanced AI agent, Manus AI exhibits a number of significant strengths, while also presenting certain limitations and challenges. Understanding these pros and cons is crucial for evaluating Manus’s overall impact and guiding future improvements. 作为一种先进的 AI 代理,Manus AI 展现出许多显著的优势,同时也存在一定的局限性和挑战。了解这些优缺点对于评估 Manus 的整体影响和指导未来的改进至关重要。
Strengths and Advantages 优势与长处
Autonomy and Efficiency: The foremost strength of Manus AI is its ability to operate autonomously once given a goal. This can dramatically increase efficiency in completing tasks. Users do not need to micromanage or break tasks into sub-tasks-Manus handles the entire process. In practical terms, this can save time and labor; tasks that might take a team of humans hours or days of coordination could be done by Manus in minutes or seconds. For example, generating a comprehensive market research report might normally involve researchers gathering data, analysts interpreting it, and writers compiling the document. Manus can perform all these stages by itself, from web scraping data to analysis to writing up results, thus collapsing workflows. 自主性与效率:Manus AI 最显著的优势在于,一旦给定目标,它就能自主运行。这能极大地提高任务完成效率。用户无需进行微管理或将任务分解为子任务——Manus 会处理整个过程。实际上,这可以节省时间和劳力;一个需要人类团队花费数小时或数天协调才能完成的任务,Manus 可以在几分钟或几秒钟内完成。例如,生成一份全面的市场研究报告通常需要研究人员收集数据、分析师解释数据以及撰稿人整理文档。Manus 可以独立完成所有这些阶段,从网络抓取数据到分析再到撰写结果,从而简化工作流程。
Versatility: Manus’s generalist design and multi-modal competence make it highly versatile. It can transition from one domain to another without needing to be re-engineered. This “jack of all trades” ability means a single instance of Manus AI could assist multiple departments of a company in different ways, or a single user in various aspects of life. Versatility also future-proofs Manus to an extent -if new tasks or tools emerge, Manus’s architecture is built to incorporate them (through additional training or integration) relatively easily, rather than having to create a new model from scratch. 多功能性:Manus 的通用设计和多模态能力使其具有高度的多功能性。它可以在无需重新设计的情况下从一个领域转换到另一个领域。这种“多面手”的能力意味着一个 Manus AI 实例可以以不同的方式协助公司的多个部门,或者协助单个用户处理生活的各个方面。多功能性还在一定程度上使 Manus 具有面向未来的能力——如果出现新的任务或工具,Manus 的架构旨在相对容易地整合它们(通过额外的训练或集成),而不是必须从头开始创建一个新模型。
State-of-the-Art Performance: Manus has demonstrated state-of-the-art performance on challenging benchmarks, as discussed earlier (GAIA results surpassing other models). While benchmarks aren’t everything, they indicate that Manus’s reasoning and problem-solving abilities are at the cutting edge. Its creators report that it achieves top-tier results even on the hardest task categories, outperforming contemporary AI models 40, 2. In user-facing trials, many have been impressed by Manus’s ability to handle tasks that other AI systems struggle with (like deeply multi-step queries or combining knowledge from disparate sources). Being ahead of competitors technologically gives Manus a first-mover advantage in the market for autonomous AI agents. 最先进的性能:如前所述(GAIA 结果超越其他模型),Manus 在具有挑战性的基准测试中展现了最先进的性能。虽然基准测试并非一切,但它们表明 Manus 的推理和解决问题的能力处于尖端水平。其创建者报告称,即使在最困难的任务类别中,它也能取得顶级结果,超越当代 AI 模型 40, 2。在面向用户的试验中,许多人对 Manus 处理其他 AI 系统难以应对的任务(如深度多步骤查询或整合来自不同来源的知识)的能力印象深刻。在技术上领先于竞争对手,使 Manus 在自主 AI 代理市场中拥有先发优势。
Tool Use and Integration: Manus’s adeptness at integrating with external systems is a huge practical advantage. It can plug into existing software ecosystems, meaning it can be deployed to work with a company’s current applications rather than requiring a whole new platform. Businesses can, for instance, connect Manus to their databases, CRM systems, or DevOps pipeline and have it execute actions. This integrated approach turns Manus into an “AI employee” of sorts that can actually press the buttons and not just advise. Competing AI that lack this integration act more like consultants that tell you what to do, whereas Manus can be the hands that do the work. 工具使用与集成:Manus 擅长与外部系统集成,这是一个巨大的实际优势。它可以与现有软件生态系统无缝衔接,这意味着它可以部署到公司当前的应用中,而无需全新的平台。例如,企业可以将 Manus 连接到其数据库、CRM 系统或 DevOps 流水线,并让它执行操作。这种集成方法将 Manus 变成了一种“AI 员工”,它不仅能提供建议,还能实际操作。缺乏这种集成的竞争性 AI 更像是顾问,告诉你该做什么,而 Manus 则是实际执行工作的双手。
Continuous Improvement: Manus AI is designed to learn from interactions. Over time and with more usage, it can become even more personalized and fine-tuned to its environment. This means Manus deployments have the potential to improve without major updates, as the system adapts to the specific data and preferences it encounters. Such continual learning is powerful; it’s akin to an employee gaining experience on the job. Of course, this requires careful handling to avoid drifting from correctness, but in controlled ways it means Manus today could be better than Manus yesterday if it’s learning from its mistakes. Moreover, the developers of Manus will likely refine the model with broader data and user feedback, addressing weaknesses and expanding knowledge, so the core AI will keep getting smarter and more capable. 持续改进:Manus AI 旨在从交互中学习。随着时间的推移和使用量的增加,它可以变得更加个性化,并更好地适应其环境。这意味着 Manus 的部署有可能在没有重大更新的情况下得到改进,因为系统会适应它遇到的特定数据和偏好。这种持续学习是强大的;它类似于员工在工作中积累经验。当然,这需要谨慎处理,以避免偏离正确性,但在受控的方式下,这意味着如果 Manus 从错误中学习,今天的 Manus 可能比昨天的 Manus 更好。此外,Manus 的开发者可能会通过更广泛的数据和用户反馈来完善模型,解决弱点并扩展知识,因此核心 AI 将会变得越来越智能和强大。
Global Reach and Language Support: Given its training on large-scale data, Manus AI likely supports multiple languages and can serve globally. This broad language capability means Manus can be beneficial in diverse linguistic contexts, an advantage in international applications compared to tools that might be English-centric. It can potentially mediate multilingual communication (e.g., translating while analyzing content) which adds to its utility in globally operating organizations. 全球覆盖和语言支持:鉴于其在大规模数据上的训练,Manus AI 可能支持多种语言并能服务全球。这种广泛的语言能力意味着 Manus 在不同的语言环境中都能发挥作用,与可能以英语为中心的工具相比,这在国际应用中具有优势。它有可能促进多语言交流(例如,在分析内容的同时进行翻译),这增加了它在全球运营组织中的实用性。
Limitations and Challenges 局限性与挑战
Lack of Transparency: One challenge with Manus AI, as with many deep learning-based systems, is that its decision-making process can be opaque. While it has a Verification agent that checks results, understanding exactly how Manus arrived at a complex decision can be non-trivial. This “black box” nature might concern users in high-stakes domains like healthcare or law, where being able to justify a decision is essential. The developers have stated the importance of transparency and ethical boundaries in Manus’s design, but it is not clear to what extent Manus can explain itself beyond providing the output. Improving explainability (for instance, having Manus produce a rationale or audit trail for its actions in human-readable terms) is an ongoing challenge. 缺乏透明度:Manus AI 与许多基于深度学习的系统一样,面临的一个挑战是其决策过程可能不透明。尽管它有一个验证代理来检查结果,但要确切了解 Manus 如何做出复杂决策并非易事。这种“黑箱”性质可能会让医疗或法律等高风险领域的用户感到担忧,因为在这些领域,能够证明决策的合理性至关重要。开发人员表示了透明度和道德界限在 Manus 设计中的重要性,但目前尚不清楚 Manus 除了提供输出之外,能在多大程度上解释自己。提高可解释性(例如,让 Manus 以人类可读的方式为其行为提供理由或审计跟踪)是一个持续的挑战。
Verification and Reliability: Although Manus has an internal verifier, no AI system is infallible. There may be cases where Manus executes a plan that turns out to be suboptimal or even wrong. If the Verification agent fails to catch an error or if the data sources Manus uses are flawed, it could produce incorrect results confidently. For example, if Manus is gathering information from the web and it encounters misinformation, it might incorporate that into its analysis. Current AI models are known to sometimes “hallucinate” facts or logic. Manus’s added structure might reduce that, but not eliminate it. Therefore, handing over critical tasks entirely to Manus carries risk until it has an extensive track record. Human oversight or review may still be needed for important outputs, which partially offsets the autonomy advantage. 验证与可靠性:尽管 Manus 具有内部验证器,但没有任何 AI 系统是万无一失的。在某些情况下,Manus 执行的计划可能最终是次优的甚至是错误的。如果验证代理未能发现错误,或者 Manus 使用的数据源存在缺陷,它可能会自信地产生不正确的结果。例如,如果 Manus 从网络收集信息并遇到错误信息,它可能会将其纳入分析。目前的 AI 模型有时会“幻觉”事实或逻辑。Manus 增加的结构可能会减少这种情况,但不能消除。因此,在 Manus 拥有广泛的记录之前,将关键任务完全交给它存在风险。对于重要输出,可能仍需要人工监督或审查,这部分抵消了自主性优势。
Data Privacy and Security: For Manus to function effectively, it often needs access to sensitive data (medical records, financial information, internal business documents, etc.). This raises concerns about data privacy and security. Organizations might be hesitant to plug Manus in with full access to their data silos without robust assurances that it won’t misuse or leak that information. Any vulnerability in Manus’s integration (like connecting to external tools) could be a vector for cyberattacks or data breaches. Additionally, if Manus is a cloud-based service, there are the usual concerns about storing data externally. These are not unique to Manus, but its broad applicability means it will frequently face scenarios involving protected information (e.g., patient data under HIPAA 61], consumer data under GDPR [62]). Addressing these requires strong encryption, access controls, and possibly on-premise deployment options where necessary so data doesn’t leave a company’s secure environment. 数据隐私和安全:为了使 Manus 有效运行,它通常需要访问敏感数据(医疗记录、财务信息、内部业务文档等)。这引发了对数据隐私和安全的担忧。如果没有强有力的保证,组织可能会犹豫是否让 Manus 完全访问其数据孤岛,以防其滥用或泄露信息。Manus 集成中的任何漏洞(例如连接到外部工具)都可能成为网络攻击或数据泄露的载体。此外,如果 Manus 是基于云的服务,则存在将数据存储在外部的常见担忧。这些并非 Manus 独有,但其广泛适用性意味着它将经常面临涉及受保护信息(例如,HIPAA [61] 下的患者数据,GDPR [62] 下的消费者数据)的场景。解决这些问题需要强大的加密、访问控制,以及在必要时可能需要本地部署选项,以便数据不会离开公司的安全环境。
Computational Resources: Running a system as complex as Manus AI is likely computationally intensive. The multi-agent architecture and large underlying model require significant processing power, especially for real-time performance. This could translate into high operational costs or the need for specialized hardware (such as ASIC). For users, it might mean that using Manus extensively (e.g., for large-scale automation) incurs notable cloud computing expenses, which could be a barrier compared to simpler automation scripts or even human labor in some cases. Over time, as hardware improves and the model is optimized, this cost will come down, but at present, the cost and scalability of the backend might limit Manus’s deployment for extremely large-scale or latency-sensitive scenarios. 计算资源:运行像 Manus AI 这样复杂的系统可能需要大量的计算资源。多智能体架构和大型底层模型需要强大的处理能力,尤其是在追求实时性能时。这可能导致高昂的运营成本或需要专用硬件(如 ASIC)。对于用户而言,这意味着广泛使用 Manus(例如,进行大规模自动化)可能会产生可观的云计算费用,与更简单的自动化脚本甚至某些情况下的体力劳动相比,这可能成为一个障碍。随着时间的推移,硬件的改进和模型的优化将降低这一成本,但目前,后端成本和可扩展性可能会限制 Manus 在超大规模或对延迟敏感的场景中的部署。
Accessibility and Availability: As noted, Manus AI has so far been released in a limited manner (invitation-only web preview). Currently it is not broadly accessible to all who might want to use it, which could slow the accumulation of community trust and widespread adoption. If this exclusivity continues, it may give competitors time to catch up or reduce Manus’s mindshare. Additionally, if the model and agent run on centralized servers, users are dependent on the service being operational. Any downtime or outages on Manus’s platform could disrupt businesses that rely on it. In contrast, some may 可访问性和可用性:如前所述,Manus AI 迄今为止以有限的方式发布(仅限邀请的网络预览)。目前,它尚未广泛开放给所有可能希望使用它的人,这可能会减缓社区信任的积累和广泛采用。如果这种排他性持续下去,可能会给竞争对手追赶的时间,或降低 Manus 的市场份额。此外,如果模型和代理在集中式服务器上运行,用户将依赖于服务的正常运行。Manus 平台上的任何停机或中断都可能扰乱依赖它的业务。相比之下,有些人可能
prefer self-hosted or offline-capable AI systems for mission-critical tasks that demand maximum uptime. Providing clear availability guarantees or offline modes is a challenge Manus’s providers would need to address for enterprise acceptance. 更喜欢自托管或离线运行的 AI 系统,以应对需要最大正常运行时间的任务关键型工作。提供明确的可用性保证或离线模式是 Manus 提供商需要解决的挑战,以获得企业认可。
Ethical and Control Issues: Granting an AI agent autonomy to execute tasks raises ethical and control considerations. Manus can act like a super-assistant, but one must be cautious about what it is allowed to do. For instance, if Manus is used in finance to execute trades and it makes a wrong judgment, who is accountable? If it’s used in HR and inadvertently shows bias in hiring recommendations (perhaps reflecting biases in the training data), this could cause fairness issues. Ensuring Manus’s decisions align with human values and company policies is an ongoing challenge. The developers must carefully encode constraints and monitor outputs to prevent undesirable behavior (like privacy violations, biased decisions, or unsafe actions). This is part of AI ethics. While Manus is built with an emphasis on following rules and maintaining transparency, constant vigilance is needed as the system encounters new situations. Organizations using Manus will likely need to establish guidelines for its use and have fallbacks if the AI behaves unexpectedly. 伦理和控制问题:赋予 AI 代理自主执行任务的能力会引发伦理和控制方面的考量。Manus 可以像一个超级助手一样运作,但必须谨慎对待它被允许做的事情。例如,如果 Manus 在金融领域用于执行交易,并且它做出了错误的判断,谁来承担责任?如果它在人力资源领域使用,并且在招聘建议中无意中表现出偏见(可能反映了训练数据中的偏见),这可能会导致公平性问题。确保 Manus 的决策与人类价值观和公司政策保持一致是一个持续的挑战。开发人员必须仔细编码约束并监控输出,以防止不良行为(如侵犯隐私、有偏见的决策或不安全的行为)。这是 AI 伦理的一部分。虽然 Manus 的构建强调遵循规则和保持透明度,但随着系统遇到新情况,需要持续保持警惕。使用 Manus 的组织可能需要为其使用制定指导方针,并在 AI 行为异常时有备用方案。
In summary, Manus AI’s pros position it as a groundbreaking tool that can drive efficiency and innovation across many fields. Its cons remind us that it is not a magic infallible entity but a technology with limitations that must be managed. Overcoming issues like transparency, reliability, and security will be key to Manus AI’s sustained success and acceptance. Many of these challenges are active areas of development, and we expect improvements as Manus and similar agents evolve. 总而言之,Manus AI 的优点使其成为一个突破性的工具,能够推动许多领域的效率和创新。它的缺点提醒我们,它不是一个神奇的、万无一失的实体,而是一种有局限性的技术,必须加以管理。克服透明度、可靠性和安全性等问题将是 Manus AI 持续成功和被接受的关键。其中许多挑战都是活跃的开发领域,我们预计随着 Manus 和类似代理的演进,会有所改进。
6 Future Prospects 6 未来前景
Manus AI represents an early leap into a new category of AI systems, and its trajectory will be shaped by both technological progress and how society chooses to embrace such agents. Looking ahead, there are several key areas where Manus AI and its successors are likely to evolve, as well as broader impacts they may have on the field of AI and on society at large. Manus AI 代表着向新型 AI 系统迈出的早期一步,其发展轨迹将由技术进步和社会选择如何接纳此类代理共同塑造。展望未来,Manus AI 及其后继者可能会在几个关键领域发展,并对 AI 领域和整个社会产生更广泛的影响。
Advancements in Capabilities 能力提升
In future iterations, we can expect Manus AI to expand its toolkit and refine its skills. One anticipated development is the expansion of tool integrations 4. Today Manus might be able to use web browsers, office applications, and coding environments; tomorrow it could seamlessly integrate with a much larger array of third-party services and hardware. For example, we might see Manus tie into engineering design software (to act as an AI CAD designer), biotech lab equipment (to function as a lab assistant controlling experiments), or personal smart home devices (acting as an AI butler for home automation). Each new integration would increase Manus’s utility and domain reach. 在未来的迭代中,我们可以期待 Manus AI 扩展其工具包并完善其技能。一个预期的发展是工具集成 4 的扩展。今天,Manus 可能能够使用网络浏览器、办公应用程序和编码环境;明天,它可能会与更多第三方服务和硬件无缝集成。例如,我们可能会看到 Manus 与工程设计软件(充当 AI CAD 设计师)、生物技术实验室设备(充当控制实验的实验室助手)或个人智能家居设备(充当家庭自动化的 AI 管家)连接。每一次新的集成都将增加 Manus 的实用性和领域覆盖范围。
Another area of growth is enhanced multi-modal perception 4 . While Manus already handles text and images, future versions may achieve deeper understanding of audio (e.g., transcribing and interpreting real-time conversations or sound cues), video (e.g., analyzing live video feeds or assisting with video editing in real-time), and even haptic or spatial data (if connected to robots or IoT sensors). This would make Manus a more perceptive agent in physical environments. For instance, pairing it with security cameras could allow Manus to monitor physical premises and trigger actions (like notifying authorities or adjusting building controls) based on what it “sees.” Essentially, Manus could evolve from a mostly digital-world agent to one that also navigates and responds to the physical world. 另一个增长领域是增强的多模态感知 4。虽然 Manus 已经处理文本和图像,但未来版本可能会更深入地理解音频(例如,转录和解释实时对话或声音提示)、视频(例如,分析实时视频馈送或协助实时视频编辑),甚至触觉或空间数据(如果连接到机器人或物联网传感器)。这将使 Manus 成为物理环境中更具感知力的代理。例如,将其与安全摄像头配对,可以使 Manus 监控物理场所并根据其“看到”的内容触发操作(例如通知当局或调整建筑控制)。本质上,Manus 可以从一个主要在数字世界中运行的代理,演变为一个也能在物理世界中导航和响应的代理。
Another likely focus is learning and adaptation. We might see Manus incorporate advanced online learning algorithms that let it update its knowledge base or model parameters as it encounters new data (with safety checks). If achieved, Manus could become more personalized and current without needing full retraining by its developers. Imagine a corporate Manus AI that gradually learns the specific terminology and procedures of that company over time, becoming uniquely expert in that organization’s operations. Techniques like federated learning (learning from user data in a decentralized way) could be employed to maintain privacy while improving the model on the fly. 另一个可能的重点是学习和适应。我们可能会看到 Manus 整合先进的在线学习算法,使其在遇到新数据时(带有安全检查)更新其知识库或模型参数。如果实现,Manus 可以变得更加个性化和及时,而无需其开发人员进行全面再训练。想象一下一个企业 Manus AI,它随着时间的推移逐渐学习该公司的特定术语和程序,从而在该组织的运营中成为独一无二的专家。可以采用联邦学习(以去中心化的方式从用户数据中学习)等技术来维护隐私,同时即时改进模型。
Wider Deployment and Use Cases 更广泛的部署和用例
If Manus AI continues to prove its worth, we can expect much wider deployment. In the enterprise sector, general AI agents could become as common as databases or cloud services. Companies might have an AI agent integrated into many departments handling cross-functional tasks. This could lead to workflow redesign: organizations may restructure around what tasks humans do versus AI agents. 如果 Manus AI 继续证明其价值,我们可以预见其将得到更广泛的部署。在企业领域,通用 AI 代理可能会像数据库或云服务一样普及。公司可能会在许多部门集成 AI 代理,处理跨职能任务。这可能导致工作流程的重新设计:组织可能会围绕人类与 AI 代理各自承担的任务进行重组。
Routine analytical tasks might be largely handed off to AI, while humans focus on creative, strategic, or interpersonal roles. New job categories might emerge, like “AI workflow manager” or “AI ethicist,” who specialize in overseeing AI agents like Manus. 常规分析任务可能主要由 AI 承担,而人类则专注于创造性、战略性或人际交往角色。新的工作类别可能会出现,例如“AI 工作流经理”或“AI 伦理学家”,他们专门负责监督像 Manus 这样的 AI 代理。
For individual consumers, perhaps a future Manus-like assistant becomes a ubiquitous personal com-panion-far more powerful and proactive than today’s voice assistants (like Siri or Alexa). It could manage one’s schedule, finances, communications, and more in an integrated way. The convenience could be profound, though it also raises questions of dependency and privacy (entrusting so much to an AI). It’s quite possible that competition in this space will produce consumer-facing general agents derived from the Manus concept, each integrated into tech ecosystems from different providers. 对于个人消费者而言,未来类似 Manus 的助手或许会成为无处不在的个人伴侣——比当今的语音助手(如 Siri 或 Alexa)更强大、更主动。它能够以集成的方式管理个人的日程、财务、通信等。这种便利性可能意义深远,但也引发了依赖性和隐私问题(将如此多的事务委托给 AI)。很有可能,该领域的竞争将催生出源自 Manus 概念的面向消费者的通用代理,每个代理都集成到不同提供商的技术生态系统中。
We may also witness collaboration between AI agents. If many general agents exist, they might communicate to coordinate on large tasks - essentially a network of Manus instances dividing and conquering a massive problem (for example, climate data analysis or large-scale economic modeling). Standard protocols for AI-to-AI collaboration could develop. Alternatively, one Manus could consult another specialized AI as a tool, orchestrating not just software APIs but other AI services (think Manus invoking a medical diagnosis model as needed). This synergy of AI systems could amplify what each can do alone. 我们也可能见证 AI 代理之间的协作。如果存在许多通用代理,它们可能会相互通信以协调大型任务——本质上是一个 Manus 实例网络,分而治之地解决一个庞大的问题(例如,气候数据分析或大规模经济建模)。AI 到 AI 协作的标准协议可能会随之发展。或者,一个 Manus 可以将另一个专业 AI 作为工具进行咨询,不仅协调软件 API,还协调其他 AI 服务(想象一下 Manus 在需要时调用医疗诊断模型)。这种 AI 系统的协同作用可以放大每个系统单独能做的事情。
Influence on AI Research and Development 对人工智能研发的影响
The advent of Manus AI could significantly influence the direction of AI research. It provides a concrete demonstration that combining language models with planning, memory, and tool use yields powerful results. We will likely see more research into agentive AI frameworks. Competing approaches, such as those from academic labs or open-source communities, will iterate on multi-agent architectures, exploring different ways to split tasks among sub-agents or even using different cognitive architectures beyond Transformers. There may be experiments with agents that incorporate symbolic reasoning modules to improve reliability in areas like mathematics or logic. Manus AI 的出现可能会显著影响人工智能研究的方向。它具体证明了将语言模型与规划、记忆和工具使用相结合可以产生强大的结果。我们可能会看到更多关于代理式人工智能框架的研究。竞争方法,例如来自学术实验室或开源社区的方法,将迭代多代理架构,探索在子代理之间分配任务的不同方式,甚至使用超越 Transformer 的不同认知架构。可能会有实验将符号推理模块整合到代理中,以提高数学或逻辑等领域的可靠性。
This progress could accelerate movement toward what many consider the holy grail: Artificial General Intelligence (AGI). Manus itself might not be AGI, but it points in that direction by being able to handle variety and showing a glimmer of adaptive, general problem-solving. Future research might focus on increasing the generality even more - ensuring the AI has fewer blind spots or knowledge gaps, making it better at transfer learning (applying knowledge from one domain to a completely new one), and integrating it with formal reasoning to reduce errors. Manus’s success (if it continues) will validate the concept that a system-oriented approach (multiple components + learning) can achieve more general behavior without requiring an impossibly perfect single model. This could shift some research from purely scaling models up to also composing them in smarter ways. 这一进展可能会加速向许多人认为的“圣杯”——通用人工智能(AGI)——迈进。Manus 本身可能不是 AGI,但它通过处理多样性并展现出适应性、通用问题解决能力的一丝曙光,指明了这一方向。未来的研究可能会更侧重于提高通用性——确保人工智能的盲点或知识空白更少,使其更好地进行迁移学习(将一个领域的知识应用于一个全新的领域),并将其与形式推理相结合以减少错误。Manus 的成功(如果它继续下去)将验证这样一个概念:系统导向的方法(多个组件 + 学习)可以实现更通用的行为,而无需一个不可能完美的单一模型。这可能会将一些研究从纯粹地扩大模型规模转向以更智能的方式组合模型。
We might also see more emphasis on benchmarks and standards for AI agents. GAIA is one such benchmark; others will likely be developed to measure an AI agent’s practical usefulness, safety, and generality. Manus’s top ranking will be challenged, and competitive benchmarking will drive improvements across the industry, akin to how benchmarks like ImageNet drove rapid progress in vision models in the 2010s. 我们也可能会看到更多地强调人工智能代理的基准和标准。GAIA 就是这样一个基准;可能会开发其他基准来衡量人工智能代理的实际效用、安全性和通用性。Manus 的榜首地位将受到挑战,竞争性基准测试将推动整个行业的改进,类似于 ImageNet 等基准在 2010 年代推动视觉模型快速发展的方式。
Societal Impact and Considerations 社会影响与考量
The proliferation of Manus-like AI will have broad societal implications. In the workplace, as mentioned, there could be displacement of certain job functions. Tasks that are routine, data-heavy, or procedural might largely shift from humans to AIs. This doesn’t necessarily mean eliminating jobs; it might transform jobs. Professionals might have an AI on their team as a junior (albeit very capable) teammate. Education and training may adapt to focus on skills that complement AI (like oversight, complex creative thinking, or emotional intelligence) rather than compete with it. 类 Manus 人工智能的普及将产生广泛的社会影响。如前所述,在工作场所,某些工作职能可能会被取代。常规的、数据密集型的或程序性的任务可能会大量从人类转移到人工智能。这不一定意味着消除工作;它可能会改变工作。专业人士的团队中可能会有一个人工智能作为初级(尽管能力很强)的队友。教育和培训可能会调整,以侧重于补充人工智能的技能(如监督、复杂的创造性思维或情商),而不是与人工智能竞争。
There is also the possibility of democratizing expertise. If everyone has access to an AI agent that is a competent lawyer, doctor, accountant, and engineer all-in-one, that could greatly reduce barriers to knowledge and services. People in remote or underserved areas could get expert advice via AI when human experts are not available. This is an optimistic outlook: AI as a great equalizer. The counterpoint is ensuring the advice is accurate and that people don’t overly rely on it without proper context (e.g., misinterpreting medical guidance without a real doctor involved at some point). 还有专家知识民主化的可能性。如果每个人都能接触到一个集称职的律师、医生、会计师和工程师于一身的人工智能代理,那将大大降低获取知识和服务的障碍。偏远或服务不足地区的人们在无法获得人类专家时,可以通过人工智能获得专家建议。这是一种乐观的展望:人工智能作为一种伟大的均衡器。反驳的观点是确保建议的准确性,以及人们在没有适当背景的情况下不过度依赖它(例如,在没有真正的医生参与的情况下误解医疗指导)。
From an innovation standpoint, having AI agents handle a lot of grunt work might supercharge human creativity and entrepreneurship. Imagine an individual or a small startup able to achieve what currently takes a whole company, because their AI agents handle marketing, coding, design, and logistics in the 从创新的角度来看,让人工智能代理处理大量繁琐的工作可能会极大地激发人类的创造力和创业精神。想象一下,一个人或一家小型初创公司能够完成目前需要整个公司才能完成的工作,因为他们的人工智能代理处理营销、编码、设计和物流。
background. This could lead to a burst of innovation and productivity, as well as new business models we haven’t thought of yet. 背景。这可能带来创新和生产力的爆发,以及我们尚未想到的新商业模式。
However, concerns will remain around AI alignment and control. As these agents become more powerful and possibly are given more autonomy (for example, managing critical infrastructure or financial systems), ensuring they remain aligned with human values is paramount. Ongoing research in AI safety will likely intensify, aiming to formally verify that agents do not act outside of allowed bounds. Manus’s developers and others might incorporate more rigorous guardrails, perhaps limiting the scope of actions in high-risk domains until confidence is extremely high. We may also see policymakers stepping in to set guidelines for autonomous AI behavior. 然而,围绕人工智能对齐和控制的担忧将依然存在。随着这些智能体变得更加强大,并可能被赋予更多自主权(例如,管理关键基础设施或金融系统),确保它们与人类价值观保持一致至关重要。人工智能安全方面的持续研究可能会加剧,旨在正式验证智能体不会超出允许的范围行事。Manus 的开发者和其他人可能会引入更严格的防护措施,或许在高风险领域限制行动范围,直到信心极高。我们也可能会看到政策制定者介入,为自主人工智能行为设定指导方针。
On the policy front, governments may start to regulate AI agents specifically. We might see certification requirements for AI used in medicine or finance, for instance. There could be discussions about whether an AI must identify itself as such when interacting (to avoid confusion or deception). Liability frameworks will need updating: if an autonomous agent causes harm, who is legally responsible? These legal and ethical frameworks will evolve as agents like Manus become integrated into daily life. 在政策方面,政府可能会开始专门规范人工智能智能体。例如,我们可能会看到用于医疗或金融领域的人工智能的认证要求。可能会有关于人工智能在交互时是否必须表明其身份(以避免混淆或欺骗)的讨论。责任框架需要更新:如果自主智能体造成损害,谁应承担法律责任?随着像 Manus 这样的智能体融入日常生活,这些法律和道德框架将不断演变。
In conclusion, the future for Manus AI and similar general AI agents is one of tremendous potential coupled with significant responsibility. The next few years will likely see rapid improvements in the technology, broader adoption in many fields, and a vigorous global dialogue about how to maximize the benefits of such AI while managing the risks. Manus AI has set in motion what might be one of the most important technological shifts of the coming decade - one where AI moves from the role of a tool to that of a partner or autonomous colleague in virtually every human endeavor. 总而言之,Manus AI 和类似的通用人工智能智能体的未来充满了巨大的潜力,同时也伴随着重大的责任。未来几年,这项技术可能会迅速改进,在许多领域得到更广泛的应用,并引发一场关于如何最大限度地发挥此类人工智能的益处同时管理其风险的全球性激烈对话。Manus AI 已经启动了可能是未来十年最重要的技术变革之一——人工智能将从工具的角色转变为几乎所有人类努力中的伙伴或自主同事。
7 Conclusion 7 结论
Manus AI stands at the forefront of a new generation of AI systems that combine understanding, reasoning, and action. In this paper, we have surveyed the landscape of Manus AI: starting from its innovative architecture that interweaves multiple specialized agents with a powerful core model, through its wide-ranging applications across industries, to its standing among contemporaries and the strengths and weaknesses that define it. Manus AI’s ability to autonomously plan and execute tasks marks a significant departure from the assistive AI paradigms that have dominated in recent years. It embodies the transition toward AI that not only answers questions but delivers results. Manus AI 站在新一代人工智能系统的前沿,这些系统集理解、推理和行动于一体。在本文中,我们对 Manus AI 的全貌进行了调查:从其将多个专业代理与强大核心模型交织在一起的创新架构,到其在各行各业的广泛应用,再到其在同类产品中的地位以及定义其优缺点的因素。Manus AI 能够自主规划和执行任务,这标志着与近年来主导的辅助性人工智能范式截然不同。它体现了人工智能从仅仅回答问题向提供结果的转变。
Our exploration shows that Manus AI can potentially revolutionize fields as diverse as healthcare, finance, robotics, entertainment, customer service, manufacturing, and education. By serving as a tireless and knowledgeable assistant, it augments human capability and promises efficiency gains and innovations that are just beginning to be realized. At the same time, the comparisons with other AI leaders like OpenAI, DeepMind, and Anthropic highlight that Manus is part of a broader momentum in AI—various organizations are converging on the idea of more agentive, general AI, though with different implementations. Manus currently leads in some benchmarks of real-world problem-solving [40, but competition will spur all players to improve, ultimately benefiting users and society. 我们的探索表明,Manus AI 有可能彻底改变医疗保健、金融、机器人、娱乐、客户服务、制造业和教育等不同领域。通过充当一个不知疲倦、知识渊博的助手,它增强了人类的能力,并有望带来效率提升和创新,而这些才刚刚开始实现。与此同时,与 OpenAI、DeepMind 和 Anthropic 等其他人工智能领导者的比较表明,Manus 是人工智能更广泛发展势头的一部分——尽管实施方式不同,但各种组织正在趋向于更具代理性、更通用的人工智能理念。Manus 目前在一些实际问题解决的基准测试中处于领先地位 [40],但竞争将促使所有参与者改进,最终造福用户和社会。
We also delved into the pros and cons of Manus AI. Its autonomy, versatility, and performance are balanced by concerns over transparency, reliability, and the need for robust ethical guardrails. These are active areas of development. How well Manus addresses these issues will influence trust and adoption. Responsible deployment will be key to ensuring that the technology amplifies human potential without causing inadvertent harm or disruption. 我们还深入探讨了 Manus AI 的优缺点。其自主性、多功能性和性能与透明度、可靠性以及对强大道德护栏的需求等问题相平衡。这些都是积极的开发领域。Manus 如何很好地解决这些问题将影响信任和采用。负责任的部署将是确保该技术在不造成意外伤害或中断的情况下增强人类潜力的关键。
Looking ahead, the evolution of Manus AI and its successors is poised to be rapid. We anticipate ongoing improvements in capability, broader deployment scenarios, and consequential impacts on work and daily life. Manus AI might be a precursor to systems that eventually qualify as a form of artificial general intelligence, albeit likely operating under human oversight and in partnership with us. Its success will inform design principles for such future AI-demonstrating the importance of features like multiagent coordination, tool use, and continuous learning in achieving generality. 展望未来,Manus AI 及其后续产品的演变将是迅速的。我们预计能力将持续改进,部署场景将更广泛,并对工作和日常生活产生重大影响。Manus AI 可能是最终符合某种形式的通用人工智能的系统的前身,尽管它可能在人类监督下并与我们合作运行。它的成功将为未来此类人工智能的设计原则提供信息——展示了多代理协调、工具使用和持续学习等功能在实现通用性方面的重要性。
In conclusion, Manus AI can be seen as both a milestone and a harbinger. It is a milestone in that it has showcased what is possible when AI is designed to think and act in tandem, solving problems in an end-to-end fashion. It is a harbinger in that it foreshadows a near future where intelligent agents are commonplace, handling myriad tasks and collaborating with humans on complex endeavors. The arrival of Manus AI underscores the rapid progress of AI advancements and offers a glimpse into an era where the boundaries between human work and machine work become increasingly fluid. 总而言之,Manus AI 既是一个里程碑,也是一个预兆。说它是里程碑,是因为它展示了当 AI 被设计成协同思考和行动,以端到端的方式解决问题时,所能实现的可能性。说它是预兆,是因为它预示着在不久的将来,智能代理将变得司空见惯,处理各种任务,并与人类在复杂的项目中协作。Manus AI 的出现突显了 AI 进步的迅速,并让我们得以一窥人类工作和机器工作之间的界限日益模糊的时代。
The journey of Manus AI is just beginning, but it encapsulates many of the hopes and challenges of the AI community. If developed and deployed thoughtfully, Manus AI and systems like it have the potential to drive tremendous positive change - enhancing productivity, fostering innovation, and even Manus AI 的旅程才刚刚开始,但它包含了 AI 社区的许多希望和挑战。如果经过深思熟虑的开发和部署,Manus AI 和类似的系统有潜力推动巨大的积极变革——提高生产力,促进创新,甚至
helping address global challenges by providing powerful new tools for problem-solving. It also urges us to proactively address the ethical and societal dimensions of AI. The importance of Manus AI thus goes beyond its technical specifications; it invites us all to participate in shaping how such autonomous AI agents will integrate into our world. The coming years will reveal how this balance is struck, and Manus AI will undoubtedly be a central case study in that unfolding story. 通过提供强大的新问题解决工具,帮助应对全球挑战。它还敦促我们积极应对 AI 的伦理和社会维度。因此,Manus AI 的重要性超越了其技术规范;它邀请我们所有人参与塑造这些自主 AI 代理将如何融入我们的世界。未来几年将揭示这种平衡将如何实现,而 Manus AI 无疑将成为这一展开故事中的一个核心案例研究。
References 参考文献
[1] OpenAI. GPT-4 Technical Report. Technical report, OpenAI, 2023. [1] OpenAI。GPT-4 技术报告。技术报告,OpenAI,2023。
[2] The next deepseek moment? chinese start-up monica unveils ‘manus’, claiming world’s first ai that can think like humans. Malay Mail. Tech & Gadgets News. [2] 下一个深思时刻?中国初创公司 Monica 发布“Manus”,声称是全球首个能像人类一样思考的 AI。马来邮报。科技与小工具新闻。
[3] Another chinese company rattles silicon valley, manus ai stuns tech world with deepseek-level performance in complex task handling; is agi closer than we think? The Economic Times. [3] 另一家中国公司震撼硅谷,Manus AI 在复杂任务处理中展现出深思级别的性能,震惊科技界;AGI 比我们想象的更近了吗?经济时报。
[4] LLMHacker. Manus AI: The Best Autonomous AI Agent Redefining Automation and Productivity. https://huggingface.co/blog/LLMhacker/manus-ai-best-ai-agent, 2025. Hugging Face Blog, published Mar. 6, 2025. [4] LLMHacker。Manus AI:重新定义自动化和生产力的最佳自主 AI 代理。https://huggingface.co/blog/LLMhacker/manus-ai-best-ai-agent,2025。Hugging Face 博客,2025 年 3 月 6 日发布。
[5] Manus AI: China’s Revolutionary AI Agent Set to Disrupt Global Industries. https://pandayoo. com/post/manus-ai-chinas-revolutionary-ai-agent-set-to-disrupt-global-industries/, 2025. PandaYoo Tech Blog, 2025. [5] Manus AI:中国革命性 AI 代理将颠覆全球产业。https://pandayoo.com/post/manus-ai-chinas-revolutionary-ai-agent-set-to-disrupt-global-industries/,2025。PandaYoo 科技博客,2025。
[6] Ao Li, Yuexiang Xie, Songze Li, Fugee Tsung, Bolin Ding, and Yaliang Li. Agent-oriented planning in multi-agent systems. arXiv preprint arXiv:2410.02189, 2024. [6] Ao Li, Yuexiang Xie, Songze Li, Fugee Tsung, Bolin Ding, and Yaliang Li. 多智能体系统中的面向智能体规划。arXiv 预印本 arXiv:2410.02189, 2024。
[7] Unveiling manus: The autonomous ai agent set to outperform openai models. China.org.cn, 2025. [7] 揭秘 manus:旨在超越 OpenAI 模型的自主人工智能智能体。China.org.cn, 2025。
[8] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. Advances in neural information processing systems, 35:2773027744, 2022. [8] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 训练语言模型以遵循人类反馈指令。神经信息处理系统进展,35:2773027744, 2022。
[9] Yingzhou Lu, Chiung-Ting Wu, Sarah J Parker, Zuolin Cheng, Georgia Saylor, Jennifer E Van Eyk, Guoqiang Yu, Robert Clarke, David M Herrington, and Yue Wang. Cot: an efficient and accurate method for detecting marker genes among many subtypes. Bioinformatics Advances, 2(1):vbac037, 2022. [9] Yingzhou Lu, Chiung-Ting Wu, Sarah J Parker, Zuolin Cheng, Georgia Saylor, Jennifer E Van Eyk, Guoqiang Yu, Robert Clarke, David M Herrington, and Yue Wang. Cot:一种在众多亚型中检测标记基因的高效准确方法。生物信息学进展,2(1):vbac037, 2022。
[10] Emily Newton. Applying ai to improve the pharmaceutical industry. AI Magazine, 2022.
[11] Yuelyu Ji, Zhuochun Li, Rui Meng, Sonish Sivarajkumar, Yanshan Wang, Zeshui Yu, Hui Ji, Yushui Han, Hanyu Zeng, and Daqing He. Rag-rlrc-laysum at biolaysumm: Integrating retrieval-augmented generation and readability control for layman summarization of biomedical texts. arXiv preprint arXiv:2405.13179, 2024.
[12] Yuelyu Ji, Wenhe Ma, Sonish Sivarajkumar, Hang Zhang, Eugene Mathew Sadhu, Zhuochun Li, Xizhi Wu, Shyam Visweswaran, and Yanshan Wang. Mitigating the risk of health inequity exacerbated by large language models. arXiv preprint arXiv:2410.05180, 2024.
[13] Chenqian Le, Ziheng Gong, Chihang Wang, Haowei Ni, Panfeng Li, and Xupeng Chen. Instruction tuning and cot prompting for contextual medical qa with llms. In 2025 International Conference on Artificial Intelligence, Human-Computer Interaction and Natural Language Processing (ICAHN). IEEE, 2025.
[14] Shuroug A Alowais, Sahar S Alghamdi, Nada Alsuhebany, Tariq Alqahtani, Abdulrahman I Alshaya, Sumaya N Almohareb, Atheer Aldairem, Mohammed Alrashed, Khalid Bin Saleh, Hisham A Badreldin, et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC medical education, 23(1):689, 2023. [14] Shuroug A Alowais, Sahar S Alghamdi, Nada Alsuhebany, Tariq Alqahtani, Abdulrahman I Alshaya, Sumaya N Almohareb, Atheer Aldairem, Mohammed Alrashed, Khalid Bin Saleh, Hisham A Badreldin, et al. 彻底改变医疗保健:人工智能在临床实践中的作用。BMC 医学教育,23(1):689, 2023。
[15] Philip Treleaven, Michal Galas, and Vidhi Lalchand. Algorithmic trading review. Commun. ACM, 56(11):76-85, November 2013. [15] Philip Treleaven, Michal Galas, and Vidhi Lalchand. 算法交易综述。Commun. ACM, 56(11):76-85, 2013 年 11 月。
[16] Haowei Ni, Shuchen Meng, Xupeng Chen, Ziqing Zhao, Andi Chen, Panfeng Li, Shiyao Zhang, Qifu Yin, Yuanqing Wang, and Yuxi Chan. Harnessing earnings reports for stock predictions: A qlora-enhanced llm approach. In 2024 6th International Conference on Data-driven Optimization of Complex Systems (DOCS), page 909-915. IEEE, August 2024. [16] Haowei Ni, Shuchen Meng, Xupeng Chen, Ziqing Zhao, Andi Chen, Panfeng Li, Shiyao Zhang, Qifu Yin, Yuanqing Wang, and Yuxi Chan. 利用财报进行股票预测:一种 QLoRA 增强的 LLM 方法。收录于 2024 年第六届复杂系统数据驱动优化国际会议 (DOCS),第 909-915 页。IEEE,2024 年 8 月。
[17] Identity Management Institute. Ai fraud prevention and identity verification, 2025. Accessed: 2025-03-14. [17] 身份管理研究所。人工智能欺诈预防与身份验证,2025。访问日期:2025-03-14。
[18] Gourav Bathla, Kishor Bhadane, Rahul Kumar Singh, Rajneesh Kumar, Rajanikanth Aluvalu, Rajalakshmi Krishnamurthi, Adarsh Kumar, RN Thakur, and Shakila Basheer. Autonomous vehicles and intelligent automation: Applications, challenges, and opportunities. Mobile Information Systems, 2022(1):7632892, 2022. [18] Gourav Bathla, Kishor Bhadane, Rahul Kumar Singh, Rajneesh Kumar, Rajanikanth Aluvalu, Rajalakshmi Krishnamurthi, Adarsh Kumar, RN Thakur, and Shakila Basheer. 自动驾驶汽车与智能自动化:应用、挑战与机遇。移动信息系统,2022(1):7632892, 2022。
[19] Zhicheng Ding, Zhixin Lai, Siyang Li, Panfeng Li, Qikai Yang, and Edward Wong. Confidence trigger detection: Accelerating real-time tracking-by-detection systems. In 2024 5th International Conference on Electronic Communication and Artificial Intelligence (ICECAI), pages 587-592. IEEE, 2024. [19] 丁志成, 赖志新, 李思阳, 李攀峰, 杨启凯, and Edward Wong. 置信度触发检测:加速实时检测跟踪系统。在 2024 年第五届电子通信与人工智能国际会议(ICECAI)上,第 587-592 页。IEEE,2024。
[20] Tianshi Wang, Yizhuo Chen, Qikai Yang, Dachun Sun, Ruijie Wang, Jinyang Li, Tomoyoshi Kimura, and Tarek Abdelzaher. Data augmentation for human activity recognition via condition space interpolation within a generative model. In 2024 33rd International Conference on Computer Communications and Networks (ICCCN), pages 1-9. IEEE, 2024. [20] 王天石, 陈奕卓, 杨启凯, 孙大纯, 王瑞杰, 李金阳, Tomoyoshi Kimura, and Tarek Abdelzaher. 基于生成模型中条件空间插值的人类活动识别数据增强。在 2024 年第 33 届计算机通信与网络国际会议(ICCCN)上,第 1-9 页。IEEE,2024。
[21] Tianshi Wang, Qikai Yang, Ruijie Wang, Dachun Sun, Jinyang Li, Yizhuo Chen, Yigong Hu, Chaoqi Yang, Tomoyoshi Kimura, Denizhan Kara, et al. Fine-grained control of generative data augmentation in iot sensing. Advances in Neural Information Processing Systems, 37:32787-32812, 2024. [21] 王天石, 杨启凯, 王瑞杰, 孙大纯, 李金阳, 陈奕卓, 胡一功, 杨超奇, Tomoyoshi Kimura, Denizhan Kara, et al. 物联网感知中生成数据增强的细粒度控制。神经信息处理系统进展,37:32787-32812, 2024。
[22] Francesco Semeraro, Alexander Griffiths, and Angelo Cangelosi. Human-robot collaboration and machine learning: A systematic review of recent research. Robotics and Computer-Integrated Manufacturing, 79:102432, 2023. [22] Francesco Semeraro, Alexander Griffiths, and Angelo Cangelosi. 人机协作与机器学习:近期研究的系统综述。Robotics and Computer-Integrated Manufacturing, 79:102432, 2023。
[23] Krishan Rana, Jesse Haviland, Sourav Garg, Jad Abou-Chakra, Ian Reid, and Niko Suenderhauf. Sayplan: Grounding large language models using 3d scene graphs for scalable robot task planning. arXiv preprint arXiv:2307.06135, 2023. [23] Krishan Rana, Jesse Haviland, Sourav Garg, Jad Abou-Chakra, Ian Reid, and Niko Suenderhauf. Sayplan:使用 3D 场景图为可扩展机器人任务规划奠定大型语言模型基础。arXiv preprint arXiv:2307.06135, 2023。
[24] NVIDIA. Nvidia ace brings autonomous ai companions to pubg and naraka: Bladepoint, 2024. Accessed: 2025-03-14. [24] NVIDIA. 英伟达 ACE 将自主 AI 伙伴带入《绝地求生》和《永劫无间》,2024。访问日期:2025-03-14。
[25] Christopher Mims. The russo brothers upended hollywood once. now they aim to do it again. The Wall Street Journal, 2025. [25] Christopher Mims. 罗素兄弟曾颠覆好莱坞一次。现在他们打算再来一次。《华尔街日报》,2025。
[26] Qixin Deng, Qikai Yang, Ruibin Yuan, Yipeng Huang, Yi Wang, Xubo Liu, Zeyue Tian, Jiahao Pan, Ge Zhang, Hanfeng Lin, et al. Composerx: Multi-agent symbolic music composition with llms. arXiv preprint arXiv:2404.18081, 2024.
[27] Zhicheng Ding, Panfeng Li, Qikai Yang, and Siyang Li. Enhance image-to-image generation with llava-generated prompts. In 2024 5th International Conference on Information Science, Parallel and Distributed Systems (ISPDS), pages 77-81. IEEE, 2024.
[28] Mark Owen Riedl and Vadim Bulitko. Interactive narrative: An intelligent systems approach. Ai Magazine, 34(1):67-67, 2013.
[29] Thomas H. Davenport and Randy Bean. The impact of generative ai on hollywood and entertainment. MIT Sloan Management Review.
[30] Tiago Zonta, Cristiano André Da Costa, Rodrigo da Rosa Righi, Miromar Jose de Lima, Eduardo Silveira Da Trindade, and Guann Pyng Li. Predictive maintenance in the industry 4.0: A systematic literature review. Computers & Industrial Engineering, 150:106889, 2020. [30] Tiago Zonta, Cristiano André Da Costa, Rodrigo da Rosa Righi, Miromar Jose de Lima, Eduardo Silveira Da Trindade, and Guann Pyng Li. 工业 4.0 中的预测性维护:系统性文献综述。Computers & Industrial Engineering, 150:106889, 2020。
[31] Yihong Jin, Ze Yang, Xinhe Xu, Yihan Zhang, and Shuyang Ji. Adaptive fault tolerance mechanisms of large language models in cloud computing environments. arXiv preprint arXiv:2503.12228, 2025. [31] Yihong Jin, Ze Yang, Xinhe Xu, Yihan Zhang, and Shuyang Ji. 云计算环境下大型语言模型的自适应容错机制。arXiv 预印本 arXiv:2503.12228, 2025。
[32] Ze Yang, Yihong Jin, and Xinhe Xu. Hades: Hardware accelerated decoding for efficient speculation in large language models. arXiv preprint arXiv:2412.19925, 2024. [32] Ze Yang, Yihong Jin, and Xinhe Xu. Hades:用于大型语言模型高效推测的硬件加速解码。arXiv 预印本 arXiv:2412.19925, 2024。
[33] Ze Yang, Yihong Jin, Yihan Zhang, Juntian Liu, and Xinhe Xu. Research on large language model cross-cloud privacy protection and collaborative training based on federated learning. arXiv preprint arXiv:2503.12226, 2025. [33] Ze Yang, Yihong Jin, Yihan Zhang, Juntian Liu, and Xinhe Xu. 基于联邦学习的大型语言模型跨云隐私保护与协同训练研究。arXiv 预印本 arXiv:2503.12226, 2025。
[34] Han Xu. Towards seamless user query to rest api conversion. In CIKM, pages 5495-5498, 2024. [34] 韩旭。《实现用户查询到 REST API 的无缝转换》。收录于 CIKM,第 5495-5498 页,2024。
[35] Han Xu et al. Restful-llama: Connecting user queries to restful apis. In EMNLP: Industry Track, pages 1433-1443, 2024. [35] 韩旭等人。《Restful-LLaMA:连接用户查询到 RESTful API》。收录于 EMNLP:工业专题,第 1433-1443 页,2024。
[36] Predictive maintenance 4.0: Beyond the hype. Technical report, PwC and Mainnovation, 2018. [36] 预测性维护 4.0:超越炒作。技术报告,普华永道和 Mainnovation,2018。
[37] Neelam Yadav, Varuna Gupta, and Aakansha Garg. Industrial automation through ai-powered intelligent machines - enabling real-time decision-making. In Recent Trends in Artificial Intelligence Towards a Smart World: Applications in Industries and Sectors, pages 145-178. Springer, 2024. [37] Neelam Yadav、Varuna Gupta 和 Aakansha Garg。《通过人工智能驱动的智能机器实现工业自动化——赋能实时决策》。收录于《人工智能迈向智能世界的最新趋势:工业和部门应用》,第 145-178 页。Springer,2024。
[38] Xiaocong Duan. Automatic generation and evolution of personalized curriculum based on genetic algorithm. International Journal of Emerging Technologies in Learning (Online), 14(12):15, 2019. [38] 段晓聪。基于遗传算法的个性化课程自动生成与演进。国际新兴技术学习杂志(在线),14(12):15,2019。
[39] Jung X Lee and Yeong-Tae Song. College exam grader using llm ai models. In 2024 IEEE/ACIS 27th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), pages 282-289. IEEE, 2024. [39] Jung X Lee 和 Yeong-Tae Song。使用 LLM AI 模型的大学考试阅卷器。收录于:2024 IEEE/ACIS 第 27 届软件工程、人工智能、网络与并行/分布式计算国际会议 (SNPD),第 282-289 页。IEEE,2024。
[40] Exploring manus ai’s proficiency in navigating multifaceted challenges. AI Technology Reviews. [40] 探索 manus AI 在应对多方面挑战方面的熟练程度。AI 技术评论。
[41] Ao Xiang, Bingjie Huang, Xinyu Guo, Haowei Yang, and Tianyao Zheng. A neural matrix decomposition recommender system model based on the multimodal large language model. In Proceedings of the 2024 7th International Conference on Machine Learning and Machine Intelligence (MLMI), pages 146-150, 2024. [41] 向傲、黄冰洁、郭欣宇、杨浩伟、郑天耀。一种基于多模态大型语言模型的神经矩阵分解推荐系统模型。收录于:2024 年第 7 届机器学习与机器智能国际会议 (MLMI) 论文集,第 146-150 页,2024。
[42] Shiqi Yang, Yu Zhao, and Haoxiang Gao. Using large language models in real estate transactions: A few-shot learning approach. OSF Preprints, 2024. [42] Shiqi Yang, Yu Zhao, and Haoxiang Gao. 在房地产交易中使用大型语言模型:一种少样本学习方法。OSF Preprints, 2024。
[43] Yue Wang, Tianfan Fu, Yinlong Xu, Zihan Ma, Hongxia Xu, Bang Du, Yingzhou Lu, Honghao Gao, Jian Wu, and Jintai Chen. Twin-gpt: digital twins for clinical trials via large language model. ACM Transactions on Multimedia Computing, Communications and Applications. [43] Yue Wang, Tianfan Fu, Yinlong Xu, Zihan Ma, Hongxia Xu, Bang Du, Yingzhou Lu, Honghao Gao, Jian Wu, and Jintai Chen. Twin-gpt:通过大型语言模型实现临床试验的数字孪生。ACM Transactions on Multimedia Computing, Communications and Applications。
[44] Anna Kalyuzhnaya, Sergey Mityagin, Elizaveta Lutsenko, Andrey Getmanov, Yaroslav Aksenkin, Kamil Fatkhiev, Kirill Fedorin, Nikolay O Nikitin, Natalia Chichkova, Vladimir Vorona, et al. Llm agents for smart city management: Enhancing decision support through multi-agent ai systems. Smart Cities (2624-6511), 8(1), 2025. [44] Anna Kalyuzhnaya, Sergey Mityagin, Elizaveta Lutsenko, Andrey Getmanov, Yaroslav Aksenkin, Kamil Fatkhiev, Kirill Fedorin, Nikolay O Nikitin, Natalia Chichkova, Vladimir Vorona, et al. 用于智慧城市管理的 LLM 代理:通过多智能体 AI 系统增强决策支持。Smart Cities (2624-6511), 8(1), 2025。
[45] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023. [45] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 技术报告。arXiv preprint arXiv:2303.08774, 2023。
[46] Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia: a benchmark for general ai assistants. In The Twelfth International Conference on Learning Representations, 2023. [46] Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, 和 Thomas Scialom。Gaia:通用人工智能助手的基准。载于:第十二届国际学习表征会议,2023。
[47] Significant Gravitas. Autogpt, 2025. Version 1.0.0. [47] Significant Gravitas。Autogpt,2025。版本 1.0.0。
[48] Dongping Du, Saurabh Bhardwaj, Yizhi Wang, Sarah J Parker, Zhen Zhang, Jennifer E Van Eyk, Guoqiang Yu, Robert Clarke, David M Herrington, et al. Embracing the informative missingness and silent gene in analyzing biologically diverse samples. Scientific reports, 14(1):28265, 2024. [48] 杜东平,Saurabh Bhardwaj,王一之,Sarah J Parker,张震,Jennifer E Van Eyk,于国强,Robert Clarke,David M Herrington 等。在分析生物多样性样本时拥抱信息缺失和沉默基因。科学报告,14(1):28265,2024。
[49] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep neural networks and tree search. nature, 529(7587):484-489, 2016. [49] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot 等。用深度神经网络和树搜索掌握围棋。自然,529(7587):484-489,2016。
[50] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without human knowledge. nature, 550(7676):354-359, 2017. [50] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, 等人。《在没有人类知识的情况下掌握围棋》。《自然》,550(7676):354-359,2017。
[51] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Zídek, Anna Potapenko, et al. Highly accurate protein structure prediction with alphafold. nature, 596(7873):583-589, 2021. [51] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Zídek, Anna Potapenko, 等人。《使用 AlphaFold 进行高精度蛋白质结构预测》。《自然》,596(7873):583-589,2021。
[52] Andrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green, Chongli Qin, Augustin Žídek, Alexander WR Nelson, Alex Bridgland, et al. Improved protein structure prediction using potentials from deep learning. Nature, 577(7792):706-710, 2020. [52] Andrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green, Chongli Qin, Augustin Žídek, Alexander WR Nelson, Alex Bridgland, 等人。《使用深度学习潜力改进蛋白质结构预测》。《自然》,577(7792):706-710,2020。
[53] DeepMind. Building safer dialogue agents. DeepMind Blog, 2024. Accessed: 2025-03-14. [53] DeepMind。《构建更安全的对话代理》。DeepMind 博客,2024。访问日期:2025-03-14。
[54] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022. [54] 白云涛、Saurav Kadavath、Sandipan Kundu、Amanda Askell、Jackson Kernion、Andy Jones、Anna Chen、Anna Goldie、Azalia Mirhoseini、Cameron McKinnon 等。宪法式人工智能:来自人工智能反馈的无害性。arXiv 预印本 arXiv:2212.08073,2022。
[55] OpenAI. Introducing deep research, 2024. Accessed: 2025-03-14. [55] OpenAI。推出深度研究,2024。访问日期:2025-03-14。
[56] Anthropic. Claude 3.5 models and computer use, 2024. Accessed: 2025-03-14. [56] Anthropic。Claude 3.5 模型和计算机使用,2024。访问日期:2025-03-14。
[57] Amazon Artificial General Intelligence. The amazon nova family of models: Technical report and model card. Amazon Technical Reports, 2024. [57] 亚马逊通用人工智能。亚马逊 Nova 模型家族:技术报告和模型卡。亚马逊技术报告,2024。
[58] Manus internal testing launched: Monica team’s universal ai agent sparks debate. AI Base News. [58] Manus 内部测试启动:Monica 团队的通用 AI 代理引发争议。AI Base News。
[59] H2O.ai. Enterprise H2O GPT: AI for the Enterprise, 2025. Accessed: 2025-03-14. [59] H2O.ai。企业 H2O GPT:面向企业的 AI,2025。访问日期:2025-03-14。
[60] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437, 2024. [60] 刘爱新、冯贝、薛冰、王冰璇、吴博超、卢成达、赵成刚、邓程奇、张晨宇、阮冲等。Deepseek-v3 技术报告。arXiv 预印本 arXiv:2412.19437,2024。
[61] U.S. Department of Health and Human Services. Health insurance portability and accountability act (hipaa), 2025. Accessed: 2025-03-14. [61] 美国卫生与公众服务部。健康保险流通与责任法案 (HIPAA),2025。访问日期:2025-03-14。
[62] General data protection regulation (gdpr), 2018. Accessed: 2025-03-14. [62] 通用数据保护条例(GDPR),2018。访问日期:2025-03-14。
导出提示
谨慎下载超过 300 页以上 PDF,容易内存溢出。
PDF Pro 下载需借用浏览器的打印功能,出现打印界面后,在【打印机】处选择【另存为 PDF】,最后点击【保存】即可。