CATALOG NUMBER: AKR-214 貨號: AKR-214
STORAGE: Liquid nitrogen 儲存:液氮
Note: For best results begin culture of cells immediately upon receipt. If this is not possible, store at -80^(@)C-80^{\circ} \mathrm{C} until first culture. Store subsequent cultured cells long term in liquid nitrogen. 注意:為獲得最佳結果,收到后立即開始培養細胞。如果無法做到這一點,請儲存到 -80^(@)C-80^{\circ} \mathrm{C} 第一次培養。將後續培養的細胞長期儲存在液氮中。
NIH 3T3 cells are established from a NIH Swiss mouse embryo. These cells are highly contact inhibited and are sensitive to sarcoma virus focus formation and leukaemia virus propagation. Cells have now lost their contact inhibition. The established NIH/3T3 line was subjected to more than 5 serial cycles of subcloning in order to develop a subclone with morphologic characteristics best suited for transformation assays. The " 3 T 3 " designation refers to the abbreviation of " 3 -day transfer, inoculum 3xx10^(5)3 \times 10^{5} cells." The NIH3T3 cell line is one of the most commonly used fibroblast cell lines. Our NIH3T3/GFP cell line stably expresses GFP and blasticidin-resistant genes. Both GFP and blasticidin-resistant genes are introduced into parental NIH3T3 cells using lentivirus. NIH 3T3 細胞由 NIH 瑞士小鼠胚胎建立。這些細胞受到高度接觸抑制,對肉瘤病毒病灶的形成和白血病病毒的傳播敏感。細胞現在已經失去了接觸抑制。已建立的 NIH/3T3 系經過 5 個以上的亞克隆連續迴圈,以開發出具有最適合轉化測定的形態學特徵的亞克隆。“3 T 3”名稱是指“3 天轉移,接種 3xx10^(5)3 \times 10^{5} 細胞”的縮寫。NIH3T3 細胞系是最常用的成纖維細胞系之一。我們的 NIH3T3/GFP 細胞系穩定表達 GFP 和殺稻瘟菌素抗性基因。GFP 和殺稻瘟菌素抗性基因均使用慢病毒引入親本 NIH3T3 細胞。
Establishing NIH3T3/GFP Cultures from Frozen Cells 從冷凍細胞中建立 NIH3T3/GFP 培養物
Place 10 mL of complete DMEM growth medium in a 50-mL50-\mathrm{mL} conical tube. Thaw the frozen cryovial of cells within 1-2 minutes by gentle agitation in a 37^(@)C37^{\circ} \mathrm{C} water bath. Decontaminate the cryovial by wiping the surface of the vial with 70%(v//v)70 \%(\mathrm{v} / \mathrm{v}) ethanol. 將 10 mL 完全 DMEM 生長培養基放入 50-mL50-\mathrm{mL} 錐形管中。通過 37^(@)C37^{\circ} \mathrm{C} 在水浴中輕輕攪拌,在 1-2 分鐘內解凍冷凍細胞。通過用 70%(v//v)70 \%(\mathrm{v} / \mathrm{v}) 乙醇擦拭小瓶表面來凈化冷凍管。
Transfer the thawed cell suspension to the conical tube containing 10 ml of growth medium. 將解凍的細胞懸液轉移到含有 10 ml 生長培養基的錐形管中。
Collect the cells by centrifugation at 1000 rpm for 5 minutes at room temperature. Remove the growth medium by aspiration. 在室溫下以 1000 rpm 離心 5 分鐘來收集細胞。通過抽吸去除生長培養基。
Resuspend the cells in the conical tube in 15 mL of fresh growth medium by gently pipetting up and down. 通過輕輕上下移液,將錐形管中的細胞重懸於 15 mL 新鮮生長培養基中。
Transfer the 15 mL of cell suspension to a T-75 tissue culture flask. Place the cells in a 37^(@)C37^{\circ} \mathrm{C} incubator at 5% CO2. 將 15 mL 細胞懸液轉移到 T-75 組織培養瓶中。將細胞置於 5%CO2 的 37^(@)C37^{\circ} \mathrm{C} 培養箱中。
Monitor cell density daily. Cells should be passaged when the culture reaches 95%95 \% confluence. 每天監測細胞密度。當培養物達到 95%95 \% 匯合時,應傳代細胞。
Recent Product Citations 最近的產品引用
Li, S. et al. (2023). An injectable, self-healing and degradable hydrogel scaffold as a functional biocompatible material for tissue engineering applications. J Mater Sci. 58: 6710-6726. doi: 10.1007/s10853-023-08393-8. Li, S. 等人(2023)。一種可注射、自愈和可降解的水凝膠支架,作為組織工程應用的功能性生物相容性材料。J Mater Sci. 58:6710-6726。doi:10.1007/s10853-023-08393-8。
Arellano, L. G. et al. (2023). Light excitation of gold Nanorod-Based hybrid nanoplatforms for simultaneous bimodal phototherapy. J. Mol. Liq. doi: 10.1016/j.molliq.2023.121511. 阿雷利亞諾,LG 等人(2023 年)。用於同步雙峰光療的基於金納米棒的混合納米平臺的光激發。J. Mol. Liq. doi: 10.1016/j.molliq.2023.121511.
Han, X. et al. (2023). Ligand-tethered lipid nanoparticles for targeted RNA delivery to treat liver fibrosis. Nat Commun. 14(1):75. doi: 10.1038/s41467-022-35637-z. Han, X. 等人 (2023)。配體系留脂質納米顆粒,用於靶向 RNA 遞送以治療肝纖維化。納特公社。14(1):75.土井:10.1038/s41467-022-35637-z。
Gangolphe, L. et al. (2021). Electrospun microstructured PLA-based scaffolds featuring relevant anisotropic, mechanical and degradation characteristics for soft tissue engineering. Mater Sci Eng C Mater Biol Appl. doi: 10.1016/j.msec.2021.112339. Gangolphe, L. 等人 (2021)。靜電紡絲微結構 PLA 基支架,具有相關的各向異性、機械和降解特性,適用於軟組織工程。Mater Sci Eng C Mater Biol Appl. doi: 10.1016/j.msec.2021.112339.
Guidotti, G. et al. (2020). Regenerated wool keratin-polybutylene succinate nanofibrous mats for drug delivery and cells culture. Polym Degrad Stab. doi: 10.1016/j.polymdegradstab.2020.109272. Guidotti, G. 等人 (2020)。用於藥物遞送和細胞培養的再生羊毛角蛋白-聚丁二酸丁二醇納米纖維墊。Polym Degrad 刺傷。doi:10.1016/j.polymdegradstab.2020.109272。
Jung, W.H. et al. (2020). Force-dependent extracellular matrix remodeling by early-stage cancer cells alters diffusion and induces carcinoma-associated fibroblasts. Biomaterials. 234:119756. doi: 10.1016/j.biomaterials.2020.119756. 榮格,WH 等人(2020)。早期癌細胞的力依賴性細胞外基質重塑改變擴散並誘導癌相關成纖維細胞。生物材料。234:119756. doi: 10.1016/j.biomaterials.2020.119756.
Decataldo, F. et al. (2019). Organic Electrochemical Transistors for Real-Time Monitoring of In Vitro Silver Nanoparticle Toxicity. Advanced Biosystems. doi:10.1002/adbi. 201900204. Decataldo, F. 等人 (2019)。用於實時監測體外銀納米顆粒毒性的有機電化學晶體管。先進的生物系統。doi:10.1002/adbi.201900204.
Thönnes, S. et al. (2019). Success and efficiency of cell seeding in Avian Tendon Xenografts - A promising alternative for tendon and ligament reconstruction. J Orthop. doi: 10.1016/j.jor.2019.09.010. Thönnes, S. 等人 (2019)。禽腱異種移植物細胞接種的成功和效率 - 肌腱和韌帶重建的一種有前途的替代方案。J 骨科。doi:10.1016/j.jor.2019.09.010。
Yu, D. et al. (2019). Microfluidic preparation, shrinkage, and surface modification of monodispersed alginate microbeads for 3D cell culture. RSC Adv. 9:11101-11110. doi: 10.1039/C9RA01443H. Yu, D. 等人 (2019)。用於 3D 細胞培養的單分散海藻酸鹽微珠的微流控制備、收縮和表面改性。RSC Adv. 9:11101-11110。doi:10.1039/C9RA01443H。
Weems, A.C. et al. (2018). Improving the Oxidative Stability of Shape Memory Polyurethanes Containing Tertiary Amines by the Presence of Isocyanurate Triols. Macromolecules. doi:10.1021/acs.macromol.8b01925. 威姆斯,AC 等人(2018)。通過異氰脲酸三醇的存在提高含有叔胺的形狀記憶聚氨酯的氧化穩定性。大分子。doi:10.1021/acs.macromol.8b01925。
Liu, S. et al. (2018). Cellular interactions with hydrogel microfibers synthesized via interfacial tetrazine ligation. Biomaterials. 180:24-35. doi: 10.1016/j.biomaterials.2018.06.042. 劉,S.等人(2018)。細胞與通過介面四嗪連接合成的水凝膠微纖維的相互作用。生物材料。180:24-35. doi: 10.1016/j.biomaterials.2018.06.042.
Barbalinardo, M. et al. (2018). Data-Matrix Technology for Multiparameter Monitoring of Cell Cultures. Small Methods. 2(4), 1700377. doi:10.1002/smtd.201700377. Barbalinardo, M. 等人 (2018)。用於細胞培養物多參數監測的數據矩陣技術。小方法。2(4), 1700377.doi:10.1002/smtd.201700377。
Maglione, M.S. et al. (2018). Fluid Mixing for Low-Power ‘Digital Microfluidics’ Using Electroactive Molecular Monolayers. Small. 14(10). doi: 10.1002/smll.201703344. Maglione, MS 等人 (2018)。使用電活性分子單層進行低功率「數位微流體」的流體混合。小。14(10).土井:10.1002/smll.201703344。
Sanchez-Ramos, J. et al (2018). Chitosan-Mangafodipir nanoparticles designed for intranasal delivery of siRNA and DNA to brain. Journal of Drug Delivery Science and Technology. 43: 453460. 桑切斯-拉莫斯,J. 等人 (2018)。殼聚糖-錳磷地吡納米顆粒,設計用於鼻內遞送 siRNA 和 DNA 到大腦。藥物輸送科學與技術雜誌。43: 453460.
Weems, A.C. et al. (2017). Shape memory polyurethanes with oxidation-induced degradation: in vivo and in vitro correlations for endovascular material applications. Acta Biomater. doi:10.1016/j.actbio.2017.06.030. 威姆斯,AC 等人(2017)。具有氧化誘導降解的形狀記憶聚氨酯:血管內材料應用的體內和體外相關性。生物學報。doi:10.1016/j.actbio.2017.06.030.
Bouchlaka, M.N. et al. (2017). Human Mesenchymal Stem Cell-Educated Macrophages Are a Distinct High IL-6-Producing Subset that Confer Protection in Graft-versus-Host-Disease and Radiation Injury Models. Biol Blood Marrow Transplant. pii: S1083-8791(17)30306-3. doi: 10.1016/j.bbmt.2017.02.018. Bouchlaka, M.N. 等人 (2017)。人間充質幹細胞教育的巨噬細胞是一個獨特的高 IL-6 產生亞群,在移植物抗宿主病和放射損傷模型中提供保護。生物骨髓移植。pii:S1083-8791(17)30306-3。土井:10.1016/j.bbmt.2017.02.018。
Pearson, R. A. et al. (2016). Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors. Nat Commun. doi:10.1038/ncomms13029. 皮爾遜,RA 等人(2016 年)。供體和宿主感光體在有絲分裂後感光體前體移植後進行物質轉移。納特公社。doi:10.1038/ncomms13029。
Nash, L. D. et al. (2016). Cold plasma reticulation of shape memory embolic tissue scaffolds. Macromol Rapid Commun. doi:10.1002/marc. 201600268. 納什,LD 等人(2016)。形狀記憶栓塞組織支架的冷等離子體網狀化。Macromol 快速公社。土井:10.1002/marc.201600268.
Castleberry, S. A. et al. (2016). Nanolayered siRNA delivery platforms for local silencing of CTGF reduce cutaneous scar contraction in third-degree burns. Biomaterials. doi:10.1016/j.biomaterials.2016.04.007. Castleberry, SA 等人 (2016)。用於局部沉默 CTGF 的納米層 siRNA 遞送平臺可減少三度燒傷時的皮膚疤痕收縮。生物材料。doi:10.1016/j.biomaterials.2016.04.007.
Castleberry, S. A. et al. (2015). Self-assembled wound dressings silence MMP-9 and improve diabetic wound healing in vivo. Adv Mater. doi:10.1002/adma. 201503565. Castleberry, SA 等人 (2015)。自組裝傷口敷料可沉默 MMP-9 並改善體內糖尿病傷口癒合。高級主教。doi:10.1002/adma。201503565.
Peak, C. W. et al. (2015). Elastomeric cell-laden nanocomposite microfibers for engineering complex tissues. Cell Mol Bioeng. doi:10.1007/s12195-015-0406-7. Peak, CW 等人 (2015)。用於工程複雜組織的彈性體細胞納米複合材料超細纖維。細胞分子生物工程。土井:10.1007/s12195-015-0406-7.
Tassoni, A. et al. (2015). Molecular mechanisms mediating retinal reactive gliosis following bone marrow mesenchymal stem cell transplantation. Stem Cells. doi: 10.1002/stem.2095. 塔索尼,A. 等人(2015 年)。介導骨髓間充質幹細胞移植后視網膜反應性神經膠質增生的分子機制。幹細胞。doi:10.1002/stem.2095。
Scott, C. M. et al. (2015). 3D cell entrapment as a function of the weight percent of peptideamphiphile hydrogels. Langmuir. doi:10.1021/acs.langmuir.5b00196. 斯科特,CM 等人 (2015)。3D 細胞捕獲作為肽兩親性水凝膠重量百分比的函數。朗繆爾。doi:10.1021/acs.langmuir.5b00196。
Jo, W. et al. (2014). Microfluidic fabrication of cell-derived nanovesicles as endogenous RNA carriers. Lab Chip. 14:1261-1269. Jo, W. 等人 (2014)。細胞來源的納米囊泡作為內源性 RNA 載體的微流控制造。實驗室晶片。14:1261-1269.
Warranty 保證
These products are warranted to perform as described in their labeling and in Cell Biolabs literature when used in accordance with their instructions. THERE ARE NO WARRANTIES THAT EXTEND BEYOND THIS EXPRESSED WARRANTY AND CELL BIOLABS DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR PARTICULAR PURPOSE. CELL BIOLABS’s sole obligation and purchaser’s exclusive remedy for breach of this warranty shall be, at the option of CELL BIOLABS, to repair or replace the products. In no event shall CELL BIOLABS be liable for any proximate, incidental or consequential damages in connection with the products. 這些產品在按照其說明使用時,保證其性能符合其標籤和 Cell Biolabs 文獻中的描述。沒有超出此明示保證的保證,CELL BIOLABS 不承擔任何適銷性暗示保證或特定用途適用性保證。CELL BIOLABS 對違反本保修的唯一義務和購買者的唯一補救措施應由 CELL BIOLABS 選擇維修或更換產品。在任何情況下,CELL BIOLABS 均不對與產品相關的任何直接、偶然或後果性損害負責。
This product is for RESEARCH USE ONLY; not for use in diagnostic procedures. 本產品僅供研究使用;不用於診斷程式。