这是用户在 2025-7-29 22:17 为 https://app.immersivetranslate.com/word/ 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

JEDEC标准

硅整流二极管

JESD282B.02

(2002年11月JESD282B.01的编辑修订)

2023 年 1 月

JEDEC 固态技术协会

通知

JEDEC 标准和出版物包含的材料已通过 JEDEC 董事会级别准备、审查和批准,随后由 JEDEC 法律顾问审查和批准。

JEDEC 标准和出版物旨在通过消除制造商和购买者之间的误解、促进产品的互换性和改进以及帮助购买者选择和获得适合 JEDEC 成员以外的人使用的适当产品来服务于公共利益,无论该标准是在国内还是国际上使用。

JEDEC 标准和出版物的采用不考虑其采用是否涉及专利或文章、材料或工艺。通过此类行动,JEDEC 不对任何专利所有者承担任何责任,也不对采用 JEDEC 标准或出版物的各方承担任何义务。

JEDEC 标准和出版物中包含的信息代表了一种合理的产品规范和应用方法主要是从固态器件制造商的角度来看。在 JEDEC 组织内,有一些程序可以进一步处理 JEDEC 标准或出版物并最终成为 ANSI 标准。

除非满足标准中规定的所有要求,否则不得声称符合本标准。

有关本 JEDEC 标准或出版物内容的查询、意见和建议,请通过以下地址联系 JEDEC,或参阅标准和文件下的 www.jedec.org 获取替代联系信息。

发布者

©JEDEC固态技术协会2022 北10街3103号

南 240 套房

弗吉尼亚州阿灵顿 22201-2107

本文件可免费下载;但是,JEDEC 保留该材料的版权。通过下载此文件,个人同意不对生成的材料收费或转售。

价格:联系 JEDEC

美国印刷版权所有

此页面故意留空
此页面故意留空

JEDEC 标准编号 282B.02
JEDEC 标准编号 282B.02

硅整流二极管
硅整流二极管

内容
内容


范围 1
范围1

定义符号 1
定义符号 1

物理结构命名法 1
物理结构命名法 1

半导体整流二极管特性和额定 2
半导体整流二极管特性和额定 2

描述整流二极管电路时使用的术语 5
描述整流二极管电路时使用的术语 5

通用字母符号 7
通用字母符号 7

温度符号 7
温度符号 7

热阻和阻抗符号 7
热阻和阻抗符号 7

瞬态和电气符号 7
瞬态和电气符号 7

字母符号下 7
字母符号下 7

注册 15
注册15

引言 15
引言15

目的意图 15
目的意图 15

注册程序简要概述 16
注册程序简要概述 16

《无字母后缀
《无字母后缀 类型指定登记详细程序及细则 》 17
类型指定登记详细程序及细则》 17

应用 17
应用17

作业 18
作业18

发布(公告 18
发布 (公告 18

3.4.3 更正通知
3.4.3更正通知

重新登记 19
重新注册19

带字母后缀
带字母后缀 的型号指定注册详细程序和细则 21
的型号指定注册详细程序和细则 21

对类型管理人决定
对类型管理人决定 的上诉 22
的上诉 22

注册格式
注册格式说明 22
说明 22

JEDEC 注册数据的使用 23
JEDEC 注册数据的使用 23

应用于 JEDEC 数据
应用于 JEDEC 数据 的测试和评级方法 24
测试和评级方法 24

整流二极管配准格式的使用 24
整流二极管配准格式的使用 24

引言 24
介绍24

一般说明(注册格式第一部分 25
一般说明(注册格式第一部分 25

机械数据(注册格式第二部分 26
机械数据(注册格式第二部分 26

最高评分(注册格式第三部分 26
最高评分(注册格式第三部分 26

温度 26
温度26

电气额定值 28
电气额定值 28

额定电压 29
额定电压 29

额定电流 29
额定电流 29

电气特性(注册格式第四部分 30
电气特性(注册格式第四部分 30

反向阻断电流 30
反向阻断电流 30

正向电压 30
正向电压 30

热特性(配准格式第五部分 31
热特性(配准格式第五部分 31

评级建立和验证测试 31
评级建立和验证测试 31

额定测试
额定测试 的介绍和参考表 31
的介绍和参考表 31

电气测试 33
电气测试 33

重复评级测试 33
重复评级测试 33

Diodes 33
Diodes 33 稳态工作寿命测试
稳态工作寿命测试

工作峰值反向电压寿命测试 34
工作峰值反向电压寿命测试 34

直流反向电压寿命测试 35
直流反向电压寿命测试 35

热疲劳寿命测试 36

-我-

JEDEC 标准编号 282B.02

目录(续)

重复峰值反向电压测试 38

非重复评级测试 39

肖特基势垒整流二极管 的非重复反向能量、功率和额定电流测试 39

60 Hz 正弦波浪涌电流测试和平均正向电流的非重复峰值反向电压测试 42

60 Hz 正弦波浪涌电流测试和非重复峰值反向电压测试,无平均正向电流 44

非重复峰值反向电压测试 46

浪涌(非重复)正向电流,1.5 ms 持续时间测试 47

三角脉冲非重复反向 功率测试 48

碟盘式、螺柱式和底座安装整二极管的破坏性电流(破裂)额定值测试 50

矩形脉冲 N on Repetitive P ower T est 51

非电气测试 52

存储寿命测试 52

引线或端子温度测试 52

测试测量 52

特性测试 53

引言 53

自动测试设备 (ATE) 54

一般准则 54

电气测试 类型 55

交流电或动态测试 55

连续电流或静态测试 55

脉冲测试 55

考虑因素 55

Thermal Equilibrium56
平衡 56

Thermal Monitoring56
监测 56

Thermal Management56
管理 56

Instrumentation56
仪表56

Analog Instruments56
模拟仪器 56

Digital Voltmeters57
数字电压表 57

Power Supplies58
电源58

Pulse Generators58
脉冲发生器 58

Oscilloscopes59
示波器59

Temperature Measuring instruments60
温度测量仪器 60

Electrical Characteristics Tests62
电气特性测试 62

Peak Reverse Current, IRM62
峰值反向电流,IRM 62

Terms and Definitions62
术语定义 62

Procedure62
步骤62

Test Circuit62
测试电路 62

Test Conditions to be Specified62
指定的 测试条件 62

Characteristic to be Measured63
测量特性 63

DC Reverse Current, IR63
直流反向电流,IR 63

Terms and Definitions63
术语定义 63

Procedure63
步骤63

Test Circuit63
测试电路 63

Test Conditions to be Specified64
指定的 测试条件 64

-ii-
-第二-

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Contents (cont'd)
目录(续)

Page

Characteristic to be Measured64
测量特性 64

Average Reverse Current, IR(AV)64
平均反向电流,IR(AV) 64

Terms and Definitions64
术语定义 64

Procedure (Without Forward Current)64
程序(无正向电流) 64

Test Circuit (Without Forward Current)65
测试电路(无正向电流) 65

Test Conditions to be Specified65
指定 测试条件 65

Characteristic to be Measured65
测量特性 65

Procedure (With Forward Current)65
程序(正电流)65

Test Circuit (With Forward Current)66
测试电路( 正向电流) 66

Test Conditions to be Specified66
指定 测试条件 66

Characteristic to be Measured66
特性 66

Peak Forward Voltage, VFM67
峰值正向电压,VFM 67

Terms and Definitions67
术语定义 67

60 Hz Procedure67
60Hz 程序 67

60 Hz Test Circuit67
60 Hz 测试电路 67

Test Conditions to be Specified68
指定的 测试条件 68

Characteristic to be Measured68
特性 68

Pulse Test Procedure68
脉搏测试程序 68

Pulse Test Circuit68
脉冲测试电路 68

Test Conditions to be Specified69
指定 测试条件 69

Characteristic to be Measured69
测量特性 69

DC Forward
直流转发
Voltage,
电压
V
F70

Terms and Definitions70
术语和定义 70

Procedure70
步骤70

Test Circuit70
测试电路70

Test Conditions to be Specified70
指定 测试条件 70

Average Forward Voltage, VF(AV)70
平均正向电压,VF(AV) 70

Terms and definitions70
术语定义 70

Procedure70
步骤70

Test circuit70
测试电路 70

Test conditions to be specified71
指定的测试条件 71

Characteristic to be Measured71
测量特性 71

Reverse Breakdown Voltage71
反向击穿电压 71

Terms and Definitions71
术语定义 71

Method for Minimum Reverse Breakdown Voltage71
最小反向击穿电压的方法 71

Test Circuit71
测试电路71

Test Conditions to be Specified72
指定的 测试条件 72

Characteristic to be Measured72
特性 72

Method for Maximum Reverse Breakdown Voltage73
最大反向击穿电压的方法 73

Test Circuit73
测试电路73

Procedure73
步骤73

Test Condition to be Specified75
指定测试条件 75

Characteristic to be Measured75
测量特性 75

Forward Switching Characteristics75
正向开关特性 75

Relevant Parameters75
相关参数75

Procedure75
步骤75

Test Circuit and Waveform75
测试电路波形 75

Test Conditions to be Specified77
指定的 测试条件 77

Characteristics to be Measured77
测量 的特性 77

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Contents (cont'd)
目录(续)

Page

Reverse Recovery Characteristics77
反向恢复特性 77

Terms and Definitions77
术语定义 77

General Description78
概述78

Test Methods, Circuits, and Waveforms78
测试方法、电路和波形 78

Total Capacitance, CT92
总电容,CT 92

Definitions92
定义92

Procedure92
步骤92

Thermal Characteristics Test92
特性测试 92

Terminology93
术语93

Definitions93
定义93

Letter Symbols93
字母符号93

General Test Description94
一般测试说明94

Thermal Resistance94
94

Transient Thermal Impedance95
瞬态热阻抗95

Heat Dissipator Requirements96
热器要求 96

Stud- and Based-Mounted Types96
螺柱和底座安装 96

Lead-Mounted Types96
引线安装型96

Disk Types97
磁盘类型 97

Determining Reference Temperature97
确定参考温度 97

Thermal Resistance Test Methods98
热阻测试方法 98

Constant Junction Temperature Test Method98
恒结温试验方法 98

Test Procedure98
测试程序98

Test Circuit101
测试电路101

Test Conditions to be Specified103
指定 测试条件 103

Characteristic to be Determined103
确定 的特性 103

Calibration Curve Test Method103
校准曲线测试方法 103

Test Procedure103
测试程序103

Test Circuit105
测试电路105

Test Conditions to be Specified106
指定测试条件 106

Transient Thermal Impedance Test Methods106
瞬态热阻抗测试方法 106

Heating Pulse Test Method Procedure106
加热脉冲测试方法程序 106

Cooling Curve Test Method Procedure109
冷却曲线测试方法程序 109

Test Circuits112
测试电路112

Test Condition to be Specified113
指定 测试条件 113

Effective Thermal Resistance of Bridge Rectifier Assemblies114
桥式整流器组件的有效热阻 114

Definitions114
定义114

Test Circuit115
测试电路115

Procedure115
步骤115

Compute TCVF and VF2 at TJmax115
计算 TCVF 和 VF2 at TJmax 115

Measuring VF3117
测量 VF3 117

Application of Rated Current117
额定电流 的应用 117

Measuring VF4 and VFH118
测量 VF4 和 VFH 118

Thermal Resistance118
118

Test Conditions118
测试条件118

Characteristics118
特点118

User’s Guide119
用户指南 119

Introduction119
介绍119

Diode Safety Considerations119
二极管安全注意事项 119

Voltage Considerations119
电压注意事项 119

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Contents (cont'd)
目录(续)

Page

Repetitive Peak Reverse Voltage119
重复峰值反向电压 119

Non-Repetitive Peak Reverse Voltage119
非重复峰值反向电压 119

Overvoltage120
过电压120

Series Operation121
串联 121

Current Considerations122
当前考虑因素122

Maximum Operating Junction Temperature122
最高工作结 122

Junction Heat Generation122
热产生 122

Thermal Resistance123
123

Steady State Current Ratings124
稳态额定电流 124

Overload Current Ratings125
过载电流额定值 125

Non-Repetitive Overload125
非重复过 125

Repetitive Overloads126
重复过 126

Parallel Operations126
并行作126

Switching Characteristics126
开关特性 126

Forward Recovery and Turn-on Time126
正向恢复和开启时间 126

Reverse Recovery127
反向恢复 127

Fundamental Rectifier Circuits128
基波整流电路 128

Cooling Considerations133
冷却注意事项 133

General Mounting Considerations133
一般安装注意事项 133

Surface Conditions133
表面条件 133

Thermal Compounds134
导热化合物 134

Insulation
绝缘
Considerations135
注意事项135

Installation of Stud-Mounted Semiconductor Devices135
螺柱安装半导体器件的安装 135

Hole and Surface Preparation135
孔和表面处理 135

Mounting Torque136
安装扭矩 136

Mounting Procedure – Stud-Mounted Devices136
安装程序 – 螺柱安装设备 136

Installation of Disk-Type Semiconductor Devices136
盘式半导体器件的安装 136

Mounting Procedure – Disk-Type Devices136
安装程序 – 磁盘型设备 136

Force Application136
强制应用 136

Clamping Procedure136
夹紧程序 136

Installation of Lead-Mounted Semiconductor Devices137
引线贴装半导体器件的安装 137

Devices Storage, Cleaning and Handling – Lead Mounted Devices137
设备存储、清洁和处理 – 铅安装设备 137

Lead Cutting and Forming137
引线切割成型 137

Methods of Lead Attachment137
附件的方法 137

Soldering137
焊接137

Welding137
焊接137

Wire Wrapping137
绕线137

Installation of Press-Fit Semiconductor Devices138
压接半导体器件的安装 138

Device Storage and Cleaning – Press-Fit Devices138
设备存储和清洁 – 压接设备 138

Selection and Preparation of Heat Dissipator138
热器的 选择和制备 138

Installation of Press-Fit Diode in Heat Dissipator138
散热器 中安装压接二极管 138

Installation of Button-Type Semiconductor Devices138
纽扣式半导体器件的安装 138

Device Handling and Mounting138
设备处理安装 138

Device Soldering138
设备焊接 138

Heating Techniques139
加热技术 139

Post Soldering Considerations139
焊接后注意事项 139

Temperature Measurement139
温度测量 139

Diode Junction Temperature139
二极管 139

Case Temperature140
表壳温度 140

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Contents (cont'd)
目录(续)

Page

Mounting Surface Temperature141
安装表面温度 141

Type of Thermocouple141
热电偶类型 141

Mounting Washer Construction141
安装垫圈结构 141

Lead Temperature142
142

Free-Air Convection Measurements of Assemblies142
组件自由空气对流测量 142

Forced-Air Convection Measurements of Assemblies143
组件强制空气对流测量 143

Diode Failure Modes144
二极管故障模式 144

Catastrophic Failure144
灾难性故障 144

Degradation Failure145
退化失败 145

Simple Measurements in Troubleshooting145
故障排除中的简单测量 145

Surface Mounting146
表面贴装 146

Annex A(Informative) Differences Between JESD282B.02 and its Predecessors147
附件 A(供参考) JESD282B.02 与前身之间的区别 147

FiguresPage
图页

Figure 1 — Cross-Section of a Semiconductor Rectifier Diode9
图 1 — 半导体整流二极管的横截面 9

Figure 2 — Typical Semiconductor Rectifier Diode Packages9
图 2 — 典型半导体整流二极管封装 9

Figure 3 — Sketches of typical semiconductor rectifier stacks10
图 3 — 典型半导体整流器堆栈的草图 10

Figure 4 — Rectifier Graphical Symbol and Example Circuit10
图 4 — 整流器图形符号和示例电路 10

Figure 5 — Examples of Rectifier Circuit Elements11
图 5 — 整流电路元件示例 11

Figure 6 — Reverse Voltage Waveforms11
图 6 — 反向电压波形 11

Figure 7 Current Waveforms During Rectifier Diode Reverse Recovery12
7 整流二极管反向恢复期间的电流波形 12

Figure 8 — Illustration of Symbols for Reverse and Forward Voltage and Current and Junction
图8 — 反向和正向电压、电流和结的符号示意图
Temperature Excursion Resulting from the
温度偏移由
Developed
发达
Power13
功率13

Figure 9 — Reverse Recovery Softness Factor (RRSF)14
图 9 — 反向恢复柔软度因子 (RRSF) 14

Figure 10 — Diode Operating Life Test Circuit and Waveforms33
图 10 — 二极管工作寿命测试电路波形 33

Figure 11 — Working Peak Reverse Voltage Life Test34
图 11 — 工作峰值反向电压寿命测试 34

Figure 12 — DC Reverse Voltage Life Test35
图 12 — 直流反向电压寿命测试 35

Figure 13 Diode Thermal Fatigue Life Test Circuit and Waveform37
13 二极管疲劳寿命测试电路波形 37

Figure 14 — Diode Repetitive Peak Reverse Voltage Test Circuit and Waveform38
14 — 二极管重复峰值反向电压测试电路波形 38

Figure 15 Reverse Energy Test Circuit for Schottky Rectifiers - Test Method 141
15 - 肖特基整流器的反向能量测试电路 - 测试方法 1 41

Figure 16 Reverse Energy Test Circuit for Schottky Rectifiers - Test Method 241
16 - 肖特基整流器的反向能量测试电路 - 测试方法 2 41

Figure 17 — Diode Surge Current and Non-Repetitive Peak Reverse Voltage Test Circuit and Waveforms43
17 — 二极管浪涌电流和非重复峰值反向电压测试电路和波形 43

Figure 18 — Diode Surge Current and Non-Repetitive Peak Reverse Voltage Without Average Forward Current Test Circuit and Waveforms45
图 18 — 二极管浪涌电流和非重复峰值反向电压,无平均正向电流测试电路波形 45

Figure 19 — Non-Repetitive Peak Reverse Voltage Test Circuit46
图 19 — 非重复峰值反向电压测试电路 46

Figure 20 Basic Test Circuit for Surge (Non-Repetitive) Forward Current, 1.5 ms Duration47
20 浪涌 (非重复) 正向电流的基本测试电路 持续时间为 1.5ms 47

Figure 21 — Non-Repetitive Reverse Power Test Circuit49
图 21 — 非重复反向功率测试电路 49

Figure 23 — Rectangular Pulse Power Test Waveform and Circuit51
图 23 — 矩形脉冲功率测试波形电路 51

Figure 24 — Pulse Generator Circuit and Waveform59
图 24 — 脉冲发生器电路波形 59

Figure 25 Peak Reverse Current Test Circuit63
25 峰值向电流测试电路 63

Figure 26 — DC Reverse Current Test Circuit64
26 — 直流反向电流测试电路 64

Figure 27 — Average Reverse Current Test Circuit, Without Forward Current65
图 27 — 平均反向电流测试电路,不带正向电流 65

Figure 28 — Average Reverse Current Test Circuit With Forward Current66
图 28 — 正向电流 66 的平均反向电流测试电路

Figure 29 — 60 Hz Peak Forward Voltage Test Circuit67
图 29 — 60 Hz 峰值正向电压测试电路 67

Figure 30 — Peak Forward Voltage Pulse Test Circuit68
图 30 — 峰值正向电压脉冲测试电路 68

Figure 31 — Detailed Peak Forward Voltage Pulse Test Circuit69
31 — 详细的峰值正向电压脉冲测试电路 69

Figure 32 — Minimum Reverse Breakdown Voltage Test Circuit71
32 — 最小反向击穿电压测试电路 71

Figure 33 Variable Amplitude AC Source for Reverse Breakdown Voltage Test72
33 用于反向击穿电压测试可变幅度交流电源 72

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Contents (cont'd)
目录(续)

Page

Figure 34 — Maximum Reverse Breakdown Voltage Test Circuit74
图 34 — 最大反向击穿电压测试电路 74

Figure 35 — Forward Switching Characteristics Test Circuit76
图 35 — 正向开关特性测试电路 76

Figure 36 — Forward Switching Characteristics Waveforms76
图 36 — 正向开关特性波形 76

Figure 37 — Test Circuit for Reverse Recovery Condition A79
图 37 — 反向恢复条件 A 的测试电路 79

Figure 38 — Response Pulse Waveforms for Condition A80
图 38 — 条件 A80 的响应脉冲波形

Figure 39 — Test Circuit for Reverse Recovery Condition B82
图 39 — 反向恢复条件 B 82 的测试电路

Figure 40 — Suggested Board Layout for Low L1/R4 for Condition B83
图 40 — 条件 B 83低 L 1/R4 的建议电路板布局

Figure 41 — DUT Current Waveform for Condition B84
图 41 — 条件 B 84 的 DUT 电流波形

Figure 42 — Circuit for Measuring Reverse Recovery Characteristics: Test Condition C85
图 42 — 用于测量反向恢复特性的电路:测试条件 C 85

Figure 43 — Current Waveforms for Various Types of Rectifier Diodes in the Circuit of Figure 4286
图 43 — 42 电路中各种类型整流二极管的电流波形 86

Figure 44 trr Test Circuit for Test Condition D89
44 测试条件 D 89 t rr 测试电路

Figure 45 — Suggested Board Layout for Low L1/R4 for Test Condition D90
图 45 — 测试 条件 D 90低 L 1/R 4 建议电路板布局

Figure 46 Generalized Reverse Recovery Waveforms for Test Condition D91
46 测试条件 D 91广义反恢复波形

Figure 47 — Capacitance Test Circuit92
图 47 — 电容测试电路 92

Figure 48 — Typical Transient Thermal Impedance Characteristic95
图 48 — 典型瞬态热抗特性 95

Figure.49 — Current and Voltage Waveforms During Thermal Resistance Test99
图 49 — 热测试期间的电流和电压波形 99

Figure 50 — Illustration of Forward Voltage Waveform Extrapolation100
图 50 — 正向电压波形外推100

Figure 51 — Thermal Resistance test Circuit (High-Current Devices)102
图 51 — 热阻测试电路 (大电流器件) 102

Figure 52 — Thermal Resistance Test Circuit (Low Current Devices)105
52 — 热阻测试电路(低电流器件) 105

Figure 53 — Current and Voltage Waveforms for Heating Pulse Transient Thermal Impedance Test108 Figure 54 — Current and Voltage Waveforms for Cooling Curve Transient Thermal Impedance Test
图 53 — 加热脉冲瞬态热阻抗测试的电流和电压波形 10854 — 冷却曲线瞬态热阻抗测试的电流和电压波形

....................................................................................................................................................................110

Figure.55 — Rectifier Diode Calibration Curve111
图 55 — 整流二极管校准曲线 111

Figure 56 Basic Test Circuit for Transient Thermal Impedance Test Method112
56 瞬态阻抗测试方法的基本测试电路 112

Figure 58 — Three-Phase Bridge116
图 58 — 三相电桥 116

Figure 59 — Criteria to Adjust VAC117
图 59 — 调整 VAC 117 的标准

Figure 60 — Test Current Waveforms for Various Types of Rectifier Diodes Under Test in the Circuit for Measuring Reverse Recovery Characteristics128
图 60 — 用于测量反向恢复特性 的电路中被测各种类型整流二极管的测试电流波形 128

Figure 61 Fundamental Rectifier Circuits Resistive Load129
61 基波整流电路 - 电阻负载 129

Figure 62 — Fundamental Rectifier Circuits – Resistive Load130
图 62 — 基波整流电路 – 电阻负载 130

Figure 63 — Fundamental Rectifier Circuits – Inductive Load131
图 63 — 基波整流电路 – 性负载 131

Figure 64 Fundamental Rectifier Circuits Inductive Load132
64 基波整流电路 性负载 132

Figure 65 — Surface Flatness133
图 65 — 表面平整度 133

Figure 66 — Typical On-State Current and Corresponding Junction and Case Temperature in a Half-Wave AC Circuit140
图 66 — 半波交流电路中的典型导通电流以及相应的结和外壳温度 140

Figure 67 — Free-Air Convection Measurement143
67 — 自由空气对流测量 143

Figure 68 — Forced Convection Measurement144
68 — 强制对流测量 144

TablesPage
表页

Table 1 — Letter Symbols for Rectifier Specifications8
表 1 — 整流器规格的字母符号 8

Table 2 — Allowed Ranges of Parameters for Use of Letter Suffix21
表 2 — 允许使用字母后缀 21 的参数范围

Table 3 — Reference Point Temperatures27
表 3 — 参考温度 27

Table 4 — Reference Point Temperature Relationships28
表 4 — 参考点温度关系 28

Table 5 — Reference Point Temperature Relationships28
表 5 — 参考点温度关系 28

Table 6 Reference Table of Ratings and Test Methods32
6 额定值和测试方法参考 32

Table 7 Reference Table of Electrical Characteristics, Symbols and Test Methods53
7 电气特性、 符号测试方法参考 53

Table 8 Reference Table of Thermal Characteristics, Symbols and Test Methods53
8特性、 符号测试方法参考 53

Table 9 — Temperature Measuring Instruments61
表 9 — 温度测量仪器 61

Table 10 — Reverse Recovery: Test Condition B81
表 10 — 反向恢复:测试条件 B 81

-vii-
-七-

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 1
第 1 页

SILICON RECTIFIER DIODES
硅整流二极管

(From JEDEC Board Ballot JCB-98-75A, formulated under the cognizance of JC-22.2 Subcommittee on Rectifier Diodes)
(摘自 JEDEC 董事会投票 JCB-98-75A,在 JC-22.2 整流二极管小组委员会的认可下制定)

Scope
范围

This document is a comprehensive users’ guide for silicon rectifier diode applications. It sets forth the nomenclature associated with silicon rectified diodes. This document further describes the established procedures that are followed in the registration of semiconductor devices and the assignment of type designations. For the purpose of preserving standardization, guidelines for filling in the rectifier diode registration information required in registration formats are provided. Standard ratings and test methods to be used in establishing and verifying the maximum ratings for rectifier diodes given in the JC-22 series of registration formats for rectifier diodes are provided. Accepted test methods and general guidelines of techniques and instrumentation for performing rectifier diode characteristics tests are set forth. Diode ratings and characteristics are presented with consideration to actual diode applications.
本文档是硅整流二极管应用的综合用户指南。它规定了与硅整流二极管相关的命名法。本文件进一步描述了半导体器件注册和类型名称分配所遵循的既定程序。为了保持标准化 提供了用于填写注册格式中所需的整流二极管注册信息的指南。提供了用于建立和验证整流二极管最大额定值的标准额定值和测试方法,这些标准额定值和测试方法在整流二极管JC-22 系列注册格式中给出 规定了用于执行整流二极管特性测试的公认测试方法和技术和仪器的一般指南 二极管的额定值特性是根据实际二极管应用呈现的。

Definitions and Symbols
D 函数和符号

2.1Physical Structure Nomenclature
2.1物理结构命名法

anode: The p-type region from which the forward current flows within a semiconductor diode.
阳极: 半导体二极管内正向电流流过的 p 型区域。

NOTE In Schottky diodes, usually the barrier metal replaces the p-type semiconductor region and the remaining semiconductor region is n-type; however, some Schottky diodes have been made with the barrier metal replacing the n-type semiconductor region, in which case the remaining semiconductor region is p-type.
注意:在肖特基二极管中,通常势垒金属取代 p 型半导体区域,剩余的半导体区域是 n 型;然而,一些肖特基二极管已经用势垒金属取代n 型半导体区域, 在这种情况下 剩余半导体区域p 型。

anode terminal (A, a): The terminal connected to the p-type region of the p-n junction or, when two or more p-n junctions are connected in series with the same polarity, to the extreme p-type region.
阳极端子(A,a): 连接到 p-n 结的 p 型区域的端子,或者当两个或多个 p-n 结以相同极性串联时,连接到极端 p 型区域的端子。

NOTESee note to “anode”.
注意 请参阅 “阳极” 的注释。

cathode: The n-type region to which the forward current flows within a semiconductor diode.
阴极: 正向电流在半导体二极管内流向的 n 型区域。

NOTESee note to “anode”.
注意 请参阅 “阳极” 的注释。

cathode terminal (K, k): The terminal connected to the n-type region of the p-n junction or, when two or more p-n junctions are connected in series with the same polarity, to the extreme n-type region.
阴极端子 (K, k): 连接到 pn 结的 n 型区域的端子,或者当两个或多个 pn 结以相同极性串联时,连接到极端 n 型区域的端子。

NOTESee note to “anode”.
注意 请参阅 “阳极” 的注释。

electrode (of a semiconductor device): An element that performs one or more functions of emitting or collecting electrons or holes, or of controlling their movements by an electric field.
电极(半导体器件的): 执行发射或收集电子或空穴的一种或多种功能,或通过电场控制其运动的元件。

JEDEC Standard No. 282B.02 Page 2
JEDEC 标准编号 282B.02 第 2 页

Physical Structure Nomenclature (cont’d)
物理结构命名法 (续)

junction (in a semiconductor device) (general term): A transition region between semiconductor regions of different electrical properties, or a physical region between a semiconductor region and a region of a different type; it is characterized by a potential barrier that impedes the movement of charge carriers from the region of higher concentration to the region with lower concentration.
结(在半导体器件中)( 总称): 不同电特性的半导体区域之间的过渡区域,或半导体区域与不同类型区域之间的物理区域;其特征是电势垒阻碍电荷载流子从较高浓度区域向较低浓度区域的移动。

rectifier stack: An integral assembly of two or more rectifier diodes, including its associated housing, and any integral mounting and cooling attachments. (See Figure 3.)
整流器堆栈: 两个或多个整流二极管的整体组件,包括其相关外壳以及任何整体安装和冷却附件。(见图 3。

rectifying junction: A junction in a semiconductor device that exhibits asymmetrical conductance.
整流结: 半导体器件中表现出不对称电导的结。

semiconductor device (general term): A device whose essential characteristics are due to the flow of charge carriers within a semiconductor material.
半导体器件 (总称): 一种器件 基本特性由于半导体材料内电荷载流子的流动

NOTEThe definition includes devices whose essential characteristics are only in part due to the flow of charge carriers in a semiconductor but that are considered as semiconductor devices for the purposes of specification.
注意: 该定义包括其基本特性仅部分归因于半导体中电荷载流子流动的器件,但在规范中被视为半导体器件的器件

semiconductor rectifier diode: A semiconductor diode intended to be used for current and voltage rectification. (See Figure 1 and Figure 2. For graphical symbol, see Figure 4.)
半导体整流二极管: 用于电流和电压整流的半导体二极管。(参见图 1 和图 2。有关图形符号,请参见图 4。

NOTE 1The term “semiconductor rectifier diode” includes the associated housing and any integral mounting and cooling attachments.
注 1:“ 半导体整流二极管”一词包括相关的外壳以及任何集成的安装和冷却附件。

NOTE
注意
2The
2的
term
术语
“rectifier
“整顿
cell”
细胞”
is
sometimes
有时
used
使用
as
a synonym
同义词
for
“rectifier
“整顿
diode”
二极管”
when
什么时候
the
diode
二极管
is
an
element of a rectifier
整流器的元件
stack.
叠。

terminal: An externally available point of connection.
终端: 外部可用的连接点。

Semiconductor Rectifier Diode Characteristic and Rating Terms
Semi 导体整流二极管特性和额定值项

average current: The value of a periodic current averaged over a full cycle unless otherwise specified.
平均电流: 除非另有说明,否则整个周期内平均的周期性电流值。

average rectified output current (50 Hz or 60 Hz sinewave input, 180o conduction angle) (IO): The output current averaged over a full cycle from a rectifier with a 50 Hz or 60 Hz sinewave input and a 180o conduction angle.
平均整流输出电流(50 Hz 或 60 Hz 正弦波输入,180o 导通角)(IO): 来自具有 50 Hz 或 60 Hz 正弦波输入和 180 o 导通角的整流器在整个周期内的平均输出电流

average voltage: The value of a periodic voltage averaged over a full cycle unless otherwise specified.
平均电压: 除非另有说明,否则在整个周期内平均的周期性电压值。

blocking: A term describing the state of a semiconductor device or junction that imposes high resistance to the passage of current.
阻塞: 描述半导体器件或结对电流通过施加高电阻的状态的术语。

breakdown: The phenomenon, occurring in a reverse-biased semiconductor junction, whose initiation is observed as a transition from a region of high small-signal resistance to a region of substantially lower small- signal resistance for an increasing magnitude of reverse current.
击穿: 发生在反向偏置半导体结中的现象,其起因是从小信号电阻区域过渡到小信号电阻低得多区域 ,反向电流的幅度不断增加

breakdown current: A current in the breakdown region.
击穿电流: 击穿区域中的电流。

breakdown region: The portion of the voltage-current characteristic beyond the initiation of breakdown for an increasing magnitude of reverse current.
击穿区域: 电压 -电流特性中超过反向电流幅度增加的击穿开始的部分。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 3
第 3 页

2.2 Semiconductor Rectifier Diode Characteristic and Rating Terms (cont’d)
2.2 半导体整流二极管特性和额定项(续)

breakdown voltage (For symbol, see Table 1): The voltage measured at a specified current in a breakdown region.
击穿电压 (符号见1):穿区域规定电流测得的电压

fall time charge (Qrrf): That part of the recovered charge that is recovered from the diode during the reverse recovery fall time.
下降时间电荷 (Qrrf): 二极管恢复 的恢复电荷部分 反向恢复下降期间。

NOTE The time intervals trrf and trrr are defined so that their sum is equal to the reverse recovery time t rr, whereas the recovered charge Qrr is defined for an integration time ti. As a consequence, the sum of the partial charges Qrrf and Qrrr will differ from Qrr unless t rr equals t i.
注:定义时间间隔 trrf 和 trrr 的总和等于反向恢复时间 t rr,而恢复的电荷 Qrr 是针对积分时间 t 定义的 。因此,除非 t rrti,否则部分电荷 Q rrf 和 Qrrr 的总和与 Qrr 不同

forward current (in a semiconductor diode) (For symbol, see Table 1): The current flowing from the external circuit into the anode terminal.
正向电流(在半导体二极管中)( 符号见表 1): 从外部电路流入阳极端子的电流。

forward direction: The direction of a (positive) forward current
正向方向:(正)正向电流的方向

forward power dissipation (For symbol, see Table 1): The power dissipation resulting from forward current.
正向功耗( 符号见表 1): 正向电流产生的功耗。

forward recovery time (t
前向恢复时间(t
fr): The time interval between the instant when the forward voltage rises through a
正向电压通过
specified
指定
first
第一
value,
价值
usually
通常
10% of
its
final
最后
value,
价值
and
the
instant
瞬间
when
什么时候
it
falls
瀑布
from
its
peak
value,
价值
V
FRM, to a specified low second value, V
,到指定的低秒值 V
FR, upon the application of a step current following a zero-voltage or a
,在零电压或
specified reverse-voltage
指定的反向电压
condition.
条件。

forward voltage (across a semiconductor diode) (For symbol, see Table 1): A positive anode-cathode voltage.
正向电压(半导体二极管两端)( 符号见表 1): 正阳极-阴极电压。

non-repetitive peak reverse voltage (VRSM): The peak reverse voltage including all non-repetitive transient voltages but excluding all repetitive voltages. (See Figure 6.)
非重复峰值 反向电压 (VRSM): 峰值反向电压 包括所有非重复瞬态电压,但不包括所有重复电压。(见图 6.)

overload forward current (IFM(OV)): A current whose continuous application would cause the maximum- rated virtual junction temperature to be exceeded, but that is limited in duration such that this temperature is not exceeded.
过载正向电流 (IFM(OV)):一种电流,其连续施加会导致超过最大额定虚拟温度 受到 限制 持续时间 使其不超过温度

NOTE Devices may be subjected to overload currents as frequently as called for by the application while being subjected to normal operating voltages. (Ref. IEC 747-2.)
注意:设备可能会根据应用的要求频繁承受过载电流,同时承受正常工作电压。(参考 IEC 747-2。

peak forward current (lFM): The peak instantaneous value of the forward current. peak reverse current (IRM): The peak instantaneous value of the reverse current. peak reverse voltage (VRM): The peak instantaneous value of the reverse voltage.
峰值正向电流 (LFM): 正向电流的峰值瞬时值。 峰值反向电流(IRM): 反向电流的峰值瞬时值。 峰值反向电压(VRM): 反向电压的瞬时峰值

recovered charge (Qrr): The total amount of charge recovered from a diode, including the capacitive component of charge, when the diode is switched from a specified conductive condition to 1) a specified nonconductive condition, or 2) an unspecified nonconductive condition with the measurement ending after a specified integration time, ti,, with other circuit conditions as specified.
回收电荷 (Qrr): 当二极管从指定的导电条件切换到 1) 指定的非导电条件,或 2) 未指定的非导电条件,测量在指定的积分时间 ti 后结束时,从二极管回收的电荷总量,包括电荷的电容成分 ,并具有指定的其他电路条件。

repetitive peak forward current (IFRM): The peak forward current including all repetitive transient currents but excluding all non-repetitive transient currents.
重复峰值正向电流 (IFRM): 峰值正向电流 包括所有重复瞬态电流 ,但不包括所有非重复瞬态电流。

JEDEC Standard No. 282B.02 Page 4
JEDEC 标准编号 282B.02 第 4 页

2.2Semiconductor Rectifier Diode Characteristic and Rating Terms (cont’d)
2.2 半导体整流二极管特性及额定值术语 (续)

repetitive peak reverse current (IRRM): The peak reverse current including all repetitive transient currents but excluding all non-repetitive transient currents.
重复峰值反向电流 (IRRM): 峰值反向电流,包括所有重复瞬态电流 ,但不包括所有非重复瞬态电流。

repetitive peak reverse voltage (VRRM): The peak reverse voltage including all repetitive transient voltages but excluding all non-repetitive transient voltages. (See Figure 6.)
重复峰值反向电压 (VRRM): 峰值反向电压 包括所有重复瞬态电压 但不包括所有非重复瞬态电压。(见图 6.)

reverse current (in a semiconductor diode) (For symbol see Table 1-1): The current flowing from the external circuit into the cathode terminal
反向电流(在半导体二极管中)( 符号见表 1-1): 从外部电路流入阴极端子的电流

reverse direction: The direction of a (positive) reverse current.
反向方向:(正)反向电流的方向

reverse power dissipation (For symbol, see Table 1): The power dissipation resulting from reverse current.
反向功耗( 符号见表 1): 反向电流产生的功耗。

reverse recovery current (For symbol, see Table 1): The transient reverse current associated with a change from forward current to a reverse condition. (See clause 6.6.9.)
反向恢复电流 (有关符号,请参见表 1): 与从正向电流到反向条件的变化相关的瞬态反向电流。(见第 6.6.9 条。

reverse recovery current fall time (trrf, tb): The portion of the reverse recovery time interval after the reverse recovery current has reached its maximum (peak) value. (See Figure 7.)
反向恢复电流下降时间(trrf,t b): 反向恢复电流达到其最大(峰值)值后的反向恢复时间间隔部分 。(见图 7。

reverse recovery current rise time (t
反向恢复电流上升时间 (t
rrr, t
, 吨
a): The portion of the reverse recovery time interval prior to the
反向恢复时间间隔中
instant when the reverse recovery current reaches its maximum (peak) value. (See Figure 7.)
当反向恢复电流达到其最大(峰值)值时立即。(见图 7。

reverse recovery softness factor (RRSF): The absolute value of the ratio of (1) diRR/dt (the rate of rise of the reverse recovery current) when the current is passing through zero at the beginning of the reverse recovery time, to (2) diRF/dt (the maximum value of the rate of fall of the reverse recovery current) after the current has passed through its peak value, IRM. (See Figure 9.)
反向恢复软度系数(RRSF): 在反向恢复时间开始时电流过零时(1)di RR/dt(反向恢复电流的上升率)与(2)di RF/dt(反向恢复电流下降率的最大值)之 比的绝对值电流已通过其峰值 IRM。(见图 9.)

NOTEThe ratio of reverse recovery current fall time (tb) to the reverse recovery current rise time (ta) has been called “recovery softness factor” (RSF); however, RRSF is a more useful measure of the diode softness characteristic.
注意: 反向恢复电流下降时间 (t b)与反向恢复电流上升时间的 (ta 被称为 “恢复柔软系数”(RSF); 然而,RRSF 衡量二极管柔软度特性 有用的指标

reverse recovery time (trr): The time interval between the instant when the current passes through zero when changing from the forward direction to the reverse direction and, after reverse current reaches its peak value IRM(REC), the instant when
反向恢复时间 (trr):正向 变为 反向 电流通过零的瞬间与之后的时间间隔 反向电流达到峰值 I RM(REC),当

the reverse current first intersects the zero-current axis as shown in Figure 7(a), or
反向电流首先零电流相交 7(a) 所示

the extrapolated reverse current reaches zero, as shown in Figure 7(b), or
推反电流达到零,7(b)所示

the reverse current reaches a specified low value iR(REC), as shown in Figure 7(c).
反向电流达到规定的低值 iR(REC), 如图 7(c)所示。

NOTEIn b., the extrapolation is carried out with respect to specified points “A” and “B”, as shown in generalized form in Figure 7(b). Point “A” may be specified at other than IRM(REC)
注 b.中,外推是针对指定的点“A”和“B”进行的,如图 7(b)中的广义形式所示。“A”点可指定在 RM(REC)以外的位置
.

reverse voltage (across a semiconductor diode) (For symbol, see Table 1): A positive cathode-anode voltage.
反向电压(半导体二极管两端)( 有关符号,请参见表 1):正阴极-阳极电压。

rise time charge (Qrrr): That part of the recovered charge that is recovered from the diode during the reverse recovery rise time.
上升时间电荷 (Qrrr): 在反向恢复上升时间内从二极管恢复的恢复电荷部分

NOTESee note to “fall time charge”.
注意 请参阅“下降时间充电” 的注释。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 5
第 5 页

Semiconductor Rectifier Diode Characteristic and Rating Terms (cont’d)
半导体整流二极管特性和额定值条款 (续)

stored charge (Qs): The total amount of charge recovered from a diode minus the capacitive component of charge when the diode is switched from a specified conductive condition to a specified nonconductive condition with other circuit conditions specified.
存储电荷 (Qs): 当二极管从指定的导电条件切换到指定的非导电条件并指定其他电路条件时,从二极管回收的电荷总量减去荷的容性分量

surge peak forward current (IFSM): The peak forward current including all non-repetitive transient currents but excluding all repetitive transient currents.
浪涌峰值正向电流 (IFSM): 峰值正向电流 ,包括所有非重复瞬态电流 ,但不包括所有重复电流瞬态电流。

thermal resistance (R
热阻(R
th, R ):
, R ):
The temperature difference between two specified points or regions divided
划分的两个指定点或区域之间的温差
by the power dissipation under conditions of thermal equilibrium.
通过热平衡条件下的功率耗散。

total power dissipation (For symbol, see Table 1): The sum of the forward and reverse power dissipations.
总功耗 (符号见表 1): 正向和反向功耗之和。

transient thermal impedance (Z
瞬态热阻 (Z
th, Z ):
, Z):
The change in temperature difference between two specified
两个指定温差的变化
points
or
regions
地区
that
occurs
发生
during
a time
时间
interval
间隔
divided
划分
by
the
step-function
阶梯函数
change
改变
in
power
权力
dissipation that occurred at the beginning of the interval and caused the change in temperature
在间隔开始时发生并导致温度变化的耗散
difference.
差异。

virtual junction temperature (TJ): A temperature representing the temperature of the junction calculated on the basis of a simplified model of the thermal and electrical behavior of the semiconductor diode.
虚拟结温 (TJ): 表示根据半导体二极管热和电行为的简化模型计算的结温度的温度

working peak reverse voltage (V
工作峰值反向电压 (V
RWM): The peak reverse voltage excluding all transient voltages. (See
峰值反向电压,不包括所有瞬态电压。(参见
Figure 6.)
图6。

Terms Used in Describing Rectifier Diode Circuits
用于描述整流二极管电路的 T ERMS

blocking period (of a rectifier circuit element): The part of an alternating-voltage cycle during which the current flows in the reverse direction.
阻断周期(整流电路元件): 交流电压周期中电流反向流动的部分。

NOTEThe blocking period is not necessarily the same as the reverse period because of the effect of circuit parameters and semiconductor rectifier diode characteristics.
注意: 由于电路参数和半导体整流二极管特性的影响,阻塞周期不一定与反向周期相同

bridge rectifier circuit: See “double-way rectifier circuit”.
桥式整流电路: 参见“双路整流电路”。

commutation: The transfer of unidirectional current between rectifier circuit elements that conduct in succession.
换向: 连续导通的整流电路元件之间单向电流的传输。

conducting [conduction] period (of a rectifier circuit element): The part of an alternating-voltage cycle during which the current flows in the forward direction.
导通[传导]周期(整流电路元件): 交流电压周期中电流正向流动的部分。

NOTEThe forward period is not necessarily the same as the conducting period because of circuit parameters and semiconductor rectifier diode characteristics
注意: 由于电路参数和半导体整流二极管特性,正向周期不一定与导通周期相同

double-way rectifier circuit: A circuit in which the current flows in both directions from each terminal of the alternating-voltage circuit to the rectifier circuit elements connected to each terminal.
双路整流电路: 电流从交流电压电路的每个端子双向流向连接到每个端子的整流电路元件的电路。

JEDEC Standard No. 282B.02 Page 6
JEDEC 标准编号 282B.02 第 6 页

Terms Used in Describing Rectifier Diode Circuits (cont’d)
描述整流二极管电路时使用的术语 (续)

NOTE The terms “single-way” and “double-way” provide a means for describing the effect of the rectifier circuit on current in the transformer windings connected to rectifier circuits. Most rectifier circuits may be classified into these two general types. Many double-way circuits are also referred to as bridge circuits. Both single-way and double- way circuits are illustrated in Figure 61 and Figure 63. The 1-1-1-H, 2-1-1-C, 3-1-1-Y, 6-1-1-Y, and 6-1-1-S types are examples of single-way circuits. The 4-1-1-B and 6-1-1-B types are examples of double-way circuits.
注意术语“单路”和“双路”提供了一种描述整流电路对连接到整流电路的变压器绕组中电流的影响的方法。大多数整流电路可分为这两种一般类型。许多双路电路也称为桥式电路。单路和双路电路如图 61 和图 63 所示。1-1-1-H、2-1-1-C、3-1-1-Y、6-1-1-Y 和 6-1-1-S 类型是单路电路的示例。4-1-1-B 和 6-1-1-B 型是双路电路的示例

form factor (of a waveform): The ratio of the root-mean-square value of the wave to the average value.
外形因子(波形): 波的均方根值与平均值的比率。

forward period (of a rectifier circuit element): The part of an alternating-voltage cycle during which forward voltage appears across the rectifier circuit element.
向周期(整流电路元件): 交流电压周期中整流电路元件上出现正向电压的部分。

full-wave rectifier circuit:A circuit that changes single-phase alternating current into pulsating unidirectional current utilizing both halves of each cycle.
全波整流电路 利用每个周期的两半将单相交流电转换为脉动单向电流的电路

half-wave rectifier circuit: A circuit that changes single-phase alternating current into pulsating unidirectional current utilizing only one half of each cycle.
半波整流电路: 仅使用每个周期的一半将单相交流电转换为脉动单向电流的电路。

harmonic content (of a non-sinusoidal periodic wave): The order and magnitude of the harmonic components.
谐波含量(非正弦周期波): 谐波分量的阶数和大小。

(percent) ripple voltage or current:
(百分比)纹波电压或电流:
The ratio, in percent, of the effective (root-mean-square) value of the ripple voltage or current to the average value of a pulsating unidirectional voltage or current, respectively.
纹波电压或电流的有效(均方根)值与脉动单向电压或电流的平均值的比率(以百分比为单位)。

rectifier circuit element: One or more semiconductor rectifier diodes or rectifier stacks connected in series, in parallel, or both, to operate as a unit that is bounded by two circuit terminals and conducts current substantially in only one direction.
整流电路元件: 一个多个联、并联或两者连接的半导体整流二极管整流器堆栈 ,作为一个单元运行,该单元由两个电路端子包围,并且仅在一个方向上基本上传导电流

NOTEGraphical symbols for rectifier circuit elements are shown in Figure 4 and Figure 5.
注意 :整流电路元件的图形符号如图 4 和图 5 所示

reverse period (of a rectifier circuit element): The parts of an alternating-voltage cycle during which reverse voltage appears across the rectifier circuit element.
反向周期(整流电路元件): 交流电压周期中整流电路元件两端出现反向电压的部分。

ripple voltage or current: The alternating component whose instantaneous values are the difference between the average and instantaneous values of a pulsating unidirectional voltage or current, respectively.
纹波电压或电流:瞬时值分别是脉动单向电压或电流的平均值和瞬时值之间的差值的交流分量。

single-way rectifier circuit: A circuit in which the current flows in only one direction from each terminal of the alternating-voltage circuit to the rectifier circuit element connected to each terminal.
单路整流电路: 电流仅沿一个方向从交流电压电路的每个端子流向连接到每个端子的整流电路元件的电路。

NOTE See NOTE under “double way rectifier circuit”.
注意 请参阅“双路整流电路” 下的注意。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 7
第 7 页

General Letter Symbols
G 通用字母符号

Temperature Symbols
温度符号

ambient temperatureTA
环境温度 TA

case temperatureTC
外壳温度 TC

storage temperatureTstg
储存温度 Tstg

virtual junction temperatureTJ
虚拟结 TJ

NOTETVJ may be substituted for T
注 T VJ 可以代替 T
J

Thermal Resistance and Impedance Symbols
T 密封电阻和阻抗符号

thermal resistanceRth
Rth

thermal resistance, case-to-ambientRthCA
阻, 外壳到环境 RthCA

thermal resistance, junction-to-ambientRthJA
阻, 结到环境 R thJA

thermal resistance, junction-to-caseRthJC
阻, 结到外壳 RthJC

thermal resistance, junction-to-leadRthJL
阻, 结至引线 R thJL

thermal resistance, junction-to-mountingRthJM
阻, 结接安装 RthJM

NOTER may be substituted for Rth, and similarly Z? (t) may be substituted for Zth(t), etc.
注意 R 可以代替 Rth,类似地 Z(t) 可以代替 Zth(t) 等。

transient
短暂的
thermal
烫的
impedance
阻抗
Z
th transient thermal
瞬态热
impedance,
阻抗
junction-to-ambient
结到环境
Z
thJA transient thermal
瞬态热
impedance,
阻抗
junction-to-case
结到案例
Z
thJC transient thermal
瞬态热
impedance,
阻抗
junction-to-leadZ
结到引线 Z
thJL transient thermal
瞬态热
impedance,
阻抗
junction-to-mounting
接头到安装
Z
thJM

NOTER may be substituted for Rth, and similarly Z (t) may be substituted for Zth(t), etc.
R 可以代替 Rth,同样,Z(t) 可以代替 Zth(t) 等。

Transient and Electrical Symbols
T 赎金和电气符号

fall timetf
坠落时间 tf

forward recovery timetfr
前向恢复时间 tfr

junction capacitanceC
电容 C
j

pulse durationtp
脉冲持续时间 tp

recovered chargeQrr
回收电 Qrr

stored chargeQS
储电 QS

reverse recovery timetrr
反向恢复时间 trr

rise timetr
上升时间 tr

reverse recovery current rise timetrrr, ta
反向恢复电流上升时间 trrrta

reverse recovery current fall timetrrf, tb
反向恢复电流下降时间 T RRFTB

reverse recovery softness factorRRSF
反向恢复柔软度因子 RRSF

Letter Symbols Subscripts
Letter 符号下标

The following letters are used as qualifying subscripts in rectifier diode voltage, current, and power letter symbols to denote specific descriptive terms. The use of some of them is illustrated in Table 1 and Figure 9.
以下字母用作整流二极管电压、 电流功率字母符号中的限定下标 ,以表示特定的描述性术语。其中一些的用法如表 1 和图 9 所示

JEDEC Standard No. 282B.02 Page 8
JEDEC 标准第 282B.02 号第 8 页

2.5Letter Symbols Subscripts (cont’d)
2.5字母符号下标(续)

A, aanode
A,阳

(AV)average value
(AV) 平均

(BR)breakdown
(BR) 故障

K, kcathode
K,k 阴极

F, fforward
F,F 前进

M, mmaximum peak value
M,m 最大峰值

Snon-repetitive or surge
S 非重复或浪涌

(OV)overload
(OV) 过载

rreverse or as a second subscript, recovery
r 反转或作为第二个下标, 恢复

Rreverse or as a second subscript, repetitive
R 反转作为第二个下标, 重复

(REC)recovery
(REC) 恢复

(RMS)total rms value
(RMS) 总 RMS

Wworking
W 工作

Table 1 — Letter Symbols for Rectifier Specifications
表1 — 整流器规格的字母符号

Total rms value
总均方根值

RMS value of alternating component
交替分量RMS 值

DC value with no alternating component
无交流分量的直流值

DC value with alternating component
带交流分量的直流值

Instantaneous total value
瞬时总价值

Maximum (peak) total value
最大(峰值) 总值

Forward current
正向电流

IF(RMS)
F(有效值)

If

IF

IF(AV)
F(自动驾驶)

iF

IFM

Forward current, overload
正向电流、过载

IFM(OV)
调频(OV)

Forward current, repetitive peak
正向电流,重复峰值

IFRM

Forward current, surge
正向电流、浪涌

IFSM

(non-repetitive) peak
(非重复)峰值

Rectified output current,
整流输出电流,

IO

average,180º conduction angle,
平均,180º 导通角,

50 Hz or 60 Hz, sinewave input
50 Hz 或 60 Hz,正弦波输入

Reverse current
反向电流

IR(RMS)
R(RMS)

Ir

IR

IR(AV)
R(AV)

iR

IRM

Reverse current, repetitive peak
反向电流,重复峰值

IRRM

Reverse recovery current
反向恢复电流

iR(REC)
R(REC)

IRM(REC)
RM(REC)

Forward power dissipation
正向功耗

PF

PF(AV)
PF(AV)

PF

PFM

Peak power dissipation with surge current
浪涌电流的峰值功耗

PFSM

Reverse power dissipation
反向功耗

PR

PR(AV)
PR(AV)

PR

PRM

Total power dissipation
总功耗

PT

PT(AV)
PT(AV)

PTM

Breakdown voltage
击穿电压

V(BR)
V(BR)

v(BR)
v(BR)

Forward voltage
正向电压

VF(RMS)
VF(均方根)

Vt

VF

VF(AV)
VF(AV)

vF

VFM

Forward surge voltage
正向浪涌电压

VFSM

Reverse voltage
反向电压

VR(RMS)
VR(均方根)

Vtr

VR

VR(AV)
VR(AV)

vR
R

VRM

Reverse voltage, working peak
反向电压,工作峰值

VRWM

Reverse voltage, repetitive peak
反向电压,重复峰值

VRRM

Reverse voltage, non-repetitive peak
反向电压,非重复峰值

VRSM

Peak junction temperature with repetitive forward current flowing
重复正向电流流动的峰值结温

Peak junction temperature with surge forward current flowing
浪涌正向电流流动的峰值结温

TJRM

TJSM

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 9
第 9 页

2.5Letter Symbols Subscripts (cont’d)
2.5 字母符号下标 (续)

Forward direction or direction of easy current flowCathode terminal Metal
正向或易流方向极端子金属

Cathode electrode (n-type region)
阴极电极(n 型区域)

Case

Rectifying junction Anode electrode
整流结阳极电极

(p-type region)
(p 型区域)

Metal
金属

Anode terminal
阳极端子

Figure 1 — Cross-Section of a Semiconductor Rectifier Diode
图 1 — 半导体整流二极管的横截面

Figure 2 — Typical Semiconductor Rectifier Diode Packages
图 2 — 典型半导体整流二极管封装

JEDEC Standard No. 282B.02 Page 10
JEDEC 标准第 282B.02 号第 10 页

2.5Letter Symbols Subscripts (cont’d)
2.5 字母符号下标 (续)

Figure 3 — Sketches of typical semiconductor rectifier stacks
图 3 — 典型半导体整流器堆栈的草图

To Input terminals
到输入端子

Output positive terminal
输出正极端子

Forward direction or direction of easy current flow
正向或电流容易流动的方向

Graphical
图形

SymbolOne of six rectifier
符号 整流器之一

circuit elements
电路元件

Output negative terminal
输出负极端子

Figure 4 — Rectifier Graphical Symbol and Example Circuit
图4 — 整流器图形符号和示例电路

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 11
第 11 页

2.5Letter Symbols Subscripts (cont’d)
2.5 字母符号下标 (续)

Figure 5 — Examples of Rectifier Circuit Elements
图5 — 整流电路元件示例

Figure 6 — Reverse Voltage Waveforms
图6 — 反向电压波形

JEDEC Standard No. 282B.02 Page 12
JEDEC 标准编号 282B.02 第 12 页

2.5Letter Symbols Subscripts (cont’d)
2.5 字母符号下标 (续)

IFM(a)
I 调频 (a)

0t
0

IRM(REC)
我 RM(REC)

IFM
调频

0

IRM(REC)I
我 RM(REC)I

I

i R(REC)
i R(REC)

I RM(REC)
RM(REC)

Figure 7 — Current Waveforms During Rectifier Diode Reverse Recovery
图7 — 整流二极管反向恢复期间的电流波形

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 13
第 13 页

2.5Letter Symbols Subscripts (cont’d)
2.5 字母符号下标 (续)

iF

vF

pF

TJ
T·J

vR
R

iR

NOTE 1Instantaneous values, such as iF, vF, etc. indicate a value on the waveform at a desired point in time.
注 1 瞬时值,如 FvF 等,表示波形的值。

NOTE 2Io is the average rectified current of sinusoidal waveform. For other waveforms the average rectified current is designated as IF(AV)
注 2Iois 正弦波形的平均整流电流。对于其他波形,平均整流电流指定为 F(AV)
.

NOTE 3In the figure, vertical dashed lines are used to show concurrence of the other waveforms with the end of, and beginning of, iF
注 3 在图中,垂直虚线用于显示其他波形与 F 的结束和开始的一致
.

Figure 8 — Illustration of Symbols for Reverse and Forward Voltage and Current and Junction Temperature Excursion Resulting from the Developed Power
图8 — 由开发功率产生的反向和正向电压和电流以及结温偏移的符号示意图

JEDEC Standard No. 282B.02 Page 14
JEDEC 标准编号 282B.02 第 14 页

2.5Letter Symbols Subscripts (cont’d)
2.5 字母符号下标 (续)

𝑅𝑅𝑆𝐹 =
RRSF =

(𝑑𝑖𝑟𝑟) 𝑖 = 0 (𝑑𝑖𝑟𝑓) 𝑚𝑎𝑥
dirr) i = 0 (dirf) 最大值

Figure 9 — Reverse Recovery Softness Factor (RRSF)
图 9 — 反向恢复软性因子 (RRSF)

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 15
第 15 页

Registration
R 注册

Introduction
国际生产

This chapter describes the established procedures that are followed in the registration of semiconductor devices and the assignment of type designations. These procedures are discussed from the standpoint of both administration by JEDEC and compliance by the device manufacturer. Technical standards concerning registration are not included but are discussed in clause 4.
本章介绍半导体器件注册和类型名称分配所遵循的既定程序。这些程序从 JEDEC 管理和设备制造商合规性的角度进行讨论。有关注册的技术标准不包括在内,但在第 4 条中进行了讨论

Registration consists of the assignment of type designations to solid state devices in accordance with established rules, recording the assignment and defining data, and the full dissemination of the information to the electronics industry.
注册包括根据既定规则向固态器件分配类型名称,记录分配和定义数据,以及向电子行业充分传播信息。

Registration procedures and rules are established by JEDEC, which is a sector of EIA (Electronic Industries Alliance). In any event, JEDEC neither assumes liability for, nor endorses the use of any products which bear its authorized registration number. JEDEC has as its primary objective the development of Recommended Standards and Registration Formats in the field of solid state devices. An effective registration procedure is considered basic to the achievement of this objective.
注册程序规则JEDEC 制定 JEDECEIA(电子工业联盟) 的一个部门 。在任何情况下,JEDEC 既不对任何带有其授权注册号的产品承担责任,也不认可使用任何带有其授权注册号的产品。JEDEC 的主要目标是开发固态器件领域的推荐标准和注册格式。有效的登记程序被认为是实现这一目标的基础

The
material
材料
in
this
clause
on
type
类型
assignments
作业
is
taken
采取
from
JEDEC
杰德克
Publication
出版
No.
不。
15D (February,
(二月,
1981). However, the latest revision of this publication has overriding authority where any conflict may occur with the material contained
1981 年)。但是,如果可能与所含材料发生任何冲突,则本出版物的最新版本具有压倒一切的权威
herein.
在此。

The term “type designation” used here refers to the number assigned to a solid state device in accordance with EIA Recommended Standard EIA-370-B “Designation System for Discrete Semiconductor Devices” (February 1982; Reaffirmed November 1995). The term “type designation” may be applied to the original number assigned (without suffix) or to a number with a suffix letter. All procedures described here apply equally well to both the basic type designation and to the suffix letter designation unless otherwise stated (See clause 3.2.4 and clause 3.2.5).
此处使用的术语“型号名称”是指根据 EIA 推荐标准 EIA-370-B“分立半导体器件名称系统”(1982 年 2 月;1995 年 11 月重申)。术语“型号名称”可以应用于分配的原始编号(不带后缀)或带有后缀字母的编号。除非另有说明,否则此处描述的所有程序同样适用于基本型号名称和后缀字母名称(见第 3.2.4 条和第 3.2.5 条)。

Purpose and Intent
Purpose 和意图

The purpose of the type designation and registration system is to facilitate the purchase and distribution of solid state devices by nontechnical individuals. The registration procedures are designed to ensure that devices registered with JEDEC differ from each other significantly in performance characteristics or physical dimensions.
型式指定和注册系统的目的是方便非技术人员购买和分销固态器件。注册程序旨在确保JEDEC 注册的设备在性能特征物理尺寸彼此显着不同

The following is a partial list of the many ways in which the JEDEC registration system is useful to many segments of the electronics industry.
以下是 JEDEC 注册系统对电子行业的许多领域有用的多种方式的部分列表。

A single number replaces the multiple house numbers that would be used where there are two or more manufacturers of a particular device. This advantage is of particular value to the larger consumer such as the Government, because it means in most cases the procurement and supply of a single item, instead of multiple items.
单个号码取代了在特定设备有两个或多个制造商的情况下使用的多个门牌号。这一优势对政府等较大的消费者特别有价值,因为在大多数情况下,这意味着采购和供应单一物品,而不是多件物品。

The existence of a nationality recognized designation encourages other manufacturers to make similar devices, thereby increasing and promoting competition.
国籍认可名称的存在鼓励其他制造商制造类似的设备,从而增加和促进竞争。

JEDEC Standard No. 282B.02 Page 16
JEDEC 标准第 282B.02 号第 16 页

Purpose and Intent (cont’d)
目的和意图 (续)

Requires types registered under the JEDEC system to differ from each other in a significant degree in terms of performance characteristics or physical dimensions.
要求在 JEDEC 系统下注册的型号在性能特征或物理尺寸方面彼此之间存在显着差异。

Allows types registered under the JEDEC system to be more easily compared because the defining characteristics of the specification must be based upon standard test conditions and registered according to standard formats.
允许更容易比较在 JEDEC 系统下注册的类型,因为规范的定义特征必须基于标准测试条件并根据标准格式进行注册

The publication of registration information through trade channels makes it easier for consumers to obtain second sources of supply.
通过贸易渠道公布注册信息,方便消费者获得第二供应来源

The specifications of registered devices carrying the authorized designations cannot be changed at will by the first or any subsequent manufacturer, thus promoting standardization and interchangeability.
带有授权名称的注册设备的规格不能被第一个或任何后续制造商随意更改,从而促进标准化和互换性。

In many cases it provides a means for nontechnical personnel of user stock procurement and maintenance operations to obtain equivalent replacement parts.
许多情况下 ,它用户库存采购维护作非技术人员提供了一种获得等效替换零件的手段。

It provides a permanent record for future procurement in those cases where the original manufacturer(s) no longer exist or make the type.
未来采购提供了永久记录 ,以防原始制造商不再存在或制造该类型。

It provides a parts identification system which is of benefit to the distributor and user of electronic parts.
提供了一个零件识别系统 有利于电子零件分销商用户

The JEDEC system permits reduction in the required number of parts in inventory.
JEDEC 系统允许减少库存中所需的零件数量

It is the intent of the type designation and registration system to permit the assignment of discrete semiconductor device type designations not only to single solid state devices but also to combinations of solid state devices such as more than one diode element, or diode elements and transistor or thyristor elements, within the same primary envelope. In each case, EIA Standard EIA-370-B, “Designation System for Discrete Semiconductor Devices” governs.
类型名称和注册系统的目的是允许将分立半导体器件类型名称分配给单个固态器件,而且允许将分立半导体器件类型名称分配给固态器件的组合,例如多个二极管元件,或二极管元件和晶体管或晶状管元件,在同一主包络内。在每种情况下,EIA 标准 EIA-370-B,“分立半导体器件的指定系统”都适用。

Brief Outline of Registration Procedures
Brief 注册程序大纲

Application: The manufacturer furnishes to the Type Administrator defining data for a device in accordance with the applicable registration format and requests assignment of a type designation. (See clause 4.1.)
应用: 制造商根据适用的注册格式向类型管理员提供设备定义数据 ,并请求分配类型名称。(见条款 4.1.)

Assignment: The Type Administrator assigns a type designation and notifies the manufacturer.
分配:类型管理员分配类型名称并通知制造商。

Release (Public Announcement): Within one hundred and twenty (120) days after the date of assignment, the Type Administrator announces the registration of the type by distributing the data to the manufacturers and users of solid state devices.
发布(公告):在转让之日起一百二十 (120) 天内,类型管理员通过向固态器件的制造商和用户分发数据来宣布该类型的注册。

Correction Notice and Registration: Once data on a type has been released, it is possible to change the defining data for that type only by either of two methods: a correction notice or a reregistration. In those cases where an error has been discovered in the data submitted, a correction notice may be filed only by the original sponsor to the Type Administrator within sixty (60) days after release. On the other hand, any device manufacturer may, at any time, propose a reregistration to change the registered values for a device.
更正通知和注册:发布类型数据后,只能通过以下两种方法之一更改该类型的定义数据:更正通知或重新注册。发现提交的数据错误的情况下 只有原始发起人才能六十 (60) 类型管理员提交更正通知发布 另一方面 任何设备制造商都可以随时提议重新注册以更改设备的注册值

In order for the change to be adopted, however, there must be no opposition to the proposal from any other manufacturer of the device.
但是,为了通过该更改,任何其他设备制造商不得反对该提案。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 17
第 17 页

Detailed Procedures and the Rules Governing Registration of Type Designation without Letter Suffix
D字母后缀的型号指定注册的详细程序和规则

3.4.1Application
3.4.1应用

Any manufacturer of solid state devices, whether or not a member of JEDEC or EIA may request a type registration from the Type Administrator for a device the manufacturer is developing or manufacturing. Foreign manufacturers may also request type registrations. All applicants for type registrations will be charged a fee for the service.
任何固态设备制造商,无论是否是 JEDEC 或 EIA 的成员,都可以向制造商正在开发或制造的设备向类型管理员请求类型注册。国外制造商也可以要求进行型号注册。所有型号注册申请人均需支付服务费用。

The requirement that final registration data be made available to the Type Administrator in order to obtain a type registration makes it necessary for the manufacturer to defer his application until the device is about to be marketed.
为了获得型号注册,必须向型号管理员提供最终注册数据,因此制造商有必要推迟其申请,直到设备即将上市。

A request for registration must be made in writing by the manufacturer of the device. It must be accompanied by sufficient defining data to show that the device differs from any existing device for which a number has been assigned by the Type Administrator. The data must be submitted to Technology Association in accordance with the applicable formats developed by JEDEC Solid State. See clause 3.7, clause 3.8, and clause 3.9 for rules pertinent to development and use of formats. If an appropriate format does not exist, the information submitted must meet the minimum requirements set by the Type Administrator.
注册请求必须由设备制造商以书面形式提出。它必须附有足够的定义数据,以表明该设备与类型管理员已为其分配编号的任何现有设备不同。数据必须按照 JEDEC 固态开发的适用格式提交给技术协会。有关格式开发和使用规则,请参阅第 3.7 条、第 3.8 条和第 3.9 条。如果不存在适当的格式,则提交的信息必须满足类型管理员设定的最低要求。
In
any
任何
case,
the
Type
类型
Administrator
管理员
shall
be
the
sole
唯一
authority
for
determining
确定
the
adequacy of data submitted. Any appeal of the Type Administrator's determination shall be made in writing within thirty (30) days, in accordance with the procedures set out in clause
提交数据的充分性。对类型管理员的决定提出任何上诉,应在三十 (30) 天内按照条款中规定的程序以书面形式提出
3.6.

For rectifier diodes, the Type Administrator will insist that a new type number, not a suffix letter, be used, if a new device differs from an older registered device in any of the following respects:
对于整流二极管,如果新设备在以下任何方面与旧注册设备不同,则类型管理员将坚持使用新的类型编号,而不是后缀字母:

Any change in forward current rating, except surge current.
正向电流额定值的任何变化,浪涌电流除外

Any change in reverse voltage rating.
反向额定电压的任何变化

Any change in maximum storage or operating temperature rating.
最大存储工作温度额定值的任何变化

A new rating or characteristic not required of the older device and for which industry agreement for reregistration of the older device could not be reached.
旧设备不需要的新额定值或特性,并且无法就旧设备重新注册达成行业协议

A major change exceeding the greatest change permitted for suffix designations in one or more of the characteristics listed.
超过所列一个或多个特征中后缀名称允许的最大变化的重大变化

New outline dimensions.
新的轮廓尺寸。

The data submitted shall be a typed original (or equivalent quality) on unfolded 8-1/2" by 11" plain white bond paper (no letterhead). Specific instructions for data submissions appear with each registration format. The data shall be mailed with suitable protection against creasing or bending. If the material is not received in condition suitable for reproduction, the Type Administrator reserves the right to return it to the sponsor, notwithstanding delay and further costs to the sponsor.
提交的数据应为展开的 8-1/2 英寸 x 11 英寸纯白色铜版纸(无信笺)上的打字原件(或同等质量)。每种注册格式都会显示数据提交的具体说明。邮寄时,应适当保护数据,防止起皱或弯曲。如果收到的材料没有处于适合复制的状态,类型管理员保留将其退还给赞助商的权利,尽管赞助商会延迟并承担进一步的费用。

JEDEC Standard No. 282B.02 Page 18
JEDEC 标准编号 282B.02 第 18 页

Application (cont’d)
应用 (续)

Should the Type Administrator receive more than one application for a particular device, he shall assign the designation for the type to the manufacturer having the earliest time of receipt at the office of the Type Administrator. A manufacturing wishing to establish early receipt may make use of a telegram that furnishes adequate information for assignment. The telegram must be followed within fourteen (14) days by a letter supplying the information in the standard form; otherwise the application will be canceled and the applicant so notified.
如果型号管理员收到针对特定设备的多于一份申请 该型号的指定分配给在型号管理员办公室收到时间最早的制造商。 希望提前收到的制造业可以使用提供足够转让信息电报 。电报后必须在十四 (14) 天内标准格式提供信息的信件; 否则 申请被取消 ,并通知申请人

Any manufacturer filing subsequently to the first application will be furnished full information on the assignment, and the first manufacturer shall be informed of the disclosure.
在第一次申请之后提交的任何制造商都将获得有关转让的完整信息,并且应将披露情况告知第一个制造商。

Assignment
一个承诺

Upon receipt of the application for a type registration, the Type Administrator will make a search of existing type registrations to determine whether the applicant's device has sufficiently distinct characteristics to warrant the assignment of a new type designation. In determining discreteness or distinctness, the Type Administrator shall take into account major differences such as, but not limited to, different maximum ratings, new tests, different limits from those that have been applied to existing devices, physical changes, and any other characteristics that differ significantly from already registered devices.
收到型号注册申请 型号管理员现有型号注册进行搜索 ,以确定申请人的设备是否具有足够独特的特征,以保证分配新的型号名称。在确定离散性或独特性时,类型管理员应考虑主要差异,例如但不限于不同的最大额定值、新测试、与已应用于现有设备的限制不同、物理变化以及与已注册设备显着不同的任何其他特征

If additional data are deemed necessary by the Type Administrator to justify an assignment of a type number, he shall so inform the applicant. If the additional information is not given to the Type Administrator within fourteen
如果类型管理员认为有必要提供其他数据来证明分配类型编号的合理性,他应通知申请人。 如果十四岁内类型管理员提供附加信息

(14) days, the applicant shall be notified that the application has been rejected and given reasons therefor.
(14) 天后,应通知申请人申请被拒绝并说明理由。

In case the submitted data closely corresponds with that of a device already assigned a designation by the Type Administrator, the Type Administrator shall reject the application in writing, giving the reasons therefor and supplying the type designation that is considered applicable. Any appeal of the Type Administrator's determination shall be made in writing within thirty (30) days in accordance with the procedures set out in clause 3.6.
如果提交的数据与已由类型管理员分配名称的装置的数据非常一致,则类型管理员应以书面形式拒绝申请,说明原因并提供认为适用的型号名称。对型号管理员的决定提出任何上诉,应在三十 (30) 天内按照第 3.6 条规定的程序以书面形式提出。

Correction or changes in the data may be submitted by the original applicant in the period prior to release. Changes are permissible only to the extent that the device characterization is not changed sufficiently to warrant a change in its type designation status. All changes or corrections must be authorized by the Type Administrator prior to their publication in association with a JEDEC type number and must have prior coordination with the other applicants to whom the designations may have been disclosed under the provisions of clause 3.4.1.
原始申请人可以在发布提交数据更正更改 只有在设备特性未充分更改以保证其类型指定状态发生变化的情况下,才允许进行更改。所有更改或更正必须在与 JEDEC 型号相关的发布之前获得型号管理员的授权,并且必须事先与根据第 3.4.1 条的规定可能向其披露指定的其他申请人进行协调

In making type designation assignments, the Type Administrator shall follow current JEDEC Standards, and the technical formats and guidance rules supplied by JEDEC Solid State Technology Association. When all of this information is insufficient to cover a specific case, the Type Administrator may delay the application pending a decision from the appropriate JEDEC Committee. (In any case of rectifier diodes the Committee would be JC- 22.) The Type Administrator shall notify the applicant of the delay and the reason therefor.
进行型号指定分配时 型号管理员遵循现行JEDEC 标准以及 JEDEC技术协会提供的技术格式指导规则 。当所有这些信息不足以涵盖特定情况 类型管理员可以推迟申请 等待相应的 JEDEC 委员会做出决定。(在任何整流二极管的情况下,委员会都将是 JC-22。型号管理员应将延误及其原因通知申请人

Release (Public Announcement)
Release ( 公告)

The Type Administrator shall release the registration data to the public as soon as he has been authorized to do so by the manufacturer, who in turn does so when he is ready to market the device. If earlier authorization is not received, the Type Administrator shall automatically release the data one hundred and twenty (120) days after date of assignment. A delay may be requested for legitimate causes.
型号管理员获得制造商授权立即公众发布注册数据 而制造商又在已准备好设备推向市场 如果未收到较早授权,类型管理员应在转让之日起一百二十 (120) 天后自动发布数据。出于正当理由,可以要求延迟

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 19
第 19 页

3.4.3 Release (Public Announcement (cont’d)
3.4.3 发布(公告(续)

In those cases where a manufacturer publicly discloses data on an authorized type designation before he has requested the Type Administrator to release the data, the Type Administrator shall automatically release the data without waiting for the one hundred and twenty (120) day period to end. The Type Administrator will take such action only in those cases when he has been given conclusive evidence that disclosure has been made by the manufacturer. For purposes of this clause, the term “disclosure” is meant to include the disclosure of an unreleased but authorized type designation and its data or use through advertising, general distribution of data sheets, inclusion in price lists, sampling, or other marketing steps. Disclosure as part of a government contract for the development of a device is not considered to be disclosure within the meaning of this clause.
如果制造商在要求型号管理员发布数据之前公开披露授权型号名称的数据 ,则型号管理员 自动释放数据,无需等待一百二十 (120) 天期限结束。只有在获得制造商已进行披露的确凿证据的情况下,型号管理员才会采取此类行动。就本条款而言,术语“披露”是指披露未发布但已授权的型号名称及其数据,或通过广告、数据表的一般分发、包含在价目表中、抽样或其他营销步骤使用。作为设备开发政府合同的一部分进行的披露被视为本条款所指披露

In the case where an invitation-for-bid has been issued in connection with a government contract for a solid state type that has not been released, the Type Administrator shall use a procedure for affecting registration other than the one described in the preceding paragraph. The recipient of the invitation-for-bid shall supply details concerning the invitation and its sources. The Type Administrator will then contact the sponsor of the unreleased type designation, informing him or her of circumstances which require the immediate release of data on the type.
对于发出与尚未发布的固态型政府合同有关的, 类型管理员应当使用前款规定以外的影响注册程序。招标书的接收者应提供有关招标书及其来源的详细信息。然后,型号管理员将联系未发布型号指定的申办者, 告知需要立即发布该类型数据的情况。

The registration data is distributed by the Type Administrator to all known manufacturers of solid state devices, as well as to subscription lists of equipment designers, users and other nonmanufacturers of solid state devices.
注册数据由类型管理员分发给所有已知的固态设备制造商,以及设备设计人员、用户和其他非固态设备制造商的订阅列表。

3.4.3 Correction Notice and Re-registration
3.4.3 更正通知和重新注册

After a type designation has been completely registered, one of the ways in which it is possible to change the defining data is by means of a correction notice. This can be filed only by the original sponsor or the Type Administrator and must be in the hands of the Type Administrator within sixty (60) days after the release date. Corrections to registered data after sixty (60) days from date of release must be made through the reregistration procedure.
在完全注册型号名称后,更改定义数据的方法之一是通过更正通知。这只能由原始发起人或类型管理员提交,并且必须在发布日期后六十 (60) 天内交到类型管理员手中。自发布之日起六十 (60) 天后,必须通过重新注册程序对注册数据进行更正。

The correction notice process may be used when it is found that the registered data contains obvious incompatibilities, typographical errors, or ambiguities. The correction notice will be circulated to the same mailing list of those persons receiving the registration information and it will clearly refer to the particular release involved.
当发现注册数据存在明显的不兼容、印刷错误或歧义时,可以使用更正通知流程。更正通知将分发到收到注册信息的人的同一邮件列表,并将明确提及所涉及的特定新闻稿。

A correction notice does not become effective until sixty (60) days after its release. During this period any manufacturer may object to the notice if he can show that the change is not truly an obvious error, incompatibility, or ambiguity. A single valid objection, if it cannot be reconciled by the Type Administrator with the proponent, will cause the correction notice to be canceled.
更正通知在发布后六十 (60) 天才生效。在此期间,任何制造商都可以反对该通知,如果他能够证明该更改不是真正明显的错误、不兼容或歧义。 如果类型管理员无法提议者协调单个有效异议 导致更正通知被取消。

The second way in which the defining data for a registered type may be changed is by means of reregistration. Reregistration may be proposed only by a manufacturer or the appropriate JEDEC Committee (JC-22 in the case of rectifier diodes). In submitting data, the manufacturer should use the most current approved format. If absolutely necessary, he may use the format which was in effect at the time of registration of the device being reregistered.
更改已注册类型的定义数据第二种方法是重新注册。重新注册只能制造商适当的 JEDEC 委员会提出(对于整流二极管 ,则JC-22)。在提交数据时,制造商应使用最新的批准格式。如果绝对必要,他可以使用重新注册的设备注册时有效的格式

JEDEC Standard No. 282B.02 Page 20
JEDEC 标准编号 282B.02 第 20 页

3.4.3 Correction Notice and Re-registration (cont’d)
3.4.3 更正通知和重新注册(续)

A reregistration proposal should be limited to those changes or additions which do not affect unilateral interchangeability with the original version. Any proposed reregistration, which in the opinion of the Type Administrator will affect unilateral interchangeability shall be rejected by the Type Administrator. Examples of changes which affect unilateral interchangeability are relaxed package dimensions, relaxed electrical ratings or characteristics, etc. For dimensions and characteristics, increase of maximum limit or reduction of a minimum limit constitutes a relaxation. For ratings (which imply device capability), reduction of an upper limit or increase of a lower limit constitutes a relaxation. Manufacturers who believe unilateral interchangeability will not be affected have the prerogative of appealing the Type Administrator's decision as provided in clause 3.6.
重新注册提案应限于不影响与原始版本单方面互换的更改或补充。型号管理员认为会影响方面互换性的任何拟议重新注册,应型号管理员驳回 。影响单边互换性的变化示例包括宽松的封装尺寸、宽松的电气额定值或特性等。对于尺寸和特性,增加最大限值或减少最小限值构成放宽。对于额定值(暗示设备能力),降低上限或增加下限构成放宽。认为单方面互换性不会受到影响的制造商有权对第 3.6 条规定的型号管理员的决定提出上诉。

Approved reregistration requests will be processed as follows: The Type Administrator shall distribute the reregistration proposal to the device manufacturers on the mailing list to receive copies of all semiconductor registrations. The reregistration release will instruct manufacturers having valid objections to the proposal to submit their comments in writing (oral comments are not acceptable) to the Type Administrator, so that he may receive them within sixty (60) days from the date of release.
批准的重新注册请求将按如下方式处理:类型管理员应将重新注册提案分发邮件列表中器件制造商 ,以接收所有半导体注册副本 。重新注册发布将指示对提案有有效反对意见的制造商以书面形式(不接受口头评论)提交给型号管理员,以便他可以在发布之日起六十 (60) 天内收到这些意见

If no written adverse comments to a reregistration proposal are received within the sixty (60) day period, the reregistration proposal becomes effective, superseding the original registration, and the industry shall be so notified by the Type Administrator.
如果六十 (60) 收到重新注册提案书面负面意见 重新注册提案生效,取代原始注册,类型管理员应通知行业

In the event that adverse comments on the proposed reregistration are received and:
如果收到对拟议重新注册的负面意见,并且:

If there is a possibility that the objections may be resolved, the Type Administrator shall issue a “HOLD IN ABEYANCE” notice at the end of the sixty (60) day period.
如果异议有可能得到解决, 类型管理员在六十 (60) 天期限结束时发出“暂停”通知

If attempts at reconciliation fail, the reregistration shall be canceled and a cancellation notice sent to all recipients of the previous information.
如果核对尝试失败,则重新注册将被取消,并向先前信息的所有接收者发送取消通知

If the reconciliation results in a compromise, the previous proposal shall be canceled and the new proposal shall be submitted for a sixty day approval by the industry.
如果对账导致妥协,则应取消之前的提案,并提交新的提案以供行业批准 60 天

If the reconciliation results in the objectors, rescinding their negative comments, the Type Administrator shall issue a notice that the reregistration proposal has been accepted.
如果核对导致异议人撤负面意见,类型管理员应发出重新注册提案已被接受的通知

In those cases where the Type Administrator has rejected comments because he considers them to be not valid, he shall notify the objector of his action and inform the objector that he has thirty (30) days in which to file an appeal with the JEDEC office who, in turn, will notify the Type Administrator that an appeal has been filed. If no appeal is made within the specified period, the Type Administrator will proceed in accordance with the previous paragraphs.
如果类型管理员因认为意见无效而拒绝意见,则应将其行为通知异议人,并通知异议人他有三十 (30) 天的时间向 JEDEC 办公室提出上诉,而 JEDEC 办公室又将通知类型管理员已提出上诉。如在规定期限内未提出申诉,类型管理员将按照前几款的规定进行申诉。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 21
第 21 页

3.5Detailed Procedures and the Rules Governing Registration of Type Designation with Letter Suffix
3.5带字母后缀的型号指定登记的详细程序和规则

All of the preceding rules are applicable to the assignment of a type designation which contains a suffix letter, except as amended in the following paragraphs.
上述所有规则均适用于包含后缀字母的型号名称的转让,但以下各段中修订的除外。

The applicability of a suffix assignment, as opposed to a new designation, is outlined in EIA Standard EIA- 370-B. In general, a suffix designation can be applied to an improved version of an existing type if the improved version is unilaterally interchangeable with the prototype and all prior suffix versions.
EIA 标准 EIA-370-B 概述了后缀分配与新名称的适用性 。通常,如果改进版本可以单方面与原型和所有先前的后缀版本互换,则后缀名称可以应用于现有类型的改进版本

Exceptions exist for letters R and M. The letter R is used to indicate a reverse-polarity diode in an asymmetrical package which is mechanically and electrically identical to a forward-polarity device. When the package has a mounting base (stud, flange or case mounting) which is used as one electrical connection, the definition for polarity of a rectifier diode is as follows:
字母 R 和 M 存在例外。字母 R 用于表示不对称封装中的反极性二极管,该二极管在机械和电气上与正极性器件相同。当封装具有用作一个电气连接安装底座 (螺柱、 法兰外壳安装),整流二极管的极性定义如下

In forward-polarity devices, the mounting base shall be the cathode terminal, and in reverse-polarity devices, it shall be the anode terminal.
正极性器件 安装底座极端子,反极器件中,应为阳极极端子。

For the use of suffix letter M refer to EIA Recommended Standard EIA-370-B.
有关后缀字母 M 的使用,请参阅 EIA 推荐标准 EIA-370-B。

For rectifier diodes suffixes may be issued when there is a significant change in one or more of the characteristics
对于整流二极管,当一个或多个特性发生重大变化时,可以发出后缀
or
ratings
评级
listed
上市
in
the
table
桌子
below.
下面。
The
change
改变
must
必须
be
such
这样
that
the
new
新增功能
device
装置
is
unilaterally interchangeable with the older one having the same basic number, so that the new type, which has been given the letter suffix, may be used to replace the original type device. Only changes which result in device improvement
可单方面与具有相同基本编号的旧型号互换,以便已赋予字母后缀的新型号可用于替代原始型号设备。仅导致设备改进的更改
within
the
range
范围
shown
显示
in
the
table
桌子
below
下面
will
be
allowed.
允许。
If
如果
a proposed
提出
rating
额定值
is
between
之间
the original rating and the nearer limit of the specified range, the change is deemed not significant enough to warrant either a suffix letter or a new type number. If the proposed rating lies beyond the further limit, a new type number is
原始额定值和指定范围的较接近限制,则该更改被认为不够显着,不足以保证后缀字母或新的类型编号。如果建议的等级超出进一步限制,则新的类型编号为
required.
必填。

If the device outline is identical to that of an existing type or differs to such a slight extent that the new type may be physically substituted for the existing type, a suffix letter may be considered. If the new outline differs significantly, such as would be the case if it had a different registration (DO) number, a new type number is required, even if electrical ratings and characteristics are the same.
如果设备轮廓现有类型的相同 ,或者差异如此之小 ,以至于类型可以在物理上替代现有类型,则可以考虑使用后缀字母。如果新轮廓有很大差异,例如如果它具有不同的注册 (DO) 号,则需要一个新的型号号,即使电气额定值和特性相同。

Table 2 — Allowed Ranges of Parameters for Use of Letter Suffix
表 2 — 允许使用字母后缀的参数范围

Parameter
参数

Allowed Range for Use of Letter Suffix
允许使用字母后缀的范围

Forward Voltage (VFM)
正向电压 (VFM)

0.8 - 0.9 x VFM (reg)*
0.8 - 0.9 x 伏调频 (调节)*

Reverse Current (IRM)
反向电流 (IRM)

0.05 - 0.20 x IRM (reg)*
0.05 - 0.20 x 我马币( 注册)*

Surge (Non-repetitive) Peak Forward Current (IFSM)
浪涌(非重复)峰值正向电流 (IFSM

1.50 - 3.50 x IFSM (reg)*
1.50 - 3.50 x IFSM(注册)*

Reverse Recovery Time (trr)
反向恢复时间 (trr

0.10 - 0.50 x trr (reg)*
0.10 - 0.50 x trr (reg)*

* IRM (reg) etc. represents the registered value of the particular parameter in the original type device.
* IRM(reg)等表示特定参数在原始类型设备中的注册值。

JEDEC Standard No. 282B.02 Page 22
JEDEC 标准编号 282B.02 第 22 页

Detailed Procedures and the Rules Governing Registration of Type Designation with Letter Suffix (cont’d)
带字母后缀的型号指定登记详细程序及规则 (续)

The request and the accompanying information will not be treated as confidential information but will be circulated for approval to the recipients of solid state device registration releases in the same manner as a registration proposal (See clause 3.4.4).
该请求和随附信息将不被视为机密信息,而是将以与注册提案相同的方式分发给固态设备注册授权书的接收者批准(参见第 3.4.4 条)。

In submitting the data, the manufacturer should use the current format. If necessary, he may use the format which was used for registration of the last suffix letter version (or the designation without suffix letter if no letter has been previously assigned).
在提交数据时,制造商应使用当前格式。如有必要,他可以使用用于注册最后一个后缀字母版本的格式(如果之前没有指定字母,则使用不带后缀字母的指定)。

If adverse comments on the assignment of the suffix letter are received by the Type Administrator within the sixty (60) day period, he shall refer the entire matter to the cognizant JEDEC Committee for guidance.
如果类型管理员在六十 (60) 天内收到对后缀字母分配的负面意见,他应将整个事项提交给认可的 JEDEC 委员会寻求指导。

When the JEDEC Committee votes on recommendations to be submitted to the Type Administrator, members whose companies are directly involved in the dispute shall be excluded from voting. The Type Administrator, preferably, or his or her designated alternate shall be present at the meeting when the JEDEC Committee discusses the matter he or she has referred to them.
当 JEDEC 委员会对提交给类型管理员的建议进行投票时,其公司直接参与争议的成员应被排除在投票之外。JEDEC 委员会讨论他或她提交给他们的事项,最好是类型管理员指定的候补人员出席会议

The Type Administrator shall make the decision on the registration of the suffix letter designation after considering the Committee's recommendations.
型号管理员应在考虑委员会的建议后,就后缀字母指定的注册做出决定。

The Type Administrator shall inform the cognizant JEDEC Committee and the parties involved of his decision. If no adverse comments are received within thirty (30) days, then the notice of the assignment becomes
类型管理员应将其决定通知知情的 JEDEC 委员会和相关方。如果在三十 (30) 天内没有收到负面意见,则转让通知将变为
effective.
有效。
If
如果
adverse
comments
评论
are
received,
收到
then
然后
a status
地位
notice
通知
(Hold-in-Abeyance)
(搁置)
can
be
issued until all avenues of appeal are exhausted or the case
直到所有上诉途径用尽或案件
dropped.
下降。

Appeal of the Type Administrator’s Decision
类型管理员决定的 ppeal

Decisions of the Type Administrator are subject to appeal to the JEDEC Board of Directors and to an Ad Hoc Arbitration Panel as provided in JEDEC Publication No. 15D. For details the reader is referred to this Publication.
类型管理员的决定可向 JEDEC 董事会和 JEDEC 第 15D 号出版物中的规定向特设仲裁小组提出上诉。有关详细信息,读者请参阅本出版物。

Description of the Registration Format
D 注册格式的说明

A format is intended to provide a uniform method for presentation of the definition and performance of a JEDEC registered device. The Type Administrator uses the completed format to assure the uniqueness of the device for type assignment purposes. The registrant manufacturer uses the format to completely define a device to the degree which the formulating Committee and JEDEC Board of Directors believe is necessary to assure device interchangeability. Other potential manufacturers use the completed format and registration data to facilitate and assure device interchangeability. Solid state device users employ the completed registration data to select, compare, and define devices to achieve intended circuit performance. The format provides for a common language of understanding between supplier and user.
格式旨在提供一种统一的方法来呈现 JEDEC 注册设备的定义和性能。类型管理员使用完整的格式来确保设备的唯一性,以进行类型分配。注册制造商使用该格式来完全定义设备 ,其程度是制定委员会JEDEC 董事会认为确保设备可互换性所必需 其他潜在制造商使用完整的格式注册数据来促进和确保设备的可互换性。固态器件用户使用完成的配准数据选择、 比较和定义器件 ,以实现预期的电路性能。格式为供应商和用户之间提供了一种共同的理解语言

Each format provides for specific values of mechanical and electrical parameters in two categories. One is for mandatory parameters, and the Type Administrator shall not accept a proposal registration unless every such parameter is provided.
每种格式都提供两类机械和电气参数的特定值。一个是强制性参数,除非提供所有此类参数,否则类型管理员不得接受提案注册。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 23
第 23 页

Description of the Registration Format (cont’d)
报名格式说明 (续)

The other is for additional parameters which the formulating Committee believes desirable for the further definition of a device intended for a normal application. Additional data not listed in a format are permissible if the registrant manufacturer believes it is necessary to further define the device and to assure interchangeability.
另一个是关于拟订委员会认为对用于正常应用装置进一步定义是可取的附加参数。 如果注册制造商认为有必要进一步定义设备并确保可互换性 ,则允许使用格式列出的其他数据

The Type Administrator must receive a properly completed registration format (See clause 3.3) in order to issue a JEDEC type number assignment. In the event an appropriate format has not been prepared by the JEDEC Committees, the Type Administrator, with advice from JEDEC Board of Directors or a Committee Chairman, will determine what shall constitute an interim substitute format.
类型管理员必须收到正确填写的注册格式(见第 3.3 条)才能发布 JEDEC 类型编号分配。如果 JEDEC 委员会尚未准备适当的格式,则类型管理员将在 JEDEC 董事会或委员会主席的建议下确定什么应构成临时替代格式。

A completed format characterizes a device by listing or referencing all mechanical outline dimensions and terminal identifications, all essential electrical performance data and maximum ratings, all necessary test methods, and all appropriate parameter symbols which are believed necessary to assure device interchangeability. Each JEDEC product Committee originates formats for every device category over which it has been assigned responsibility. Each format is approved for circulation and use by the JEDEC Board of Directors. JEDEC Committees have the responsibility for maintaining and upgrading the technical content of formats such that they reflect the advancement of the technology of both design and manufacture. Mechanical and electrical parameters are to be listed as minimum, maximum, or rated values required to assure device interchangeability.
完整的格式通过列出或引用所有机械轮廓尺寸和端子标识、所有基本电气性能数据和最大额定值、所有必要的测试方法以及所有被认为确保设备互换性所必需的适当参数符号来表征设备。每个 JEDEC 产品委员会都为其负责的每个设备类别制定了格式。每种格式都经过 JEDEC 董事会批准流通和使用 JEDEC 委员会负责维护升级格式技术内容 使其反映设计技术的进步制造。机械和电气参数应列为确保设备互换性所需的最小值、最大值或额定值

Use of JEDEC Registered
JEDEC 注册的 se
Data
数据

The solid state device manufacturer should use the JEDEC data for a registered device as the basis for his commercial data. Since the JEDEC registration data is industry property, each manufacturer who desires to produce and market that device must comply in every respect with the registered data. Commercial data describing that device must identify by asterisks all parameters which appear on the JEDEC registration. If a manufacturer believes it desirable, he may list additional defining data, such as performance curves or quality items, provided such additions do not affect interchangeability.
固态设备制造商应使用已注册设备的 JEDEC 数据作为其商业数据的基础。由于 JEDEC 注册数据是行业财产,因此每个希望生产和销售该设备的制造商都必须在各个方面遵守注册数据。描述该设备的商业数据必须用星号标识 JEDEC 注册上出现的所有参数。如果制造商认为这是可取的,他可以列出额外的定义数据,例如性能曲线或质量项目,前提是此类添加不影响互换性。

JEDEC type designations should be used in the form in which they are assigned. In data presentation and in device marking, the JEDEC designation should be kept separate and distinct and not made part of other identifying numbers, if such other numbers are present.
JEDEC 型号名称按照分配的形式使用 数据呈现设备标记中,JEDEC 名称应保持独立和独特,并且如果存在其他识别号,则不应成为其他识别号的一部分

Alternations in a JEDEC number should not be made for any purpose such as to indicate special selection, to modify characteristics, or to indicate interchangeability.
JEDEC 编号的更改不应用于任何目的,例如表示特殊选择、修改特性或指示互换性。

Specific examples of past practices which are considered to be in conflict with this policy are illustrated but not limited to the following:
我们举例说明但不限于以下情况,包括但不限于以下情况:

Slash Branding:JEDEC No./JEDEC No. JEDEC No./House No.
斜杠品牌:JEDEC 编号/JEDEC 编号 JEDEC 编号/房屋编号

Unauthorized Suffixes:1N9000Z 1N9000-2
未经授权的后缀:1N9000Z 1N9000-2

1N9000-TO-9 1N9000/TO-9

JEDEC Standard No. 282B.02 Page 24
JEDEC 标准编号 282B.02 第 24 页

Use of JEDEC Registered Data (cont’d)
JEDEC 注册数据的使用 (续)

JEDEC reserves all rights to the use of its symbols and designations. The Armed Services make use of JEDEC designations and have been permitted to modify these designations by means of prefixes to indicate conformance with military specifications.
JEDEC 保留使用其符号和名称的所有权利。武装部队使用 JEDEC 名称 ,并被允许通过前缀修改这些名称 ,以表明符合军事规范。

Test and Rating Methods Applied to JEDEC Data
应用于 JEDEC 数据的 T est 和评级方法

Defining data on a format must be supported by sufficient references or included information, to assure an understanding of the test methods used in the measurement and interpretation of data and ratings. It is the responsibility of the formulating JEDEC Committee and the Board of Directors to define as many of the following test methods, conditions and other information, as is appropriate for the device or format under consideration:
在格式上定义数据必须有足够的参考资料或包含的信息支持,以确保了解用于测量和解释数据和额定值的测试方法。制定 JEDEC 委员会和董事会有责任定义以下测试方法、条件和其他信息,以适合所考虑的设备或格式:

Standard circuits for the measurement of electrical characteristics.
用于测量电气特性的标准电路

Standard circuits for life testing of semiconductor devices.
用于半导体器件寿命测试的标准电路

Standard mechanical tests (shock, vibration, etc.).
标准机械测试(冲击、振动等 )。

Standard fixtures and gauges.
标准夹具和仪表。

Standard time duration of test when applicable (hours, cycles, pulses, etc.).
适用的标准测试持续时间(小时、周期、脉冲等 )。

There should be no question as to the intention behind, or interpretation of, any parameter or test listed on a format.
对于格式上列出的任何参数或测试背后的意图或解释,不应有疑问。

Use of Rectifier Diode Registration Formats
整流二极管配准格式U se

4.1Introduction
4.1引言

This chapter provides the guidelines for filling in the Rectifier Diode Registration Information required in registration formats.
本章提供了填写注册格式中所需的整流二极管注册信息的指南。

On a given format, every item preceded by an “M” is a mandatory item and must be completely filled in, since it represents an essential rating or characteristic required to ensure device interchangeability in broad, general rectifier diode applications. The data requested in other items are optional and should be filled in as appropriate to ensure interchangeability in those special applications in which the device is intended to serve. In any event, the data supplied should adequately define the device in terms of interchangeability in the intended application and should distinguish it from existing registered devices. (See clause 3.4 and clause 3.5).
在给定格式中,前面有“M”的每个项目都是必填项,必须完全填写,因为它代表了确保器件在广泛的通用整流二极管应用中的可互换性所需的基本额定值或特性 其他项目要求的数据可选酌情填写 以确保在设备旨在用于的那些特殊应用中的可互换性服务。无论如何,提供的数据应根据预期应用中的可互换性充分定义设备,并应将其与现有注册设备区分开来。(见第 3.4 条和第 3.5 条)。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 25
第 25 页

Introduction (cont’d)
(续)

If additional data are necessary to ensure interchangeability, the data should be submitted as part of the registration. When data are submitted for which no blanks appear in the registration format, care must be taken to completely describe the conditions under which the specified performance characteristics or ratings are to be met. All data submitted for registration, whether mandatory, optional, or supplemental to the format, become a part of the formal registration.
如果需要额外的数据来确保可互换性,则应将数据作为注册的一部分提交。当提交的数据在注册格式中没有出现空白时,必须注意完整描述满足指定性能特征评级条件 。所有提交注册的数据,无论是强制性、可选性还是格式的补充,都成为正式注册的一部分

When preparing a registration data format for submission, delete all italicized notes, all unused items and all “M's”. Renumber the items in proper sequence wherever necessary to avoid gaps in the item numbers used.
准备提交的注册数据格式 删除所有斜体注释 所有未使用的项目所有“M”。 必要时正确的顺序重新编号项目, 以避免所使用的项目编号出现间隙

Existing JEDEC standards for measurement methods (refer to clause 5 and clause 6), preferred voltage, current and temperature values (given in clause 4.4.1 and clause 4.4.2) and definitions and letter symbols (refer to chapter 2) are to be used, as applicable.
应使用现有的 JEDEC 标准,包括测量方法(参见第 5 条和第 6 条)、首选电压、电流和温度值(见第 4.4.1 条和第 4.4.2 条)以及定义和字母符号(参见第 2 章)。

All JEDEC registered data must appear on the device manufacturer's commercial data sheets and be identified as JEDEC registration data by means of asterisks. Additional data, including performance curves, may be included in commercial data sheets provided interchangeability is not affected.
所有 JEDEC 注册数据必须出现在设备制造商的商业数据表上,并通过星号标识JEDEC 注册数据 。如果互换性不受影响,其他数据 包括性能曲线)可能会包含在商业数据表中

For the purpose of achieving standardization, specific registration formats are available to fit particular types of rectifier diodes. These formats are subject to change as new semiconductor developments or circuit applications become practicable. At present, the following formats are available:
为了实现标准化, 可以使用特定的注册格式适应特定类型的整流二极管。随着新的半导体开发或电路应用变得可行,这些格式可能会发生变化。目前,有以下几种格式可供选择:

NUMBER
DESCRIPTION
描述

JC-22, RDF-21Lead Mounted Silicon Rectifier Diodes
JC-22,RDF-21 引线贴装硅整流二极管

JC-22, RDF-22Stud- or Base-Mounted Silicon Rectifier Diodes
JC-22、RDF-22 螺柱底座安装硅整流二极管

JC-22, RDF-23Stud- or Base-Mounted Silicon Controlled Avalanche Rectifier Diodes or Transient Suppressor Rectifier Diodes
JC-22、RDF-23 螺柱底座安装的可控硅崩整流二极管或瞬态抑制整流二极管

JC-22, RDF-24Enclosed Silicon Rectifier Circuit Assemblies
JC-22,RDF-24 封闭式硅整流电路组件

JC-22, RDF-25Unencapsulated Semiconductor Rectifier Diode Elements
JC-22,RDF-25 非封装半导体整流二极管元件

JC-22, RDF-26Diode, Stud- or Base-Mounted Rectifier Diodes having Significant Reverse loss.
JC-22、RDF-26 二极管、 螺柱基极安装流二极管具有显着的反向损耗。

The registrant is urged to contact the Type Administrator at EIA Headquarters to be abreast of the latest developments.
我们敦促注册人联系环境影响评估总部的型号管理员,以了解最新发展。

In the following clauses an explanation of the requirements of various parts of the formats is given.
在以下条款中,对格式各个部分的要求进行了解释。

General Description (Registration Format Part I)
G 一般说明(注册格式第一部分

This clause establishes the broad descriptive classifications pertaining to the device to be registered. For instance, the semiconductor material used, the type of mounting (lead, base, stud) and the basic electrical configuration (diode assembly, etc.) are to be given here; also the major areas of usage and similar facts.
该条款建立了与要注册的设备相关的广泛描述性分类。例如,此处将给出所使用的半导体材料、安装类型(引线、底座、螺柱)和基本电气配置(二极管组件等);以及主要使用领域和类似事实。

JEDEC Standard No. 282B.02 Page 26
JEDEC 标准编号 282B.02 第 26 页

Mechanical Data (Registration Format Part II)
个人数据(注册格式第二部分

The outline dimensions of the device are to be given in this clause. If possible, an outline drawing registered with JEDEC should be used. Registered outlines are found in the latest edition of JEDEC Publication No. 95 “JEDEC Registered and Standard Outlines for Semiconductor Devices”. (They are assigned numbers beginning with “DO” when they are two-terminal housings.)
条款出了设备的外形尺寸 如果可能, 应使用在 JEDEC 注册的外形。注册大纲可在最新版的 JEDEC 出版物第 95 号“JEDEC 半导体器件注册和标准大纲”中找到。(当它们是双端子时,它们被分配以“DO”开头的编号外壳。

If such a registered outline is not applicable, an outline drawing must be furnished on a separate page attached to the format. The drawing must be prepared so as to conform with the latest edition of EIA Standard RS- 308A, “JEDEC Type Registration for Semiconductor Devices, Preparation of Outline Drawings”.
如果这种已登记的大纲不适用,则必须在格式所附的单独页面上提供大纲图。图纸的准备必须符合最新版的 EIA 标准 RS-308A,“半导体器件的 JEDEC 型式注册,外形图的准备”。

The electrical function of each terminal of the device is also to be given. If the case is also an electrical terminal, its electrical function shall be given. Otherwise, a note is to be included stating “all leads insulated from case”. Any terminal not performing an electrical function is to be designated “NC”.
应给出设备每个端子的电气功能。如果外壳也是电气端子,则赋予电气功能 否则,上注释 ,说明 “所有引线与外壳绝缘”。任何不执行电气功能的端子都应指定为 “NC”。

When it is required to color code rectifier diode terminals or leads, the following is recommended in the interest of standardization: Anode - Black, Cathode - Red.
当需要对整流二极管端子或引线进行颜色编码时,为了标准化,建议使用以下颜色:阳极 - 黑色,阴极 - 红色。

For smaller rectifier diodes, a banding of the body at the cathode end is acceptable. The recommended color of the band is red but other colors are acceptable.
对于较小整流二极管,端的主体条带可以接受的。 表带的推荐颜色是红色,但其他颜色也是可以接受的。

For assemblies, the following color code is recommended in the interest of standardization.
对于装配体,为了标准化,建议使用以下颜色代码。

TerminalsColor
端子颜色

ACYellow
AC 艾洛

Positive or CathodeRed Negative or AnodeBlack
正极阴极红色负极阳极黑色

Any special precautions necessary for the proper handling of the device are to be given. Likewise, any restrictions as to mounting positions which may be required in order to ensure proper operation of the device should be given here. The case or lead temperature point shall also be defined.
采取正确处理设备所需的任何特殊预防措施。同样, 此处应给出为确保设备正常运行而可能需要安装位置的任何限制 。还应定义外壳或铅温度点

Maximum Ratings (Registration Format Part III)
最高评级(注册格式第三部分)

Maximum thermal and electrical ratings assigned to the device are to be given in this clause. Maximum ratings are those which, if exceeded, may cause permanent damage, or introduce latent failure mechanisms within the device.
本条款中给出了分配给设备的最大热和电气额定值。最大额定值是指如果超过可能会造成永久性损坏或在设备内引入潜在故障机制的额定值。

4.4.1 Temperature
4.4.1 温度

A temperature reference point (lead or case) must be specified. For a hex base stud-mounted device, the temperature reference point shall be specified as the center of the flat surface of any one of the hex faces. For lead mounted devices, the temperature reference point is generally 3/8 inch (9.5 mm) from the body of the device or its tabulation(s). For a disc type device it shall be a point on the cylindrical surface of a designated mounting pole.
必须指定温度参考点(引线或外壳)。对于六角底座螺柱安装装置,温度参考点应指定为任意一个六角面的平面中心。对于引线安装设备,温度参考点通常距离设备主体或其表格 3/8 英寸(9.5 毫米)。对于圆盘式设备,它应是指定安装杆的圆柱面上的一个点。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 27
第 27 页

4.4.1Temperature (cont’d)
4.4.1 温度 (续)

Reference point temperatures in degrees Celsius (centigrade) are to be selected, when possible, from the table below and inserted in blanks corresponding to the symbols T1 through T11 as required. A logical sequence covering the temperatures used in the formats follows:
如果可能,应从下表中选择以摄氏度(摄氏度)为单位的参考点温度 ,并根据需要插入与符号 T 1 到 T 11 相对应的空白中 涵盖格式中使用的温度的逻辑顺序如下:

Table 3 — Reference Point Temperatures
表 3 — 参考点温度

PREFERRED TEMPERATURE VALUES (Degrees Celsius)
首选温度值(摄氏度)

-65 *

40

115

-55 *

55

125

-40

65

150

-25 *

70

175

-10

85

200

0

90

100

250

* Recommended for use in new documents
* 推荐用于新文档

If it is necessary to register values other than those given above, they should be multiples of five degrees Celsius.
如果需要注册上述值以外的值,则应为五摄氏度的倍数。

Several
几个
key
钥匙
temperatures
温度
are
specified
指定
on
the
formats.
格式。
The
following
以后
list
列表
is
all-inclusive;
包罗万象;
not
all
temperatures are required on all formats. All temperatures defined herein must be in increments of 5
所有格式都需要温度。此处定义的所有温度必须以 5 为增量
ºC.
ºC。

T1 is the minimum operating temperature and must be equal to or lower than 0 ºC.
T1 是最低工作温度,必须等于或低于 0 ºC。

T2 is the minimum operating temperature with no derating and must be equal to or lower than 25 ºC.
T2 是没有降额的最低工作温度,必须等于或低于 25 ºC。

T3 is the maximum operating temperature with no current derating when VR equals its rated value. T3 is related to T5 according to the table below.
T3 是当 V R 等于其额定值时没有电流降额的最高工作温度 根据下表,T 3 与 T5 相关。

T4 is the temperature of a breakpoint in the maximum average forward current vs temperature relationship, which can be used to segment the derating curve, and must be greater than T3 and also less than T5
T4 是最大平均正向电流与温度关系中断点的温度,可用于分割降额曲线,必须大于 T3 也小于 T5
.

T5 is the maximum operating temperature at which point the power dissipation is derated to zero. T6 is the minimum storage temperature and must be equal to or less than T1
T5 是功耗降额为零的最高工作温度。T6 是最低储存温度,必须等于或小于 T1
.

T7 is the maximum storage temperature and must be equal to or greater than T5
T7 是最高存储温度,必须等于或大于 T5
.

T8 is the peak repetitive instantaneous junction temperature under forward current overload and must be equal to or greater than T5
T8 是正向电流过载时的峰值重复瞬时结温,必须等于或大于 T5
.

T9 is the maximum operating temperature, with the maximum dc reverse voltage rating applied, and must be equal to or lie between T3 and T5
T9 是应用最大直流反向电压额定值的最大工作温度,并且必须等于或介于 T3 和 T5 之间
.

T10 is the maximum operating temperature, with the maximum working peak reverse voltage rating applied, and must lie between T5 and T9
T10 是最高工作温度,应用了最大工作峰值反向电压额定值,并且必须介于 T5 和 T9 之间
.

T11 is the maximum lead or terminal temperature for soldering purposes.
T11 是用于焊接目的的最高引线或端子温度。

JEDEC Standard No. 282B.02 Page 28
JEDEC 标准编号 282B.02 第 28 页

Temperature (cont’d)
温度 (续)

Table 4 — Reference Point Temperature Relationships
表 4 — 参考点温度关系

TEMPERATURE RELATIONSHIPS
温度关系

Maximum Operating Reference Point Temperature, T5 (ºC)
最大工作参考点温度,T5(ºC)

Corresponding Range of Max. Reference Point Temperature in Full Load, (T3) (ºC)
满载最大参考温度的相应范围 ,(T3(ºC)

Corresponding Preferred Maximum Reference Point Temperature at Full Load, (T3) (ºC)
相应的优选最高参考温度 ,(T3)(ºC)

100

40 - 70

55

125

50 - 100

70

150

70 - 125

100

175

85 - 150

125

200

100 - 175

150

Once the values of T1, etc., have been established in the section on Operating Temperatures, the same values shall be used whenever symbols T1, etc. appear in the registration format. The actual numerical values shall be shown in parentheses following each letter symbol.
一旦 T1 等在工作温度部分中确定,则在注册格式中出现符号 T 1 等时应使用相同的值。实际数值应在每个字母符号后面的括号中显示。

Electrical Ratings
Electrical 评级

The electrical ratings to be given include the maximum reverse voltage rating and the maximum forward current
要给出的电气额定值包括最大反向额定电压和最大正向电流
rating
额定值
that
can
be
continuously
不断
handled
处理
by
the
device
装置
over
the
specified
指定
operating
经营
temperature
温度
range.
范围。

For these ratings the discrete rectifier diode is operated in a single-phase, half-wave circuit with a 60 Hz sinusoidal voltage source and a resistive load. These ratings are to be applicable over a frequency range of at least 50 Hz to 400 Hz.
对于这些额定值,分立整流二极管在具有 60 Hz 正弦电压源和电阻负载的单相半波电路中运行。这些额定值适用于至少 50 Hz 至 400 Hz 的频率范围。

In the interest of standardization, it is recommended that only rectifier diodes possessing the voltage and current ratings in the following table be registered:
为了标准化,建议仅注册具有下表中额定电压和电流的整流二极管:

Table 5 — Reference Point Temperature Relationships
表 5 — 参考点温度关系

Preferred Voltage Ratings (V)
首选额定电压 (V)

Preferred
首选

Average* Current Ratings at T3
T 3 时的平均*额定电流

(ºC)
(摄氏度)

25

100

1000

0.10

1.0

10

100

1000

50

200

1200

0.25

2.5

15

150

1200

400

1500

0.60

6.0

25

250

1500

600

2000

40

400

2000

800

2500

60

600

3000

800

*Full cycle average half-sine wave forward current, 50 Hz to 400 Hz.
*全周期平均半正弦波正向电流,50 Hz 至 400 Hz。

NOTEIf it is necessary to register values other than those given above, use values from the list of ANSI (rounded) 10 numbers which are: 1.0, 1.2, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0 and 8.0 times any integral
注意 如果需要注册上述值以外的值,请使用 ANSI 四舍五入)10 数字列表中的值 这些值是:1.0、1.2、1.5、2.0、2.5、3.0、4.0、5.0、6.08.0 乘以任何积分

power of 10.
10 的幂。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 29
第 29 页

Voltage Ratings
Voltage 额定值

Reverse voltage may be derated in the temperature range T1 to T2. This derating information is to be registered as additional information. As no blanks are provided for such derating information, it should be included in a manner consistent with the other parts of the registration, and given an appropriate paragraph number.
反向电压可以在温度范围内降额 T1 至 T2。此降额信息将作为附加信息注册。由于没有为此类降级信息提供空白,因此应以与注册的其他部分一致的方式将其列入,并给予适当的段落编号。

Where it is desired to use a single registration format to register more than one device in a series and the devices have different voltage ratings, the information required to establish the voltage ratings may be given in the form of a note at the end of the format; reference shall be made to this note in appropriate blanks in the format. This note may consist of a table giving the various voltages which apply to the different devices in the series.
如果希望使用单一注册格式来注册串联中的多个设备,并且这些设备具有不同的额定电压 可以在格式末尾以注释的形式提供确定额定电压所需的信息;应在格式中的适当空白中引用本注释 说明可能包含一个表格 给出了适用于该系列不同设备的各种电压

Several reverse voltage ratings are required (often two or more of these have the same value):
需要几个反向额定电压(通常其中两个或多个具有相同的值):

VRWM: Maximum peak value of the 60 Hz half-sine wave reverse voltage that can be withstood on a repetitive basis over the operating temperature range of T2 to T10.
VRWM:在 T 2 至 T10 的工作温度范围内可以重复承受的 60 Hz 半正弦波反向电压的最大峰值

VRRM: Maximum peak value of 100 Fs pulses at a 60 Hz rate that can be withstood on a repetitive basis over the operating temperature range of T2 to T10
VRRM:在 60 Hz 速率下的最大峰值为 100 Fs 脉冲,可在 T2 至 T10 的工作温度范围内重复承受
.

VRSM: Maximum
最大
peak
value
价值
of
non-repetitive
非重复
60 Hz
赫兹
half-wave
半波
reverse
反向
voltage
电压
pulses
脉冲
that
can
be
withstood over the operating temperature of T
经受 T 的工作温度
2 to T
到 T
10 (for avalanche devices, an energy limit is
(对于雪崩设备,能量限制为
required).
必需)。

VR: Maximum dc reverse voltage that can be withstood on a repetitive basis over the operating temperature range of T2 to T9
VR:在 T 2 T9 的工作温度范围内可以重复承受的最大直流反向电压
.

Current Ratings
Current 评级

The current rating of a rectifier diode(s) is to be registered as an average value (averaged over a full cycle of 60 Hz sinusoidal input voltage) as this is of more significance than an rms value with respect to the major applications of rectifier diodes. Spaces are given to register the current rating over the normal (no derating) temperature range T2 to T3 and also for stud and base mounted devices at a value (temperature T4) which is above the normal temperature range. By definition, the current rating at T5 or T10 is zero so a complete current rating curve is to be registered.
整流二极管的额定电流应记录为平均值( 在 60 Hz 正弦输入电压的完整周期内的平均值), 因为 与整流二极管主要应用相关的 方根 。在正常(无降额) 温度范围 T2 至 T3 内记录额定电流,以及高于正常温度范围的值(温度 T 4)的螺柱和底座安装设备, 都给出了空间 。根据定义,T5 或 T10 处的额定电流为零,因此需要记录完整的额定电流曲线

This curve may be approximated with three straight line segments. The current at T4 should be approximately 1/3, 1/2, or 2/3 of the rated current over the normal operating temperature range. For lead mounted devices, the current rating curve may be approximated with two straight line segments. (T4 therefore is not required.)
这条曲线可以用三条直线段来近似。在正常工作温度范围内,T 4 处的电流约为额定电流的 1/3、1/2 或 2/3。对于引线安装器件,额定电流曲线可以用两条直线段近似。(时间因此不需要 4

The numbers registered may be rounded to whole numbers and to 5 ºC. Current ratings for rectifier diodes are based on 60 Hz sinusoidal waveforms into resistive loads and a conduction angle of 180º " 5º; however, the ratings are to apply from 50 Hz to 400 Hz. Additional information for establishing current ratings is found in chapter 7.
注册的数字可以四舍五入 并四舍五入5ºC。 整流二极管额定电流基于 60 Hz 正弦波形进入电阻负载和 180º“ 5º 的导通角; 但是,额定值应适用于 50 Hz 至 400 Hz。有关确定额定电流的更多信息,请参阅第 7 章

JEDEC Standard No. 282B.02 Page 30
JEDEC 标准编号 282B.02 第 30 页

4.4.2.2 Current Ratings (cont’d)
4.4.2.2 额定电流(续)

The surge current rating is the peak value of a specified half-sinewave of current. This surge may be repeated after thermal equilibrium has been re-established with the device operating at its repetitive current rating. The device is to be capable of withstanding a minimum of 100 such surges without failure. For the 60 Hz half-sinewave surge rating, the current surge is to be preceded by and followed by the normal operating conditions consisting of maximum rated 60 Hz half-sinewave current, device reference point temperature equal to T3 and rated repetitive 60 Hz, peak reverse blocking voltage, if applicable. In addition, the half cycle of reverse blocking voltage following the half-sinewave surge current is to be the registered non- repetitive 60 Hz peak reverse blocking voltage, if such exists. Otherwise, rated working peak reverse voltage shall be applied.
浪涌电流额定值是指定半正弦波电流的峰值。在设备以其重复额定电流运行时重新建立热平衡后,可能会重复这种浪涌。该设备能够承受至少 100 次此类浪涌而不会发生故障。对于 60 Hz 半正弦波浪涌额定值,电流浪涌之前和之后应遵循正常工作条件,包括最大额定 60 Hz 半正弦波电流、器件参考点温度等于 T3 和额定重复 60 Hz、峰值反向阻断电压(如果适用)。此外, 半正弦波浪涌电流之后的反向阻断电压的半周期应为注册的非重复 60 Hz 峰值反向阻断电压( 如果存在)。 否则,施加额定工作峰值反向电压。

Electrical Characteristics (Registration Format Part IV)
E 课题特征(注册格式第四部分

Reverse Blocking Current
Reverse 阻塞电流

The reverse current characteristic generally can be registered as either IR(AV) or IRRM; the latter is preferred. When registering IR (AV), the device shall be operated at its current and voltage ratings IF(AV) and VRRM, and at T3. When registering IRRM, the device shall be operated at its voltage rating, VRRM, at T5. The dc reverse current, IR, is registered at its dc reverse voltage rating VR, and at T9. For transient suppressor and controlled avalanche diodes, the minimum and maximum breakdown voltages are to be registered. In addition, the reverse currents at which these voltages are measured are to be specified in each case.
反向电流特性通常可以注册为 IR(AV) 或 IRRM;后者是优选的。注册 IR(AV),器件应在其额定电流和电压额定值 IF(AV) 和 VRRM 以及 T3 下运行 。注册 IRRM,器件应在其额定电压 VRRMT5)下运行 直流反向电流 I R 被寄存在 itsdcreversevoltage 额定值 VR 和 atT9 对于瞬态抑制器和受控雪崩二极管,最小和最大击穿电压将被寄存。此外,测量这些电压的反向电流应在每种情况下指定。

In the part of the format under reverse blocking current, where more than one device is being registered on a
在反向阻塞电流下的格式部分,其中多个设备被注册在
single
format
格式
and
the
reverse
反向
current(s)
电流
is
(are)
(是)
not
the
same
相同
for
all
the
devices
设备
being
存在
registered,
注册
the
current value(s) may be given in the same note which lists the voltage ratings; reference shall be made to this note in the appropriate
电流值可以在列出额定电压的同一注释中给出;应在适当的
blank.
空白。

Forward Voltage
对于病房电压

The peak forward voltage, VFM, can be registered at either maximum continuous rated load conditions or at the peak value of rated full load half-sinewave current (IR (AV) ) using a short pulse at TC = 25 ºC. The latter method is preferred because of the ease of measurement. In order to avoid significant heating of the junction during the test for forward voltage, the width of the current pulse used to make the measurement shall not exceed 2 milliseconds and the repetition rate of the pulses shall be low enough to impose a duty cycle of no more than 2%.
峰值正向电压 VFM 可以在最大连续额定负载条件下记录,也可以在额定满载半正弦波电流 (IR(AV) 的峰值下使用 T C = 25 ºC 的短脉冲进行记录 。后一种方法首选 因为它易于 测量。 避免在正向电压测试期间结部明显 发热 ,用于测量的电流脉冲宽度不得超过 2 毫秒 ,并且 脉冲 重复 足够,以施加 不超过 2%

Reverse Recovery
反向恢复

The nature of the reverse recovery characteristics of a rectifier diode affects interchangeability with other rectifier diodes in some applications. Therefore, recovery characteristics are to be registered as follows:
在某些应用中,整流二极管的反向恢复特性的性质会影响与其他整流二极管的互换性。因此,恢复特性应按如下方式进行记录:

When method C or D is specified (See clause 6.6.9), the maximum recovery time, trr, of the rectifier diode is to be registered in two parts, i.e., trrr and trrf. The first part, trrr, is measured from the instant of current reversal to the instant current reaches its peak reverse value, and trrf is measured from this peak value to the specified point given in chapter 6 of this document. Maximum peak recovery current, IRM(REC), is also to be registered.
当指定方法 C 或 D 时(见第 6.6.9 条), 整流二极管的最大恢复时间 t rr记录为两部分,即 trrr 和 trrf。第一部分 trrr 是从电流反转的瞬间到电流达到其峰值反转的瞬间测量的,t rrf 是从该峰值到本文档第 6 章给出的指定点的测量。最大峰值恢复电流 IRM(REC) 被记录。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 31
第 31 页

4.5.3 Reverse Recovery (cont’d)
4.5.3 反向恢复(续)

Rectifier diodes can possess different degrees of recovery characteristics. After peak recovery current, the current may immediately, or a short time later, decrease very abruptly (abrupt recovery) or it may decrease slowly and smoothly to its steady-state reverse blocking value (soft recovery); refer to Figure 9 and Figure 44. Recovered charge Qrr, is to be registered and is defined as the area under the reverse current vs. time curve. The starting point is the instant of current reversal and the ending point is when the reverse current first crosses the zero axis after it has passed through IRM(REC) or where a straight line extrapolation of the reverse current after IRM(REC) crosses the zero axis. Another definition for the end of the reverse recover period is when some specified reverse current point, IR(REC), is reached.
整流二极管可以具有不同程度的恢复特性。在峰值恢复电流之后,电流可能会立即或短时间后非常突然地下降(突然恢复),或者可能会缓慢而平稳地下降到其稳态反向阻塞值(软恢复);请参阅图 9 和 44。回收电荷 Q rr,将被记录下来,定义为反向电流与时间曲线下的面积 。起点是电流反转的瞬间,终点是反向电流通过 I RM(REC) 后首次穿过零轴 或者 I RM(REC) 穿过零轴后反向电流的直线外推 反向恢复期结束的另一个定义是当达到某个指定的反向电流点 IR(REC)

Test conditions for registered recovery characteristic values are also registered. Fixed conditions, unless otherwise specified are TC = 25 ºC, test repetition rate equals 60 pulses per second, and di/dt is equal to 25A/µs . The peak forward current, IFM, is to be registered and must be greater than or equal to three times the rated average dc forward current Io. Its pulse duration, tp, shall also be registered.
注册了已注册的恢复特性值的测试条件。除非另有规定,否则固定条件为 TC = 25 ºC,测试重复率等于每秒 60 个脉冲,di/dt 于 25A/μs。峰值正向电流 IFM 需要注册,并且必须大于或等于额定平均直流正向电流 I o 的三倍 。还应记录其脉冲持续时间 tp

4.6 Thermal Characteristics (Registration Format Part V)
4.6 热特性(配准格式第五部分)

The maximum steady-state thermal resistance between the junction and the temperature reference point specified in the beginning of the format is to be registered. When required, the maximum transient thermal impedance characteristics shall be supplied in tabular form or as a curve.
要记录结和格式开头指定的温度参考点之间的最大稳态热阻。需要时,最大瞬态热阻特性应以表格形式或曲线形式提供。

Also
to
be
registered
注册
is
the
maximum
最大
allowable
允许
thermal
烫的
resistance
电阻
between
之间
the
temperature
温度
reference
参考
point and the ambient in order to prevent thermal runaway when registered voltage is applied over the registered
点和环境温度,以防止在注册电压施加到注册电压上时发生热失控
operating temperature range (forward current, I
工作温度范围(正向电流,I
F(AV), being
存在
zero).
零)。

Rating Establishment and Verification Tests
Rating 建立和验证测试

5.1Introduction and Reference Table of Ratings and Tests
5.1 额定测试简介及参考表

This clause describes standard test methods to be used in establishing and verifying the maximum ratings for rectifier diodes given in the JC-22 series of registration formats for rectifier diodes.
本条款描述了用于建立和验证 JC-22 系列整流二极管注册格式中给出的整流二极管最大额定值的标准测试方法。

NOTE The word “diode(s)” will be used throughout this chapter to indicate rectifier diodes. The term “rating” is a value that establishes either limiting condition (maxima or minima) for the diode. It is determined for specified values of environmental and operating conditions and may be stated in any suitable terms. Operation beyond a rating may result in device degradation or damage, temporary or permanent, immediate or latent.
注意 “二极管”一词将在本章中用于表示整流二极管。术语“额定值”是建立二极管限制条件(最大值或最小值)的值。它是根据环境和作条件的指定值确定的,可以用任何合适的术语来表述。超出额定值的作可能会导致设备暂时或永久、立即或潜在的退化或损坏。

JEDEC Standard No. 282B.02 Page 32
JEDEC 标准编号 282B.02 第 32 页

Introduction and Reference Table of Ratings and Tests (cont’d)
评级和测试的介绍和参考表 (续)

The following table cross references maximum ratings, the test method(s) used to establish each rating, and the clause number of this chapter that describes the test method.
下表交叉引用了最大额定值、用于确定每个额定值的测试方法以及本章中描述测试方法的条款编号。

Table 6 — Reference Table of Ratings and Test Methods
表 6 — 额定值和测试方法参考表

Maximum Rating
最高额定值

Title
标题

Reference No.
参考编号

Operating Temperature
工作温度

Repetitive Rating Tests
重复评级测试

4.2.1

Storage Temperature
储存温度

Storage Life Test
存储寿命测试

4.3.1

Lead or Terminal Temperature for Soldering
焊接的引线或端子温度

Lead or Terminal Temperature Test
引线或端子温度测试

4.3.2

Working Peak Reverse Voltage, Half Sine
工作峰值反向电压,半正弦波

Steady State Operating Life Test
稳态工作寿命测试

4.2.1.1

Wave

or

Working Peak Reverse Voltage Life Test
工作峰值反向电压寿命测试

4.2.1.2

Non-repetitive Peak Reverse Voltage, Half
非重复峰值反向电压,半

60 Hz Sinewave Surge Current and Non-repetitive Peak
60 Hz 正弦波浪涌电流和非重复峰值

4.2.2.2, 4.2.2.3, or
4.2.2.2、4.2.2.3 或

Sine Wave
正弦波

Reverse Voltage Test
反向电压测试

4.2.2.4

DC Reverse Voltage
直流反向电压

DC Reverse Voltage Life Test
直流反向电压寿命测试

4.2.1.3

Repetitive Peak Reverse Voltage
重复峰值反向电压

Repetitive Peak Reverse Voltage Test
重复峰值反向电压测试

4.2.1.5

Average Forward Current, Half Sine Wave
平均正向电流,半正弦波

Steady State Operating Life Test
稳态工作寿命测试

4.2.1.1

Surge (Non-repetitive) Forward Current (60 Hz 1/2 Sinewave)
浪涌(非重复)正向电流(60 Hz 1/2 正弦波)

60 Hz Sinewave Surge Current Test and Non-repetitive Peak Reverse Voltage Test with Average Forward Current
60Hz 正弦波浪涌电流测试平均正向电流非重复峰值反向电压测试

4.2.2.2

Surge (Non-repetitive) Forward Current (60 Hz 1/2 Sinewave)
浪涌(非重复)正向电流(60 Hz 1/2 正弦波)

60 Hz Sinewave Surge Current Test and Non-repetitive Peak Reverse Voltage Test without Average Forward Current
60Hz 正弦波浪涌电流测试非重复峰值反向电压测试,无平均正向电流

4.2.2.3

Surge (Non-repetitive) Forward Current, 1.5 Millisecond Duration
浪涌(非重复)正向电流,持续时间 1.5 毫秒

Surge (Non-repetitive) Forward Current, 1.5 Millisecond Duration, Test
浪涌(非重复)正向电流,持续时间 1.5 毫秒,测试

4.2.2.5

Thermal Fatigue
热疲劳

Thermal Fatigue Life Test
热疲劳寿命测试

4.2.1.4

Surge (Non-repetitive) Reverse Power, 40 Microseconds Duration
浪涌(非重复)反向电源,持续时间 40 微秒

Triangular Pulse Non-repetitive Reverse Power Test
三角脉冲非重复反向功率测试

4.2.2.6

Surge (Non-repetitive) Reverse Power
浪涌(非重复)反向电源

Rectangular Pulse Non-repetitive Power Test
矩形脉冲非重复功率测试

4.2.2.8

Reverse (Non-repetitive) Surges for Schottky Barrier Diodes
肖特基势垒二极管的反向(非重复)浪涌

Non-repetitive Reverse Energy, Power and Current Rating Test for Schottky Barrier Diodes
肖特基势垒二极管的非重复反向能量、功率和电流额定值测试

4.2.2.1

Peak Destructive Current and Fault Clearing Time
峰值破坏电流和故障清除时间

Destructive Current (Rupture) Rating Test for Disc Type and Stud- and Base-Mounted Rectifier Diodes
碟盘式以及螺柱和底座安装整流二极管的破坏性电流(破裂)额定值测试

4.2.2.7

NOTE 1 Operating Temperature Ratings cannot be established except in conjunction with other ratings. Operating Temperature Ratings are established by performing the tests in clause 5.2.1 Repetitive Ratings Tests, which are applicable to the device type.
注 1:除非与其他额定值结合使用,否则无法确定工作温度额定值。工作温度额定值是通过执行5.2.1重复额定值测试中的测试确定的, 这些测试适用于设备类型。

NOTE 2 These tests are presented for information and use where applicable. It is not to be inferred that all diode(s) are required to meet all of the above tests.
注 2:这些测试仅供参考和使用。不能推断所有二极管都需要满足上述所有测试。

NOTE 3 50 Hz may be substituted for 60 Hz where required.
注 3:如果需要,50 Hz 可以代替 60 Hz。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 33
第 33 页

Electrical Tests
E 考试

Repetitive Ratings Tests
R 重复评级测试

Steady State Operating Life test for Diodes
二极管 稳态工作寿命测试

This test method is used to establish the maximum temperature, maximum voltage, and maximum current ratings for diodes.
该测试方法用于确定二极管的最高温度、最大电压和最大额定电流。

Operating conditions:
作条件:

Power sources shall be 60 Hz sinusoidal waveform sources.
电源应为 60 Hz 正弦波形源。

The test device shall be made to conduct rated average current registered at T3
测试装置 使 平均电流 T 3 处进行
.

The conduction angle of the test current shall be 150º to 180º.
测试电流的导通角度应为 150º至 180º。

The test temperature shall be T3
测试温度应为 T3
.

Rated half sine wave working peak reverse voltage shall be applied during alternate non-conducting half cycles starting no later than 5º after conduction has ceased.
额定正弦工作峰值反向电压导电半周期施加,不迟于导通停止后 5º 开始

The conduction angle of the reverse voltage waveform shall be 175º 5º.
反向电压波形的导通角应为 175º 5º。

A suggestion test circuit is shown in Figure 10 Duration of the life test: 1,000 hours.
建议测试电路如图 10 所示 寿命测试的 D 时间:1,000 小时。

Post-test measurements: All of the characteristics given in clause 5.4 that are indicated as being applicable to the device type shall be measured to establish the rating.
测试后测量:应测量第 5.4 条中给出的适用于设备类型的所有特性以确定额定值。
IFM
IFM 的

0

0

VRWM
VRWM 的

Figure 10 — Diode Operating Life Test Circuit and Waveforms
图10 — 二极管工作寿命测试电路和波形

JEDEC Standard No. 282B.02 Page 34
JEDEC 标准编号 282B.02 第 34 页

Working Peak Reverse Voltage Life Test
工作峰值反向电压寿命测试

This test method is used to establish the half-sinewave working peak reverse voltage rating for a diode. Operating Conditions:
该测试方法用于确定二极管的半正弦波工作峰值反向额定电压。工作条件:

The power source shall be a 60 Hz sinusoidal waveform source.
电源应为 60 Hz 正弦波形源。

The test temperature shall be T5
试验温度应为 T5
.

The test voltage shall be rated half-sinewave working peak reverse voltage.
测试电压应额定为半正弦波工作峰值反向电压。

Maximum thermal resistance from case to ambient shall be specified. (This requirement is to ensure thermal stability.)
应规定从外壳到环境的最大热阻。(此要求是为了确保热稳定性。

A suggested test circuit is shown in Figure 11.
建议的测试电路如图 11 所示。

Duration of the life test: 1,000 hours.
寿命测试持续时间:1,000 小时。

Post-test measurements: All of the characteristics given in clause 4.4 that are indicated as being applicable to the device type shall be measured to establish the rating.
测试后测量:应测量第 4.4 条中给出的适用于设备类型的所有特性以确定额定值。

T1T2

Fuse

DUT DUT
被测物

Figure 11 — Working Peak Reverse V oltage Life Test
图 11 — 工作峰值反向电压寿命测试

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 35
第 35 页

DC Reverse Voltage Life Test
DC 反向电压寿命测试

This test method is used to establish the reverse voltage rating for a diode. Operating Conditions:
该测试方法用于确定二极管的反向额定电压。工作条件:

The power source shall be dc with 1% maximum ripple.
电源应为直流,最大纹波为 1%。

The test temperature shall be T5
试验温度应为 T5
.

The test voltage shall be the rated dc value.
测试电压应为额定直流值。

Maximum thermal resistance from case to ambient shall be specified. (This requirement is to ensure thermal stability.)
应规定从外壳到环境的最大热阻。(此要求是为了确保热稳定性。

A suggested test circuit is shown in Figure 12.
建议的测试电路如图 12 所示。

Duration of the life test: 1,000 hours.
寿命测试持续时间:1,000小时。

Post-test measurements: All of the characteristics given in clause 5.4 that are indicated as being applicable to the device type shall be measured to establish the rating.
测试后测量:应测量第 5.4 条中给出的适用于设备类型的所有特性以确定额定值。

Figure 12 — DC Reverse Voltage Life Test
图 12 — 直流反向电压寿命测试

JEDEC Standard No. 282B.02 Page 36
JEDEC 标准编号 282B.02 第 36 页

Thermal Fatigue Life Test
THermal 疲劳寿命测试

This is a reference test method used to establish the ability of a diode to withstand the thermal cycling produced by alternately applying and removing forward current. Significant reverse voltages are not involved in the test, except as required by the ac heating current source operating into a very low resistance load. This test method applies to diodes whose temperature reference point is on the device case.
这是一种参考测试方法,用于确定二极管承受交替施加和消除正向电流产生的热循环的能力。测试中不涉及显着的反向电压,除非交流加热电流源在非常低的电阻负载下工作需要。该测试方法适用于温度参考点位于器件外壳上的二极管。

Operating conditions:
作条件:

The heating current source shall be a 60 Hz sinusoidal ac supply.
加热电流60Hz交流电源

The heating current conduction angle shall be 150º to 180º.
加热电流传导角应为 150º至 180º。

The heating current magnitude shall be that value registered at temperature T3
加热电流大小 在温度 T 3 下记录的值
.

The case temperature reached at the end of the heating period shall be T3 plus 10 ºC, minus 0 ºC.
加热期结束时达到的外壳温度应为 T3 加 10 ºC,减去 0 ºC。

The case temperature reached after the cooling period shall be 30 ºC + 10 ºC.
冷却期后达到的外壳温度应为 30 ºC + 10ºC。

The change in case temperature produced by the conditions specified in 4 and 5 must be 50 ºC minimum. If this cannot be achieved using the heating current case temperature specified in chapter 3, the current may be reduced (but not less than 50% of the registered value) so that the case temperature can be raised. Consult manufacturer's current rating curves.
根据 45 中规定的条件产生的外壳温度变化必须至少50ºC。如果使用3规定加热电流外壳温度无法实现这一点 ,则可以减少电流 (但低于注册50%) 可以提高外壳温度 查阅制造商的当前额定曲线。

The heating period shall be long enough to allow the case temperature to reach the value specified in bullet 4 above.
加热时间应足够长,以使外壳温度达到上述第 4 项中规定的值

The cooling period shall be long enough to allow the case temperature to reach the value specified in bullet 5
冷却时间应足够长,以使外壳温度达到第 5 项规定的值
above.
以上。

The total time for one heating-cooling cycle shall be a maximum of 10 minutes. (See Figure 13).
一个加热-冷却循环的总时间最长应为 10 分钟。(见图 13)。

A suggested circuit for testing many devices at a time is shown in Figure 13. To obtain case temperature excursions within tolerance, the power dissipation and thermal resistance of the test devices may be matched or the thermal resistance of the heat dissipaters may be made adjustable.
一次测试多个器件的建议电路如图 13 所示。为了获得容差范围内的外壳温度偏移,可以匹配测试设备的功耗和热阻,或者可以使散热器的热阻可调。

Duration of the life test: To be specified as a number of complete thermal cycles.
寿命测试的持续时间:指定为完整的热循环次数。

Post-test measurements: All of the characteristics given in clause 5.4 that are indicated as being applicable to the device type in addition to thermal resistance shall be measured to establish the rating.
测试后测量:除热阻外,还应测量第 5.4 条中给出的所有适用于设备类型的特性以确定额定值。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 37
第 37 页

Thermal Fatigue Life test (cont’d)
热疲劳寿命测试 (续)

T1T2Figure 13 — Diode Thermal Fatigue Life Test Circuit and Waveform
T1 T2 图 13 — 二极管热疲劳寿命测试电路和波形

JEDEC Standard No. 282B.02 Page 38
JEDEC 标准编号 282B.02 第 38 页

Repetitive Peak Reverse Voltage Test
R 重复峰值反向电压测试

This test method is used for establishing the repetitive peak reverse voltage rating for diodes. This is a repetitive rating and it represents the maximum value of reverse voltage that may be applied repetitively to a diode without causing permanent damage.
该测试方法用于建立二极管的重复峰值反向额定电压。这是一个重复额定值 它表示可以重复施加二极管而不会造成永久性损坏反向电压的最大

Test method: The test device shall be connected in parallel with resistance R2 and also to a source of voltage capable of delivering a single voltage pulse of peak value equal to the repetitive peak reverse voltage rating of the device. The test voltage shall be a half-sinewave 100µs pulse at a repetitive rate of 60 Hz. See Figure 14 for repetitive peak reverse voltage test circuit. The series resistor R1 must limit conduction current to within the voltage source rated value in the event of a device failure.
测试方法: 测试装置 电阻 R 2 并联 连接到 能够提供峰值等于器件重复峰值反向额定电压的单个电压脉冲的电压 。测试电压应为半正弦波 100μs 脉冲,重复速率为 60 Hz。 重复峰值反向电压测试电路 14 在设备发生故障时,串联电阻器 R1 必须传导电流限制在电压源额定值范围内

Operating conditions:
作条件:

The peak test voltage shall be specified as the repetitive peak reverse voltage rating of the device.
峰值测试电压应指定为器件的重复峰值反向电压额定值

The steady-state thermal equilibrium test temperature shall be T5
平衡试验温度T5
.

Post-test
后测
measurements:
测量:
All
of
the
characteristics
特性
given
鉴于
in
that
are
indicated
表明
as
being
存在
applicable
适用
to
the
device type shall be measured to establish the
应测量设备类型以确定
rating.
额定值。

Figure 14 — Diode Repetitive Peak Reverse Voltage Test Circuit and Waveform
图 14 — 二极管重复峰值反向电压测试电路和波形

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 39
第 39 页

Non-Repetitive Ratings Tests
N 次重复评级测试

5.2.2.1 Non-repetitive Reverse Energy, Power, and Current Rating Tests for Schottky Barrier Rectifier Diodes
5.2.2.1 肖特基势垒整流二极管的非重复反向能量、功率和电流额定测试

These two methods are used to establish the reverse current, power, and energy ratings of Schottky Barrier Rectifier Diodes
这两种方法用于确定肖特基势垒整流二极管的反向电流、功率和能量额定值

Test method 1: The test device shall be connected in the circuit as shown in Figure 15 or to a pulse source which will produce the same waveform. The initial reverse current pulse train shall have an amplitude that shall not degrade the test device from its initial characteristics. The reverse current pulse train shall be incremented in amplitude until the maximum amplitude the test device can withstand without being degraded is found. With each increment in reverse current, the test device shall be tested for a period no shorter than one second. The time before subjecting the test device to the next incremental reverse current pulse train shall be long enough to allow the device junction temperature to return to its initial temperature.
测试方法 1:测试设备应连接到如图 15 所示的电路中或产生相同波形的脉冲源。初始反向电流脉冲序列的幅度不应使测试设备从其初始特性降级。反向电流脉冲序列的幅度应递增 直到找到测试设备可以承受的最大幅度而不退化。随着反向电流的每增加,测试设备的测试时间应不短于一秒。在使测试设备受到下一个增量反向电流脉冲序列之前的时间应足够长,以使设备结温恢复到其初始温度。

Test method 2: The test device shall be connected in the circuit as shown in Figure 16. With Switch “S” open,
测试方法 2:测试装置应如图 16 所示连接在电路中。打开开关“S”时,
choose
选择
an
initial
input
输入
pulse
脉冲
width
宽度
that
shall
not
degrade
降低
the
test
测试
device
装置
from
its
original
源语言
characteristics. After closing “S” the input pulse width shall be incremented in time duration, which will increment the test
特性。关闭“S”后,输入脉冲宽度应在持续时间内增加,这将增加测试
current as measured across R
R 两端测量的电流
S. Increment the test current until the maximum test current the test device can
.递增测试电流,直到测试设备可以达到最大测试电流
withstand without being degraded is found. With each increment in test current, the test device shall be tested for a period no shorter than one second. The time before subjecting the test device to the next incremental test current shall be long enough to allow the device junction temperature to return to its initial temperature.
经受不降解。随着测试电流的每增加,测试设备的测试时间应不少于一秒。在使测试设备受到下一个增量测试电流之前的时间应足够长,以使设备结温恢复到其初始温度。

Operating conditions for test method 1:
测试方法1的作条件:

The reverse current pulse train shall consist of square waves or 2.0 µs pulses and a period of 1000 µs. The rise time shall be a maximum of 350 ns.
反向电流脉冲序列应由方波或 2.0 μs 脉冲和 1000 μs 的周期组成。上升时间最长应为 350ns。

The test is to be performed at 25 °C ambient temperature.
测试将在 25 °C 环境温度下进行

The minimum number of current pulses to be applied shall be 1000 pulses.
施加的电流脉冲的最小数量应为 1000 个脉冲。

The reverse current rating is the measured parameter, as determined by a current sense resistor. The reverse power rating is determined by obtaining the product of reverse current and reverse voltage of the device under test. The reverse energy rating is determined by obtaining the product of reverse power and the pulse width applied to the device under test.
反向电流额定值是测量参数,由电流检测电阻确定。反向额定功率是通过获得被测设备的反向电流和反向电压的乘积来确定的。反向额定能量是通过获得反向功率和施加到被测设备的脉冲宽度的乘积来确定的。

Operating conditions for test method 2:
测试方法2的作条件:

The input pulse shall be square wave of a specified pulse width with rise and fall times of 350 ns maximum. The duty cycle shall be 1% maximum.
输入脉冲应为指定脉冲宽度的方波,上升和下降时间最大为 350 ns。占空比最大应为 1%。

The test is to be performed at 25 °C ambient temperature.
测试将在 25 °C 环境温度下进行

The device under test shall be subjected to this test for one second minimum test time.
被测设备应接受此测试,至少测试时间为一秒

The reverse current rating at a specified pulse width is the measured parameter as determined by a current sense resistor. The reverse power rating at a specified pulse width is determined by obtaining the product of reverse current and reverse voltage of the device under test. The reverse energy rating at a specified pulse width is determined by integrating, with respect to time, the product of reverse power and time. An alternative method for determining reverse energy is from the relationship: Energy = (1/2) Li2
指定脉冲宽度下的反向电流额定是由电流检测电阻确定测量参数 指定脉冲宽度下的反向定功率是通过获得被测器件的反向电流和反向电压的乘积确定的。指定脉冲宽度下的反向额定能量是通过将反向功率和时间的乘积相对于时间进行积分来确定的。确定反向能量的另一种方法是从以下关系中得出: 能量 = (1/2)Li2

JEDEC Standard No. 282B.02 Page 40
JEDEC 标准编号 282B.02 第 40 页

5.2.2.1 Non-repetitive Reverse Energy, Power, and Current Rating Tests (cont’d)
5.2.2.1 非重复反向能量、功率和额定电流测试(续)

Characteristics to be measured for test method 1:
测试方法1要测量的特性:

Test device reverse voltage during application
测试设备在应用过程中反向电压

of reverse current pulse, VR= V
反向电流脉冲,VR = V

Reverse Current, IR= A
反向电流,IR = A

NOTEReverse current is obtained by dividing the voltage measured across 0.1 ohm sense resistor by 0.1.
注意 :反向电流通过将 0.1 欧姆检测电阻器上测量的电压除以 0.1 获得的

Characteristics to be measured for test method 2:
测试方法2要测量的特性:

Reverse Test Current, IT= A
反向测试电流,IT = A

Test Device Reverse Current, IR= A
测试设备反向电流,IR = A

Test Device Reverse Voltage during application
测试设备应用 期间的反向电压

of reverse current pulse, VR= V
反向电流脉冲,VR = V

NOTEReverse Test Current is obtained by dividing the voltage measured across R5 by the value of RS in ohms.
注意 反向测试电流 通过 R5 两端测量的电压 S欧姆

Post-test measurements: All of the characteristics given in clause 4.4 that are indicated as being applicable to the device type shall be measured to establish the rating.
测试后测量:应测量第 4.4 条中给出的适用于设备类型的所有特性以确定额定值。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 41
第 41 页

Non-repetitive Reverse Energy, Power, and Current Rating Tests (cont’d)
非重复反向能量、功率和额定电流测试 (续)

Figure 15 — Reverse Energy Test Circuit for Schottky Rectifiers - Test Method 1
图 15 — 肖特基整流器的反向能量测试电路 - 测试方法 1

Figure 16 — Reverse Energy Test Circuit for Schottky Rectifiers - Test Method 2
图 16 — 肖特基整流器的反向能量测试电路 - 测试方法 2

JEDEC Standard No. 282B.02 Page 42
JEDEC 标准编号 282B.02 第 42 页

60 Hz Sinewave Surge Current Test and Non-Repetitive Peak Reverse Voltage Test With Average Forward Current
60 Hz 正弦波浪涌电流测试和平均正向电流的非重复峰值反向电压测试

This test method is used to establish the sinewave surge current rating for diodes and is performed with rated average forward current. The diode is required to block rated non-repetitive peak reverse voltage immediately following this surge current test.
该测试方法用于确定二极管的正弦波浪涌电流额定值,并使用额定平均正向电流进行。二极管需要在浪涌电流测试后立即阻断额定非重复峰值反向电压。

Test method: The device is operated under steady-state rated current and voltage conditions before and after the application of the surge current. Immediately following the half-cycle surge current, a half sinewave of rated non-repetitive reverse voltage is applied. For surge test circuit and waveforms, see Figure 17. The time between current surges shall be long enough to permit the device case temperature to return to its original thermal equilibrium value.
测试方法: 装置施加浪涌电流前后的稳态电流和电压条件下运行 。在半周期浪涌电流之后,立即施加额定非重复反向电压的半正弦波。有关浪涌测试电路和波形,请参见图 17。电流浪涌之间的时间应足够长,以允许设备外壳温度恢复到其原始热平衡值。

Operating conditions:
作条件:

The power sources shall be 60 Hz sinusoidal waveform sources.
电源应为 60 Hz 正弦波形源。

The test devices shall be made to conduct rated average forward current at T3, and rated working peak reverse voltage, half wave, shall be applied. The half-cycle conduction angle of the test current and voltage must be 150º to 180º.
测试装置应使额定平均正向电流在 T 3 处传导 并施加额定工作 峰值反向电压,半波。测试电流和电压的半周期导通角必须为 150º至 180º。

The steady-state thermal equilibrium test temperature shall be T3
平衡试验温度T3
.

The peak value of the surge current shall be specified. The test current waveform is a single half- cycle sinewave. The test current half-cycle conduction angle must be 150º to 180º.
应指定浪涌电流的峰值。测试电流波形为单半周期正弦波。测试电流半周期导通角必须为 150º至 180º。

Rated half sinewave non-repetitive peak reverse voltage shall be applied during the half cycle immediately following the half cycle of rated surge
额定半正弦波非重复峰值反向电压应在额定浪涌半周期之后的半周期内施加
current.
当前。

NOTEIf a device does not have this voltage rating registered, use the half sinewave repetitive peak reverse voltage rating as the test voltage.
注意 如果设备没有注册此额定电压,请使用半正弦波重复峰值反向额定电压作为测试电压。

The number of current surges to be applied shall be 100 surges.
施加的电流浪涌次数应为 100 次浪涌。

Post-test measurements: All of the characteristics given in clause 4.4 that are indicated as being applicable to the device type shall be measured to establish the rating.
测试后测量:应测量第 4.4 条中给出的适用于设备类型的所有特性以确定额定值。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 43
第 43 页

Surge Current Test and Non-Repetitive Peak Reverse Voltage Test With Average Forward Current (cont’d)
浪涌电流测试和非重复峰值反向电压测试,平均正向电流 (续)

Figure 17 — Diode Surge Current and Non-Repetitive Peak Reverse Voltage Test Circuit and Waveforms
图 17 — 二极管浪涌电流和非重复峰值反向电压测试电路和波形

JEDEC Standard No. 282B.02 Page 44
JEDEC 标准编号 282B.02 第 44 页

60 Hz Sinewave Surge Current Test and Non-Repetitive Peak Reverse Voltage Test Without A verage Forward Current
60 Hz 正弦波浪涌电流测试和非重复峰值反向电压测试,无平均正向电流

This test method is used to establish the sinewave surge current ratings for diodes and is performed without rated average forward current being present. The ambient, case or reference point temperature is at the maximum operating temperature of the diode. The diode is required to block rated non-repetitive peak reverse voltage immediately following this current surge test.
该测试方法用于确定二极管的正弦波浪涌电流额定值,并且在不存在额定平均正向电流的情况下进行。环境温度、外壳温度或参考点温度处于二极管的最高工作温度。二极管需要在电流浪涌测试后立即阻断额定非重复峰值反向电压。

Test method: The test device is operated under steady rated reverse voltage conditions before and after the application of the surge current. Immediately following the half-cycle surge current, a half sinewave of rated non-repetitive reverse voltage is applied. For surge test circuit and waveform, see Figure 18. The time between current surges shall be long enough to permit the device reference point temperature to return to its original thermal equilibrium value.
试验方法:试验装置在施加浪涌电流前后在稳定的额定反向电压条件下运行 半周期浪涌电流之后 ,施加额定非重复反向电压的正弦波 。有关浪涌测试电路和波形,请参见图 18。 电流浪涌之间的时间足够,以允许设备参考温度恢复其原始热平衡值。

Operating conditions:
作条件:

The power sources shall be 60 Hz sinusoidal waveform sources.
电源应为 60 Hz 正弦波形源。

The test device shall be made to block rated working peak reverse voltage, half-wave at maximum operating temperature (T5).
测试装置应阻断额定工作峰值反向电压,最高工作温度 (T5)下的半波

The steady-state thermal equilibrium test temperature shall be T5
平衡试验温度T5
.

The peak value of the surge current shall be specified. The test current waveform is a single half-cycle sinewave. The half-cycle test current conduction angle must be 150º to 180º.
应指定浪涌电流的峰值。测试电流波形为单半周期正弦波。半周期测试电流传导角必须为 150º至 180º。

Rated half-sinewave non-repetitive peak reverse voltage shall be applied during the half cycle immediately following the half cycle of rated surge
额定半正弦波非重复峰值反向电压应在额定浪涌半周期之后的半周期内施加
current.
当前。

NOTEIf a device does not have this voltage rating registered, use the half sinewave working peak reverse voltage rating as the test voltage.
注意 如果设备没有注册此电压额定值,请使用半正弦波工作峰值反向电压额定值作为测试电压。

The number of surges to be applied shall be 100 surges.
施加的浪涌次数应为 100 次浪涌。

Post-test measurements: All of the characteristics given in clause 4.4 that are indicated as being applicable to the device type shall be measured to establish the rating.
测试后测量:应测量第 4.4 条中给出的适用于设备类型的所有特性以确定额定值。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 45
第 45 页

Surge Current Test and Non-Repetitive Peak Reverse Voltage Test Without A verage Forward Current (cont’d)Figure 18 — Diode Surge Current and Non-Repetitive Peak Reverse Voltage Without Average Forward Current Test Circuit and Waveforms
浪涌电流测试和非重复峰值反向电压测试,无平均正向电流 (续) 图 18 — 二极管浪涌电流和非重复峰值反向电压,无平均正向电流测试电路和波形

JEDEC Standard No. 282B.02 Page 46
JEDEC 标准编号 282B.02 第 46 页

Non-Repetitive Peak Reverse Voltage Test
N 导通重复峰值反向电压测试

This test method is used for establishing the non-repetitive peak reverse voltage rating for diodes. This is a non-repetitive rating and it represents the maximum value of reverse voltage which may be applied non- repetitively to a diode without causing permanent damage.
该测试方法用于建立二极管的非重复峰值反向额定电压。这是一个非重复额定值,它代表反向电压的最大值,可以非重复地施加到二极管上而不会造成永久性损坏。

Test method: The test device shall be connected as shown in Figure 19. The synchronous switch is opened, and the ac source voltage is increased to the specified value of non-repetitive peak reverse voltage. The specified temperature conditions are checked. The specified non-repetitive peak reverse voltage is applied by the closing the synchronous switch for approximately 180º. Proof of the ability of the diode to withstand the non-repetitive peak reverse voltage rating is obtained from the post-test measurements. Diode D is provided to prevent forward conduction of the DUT. Limiting resistor R is provided to limit fault current in case of a blocking failure of the DUT. It is chosen so as not to significantly affect the reverse voltage applied to the DUT.
测试方法:测试装置应如图 19 所示连接。同步开关打开,交流电源电压增加到非重复峰值反向电压的规定值。检查指定的温度条件。通过关闭同步开关180º 施加指定的非重复峰值反向电压。从测试后测量中可以证明二极管承受非重复峰值反向额定电压的能力。提供二极管 D 以防止 DUT 通。 提供限流电阻 R,用于DUT 阻塞故障限制故障电流。 选择是为了显着影响施加在 DUT 上的反向电压

Operating conditions:
作条件:

The peak test voltage shall be specified as the non-repetitive peak reverse voltage rating of the device.
峰值测试电压指定器件非重复峰值反向电压额定值

The steady-state thermal equilibrium test temperature shall be T5
平衡试验温度T5
.

The test voltage waveform is a single-cycle 60 Hz sinewave. The test voltage half-cycle conduction angle must be 150º to 180º.
测试电压波形为单周期 60Hz 正弦波。测试电压半周期导通角必须为 150º至 180º。

The number of voltage surges to be applied shall be 100 surges.
施加的电压浪涌次数应为 100 次浪涌。

The time between voltage surges shall be long enough to permit the device virtual junction
电压浪涌之间的时间应足够长,以允许设备虚拟结
temperature to return to its original thermal equilibrium
温度恢复到原来的热平衡
value.
价值。

Post-test measurements: All of the characteristics given in clause 4.4 which are indicated as being applicable to the device type shall be measured to establish the rating.
测试后测量: 应测量4.4给出的所有适用于设备类型的特性以确定额定值。

Figure 19 — Non-Repetitive Peak Reverse Voltage Test Circuit
图19 — 非重复峰值反向电压测试电路

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 47
第 47 页

Surge (Non-Repetitive) Forward Current, 1.5 ms Duration Test
S 冲动(非重复)正向电流,1.5 ms 持续时间测试

This test method is used to establish the 1.5 ms half-sinewave surge current rating for a diode. The diode is not required to block voltage immediately following this current surge test. However, the diode must regain rated reverse voltage capabilities after it has cooled to its original thermal equilibrium conditions.
该测试方法用于确定二极管的 1.5 ms 半正弦波浪涌电流额定值。二极管不需要在电流浪涌测试立即阻断电压 然而, 二极管冷却到其原始热平衡条件后必须恢复额定反向电压能力

Test Method: The test device is to be brought up to steady-state thermal equilibrium temperature before the application of the surge current. Following the current surge, no reverse voltage or additional current surges shall be applied to the device until its virtual junction temperature returns to its original thermal equilibrium value. For surge current test circuit, see Figure 20. The gate signal duration to the initiating device (SCR1) should be less than 1.5 ms to prevent a possible second pulse due to circuit oscillations. The value of L (total discharge circuit inductance), C and EC must be set to produce the specified peak surge current and specified pulse width.
测试方法:在施加 浪涌电流之前,将测试装置升到稳态热平衡温度 在电流浪涌之后 不得设备施加 电压额外的电流浪涌 ,直到 虚拟恢复 原来平衡值。有关浪涌电流测试电路,请参见图 20。 到启动器件 (SCR 1) 的栅极信号持续时间 1.5 ms,以防止 由于以下原因而可能 出现的第二个脉冲 电路振荡。 必须设置 L(总放电电路电感)、 C E C 的值 产生 指定的峰值浪涌电流指定的脉冲宽度。

Operating conditions:
作条件:

The power source shall be capable of charging C to the necessary value to produce the specified peak surge current.
电源应能够将 C 充电至产生规定的峰值浪涌电流所需的值

Prior to the application of surge current, the device temperature shall be brought up to the specified case temperature by use of an external heat source, such as a temperature-controlled mounting block.
施加浪涌电流之前 使用外部热源(例如温控安装块)将设备温度提高规定的外壳温度

The specified case temperature shall be T5
规定的外壳温度应为 T5
.

The peak value of the surge current shall be specified. The test current waveform is a single half- cycle sinewave. The single half cycle sinewave test current pulse width must be 1.50 ms + 0.15 ms.
应指定浪涌电流的峰值。测试电流波形为单半周期正弦波。单半周期正弦波测试电流脉冲宽度必须为 1.50 ms + 0.15ms。

No
voltage
电压
shall
be
applied
应用的
immediately
马上
following
以后
the
half
cycle
周期
of
surge
current.
当前。

The time between each surge current pulse shall be sufficient to allow the junction to return to thermal equilibrium (20 seconds is recommended).
每个浪涌电流脉冲之间的时间应足以使结恢复到热平衡(建议 20 秒 )。

The number of current surges to be applied shall be 100 surges.
施加的电流浪涌次数应为 100 次浪涌。

Post-test measurements: All of the characteristics given in clause 5.4 which are indicated as being applicable to the device type shall be measured to establish the rating.
测试后测量: 应测量5.4给出的所有适用于设备类型的特性以确定额定值。

Figure 20 — Basic Test Circuit for Surge (Non-Repetitive) Forward Current, 1.5 ms Duration
图 20 — 浪涌(非重复)正向电流的基本测试电路,持续时间为 1.5 ms。

JEDEC Standard No. 282B.02 Page 48
JEDEC 标准编号 282B.02 第 48 页

Surge (Non-Repetitive) Forward Current, 1.5 ms Duration Test (cont’d)
浪涌 (非重复) 正向电流,1.5ms 持续时间测试 (续)

R1

=

Charging current limiting resistors
充电限流电阻

R

=

Non-inductive current viewing resistor
无感电流观察电阻

T1

=

Variable autotransformer
可变自耦变压器

T2

=

Isolation transformer
隔离变压器

T3

=

Current step-up transformer
电流升压变压器

D1

=

Charging diode
充电二极管

D2

=

Bypass diode
旁路二极管

C, L
C、L

=

Values set for specified surge current and pulse width. L includes total discharge circuit inductance.
为指定的浪涌电流和脉冲宽度设置的值。L 包括总放电电路电感。

SCR1

=

Initiating or trigger SCR.
启动或触发 SCR。

Triangular Pulse Non-Repetitive Reverse Power Test
T四角脉冲非重复反向功率测试

This test method is used to establish the 40µs triangular wave reverse peak power rating of controlled avalanche diodes.
该测试方法用于建立受控雪崩二极管的 40μs 三角波反向峰值额定功率。

Test method: The test device shall be connected in the circuit as shown in Figure 21. The value of V(BR) of the DUT shall be estimated. Calculate an approximate value of R1 from:
测试方法:测试装置应如图 21 所示连接在电路中。 应估计 DUT 的 V(BR) 价值 从以下位置计算 R 1 的近似值:

𝑅1 =
1 =

(𝑉𝐶1 𝑉(𝐵𝑅))𝑉(𝐵𝑅)
(VC1 V(BR))V(BR)

𝑃𝑅𝑀
PRM

Estimate C1 from C1 x R1 = (1/2) tw
根据 C1 x R1 = (1/2) tw 估计 C1
.

Adjust the dc supply until VR = rated VRWM
调整 直流电源 ,直到 VR= 额定 VRWM
.

The voltage across C1 (VC1) should be 3000 V or 3 × V(BR) of DUT (whichever is greater); the spark gap should not arc over.
C1(V C1) 两端的电压 3000 V 3 × V(BR) DUT(以选定者为准) 更大 ); 火花不应越过弧形

Open SW1; the gap should arc over.
打开 SW1;间隙应呈弧形

The initial reverse voltage pulse shall be low magnitude and then increased on successive pulses until the maximum peak reverse power specified is reached. Readjust, if necessary, the values of C1, R1 and VC1 until the specified values of peak reverse power and average width of the current pulse are obtained.
初始反向电压脉冲应为低幅度,然后在连续脉冲上增加,直到达到指定的 最大峰值反向功率 有必要, 重新调整 C 1 R 1 和 V C1 的 直到获得峰值反向功率和电流脉冲平均宽度的指定值

NOTEPRM = V(BR)SM × I(BR)SM
注 PRM = V(BR)SM × (BR)SM
.

The time between pulses shall be long enough to allow the device virtual junction temperature to return to its initial temperature.
脉冲之间的时间应足够长,以允许器件虚拟结温度恢复到其初始温度。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 49
第 49 页

Triangular Pulse Non-Repetitive Reverse Power Test (cont’d)
三角脉冲非重复反向功率测试 (续)

Operating conditions:
作条件:

The reverse current shall be a triangular wave with a maximum rise time of 1.5 µs and a maximum width of 40 + 4 µs, measured at the 50% amplitude points.
反向电流应为三角波,最大上升时间为 1.5 μs,最大宽度为 40 + 4 μs,在 50%振幅点测量。

The peak reverse power is determined from the reverse voltage and current through the device.
峰值反向功率由通过器件的反向电压和电流确定

The test is to be performed at 25 ºC case temperature.
测试将在 25 ºC 的外壳温度下进行

The minimum time between each pulse shall be one second.
每个脉冲之间的最短时间应为一秒。

The number of pulses to be applied shall be 100 pulses.
施加的脉冲数应为 100 个脉冲。

Post-test measurements: All of the characteristics given in clause 4.4 which are indicated as being applicable to the device type shall be measured to establish the rating.
测试后测量: 应测量4.4给出的所有适用于设备类型的特性以确定额定值。

Figure 21 — Non-Repetitive Reverse Power Test Circuit
图 21 — 非重复反向功率测试电路

JEDEC Standard No. 282B.02 Page 50
JEDEC 标准第 282B.02 号第 50 页

Destructive Current (Rupture) Rating Test for Disc-Type and Stud- and Base-Mounted Rectifier Diodes
D 碟式和螺柱式和底座安装整流二极管的电交流电流(破裂)额定值测试

This test method is used to establish the maximum overload current that a rectifier diode can withstand without rupturing the device package. The device is electrically shorted by exceeding the device reverse breakdown voltage with a low energy pulse such that the failure location is on the device periphery near the active area. Other failure modes, such as bulk voltage breakdown or open circuit between anode and cathode terminals, are not subjects of this test proposal.
该测试方法用于确定整流二极管在不破坏器件封装的情况下可以承受的最大过载电流。通过使用能量脉冲超过器件反向击穿电压 ,使器件发生电气短路, 使故障位置位于器件外围靠近有源区域。 其他故障模式, 例如电压击穿阳极阴极端子之间的开路 ,不属于本测试方案的主题

Test method: Initially the test device is ascertained to be hermetic (Leak Rate < 1 × 10-6 atm cc/s) and to be an electrical short in the blocking junction on the periphery of the device. The test device is mounted in a fixture per the manufacturer's recommended mounting procedure. At these high current levels, the location and rigidity of mounting is important since tremendous magnetic forces could alone cause assembly damage and loosening of hardware.
测试方法:最初确定测试设备是密封的(泄漏率 < 1 × 10-6 atm cc/s),并且 设备外围阻塞结处的电气短路。测试设备按照制造商推荐的安装程序安装在夹具中。在这些高电流水平下,安装的位置和刚度非常重要 因为巨大的本身就可能导致组件损坏和硬件松动

Operating
经营
conditions:
条件:
The
circuit
电路
shown
显示
in
Figure
数字
22 is
one
means
方法
to
generate
生成
current
当前
levels
水平
to
cause
原因
rupture. A high voltage alternator is used to give a short term power capability in excess of 470,000 kVA. The test device is located in the secondary of the transformer in series with a
破裂。高压交流发电机用于提供超过 470,000 kVA 的短期功率。测试装置位于变压器的次级中,与
fuse.
保险丝。
V

I = interface voltage V
= 接口电压 V
D = device voltage
= 设备电压

Figure 22 — Destructive Current Test Circuit
图 22 — 破坏性电流测试电路

The magnitude and shape of the peak let-thru current is determined by fuse selection. The series fuse is used to limit the peak let-thru current to the selected value. The asymmetry is controlled by a pilot alternator on the same shaft with the main alternator. The output of the pilot device is fed into electronic circuitry that controls the closing device. The back-up breakers perform should the closing device fail to operate from its over- current trip.
峰值直通电流大小形状保险丝选择决定 串联保险丝用于将峰值直通电流限制在选定值。不对称性由与主交流发电机位于同一轴上的先导交流发电机控制。先导装置的输出被馈入控制关闭装置的电子电路。如果关闭装置因过流跳闸而无法运行,则备用断路器将起作用

The power shall be from a 60 Hz sinusoidal waveform source with fault current applied in the reverse direction to the reverse blocking junction.
电源应来自 60 Hz 正弦波形源,故障电流反向施加到反向阻塞结。

The initial device case temperature shall be 25 ºC.
初始设备外壳温度25ºC。

No peak reverse voltage is necessary after the destructive half-sinewave of current is interrupted.
电流的破坏性半正弦波中断后不需要峰值反向电压

The number of destructive current surges to be applied shall be 1.
施加的破坏性电流浪涌次数应为 1。

The peak destructive current and the fault clearing time causing rupture shall be defined.
定义导致破裂峰值破坏电流故障清除时间

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 51
第 51 页

Destructive Current (Rupture) Rating Test for Disc-Type and Stud- and Base- Mounted Rectifier Diodes (cont’d)
碟片式和螺柱和底座安装整流二极管的破坏性电流(破裂)额定值测试 (续)

Post-test measurements: The hermetic leak rate test shall be repeated on a device that has been rupture current tested. A device is defined as ruptured if there is a visible puncture in the package or if the leak rate exceeds 1 × 10-6 atm cc/s.
测试后测量:应在已进行破裂电流测试的设备上重复密封泄漏率测试。如果封装中有可见的刺穿或泄漏率超过 1 × 10-6 atm cc/s,则设备被定义为破裂。

Rectangular Pulse N on-Repetitive P ower T est
R 矩形脉冲 N on -Repetitive P ower Test

This test method is used to establish the rectangular wave shape reverse power rating of avalanche diodes for any specified pulse width.
该测试方法用于建立雪崩二极管在任何指定脉冲宽度下的矩形波形反向额定功率。

Test method: The test device shall be connected in the circuit as shown in Figure 23. The initial reverse voltage pulse shall be adjusted to provide the reverse power specified. For the desired time interval the time between pulses shall be long enough to allow the device junction temperature to return to its initial temperature.
测试方法:测试装置应如图 23 所示连接在电路中。应调整初始反向电压脉冲提供指定的反向功率 对于所需的时间间隔 脉冲之间的时间应足够长,以允许器件结温恢复到其初始温度。

Operating conditions:
作条件:

The reverse current pulse shall have a maximum rise time and fall time specified and a specified pulse width measured at the 50% amplitude points.
反向电流脉冲应具有规定的最大上升时间和下降时间,并在 50% 幅度点测量指定的脉冲宽度

The reverse voltage pulse shall be adjusted to provide the reverse power specified. Both R1 and VP can be controlled to adjust power level.
调整反向电压脉冲以提供指定的反向功率。 可以控制 R 1 和 VP 来调节功率水平。

The test is to be performed at 25 °C ambient
测试将在 25 °C 环境温度下进行
temperature.
温度。

The minimum time between each pulse shall be one second, or longer when required to allow the device junction temperature to return to its initial value.
每个脉冲之间的最短时间秒, 如果需要使器件结温恢复到其初始,则更长

The number of pulses to be applied shall be 100 pulses.
施加的脉冲数应为 100 个脉冲。

Characteristics to be measured:
要测量的特性:

Test Device Reverse Voltage, Vout= V.
测试设备反向电压,V 输出 = V。

Reverse Current, Iout= A.
反向电流,I 输出 = A。

NOTE 1Reverse current is obtained by dividing the voltage measured across 0.1 µ sense resistor by 0.1. NOTE 2Test device reverse power in watts is obtained by taking the product of Vout and Iout
1:反向电流是通过将 0.1 μ检测电阻器上测得的电压除以 0.1 获得的。 2: 测试设备瓦特为单位的反向功率通过取出 V 乘积获得
.

Post-test measurements: All of the characteristics given in clause 4.4 which are indicated as being applicable
测试后测量:第 4.4 条中给出的所有特征,这些特征表明适用

to the device type shall be measured to establish the rating.
应测量设备类型以确定额定值。

Figure 23 — Rectangular Pulse Power Test Waveform and Circuit
图 23 — 矩形脉冲功率测试波形和电路

JEDEC Standard No. 282B.02 Page 52
JEDEC 标准编号 282B.02 第 52 页

Non-Electrical Tests
N 次电气测试

Storage Life test
斯道拉格生命测试

This test method is used to establish the storage temperature range rating for diodes. The maximum and minimum storage temperatures (T7 and T6) represent the greatest stress conditions to the test device. Storage life tests are usually performed at these temperatures.
该测试方法用于确定二极管的存储温度范围额定值。最高和最低储存温度 (T7 T6 代表 测试的最大应力条件 装置。 储存寿命测试通常在这些温度下进行。

Operating conditions:
作条件:

The storage temperature, normally either T6 or T7, shall be specified.
指定储存温度,通常为 T6 或 T7

The test duration shall be 1000 hours for T7, 168 hours for T6
T 7 的测试持续时间应为 1000 小时,T 6 的测试持续时间 168 小时
.

Post-test measurements: All of the characteristics given in chapter 5 that are indicated as being applicable to the device type shall be measured to establish the rating.
测试后测量:应测量第 5 章中给出的适用于设备类型的所有特性以确定额定值。

Lead or Terminal Temperature Test
Lead 或终端温度测试

This test is to be used to verify the maximum lead or terminal temperature rating for soldering purposes at specified distance from the case of the device for a specified time.
该测试用于验证在指定时间内在距设备外壳指定距离处进行焊接的最大引线或端子温度额定值。

Operating
经营
conditions:
条件:
A solder
焊料
pot,
containing
lead-tin
铅锡
alloy
合金
with
a nominal
名义
tin
content
内容
of
at
least
最小
50% shall be used. This apparatus shall be capable of maintaining the liquid at the temperature specified. The device leads
应使用。该设备应能够将液体保持在规定的温度。设备引线
shall
be
immersed
沉浸
for
the
specified
指定
time
时间
at
the
specified
指定
temperature
温度
and
to
the
specified
指定
distance
距离
from the case of the device. Whether the leads are to be immersed individually or simultaneously, should be
从设备的情况来看。无论是单独浸入还是同时浸入引线,都应
specified.
指定。
After
immersion,
浸入
the
unit
单位
shall
be
allowed
允许
to
cool
and
stabilize
稳定
at
room
房间
ambient
氛围
conditions
条件
before final examination and measurement are
期末检查和测量前是
made.
䍬。

Post-test measurements: All of the characteristics given in clause 4.4 that are indicated as being applicable to the device type shall be measured to establish the rating.
测试后测量:应测量第 4.4 条中给出的适用于设备类型的所有特性以确定额定值。

Post-Test Measurements
测试测量

Measurements of the characteristics given in this clause shall be made following any of the Rating Performance Tests of clause 5.2 and clause 5.3 to establish the ratings. Only those characteristics that are indicated as being applicable to the device type being tested shall be measured. The test conditions for measurement of each characteristic shall preferably be as registered.
本条款中给出的特性的测量应在第 5.2 条和第 5.3 条的任何额定性能测试之后进行,以确定额定值。仅应测量那些标明适用于被测设备类型的特性。测量每个特性的测试条件最好是注册的。

Reverse current test conditions to be specified:
待指定的反向电流测试条件:

Temperature
温度

Reverse Voltage
反向电压

Forward voltage (peak value under pulse conditions shall be used) test conditions to be specified:
正向电压(应使用脉冲条件下的峰值)要规定的测试条件:

Temperature (25 ºC ambient)
温度(25 ºC 环境温度)

Pulse width (< 1 ms)
脉冲宽度 (< 1ms)

Duty cycle (< 2%)
占空比 (<2%)

Peak forward current
峰值正向电流

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 53
第 53 页

Characteristics Tests
Characteristics 测试

Introduction
国际生产

The purpose of this clause is to set forth accepted test methods and general guidelines of techniques and instrumentation for performing rectifier diode characteristics tests. The methods chosen minimize measurement errors, thereby improving correlation probability. It is incumbent upon the user to verify correlation when deviations from these recommendations are deemed necessary.
本条款的目的是规定公认的测试方法以及执行整流二极管特性测试的技术和仪器的一般指南。所选择的方法最大限度地减少了测量误差,从而提高了相关概率。当认为有必要偏离这些建议时,用户有责任验证相关性。

The listing of tests herein does not imply that any or all of the tests are performed by the individual manufacturer. However, for registered types, the results of these tests are implied to be guaranteed within specified limits by the manufacturer. These are contained in the registration data of the particular devices as directed by the applicable formats.
此处列出的测试并不意味着任何或所有测试是由单个制造商执行的。但是,对于注册类型,这些测试的结果暗示制造商保证在规定的范围内 这些内容包含在适用格式指示的特定设备的注册数据

Table 7 — Reference Table of Electrical Characteristics, Symbols and Test Methods
表7 — 电气特性、符号和测试方法参考表

Electrical Characteristics Test
电气特性测试

Symbol
象征

Test Circuit
测试电路

Reference
参考

Peak Reverse Current
峰值反向电流

IRM

Figure 25
图25

6.6.1

DC Reverse Current
直流反向电流

IR

Figure 26
图26

6.6.2

Average Reverse Current w/o IF
平均反向电流(不含 IF

IR(AV)
R(AV)

Figure 27
图27

6.6.3.3

Average Reverse Current with IF
平均反向电流(含 I F

IR(AV)
R(AV)

Figure 28
图28

6.6.3.6

Peak Forward Voltage 60 Hz
峰值正向电压 60 Hz

VFM

Figure 29
图29

6.6.4.2

Peak Forward Voltage Pulse
峰值正向电压脉冲

VFM

Figure 30
图30

6.6.4.6

DC Forward Voltage
直流正向电压

VF

Figure 31
图 31

6.6.5

Average Forward Voltage
平均正向电压

VF(AV)
VF(AV)

Figure 29
图29

6.6.6

Reverse Breakdown Voltage (min)
反向击穿电压(最小值)

V(BR)
V(BR)

Figure 32
图32

6.6.7.2

Reverse Breakdown Voltage (max)
反向击穿电压(最大值)

V(BR)
V(BR)

Figure 34
图34

6.6.7.6

Forward Switching Characteristics
正向开关特性

tfr, VFRM, VF
tfr、VFRM、VF

Figure 35
图35

6.6.8

Reverse Recovery Characteristics (cond. A)
反向恢复特性 (cond.A)

trr
RR

Figure 37
图37

6.6.9.3.A

Reverse Recovery Characteristics (cond. B)
反向恢复特性(条件 B)

trr
RR

Figure 39
图39

6.6.9.3.B

Reverse Recovery Characteristics (cond. C)
反向恢复特性(条件 C)

trr, IRM(REC)
trr, IRM(REC)

Figure 42
图42

6.6.9.3.C

Reverse Recovery Characteristics (cond. D)
反向恢复特性(条件 D)

trrr, trrf, IRM(REC), RRSF
trrr, trrf, IRM(REC), RRSF

Figure 44
图44

6.6.9.3.D

Total Capacitance
总电容

Ct

Figure 47
图47

6.6.10

NOTEThe test circuit of Figure 29 may be used except that an average reading voltmeter replaces the peak reading instrument.
注意: 可以使用图 29 的测试电路,但平均读数电压表取代了峰值读数仪器。

Table 8 — Reference Table of Thermal Characteristics, Symbols and Test Methods
表 8 — 热特性、符号和测试方法参考表

Thermal Characteristics Tests
热特性测试

Symbols
符号

Test Circuit
测试电路

Reference
参考

Steady State Thermal Resistance (j - ref. Pt.)
稳态热阻 (j - 参考 Pt.)

RthJR
RthJR

Figures 51, 52
图51、52

6.7.5.7

Transient Thermal Impedance (Heating Pulse T.M.)
瞬态热阻抗(加热脉冲 TM)

ZthJR(t)
ZthJR(t)

Figure 55
图55

6.7.6.1

Transient Thermal Impedance (Cooling Curve T.M.)
瞬态热阻抗(冷却曲线 TM)

ZthJR(t)
ZthJR(t)

Figure 55
图55

6.7.6.2

Thermal Resistance of Bridge Rectifier Assemblies
桥式整流器组件的热阻

RthJR
RthJR

Figures 56, 57
图56、57

6.7.7

JEDEC Standard No. 282B.02 Page 54
JEDEC 标准编号 282B.02 第 54 页

Automatic Test Equipment (ATE)
自动测试设备 (ATE)

The methods of this clause have historically been the basis for standardization. Since economic considerations often dictate the use of methods compatible with ATE, the selection and programming of such automatic measuring equipment should satisfy the following principles:
该条款的方法历来是标准化的基础。由于经济考虑通常要求使用与 ATE 兼容的方法,因此此类自动测量设备的选择和编程应满足以下原则:

The pulse width and “time-to-test” window should be long enough to ensure acceptable electrical stability.
脉冲宽度和“测试时间”窗口应足够长,以确保可接受的电气稳定性。

The pulse width and time to test must not be so long as to cause device heating that would affect measurement accuracy.
脉冲宽度和测试时间不得太长,以免导致设备发热,从而影响测量精度。

The sequence of measurements shall be chosen such that the resultant pulsing has minimal effect on the accuracy of subsequent measurements.
选择测量顺序 ,使产生的脉冲后续测量的精度影响最小

NOTE 1 When measured values most closely approximating those obtained by historical methods are desired, identical current and voltage as well as similar junction temperature must be achieved. This may require estimation of the junction temperature achieved by the historical method and elevating the ambient temperature for the ATE measurement.
注 1:当需要最接近通过历史方法获得的测量值时,必须达到相同的电流和电压以及相似的结温。这可能需要估计通过历史方法实现的结温,并提高环境温度以进行 ATE 测量。

NOTE 2 The use of peak reading instrumentation is implicit.
注2:峰值读数仪器的使用是隐式的。

General Guidelines
G 通用指南

Characteristics
特性
test
测试
systems
系统
are
comprised
of
major
主要
block
functions
功能
such
这样
as
driving
驾驶
sources,
来源
the
device
装置
under test (DUT), monitoring/measuring instrumentation, thermal management fixtures and the associated
被测 (DUT)、监测/测量仪器、热管理夹具和相关设备
interconnections.
互 连。

Driving sources may be voltage or current, ac, dc, pulse or a combination thereof. Voltage sources should exhibit sufficiently low output impedance as compared to the DUT such that their net effect is negligible error contribution to the particular test. Current sources similarly exhibit sufficient high output impedance. The error contribution shall be considered negligible if its magnitude is no greater than the accuracy tolerance required of the measurement. If the effect of the relative impedances is not negligible, their effect shall be factored into the test results.
驱动源可以是电压或电流、交流、直流、脉冲或它们的组合。与 DUT 相比,电压源应表现出足够低的输出阻抗,以便其净影响对特定测试的误差贡献可以忽略不计。电流源同样表现出足够的高输出阻抗。 如果大小于测量所需的精度容差 ,则误差贡献被视为可以忽略不计 。如果相对阻抗的影响不可忽略,则应将其影响计入测试结果。

Monitoring/measuring instrumentation should exhibit impedances (e.g., voltmeters high, ammeters low) compared to the DUT such that the contribution to the error in the measurement is small compared to any other sources of error.
与 DUT 相比,监测/测量仪器应表现出阻抗(例如,电压表高,电流表低),以便与任何其他误差源相比,对测量误差的贡献很小。

Test systems utilizing both ac and dc sources or monitoring/measuring instruments shall incorporate into the interconnecting circuitry means whereby their interaction does not affect their individual characteristics.
同时使用交流直流电源监测/测量仪器的测试系统纳入互连电路装置中,使它们的相互作用不影响其各自的特性。

Isolation techniques using inductors as high ac and low dc impedances, and capacitors as high dc and low ac impedances can be effective.
使用电感器作为高交流和低直流阻抗,将电容器用作高直流和低交流阻抗的隔离技术可能是有效的。

Unless otherwise specified all characteristics measurements shall be made with the DUT under conditions of thermal equilibrium. Maximum thermal ratings shall not be exceeded during any test. If external thermal management is utilized, it shall be specified.
除非另有说明,否则所有特性测量均应在热平衡条件下使用 DUT 进行。在任何测试期间均不得超过最大热额定值。如果使用外部热管理,则应指定。

Interconnecting circuitry shall be such that “ground loops” and “crosstalk” are negligible. Shielding and filters shall be used as deemed necessary to render external electrical influences harmless. Under no circumstances shall the DUT be subjected to transients that permit the maximum ratings to be exceeded.
互连电路应使“接地环路”和“串扰”可以忽略不计。应在认为必要时使用屏蔽和滤波器,以使外部电气影响无害。在任何情况下,DUT 都不会受到允许超过最大额定值的瞬变的影响。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 55
第 55 页

Types of Electrical Tests
电气测试条件

Alternating Current or Dynamic Tests
交流电或动态测试

Alternating current (ac) tests are dynamic tests in which the diode under test is usually subjected to conditions of rated voltages, currents, and/or temperatures simulating actual usage in rectifying applications, while monitoring diode characteristics.
交流 (ac) 测试是动态测试,其中被测二极管通常承受额定电压、 电流和/或温度条件 ,模拟整流应用中的实际使用 ,同时监控二极管特性。

Alternating voltage and current sources are normally sinusoidal at 60 Hz; however, when desired, 50 Hz or other frequencies may be specified
交流电压和电流源在 60 Hz 时通常为正弦波;但是,如果需要,可以指定 50 Hz 或其他频率

Continuous Current or Static Tests
C 连续电流或静态测试

Direct current (dc) tests are sustaining tests in which the DUT is usually subjected to steady-state conditions of rated voltages, currents and/or temperatures, while monitoring device characteristics.
直流 (DC) 测试是持续测试,其中 DUT 通常处于额定电压、电流和/或温度的稳态条件下,同时监控设备特性。

The rms value of any ripple superimposed on dc power sources shall not exceed 1% of the dc value.
叠加在直流电源上的任何纹波的均方根值不得超过直流值的1%。

Pulse Tests
Pulse 测试

Pulse tests included herein are normally used for measuring isothermal, instantaneous volt/ampere characteristics of devices under test.
本文包含的脉冲测试通常用于测量被测设备的等温瞬时伏特/安培特性。

They yield the advantages of obtaining characteristics under conditions of negligible self-heating and measuring characteristics at current levels that would damage the device under test if sustained for a significant period.
它们具有在自热可忽略不计的条件下获得特性的优势,并在电流水平下测量特性,如果持续很长一段时间,这些特性会损坏被测设备。

Normally sinusoidal pulses are used to obtain the desired peak, rms and average relationships, but rectangular, triangular, trapezoidal, etc. pulses may be used when their special features are necessary.
通常,正弦脉冲用于获得所需的峰值、均方根和平均关系,但当需要矩形、三角形、梯形等脉冲时,可以使用矩形、三角形、梯形等脉冲。

Pulse tests also afford the distinct time element advantage in that many tests can be performed within short time intervals. This is primarily of interest for automation. Here, extreme care is recommended regarding data correlation between the standardized methods and other pulse techniques.
脉冲测试还具有明显的时间元素优势,因为可以在短时间间隔内执行许多测试。这主要是自动化的兴趣所在。在这里,建议对标准化方法和其他脉冲技术之间的数据相关性格外小心。

Pulses can be applied singly or repetitively, providing the duty factor is sufficiently low so as to retain negligible self-heating.
脉冲可以单独或重复施加,前提是占空比足够低,以保持可以忽略不计的自热。

The pulse width shall be short enough such that thermal equilibrium is maintained, yet long enough to ensure that the relevant measurement is taken after carrier equilibrium has been achieved.
脉冲宽度足够,以保持平衡 又足够,以确保实现载流子平衡后进行相关测量

Thermal Considerations
Thermal 注意事项

A consequence of subjecting a DUT to voltages and currents during a test is that power dissipated within the device as heat affects its characteristics. This effect can range anywhere from a slight, even negligible, change in characteristics to a catastrophic failure. In order to standardize the characteristics tests they are to be performed at specified temperatures under conditions of thermal equilibrium, thereby removing the thermal dependency. It is then necessary to implement some form of thermal management to attain these conditions.
测试期间 DUT电压电流的结果,由于热量影响其特性,器件内部的功率耗散 。这种影响的范围可以从轻微的、甚至可以忽略不计的特性变化到灾难性的故障。 为了使特性测试标准 它们将在热平衡条件下在指定温度下进行,从而消除热依赖性。然后有必要实施某种形式的热管理来达到这些条件。

JEDEC Standard No. 282B.02 Page 56
JEDEC 标准编号 282B.02 第 56 页

Thermal Equilibrium
Thermal 平衡

Thermal equilibrium, as the term implies, is a state of temperature quiescence. In the context of this discussion the temperature of the DUT junction remains unchanged for the duration of the test measurement. True thermal equilibrium is achieved only in steady-state dc measurements.
名思义,热平衡是一种温度静止状态。在本讨论中 DUT温度测试测量期间保持不变 。真正的热平衡只有在稳态直流测量中才能实现

In dc tests a condition of thermal equilibrium may be considered to have been achieved if halving the time between the application of power and the taking of the relevant reading causes no error greater than the required accuracy tolerance of measurement. For these purposes sufficiently long pulses or step functions may be considered as steady-state dc.
在直流测试中,如果将通电和获取相关读数之间的时间减半不会导致误差大于所需的测量精度公差,则可以认为已经达到了热平衡条件。出于这些目的,足够长的脉冲或阶跃函数可以被视为稳态直流。

In pulse tests a practical thermal equilibrium condition may be considered to have been achieved immediately upon application of power provided that the pulse width is sufficiently short such that doubling it causes no error greater than the accuracy tolerance required of measurement.
脉冲测试中,只要脉冲宽度足够短,因此将其加倍不会产生大于测量所需的精度容差的误差 ,则可以认为在施加功率后立即达到实际的热平衡条件

In ac tests the thermal equilibrium condition is one of an average temperature and may be considered to have been achieved if halving the time between the application of power and the taking of the relevant reading causes no error greater than the accuracy tolerance required of measurement.
交流测试平衡条件平均温度之一 如果将施加电源和获取相关读数之间的时间减半不会导致误差大于测量所需的精度公差,则可以认为已经达到了热平衡条件。

Thermal Monitoring
Thermal 监测

Generally, the means of monitoring the various device temperatures while the measurement is performed
通常,在执行测量时监测各种设备温度的方法
is thermocouples. Detailed considerations of the procedures involved can be found in clause
是热电偶。有关所涉程序的详细考虑因素可在条款中找到
6.8.

Thermal Management
Thermal 管理

One form of thermal management required is that of elevating the temperature of the DUT. The most expeditious means of accomplishing this is to place the DUT in a controlled temperature chamber having the required capability. This same chamber could also have a low temperature capability. Another method, less precise and relatively uncontrolled, would be to subject the DUT to current conduction such that self- heating produces the desired temperature.
所需的一种热管理形式是提高 DUT 的温度。实现这一目标的最快捷方法是将 DUT 放置在具有所需功能的受控温度室中。这个腔室也可以具有低温能力。另一种不太精确且相对不受控制的方法是使 DUT 进行电流传导,以便自热产生所需的温度。

In the practical realm it is more often desired to remove self-generated heat from the DUT in order to maintain a safe junction temperature. This is particularly the situation in dc tests such as breakdown voltage, where the DUT is operating at maximum power dissipation. Here it is expedient to attach the DUT to a suitable heat dissipator. Heat dissipator and DUT attachment or clamping recommendations of the manufacturer should be followed.
在实际领域,更需要从被测物中去除自产生的热量,以保持安全的结温。在直流测试中尤其如此,例如击穿电压,其中 DUT 以最大功耗运行。在这里,将 DUT 连接到合适的散热器是方便的。应遵循制造商的散热器和 DUT 连接或夹紧建议。

Instrumentation

Analog Instruments
洛格仪器

Voltage, current, and resistance measurements are easy, fast and accurate with instruments using meter movements and associated electronics. Most electronic voltmeters, ammeters and ohmmeters use rectifiers, amplifiers and other circuits to generate a current proportional to the quantity being measured, which then drives a meter movement.
使用仪表运动和相关电子设备的仪器,电压、电流和电阻测量简单、快速和准确。大多数电子电压表、电流表和欧姆表使用整流器、放大器和其他电路来产生与被测量成正比的电流,然后驱动仪表运动。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 57
第 57 页

Analog Instruments (cont’d)
模拟仪器 (续)

The dc voltmeter usually has a dc attenuator-amplifier preceding the meter movement. For most direct current measurements, the meter movement itself serves the purpose. For lower current measurements, the sensitivity is increased by measuring the small voltage drop across a low value resistance placed in series with the current being measured. Many of the circuits shown herein indicate this technique.
直流电压表通常在仪表运动之前有一个直流衰减器放大器。对于大多数直流电测量,仪表运动本身就可以达到目的。对于较低的电流测量,通过测量与被测电流串联的低值电阻上的小压降来提高灵敏度。此处显示的许多电路都表明了这种技术。

AC voltmeters fall into three broad categories: average-responding, peak-responding and rms-responding. AC voltmeters in general use are average- and peak-responding.
交流电压表分为三大类:平均响应型、峰值响应型和均方根响应型。一般使用的交流电压表具有平均响应和峰值响应。

The average-responding voltmeter is probably the most widely used measurement technique.
平均响应电压表可能是使用最广泛的测量技术。

Since the equivalent dc or energy content in the waveform usually is the quantity of interest, the average value of sinewave is taken to mean the average rectified value. The average value of one-half cycle (half- wave rectified) of a full sinewave is 0.318 times the peak value. The average of a full cycle (full wave rectified) of a full sinewave is 0.636 times the peak value. The average-responding meter is calibrated in rms volts and provides reliable indication of rms if the input is a sinewave. Its indication is affected no more than 3% by as much as 25% second harmonic content in the input waveform.
由于波形中的等效直流或能量含量通常是感兴趣的量,因此正弦波的平均值被取为平均整流值。全正弦波的半个周期(半波整流)的平均值是峰值的 0.318 倍。全正弦波的全周期(全波整流)的平均值是峰值的 0.636 倍。平均响应仪表以均方根伏为单位校准 如果输入弦波 ,则提供可靠的均方根指示 指示受到输入波形中多达 25% 的二次谐波含量的影响不超过 3%。

Peak-responding circuits allow a voltmeter to serve as a multifunction meter and enables it to be used at much higher frequencies. As long as the input waveform is a sinewave, the peak-responding meter is proportional to the rms value and is thus calibrated. However, it is more susceptible to errors caused by harmonic distortion in the input waveform than the average-responding meter.
峰值响应电路允许电压表充当多功能表,并使其能够在更高的频率下使用。只要输入波形是正弦波,峰值响应表就与均方根值成正比,因此会进行校准。然而,与平均响应仪表相比,它更容易受到输入波形谐波失真引起的误差的影响。

The maximum error will occur when the peak of a harmonic coincides with the peak of the fundamental, and is dependent only on magnitude, not the order of the harmonic. A 25% harmonic content would produce a maximum error of 25%.
当谐波的峰值与基波的峰值重合时,将出现最大误差,并且取决于幅度, 而不是谐波数。25% 谐波含量产生 25% 的最大误差

Transients could similarly be directly additive.
瞬态同样可以直接相加。

The true-rms measurement technique is most often used when a high degree of accuracy is required. Instrument indication is proportional to the rms value of the impressed waveform.
当需要高精度时,最常使用真均值测量技术。仪器指示与印加波形的均方根值成正比。

This operation is usually performed by sensing the waveform's heating power. Heating power is measured by feeding an amplified version of an input waveform to the heater of a thermocouple. The voltage output is proportional to the waveform's heating power. The true rms value is measured independently of the waveshape, provided that the peak excursions of the measured waveform not exceed the dynamic range of the instrument. Harmonic distortion is not an error-contributing factor. The primary limitation is expressed by a term, crest factor, which is defined as the ratio of peak voltage to rms voltage of a waveform with the dc component removed. A voltmeter with a high crest factor is able to read accurately the rms values of periodic signals that have waveforms significantly different from sinusoidal.
该作通常通过感应波形的加热功率来执行。加热功率是通过将输入波形的放大版本馈送到热电偶的加热器来测量的。电压输出与波形的加热功率成正比。真实均值的测量独立于波形,前提是测量波形的峰值偏移不超过仪器的动态范围。谐波失真不是误差因素。主要限制由一项因数表示,波峰因数定义去除直流分量后波形的峰值电压与均方根电压的比值。具有高波峰因数的电压表能够准确读取波形与正弦波明显不同的周期性信号的均方根值

Digital Voltmeters
Digital 电压表

Digital voltmeters offer many advantages over other types. Among the advantages are greater speed, greater accuracy and resolution, reduction of operator errors and the ability to be remotely controlled. They display measurements as discrete numerals, rather than as a pointer on a continuous scale. Their basic measuring techniques are similar to those described for analog meters.
与其他类型相比 数字电压表具有许多优势 优点包括更快的速度、 更高的准确性和分辨率、 减少操作员错误以及远程控制的能力 它们将测量值显示为离散数字,而不是连续刻度上的指针。它们的基本测量技术与模拟仪表所描述的技术相似

JEDEC Standard No. 282B.02 Page 58
JEDEC 标准编号 282B.02 第 58 页

Power Supplies
战俘用品

Regulated ac and dc outputs, both voltage and current, are available using many regulation techniques. In many circuits ac sources line-derived through transformers and autotransformers are adequate.
稳压交流和直流输出,包括电压和电流,可使用多种调节技术。在许多电路中,通过变压器和自耦变压器线路衍生的交流电源就足够了。

Pulse Generators
Pulse 发电机

In the selection of a pulse generator, the quality of the output pulse is of primary importance. High-quality test pulses ensure that degradation of the displayed pulse may be attributed to the test circuit of device alone. Rise and fall times of test pulses should be, at most, one-fifth of the rise and fall times of the device to be tested. For rectangular pulses any overshoot, ringing and droop in the test pulse should be known, so as not to be confused with similar phenomena caused by the test circuit or device.
在选择脉冲发生器时,输出脉冲的质量是最重要的。高质量的测试脉冲确保显示脉冲衰减可能于设备的测试电路 。测试脉冲的上升和下降时间最多应为待测器件上升和下降时间的五分之一 对于矩形脉冲,应了解测试脉冲中的任何过冲、振铃和下垂,以免与测试电路或设备引起的类似现象相混淆

Some characteristics tests use a half cycle of standard 60 Hz line frequency. This is simply accomplished.
一些特性测试使用标准 60 Hz 线路频率的半周期。这只是简单地完成了。

When narrower pulse widths are desired, pulse forming networks (PFN) with suitable switching arrangements can be used. The simplest PFN is a capacitor being discharged through an inductor to the DUT.
当需要更窄的脉冲宽度时,可以使用具有合适开关布置的脉冲形成网络 (PFN)。最简单的 PFN 是通过电感器向 DUT 放电的电容器。

Figure 24 illustrates a simple circuit technique for generating such a pulse. Here, a number of definitions are offered.
图24说明了产生这种脉冲的简单电路技术。这里提供了许多定义。

Critical damping resistor, 𝑅𝑐𝑟 = 2 𝐿/𝐶
临界阻尼电阻,Rcr = 2 L/C

Damping ratio, 𝑅
阻尼比, R

𝑅𝑐𝑟
Rcr

𝑅

= ( ) 𝐶/𝐿
= ( ) C/L

2

Undamped natural frequency, n =
无阻尼固有频率,n=

𝐿𝐶
LC

For the underdamped, or oscillatory case, R < Rcr and the solution is given by:
对于欠阻尼或振荡情况,R < Rcr 和解由下式给出:

𝑖 =𝑉𝑜
i= Vo

𝑒−𝜁𝜔𝑛𝑡 sin (𝜔
e−ζωnt 罪 (ω

𝑡√1 − 𝜁2
t√1 −ζ 2

𝜔𝑛
ωn

𝑛

𝐿√1 − 𝜁2
L√1 −ζ 2

The operation of the circuit is described: With switch S in position 1, capacitor C is charged to voltage VO. The moment S is placed in position 2, C discharges through resistance R (the total circuit resistance), ideal diode D and inductance L. With the circuit resistance less than the critical damping resistance, the circuit will yield a damped oscillation at the natural frequency. After the first half cycle, the diode inhibits further conduction, thereby providing a single sinusoidal pulse.
电路的工作描述如下:当开关 S 处于位置 1 时,电容器 C 充电至电压 VOS 处于位置 2 时,C 通过电阻 R(总电路电阻)、理想二极管 D 和电感 L 放电。当电路电阻小于临界阻尼电阻时,电路将在固有频率下产生阻尼振荡。在前半个周期之后,二极管抑制进一步的传导,从而提供单个正弦脉冲。

Let R be equal to or less than one-fifth Rcr, and tp be equal to
令 R 等于或小于五分之一的 R cr,tp 等于

𝜋 .

𝜔𝑛
ωn

Then:𝐿𝐶 = 𝑡 2/𝜋2, andimax = 𝐾𝑉 /𝜔 𝐿
然后:LC = t22andimax= KV L

𝑛𝑜𝑛

where:𝐾 = 𝑒−𝜁𝜔𝑛𝑡
其中: K = e−ζωnt

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 59
第 59 页

Pulse Generators (cont’d)
脉冲发生器 (续)

The constant K, evaluated when = 0.2 and nt = /2, is approximately 0.73. Similarly, when = 0.5, K is approximately 0.45.
= 0.2 且 nt = /2 时计算的常数 K 约为 0.73。类似地,当 = 0.5 时,K 约为 0.45。

In practice it is advisable to make the numerical value of C large compared to that of L. This minimizes the demand for higher voltage supplies to attain the desired current amplitude.iFigure 24 — Pulse Generator Circuit and Waveform
在实践中,建议使 C 的数值与 L 的数值相比较大。这最大限度地减少了对更高电压电源的需求,以达到所需的电流幅度。 图 24 — 脉冲发生器电路和波形

Oscilloscopes
O 螺旋镜

An oscilloscope is a universal measuring instrument capable of measuring a very wide variety of rapidly changing electrical phenomena, even if the phenomenon occurs only once and lasts only a fraction of a millionth of a second.
示波器是一种通用测量仪器,能够测量各种快速变化的电气现象,即使这种现象只发生一次并且只持续百万分之一秒。

Its display is in the form of a visual presentation on the face of a cathode ray tube, with vertical and horizontal deflection representing the ordinate (Y) and abscissa (X), respectively, of a rectangular coordinate display.
显示形式阴极射线表面视觉呈现 垂直水平偏转分别代表直角坐标显示的纵坐标(Y)和横坐标(X)。

Generally, oscilloscopes have built-in sawtooth sweep generators for producing constant-speed horizontal beam deflection. In most cases sweeps are calibrated in terms of a direct unit of time for a given distance of spot travel across the screen. Special oscilloscopes permit deflections to be adapted to a variety of electrical and physical variables.
通常,示波器具有内置锯齿扫描发生器,用于产生恒速水平光束偏转。大多数情况下 扫描根据给定光斑穿过屏幕距离直接时间单位进行校准的。 特殊的示波器允许适应各种电气和物理变量。

The first characteristic generally sought in an oscilloscope is adequately short rise time (tr) for observing fast rising pulses, or sufficient bandwidth (BW) for high frequency sinewaves. When selecting an oscilloscope, the suggested requirements for its bandwidth can be estimated using the following rule of thumb:
示波器通常 寻求 第一个特性 用于观察的足够短的上升时间 (tr 快速上升的脉冲,或高频正弦波的足够带宽 (BW)。选择示波器时,可以使用以下经验法则来估计其带宽的建议要求

Bandwidth (minimal) = 5
带宽(最小值)= 5

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝐹𝑎𝑐𝑡𝑜𝑟
带宽系数

𝐹𝑎𝑠𝑡𝑒𝑠𝑡 𝑅𝑖𝑠𝑒 𝑇𝑖𝑚𝑒
最快上升时间

JEDEC Standard No. 282B.02 Page 60
JEDEC 标准编号 282B.02 第 60 页

Oscilloscopes (cont’d)
示波器 (续)

For sinewaves, the Bandwidth Factor is approximately 0.35. ThenBandwidth = 1.75 / tr
对于正弦波, 带宽系数约为 0.35。 带宽 = 1.75 / tr

When observing pulses on an oscilloscope whose rise time is one-fifth or less of the rise time of the device
在示波器上观察上升时间为设备上升时间的五分之一或更少的脉冲时

to be observed, the error will be 2% or less.
要观察,误差将为 2% 或更小。

The actual rise time of the DUT can be expressed as:
DUT 的实际上升时间可以表示为:

𝑡𝑟(𝐷𝑈𝑇) = 𝑡2
trDUT= t2

2

𝑟(𝑠𝑐𝑜𝑝𝑒)
r 作用域

where: tr(DUT) = rise time of DUT
式中:tr(DUT) = DUT 的上升时间

tr(obs) = rise time of observed (displayed) pulse
tr(obs)= 观测(显示)脉冲的上升时间

tr(scope) = rise time of the oscilloscope
tr(范围)= 示波器的上升时间

Digital oscilloscopes shall have sample times at least 30/t
数字示波器的采样时间应至少为 30/t
X samples/sec where t
样本/秒,其中 t
X is the time interval to be
是要成为的时间间隔
measured. A rated resolution of 0.4% of full-scale deviation (2
量过的。额定分辨率为满量程偏差的 0.4% (2
-8 full-scale deviation) or better is recommended for routine tests. For referee test which require comparison of records, a rated resolution of 0.2% of full-scale deviation (2
满量程偏差)或更好,建议用于常规测试。对于需要比较记录的裁判测试,额定分辨率为满量程偏差的 0.2% (2
-9 full-scale deviation) or better shall be used.
应使用满量程偏差)或更好的偏差。

Temperature Measuring instruments
温度测量仪器

Temperature measuring instruments are many and varied. Table 9 lists the more significant ones. Temperatures measured range from close to absolute zero to in excess of 5000 ºC, with traceability to the National Institute of Science and Technology (NIST).
温度测量仪器种类繁多。表 9 列出了更重要的。测量的温度范围从接近绝对零度到超过 5000 ºC,可追溯到美国国立科学技术研究院 (NIST)。

Thermocouples are by far the most widely used temperature measuring device. Their advantages include low cost, expendability, small size, wide range, ruggedness, use with long transmission distances, fast response and good long-term reproducibility. Their disadvantages include susceptibility to electrical noise, need to avoid temperature gradients, small signal output, need to reference to a known temperature and poor linearity. Modern instruments include electronic ally compensated thermocouples with digital readouts.
热电偶是迄今为止使用最广泛的温度测量设备。其优点包括成本低、消耗性强、体积小、范围广、坚固耐用、传输距离长、响应快和长期可重复性好。它们的缺点包括对电噪声敏感、需要避免温度梯度、 信号输出 需要参考已知温度线性度差。 现代仪器包括带有数字读数电子同向补热电偶

The more commonly used thermocouples include ANSI symbol types T, K, J and R. The type T, copper/constantan thermocouple is used effectively from -269 ºC to about 500 ºC, is excellent for the lower temperatures and resists moisture corrosion. The type K, chromel/alumel, is used from -269 ºC to about 1300 ºC, is most nearly linear, and is good for clean oxidizing atmospheres. The type J, iron/constantan, is used from 0 ºC to 750 ºC. The type R, 87% platinum, 13% rhodium, is good in the 0 ºC to about 1650 ºC range, is highly resistant to oxidation and corrosion, and is usually physically small for fast response.
更常用的热电偶包括 ANSI 符号类型 T、K、J 和 R。T 型铜/康铜热电偶可在 -269 ºC 至约 500 ºC 范围内有效使用,非常适合较低温度并抵抗湿气腐蚀。K 型铬/铝醛的使用温度范围为 -269 ºC 至约 1300 ºC,最接近线性,适用于清洁的氧化气氛。J 型铁/康铜的使用温度范围为 0 ºC 至 750 ºC。R 型,87% 铂,13% 铑,在 0 ºC 至约 1650 ºC 范围内表现良好,具有很强的抗氧化和耐腐蚀性,并且通常物理较小,可快速响应。

For further information concerning temperature measuring instruments, refer to clause 7.8.
有关温度测量仪器的更多信息,请参阅第 7.8 条。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 61
第 61 页

6.5.6Temperature Measuring Instruments (cont’d)
6.5.6 温度测量仪器 (续)

Table 9 — Temperature Measuring Instruments
表 9 — 温度测量仪器

Name
名字

Physical Quantity
物理量

Form
形式

Associated Instruments
相关仪器

Range
范围

Resolution
分辨率

Thermistor
热敏电阻

Electrical resistance
电阻

Semiconductor metal oxide chip or bead with two leads
带两根引线的半导体金属氧化物芯片或磁珠

Wheatstone Bridge

-269 ºC to
-269 ºC 是

200 ºC

0.01 ºC selected units
0.01 ºC 选定单位

Quartz Thermometer
石英温度计

Frequency of mechanical oscillations
机械振荡频率

Quartz crystal with “Y” cut
“Y”形切割石英水晶

Oscillator and frequency counter
振荡器和频率计数器

-262 ºC to
-262 ºC 是

250 ºC

0.001 ºC

Resistance Thermometer
电阻温度计

Electrical resistance
电阻

Platinum wire
铂线

Potentiometers or ac and dc bridges
电位器或交流和直流电桥

(Mueller, Smith, Kelvin)
(穆勒、史密斯、开尔文)

-259 ºC to
-259 ºC 是

1064 ºC

0.00001 ºC in
0.00001 ºC 英寸

lab standards.
实验室标准。

0.1ºC

typically in
通常在

industrial
工业

instruments
仪器

Thermocouple
热电偶

Thermal
烫的

Two dissimilar metal or
两种不同的金属或

Potentiometers,
电位器

-253 ºC to
-253 ºC 是

0.01 ºC in lab
实验室 0.01 ºC

alloy wires joined at one
合金线连接在一起

recorders or
recorders 或

2400 ºC
2400 摄氏度

standards. 0.5 ºC
标准。0.5 ºC

end for temperature under
温度低于

millivoltmeters
毫伏表

typically in
通常在

measurement, the other
测量,其他

industrial
工业

end used for referencing
用于引用的末端

instruments
仪器

and measuring
和测量

Liquid-in-Glass Thermometer
玻璃液体温度计

Thermal expansion
热膨胀

Glass bulb filled with mercury, toluene, ethyl alcohol or xylol
装有汞、甲苯、乙醇或二甲醇的玻璃灯泡

Graduated capillary as an integral part of the instrument
刻度毛细管作为仪器的组成部分

-148 ºC to
-148 ºC 是

600 ºC

0.01 ºC (narrow ranges)
0.01 ºC(窄范围)

Total Radiation Pyrometer
总辐射高温计

Total radiance
总光泽

Total radiance detector (thermopile)
总辐射检测器(热电堆)

Optical systems with potentiometer
带电位器的光学系统

0 ºC to
0 ºC 至

5000 ºC

and up
及以上

Several ºC
几°C

Automatic
自动

Special
特殊

Photoelectric detector
光电探测器

Calibrated filament lamp,
校准白炽灯,

750 ºC to
750 ºC 是

0.03 ºC in lab
实验室中 0.03 ºC

Monochromatic
单色的

concentration
浓度

(photo-multiplier or
(光电倍增器或

telescope, interference
望远镜, 干扰

5000 ºC

standards.
标准。

Optical
光学的

of radiance (ratios)
辐射度(比率)

photodiode)
光电二极管)

filter, electronic serve
过滤器,电子服务

and up
及以上

0.25 ºC in
0.25 ºC 英寸

Pyrometer
高温计

system, red filter,
系统、红色滤光片、

industrial
工业

potentiometer or
电位器或

instruments
仪器

recorded
记录

Manual
手动

Spectral
光谱的

Human eye (vision
人眼(视觉

Calibrated filament lamp,
校准白炽灯,

750 ºC to
750 ºC 是

1.5 ºC
1.5 摄氏度

Monochromatic
单色的

concentration of
浓度

observation)
观察)

telescope, red filter,
望远镜、红色滤光片、

5000 ºC

Optical
光学的

luminance (ratios)
亮度(比率)

potentiometer or
电位器或

and up
及以上

Pyrometer
高温计

millivoltmeter
毫伏表

JEDEC Standard No. 282B.02 Page 62
JEDEC 标准编号 282B.02 第 62 页

Electrical Characteristics Tests
电子特性测试

In this clause the general test method is described first, followed by the modifications necessary to comply with registration specifications. In some cases a separate test circuit is required.
在本条款中,首先描述了一般测试方法,然后是符合注册规范所需的修改。在某些情况下,需要单独的测试电路。

Peak Reverse Current, IRM
峰值反向电流,IRM

Terms and Definitions
Terms 和定义

peak reverse current: the maximum instantaneous value of reverse current that results under specified conditions of temperature and reverse voltage.
峰值反向电流: 在规定的温度和反向电压条件下产生的反向电流的最大瞬时值。

repetitive peak reverse current, IRRM: the same current as defined above, only under a repetitive reverse voltage.
重复峰值反向电流,IRRM上述定义相同的电流,仅在重复反向电压下

registered repetitive peak reverse current, IRRM: the maximum instantaneous value of reverse current that results under the condition of the registered values of the maximum operating temperature (at which point the output current is derated to zero) and the working peak reverse voltage.
注册重复峰值反向电流,IRRM 在最高工作温度(此时输出电流降额为零)和工作峰值反向电压的注册值条件下产生的反向电流的最大瞬时值

Procedure
进行

A half
cycle
周期
of
60 Hz
赫兹
sinusoidal
正弦
reverse
反向
voltage
电压
is
applied
应用的
to
the
DUT
and
the
resulting
导致
peak
reverse
反向
current is
电流是
measured.
量过的。

The measurement shall be performed under conditions of thermal equilibrium. Thermal management may be necessary.
测量应在热平衡条件下进行。热管理可能是必要的。

Pulses other than that specified may be used. However, direct correlation must exist to this Standard.
可以使用指定以外的脉冲。但是,必须与本标准存在直接相关

Test Circuit
T电路

The test circuit is shown in Figure 25.
测试电路如图25所示。

The peak value of the applied waveform is read on the peak reading voltmeter, VP1, or oscilloscope. The peak value of the resulting current is measured by a peak reading ammeter, or more practically the peak current is calculated from the values of the peak voltage as measured by VP2, and the current viewing resistor R2
在峰值读数电压表、VP1 或示波器上读取施加波形的峰值。 由此产生的电流的峰值由峰值读数电流表测量,或者更实际地说,峰值电流根据以 V 测量的 峰值电压 计算 P2 和电流查看电阻器 R2
.

Resistor R1 is a current-limiting resistor. Diode D1 passes the applied reverse voltage, while diode D2 bypasses the normally forward voltage around the DUT. Negligible forward current flows through the DUT, thereby producing negligible power dissipation.
电阻器 R1 是一个限流电阻器。二极管 D1 通过施加的反向电压,而二极管 D2 绕过 DUT 周围 的常正向电压 流过 DUT 正向电流 可以忽略不计 ,从而产生的功耗可以忽略不计

Test Conditions to be Specified
具体条件

Case temperature, TC, or Lead temperature, TL= ºC
外壳温度,TC 引线温度,TL = ºC

Peak ac reverse voltage, VRM= V
峰值交流反向电压,VRM = V

Thermal resistance of minimum heat dissipator= ºC/W upon which the DUT is to be mounted, RthSA
最小散热器的热阻 = 安装 DUT 的 ºC/W,R thSA
.

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 63
第 63 页

Characteristic to be Measured
C测量的恶性

Peak reverse current, IRM= mA or
峰值反向电流,IRM = mA

Repetitive peak reverse current, IRRM= mA
重复峰值反向电流,IRRM = mA

R1D1
1 D1

Figure 25 — Peak Reverse Current Test Circuit
图25 — 峰值反向电流测试电路

DC Reverse Current, IR
DC 反向电流,IR

Terms and Definitions
Terms 和定义

DC reverse current: the value of current flowing in the reverse direction under specified conditions of temperature and reverse voltage.
直流反向电流: 在规定的温度和反向电压条件下逆向流动的电流值。

registered dc reverse current: the value of current flowing in the reverse direction under conditions of the registered values of maximum dc reverse voltage and maximum operating temperature.
注册直流反向电流: 在最大直流反向电压和最大工作温度的注册值条件下,沿反向流动的电流值。

Procedure
进行

A dc reverse voltage is applied to the DUT, and the resultant dc current is measured.
向 DUT 施加直流反向电压,并测量产生的直流电流。

The measurement shall be performed under conditions of thermal equilibrium. Thermal management will probably be necessary.
测量应在热平衡条件下进行。热管理可能是必要的。

Test Circuit
T电路

The test circuit is shown in Figure 26.
测试电路如图 26 所示。

R is a current-limiting resistor. The applied voltage and resulting current are read on dc voltmeter, V, and dc milliammeter, I, respectively.
R 是限流电阻。施加的电压和产生的电流分别在直流电压表 V 和直流毫安表 I 上读取。

JEDEC Standard No. 282B.02 Page 64
JEDEC 标准编号 282B.02 第 64 页

Test Conditions to be Specified
具体条件

Case temperature, TC, or Lead temperature, TL= ºC
外壳温度,TC引线温度,TL = ºC

DC reverse voltage, VR= V
直流反向电压,VR = V

Thermal resistance of minimum heat dissipator
最小散热器的热阻

upon which the DUT is to be mounted, RthSA= ºC/W
安装 DUT R,R thSA = ºC/W

Characteristic to be Measured
C测量的恶性

a. DC reverse current, IR= mA
一个。 直流反向电流,IR = mA

Figure 26 — DC Reverse Current Test Circuit
图 26 — 直流反向电流测试电路

Average Reverse Current, I
verage 反向电流,I
R(AV)

Terms and Definitions
Terms 和定义

average reverse current: the value of the reverse periodic current averaged over a full-cycle under specified conditions of temperature and reverse voltage. A condition of forward current may be included.
平均反向电流: 在指定的温度和反向电压条件下, 一个完整周期平均的反向周期电流的值 。可以包括正向电流的条件

registered average reverse current: the value of the reverse periodic current averaged over a full-cycle, with the DUT operating under the conditions of registered values of maximum operating temperature with no derating, working peak reverse voltage, and maximum average forward current.
寄存平均反向电流: 在整个周期内平均的反向周期电流值,DUT 在最高工作温度(无降额)、工作峰值反向电压和最大平均正向电流的寄存值条件下运行。

Procedure (Without Forward Current)
Procedure(无正向电流)

A half-cycle 60 Hz ac voltage is applied repetitively to the DUT in the reverse direction and the resulting full- cycle average reverse current flowing through the device is measured with an averaging ammeter, I.
周期 60Hz 交流电压相反方向重复施加DUT使用平均电流表 I 测量流过器件的全周期平均反向电流

A rectifying component, D, of known average reverse current is used to block the applied ac voltage when it otherwise would be applied in the forward direction across the DUT. This component should have an average reverse current that is low compared to that of the DUT, since its reverse current subtracts directly from the reverse current indicated on the ammeter. The full-cycle average current of D should be added to the indicated ammeter reading for a true measurement of the average reverse current of the DUT.
已知平均反向电流的整流元件 D 用于阻断施加的交流电压,否则该电压会在 DUT 上沿正向施加。与 DUT 相比,该组件的平均反向电流应较低,因为它的反向电流直接从电流表上指示的反向电流中减去。应将 D 的全周期平均电流添加到指示的电流表读数中,以真实测量 DUT 的平均反向电流。

Reverse current is quite temperature sensitive. If testing is performed at elevated temperature, thermal management may be necessary to prevent thermal runaway.
反向电流对温度非常敏感。如果在高温下进行测试,则可能需要进行热管理以防止热失控。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 65
第 65 页

Test Circuit (Without Forward Current)
Test 电路(无正向电流)

The test circuit is shown in Figure 27.
测试电路如图27所示。

The peak value of the applied half-sine 60 Hz waveform is read on the peak reading voltmeter, VP, or an oscilloscope. Ammeter, I, measures the full-cycle average reverse current. The voltage drop across I shall not exceed 1% of the reverse voltage across the DUT.
在峰值读数电压表、VP 或示波器上读取施加的半正弦 60 Hz 波形的峰值 。电流表 I 测量全周期平均反向电流。I 两端的压降不得超过待测物两端反向电压的 1%。

R is a current-limiting resistor.
R 是限流电阻。

Figure 27 — Average Reverse Current Test Circuit, Without Forward Current
图27 — 平均反向电流测试电路,无正向电流

Test Conditions to be
est 条件
Specified
指定

Case temperature, TC, or Lead temperature, TL= ºC
外壳温度,TC引线温度,TL = ºC

Peak ac reverse voltage, VRM= V
峰值交流反向电压,VRM = V

Maximum thermal resistance of heat dissipator
散热的最大热阻

upon which the DUT is to be mounted, RthSA= ºC/W
安装 DUT R,R thSA = ºC/W

Characteristic to be Measured
C测量的恶性

a.Average reverse current, IR(AV)= mA
a. 平均反向电流,IR(AV) = mA

Procedure (With Forward Current)
Procedure(带正向电流)

A half-cycle 60 Hz sinusoidal current is applied repetitively to the DUT in the forward direction. During the alternate half cycles a half-wave 60 Hz ac voltage is applied to the DUT in the reverse direction. During the forward conducting half cycle, the full-cycle average forward current is measured with an averaging ammeter. During the reverse blocking half cycle, the full-cycle average reverse current is measured with an averaging ammeter and the peak reverse voltage is measured with a peak-reading voltmeter or an oscilloscope.
半周期 60Hz 正弦电流沿正向方向重复施加DUT。在交替周期期间 半波 60Hz 交流电压相反方向施加DUT正向导通半周期内,用平均电流表测量全周期平均正向电流。在反向阻断半周期内,用平均电流表测量全周期平均反向电流,用峰值读数电压表或示波器测量峰值反向电压。

The measurement shall be performed under conditions of thermal equilibrium. Thermal management is generally necessary.
测量应在热平衡条件下进行。热管理通常是必要的。

JEDEC Standard No. 282B.02 Page 66
JEDEC 标准编号 282B.02 第 66 页

Test Circuit (With Forward Current)
Test 电路(带正向电流)

The test circuit is shown in Figure 28.
测试电路如图28所示。

The synchronous switch alternately applies forward current for one half cycle and reverse voltage for the other half cycle. The ammeter, IR(AV), measures the full cycle average reverse current. Voltmeter or oscilloscope, VP, measures the peak reverse voltage across the DUT. The leakage current of the synchronous switch shall be negligible compared to the current through the DUT, during the application of the reverse voltage. R is a current limiting resistor, required if a voltage source is used. The drop across R should be at least 5 times the observed forward voltage of the DUT.
同步开关交替施加一个半周期的正向电流和另一个半周期的反向电压 。电流表 IR(AV) 测量全周期平均反向电流。电压表或示波器,VP 测量 DUT 上的峰值反向电压。在施加反向电压时,同步开关的漏电流与通过 DUT 的电流相比应可以忽略不计。R 是限流电阻器,如果使用电压源,则需要。R 两端的压降应至少为观测到的 DUT 正向电压的 5 倍。

Test Conditions to be Specified
具体条件

Case temperature, TC, or Lead temperature, TL= ºC
外壳温度,TC引线温度,TL = ºC

Peak ac reverse voltage, VRM= V
峰值交流反向电压,VRM = V

Average dc forward current, IF(AV)= A
平均直流正向电流,IF(AV) = A

Maximum thermal resistance of heat dissipator
散热的最大热阻

upon which the DUT is to be mounted, RthSA= ºC/W
安装 DUT R,R thSA = ºC/W

NOTE When testing for registered IR(AV);
注意:测试注册的 IR(AV) 时;

TC or TL= T3
TC TL = T3

VRM= Rated VRWM and
VRM = 额定 VRWM

IF(AV)= Rated IF(AV) or IO
F(AV) = 额定 I、F(AV)O

Characteristic to be Measured
C测量的恶性

a.Average reverse current, IR(AV)= mA
a. 平均反向电流,IR(AV) = mA

Figure 28 — Average Reverse Current Test Circuit With Forward Current
图 28 — 正向电流的平均反向电流测试电路

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 67
第 67 页

Peak Forward Voltage, VFM
峰值正向电压,VFM

Terms and Definitions
Terms 和定义

peak forward voltage: the value of maximum instantaneous forward voltage measured under specified conditions of temperature and forward current.
峰值正向电压: 在温度和正向电流的规定条件下测得的最大瞬时正向电压值。

registered peak forward voltage: the value of maximum instantaneous forward voltage measured with the DUT operating under conditions of (a) the peak value of the registered maximum average forward current, and the registered maximum operating temperature with no derating; or (b) a specified current pulse with peak value equal to pi times the registered maximum average forward current, and temperature of 25 ºC.
寄存峰值正向电压: 在以下条件下测得的最大瞬时正向电压(a)寄存最大平均正向电流的峰值,以及未降额的寄存最高工作温度;或(b)峰值等于 Pi 乘以寄存最大平均正向的指定电流脉冲电流和温度为 25ºC。

60 Hz Procedure
60 Hz 程序

A half-cycle 60 Hz sinusoidal waveform of forward current is applied to the DUT, and the resulting peak forward voltage is measured.
将半周期 60 Hz 正弦波形的正向电流施加到 DUT,并测量由此产生的峰值正向电压。

The measurement shall be performed under conditions of thermal equilibrium. Thermal management may be necessary.
测量应在热平衡条件下进行。热管理可能是必要的。

60 Hz Test Circuit
60 Hz 测试电路

The test circuit is shown in Figure 29.
测试电路如图29所示。

Diode D1 passed the applied forward current waveform to the DUT, while diode D2 by-passes the normally opposite half cycle current around the DUT.
二极管 D1施加的正向电流波形传递到 DUT,而二极管 D2DUT 周围通常相反的半周期电流。

The current supply can be implemented with a voltage supply and a series resistance. The supply voltage should be of sufficient compliance to ensure a test current conduction angle of not less than 175º. The forward voltage is read on the peak reading voltmeter, Vp, or an oscilloscope. The voltmeter connections are made at specified points on the DUT and always within the ammeter connections.
电流供应可以通过电压电源和串联电阻来实现。电源电压应足够符合要求,以保证测试电流传导角不小于 175º。 正向电压在峰值读数电压表、Vp 或示波器上读取。电压表连接在 DUT 上的指定点进行,并且始终在电流表连接内。

Figure 29 — 60 Hz Peak Forward Voltage Test Circuit
图 29 — 60 Hz 峰值正向电压测试电路

JEDEC Standard No. 282B.02 Page 68
JEDEC 标准编号 282B.02 第 68 页

Test Conditions to be Specified
具体条件

Case temperature, TC, or Lead temperature, TL= ºC
外壳温度,TC引线温度,TL = ºC

Average forward current, IF(AV)= A
平均正向电流,IF(AV) = A

Thermal resistance of heat dissipator, RthSA= ºC/W
器的热阻,RthSA = ºC/W

Characteristic to be Measured
C测量的恶性

a.Peak forward voltage, VFM= mA
a. 峰值正向电压,VFM = mA

Pulse Test Procedure
Pulse 测试程序

A forward pulse of specified duration and peak current is applied to the DUT, and the resulting peak forward voltage is measured.
指定持续时间峰值电流正向脉冲施加被测物上,测量产生的峰值正向电压

When this pulse test is used to measure registered peak forward voltage the current pulse amplitude must equal pi times the registered maximum average forward current, the pulse width shall be equal to or less than one millisecond, and the duty cycle shall be equal to or less than 2%. The temperature of the DUT shall be 25 ºC.
该脉冲测试用于测量注册峰值正向电压时,电流脉冲幅度必须等于 pi 乘以注册的最大平均正向电流,脉冲宽度应等于或小于一毫秒, 占空2%。DUT温度应为 25 ºC。

The measurement shall be performed under conditions of thermal equilibrium. Thermal management is generally unnecessary.
测量应在热平衡条件下进行。通常不需要热管理。

Pulse Test Circuit
ulse 测试电路

The test circuit is shown in Figure 30. A pulse of forward current with specified amplitude, pulse width and duty cycle is applied to the DUT. The peak value of the applied waveform is calculated from the values of R2 and the peak voltage as read on VP2. The resultant peak forward voltage is measured by the peak reading voltmeter, VP1. Either voltmeter may be an oscilloscope. The voltmeter connections are made directly to the DUT, using procedures to minimize inductive pickup.
测试电路 30 所示 具有指定幅度、 脉冲宽度和占空比正向电流施加到 DUT。施加波形的峰值是根据 R2 的值和在 V P2 上读取的峰值电压计算得出的。由此产生的峰值正向电压由峰值读数电压表 VP1 或电压表 可能的鼻滑镜测量。电压表连接直接连接到 DUT,使用程序最大限度地减少感应拾取。

Figure 30 — Peak Forward Voltage Pulse Test Circuit
图30 — 峰值正向电压脉冲测试电路

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 69
第 69 页

Pulse Test Circuit (cont’d)
脉冲测试电路 (续)

Figure 31 details the implementation of a practicable pulse current supply. The thyristor switch, SCR, is normally in its off-state (high impedance). The dc voltage supply charges capacitor C, through R1 and D1. After the SCR is triggered (low impedance), C discharges through inductor L, the DUT and resistor R2, producing a current wave at the peak value of which the forward voltage is measured. A sinusoidal pulse of current will result, providing R1 is sufficiently large so as not to contribute significant current during the discharge of C, and the circuit values meet the prescribed criteria (clause 6.5.4).
图 31 详细介绍了可行的脉冲电流电源的实现。晶应管开关 SCR 通常处于关闭状态(高阻抗)。直流电压电源通过 R1 和 D1 为电容器 C 充电 。SCR 触发后(低阻抗),C 通过电感器 L、DUT 和电阻器 R2 放电 峰值 产生 电流 峰值 为正 电压测量。 如果 R 1 足够大,以便在 C 放电期间不会产生大量电流 ,并且电路值符合规定的标准,则将产生正弦电流脉冲 (第 6.5.4 )。

A diode bypasses the reverse current around the DUT, while the SCR, after reverse recovery, inhibits current oscillation from continuing past the first zero current point after current initiation.
二极管被测物周围反向电流 SCR反向恢复,抑制电流振荡在电流启动后继续超过第一个零电流点

Figure 31 — Detailed Peak Forward Voltage Pulse Test Circuit
图31 — 详细的峰值正向电压脉冲测试电路

Test Conditions to be Specified
具体条件

Case temperature, TC, or Lead temperature, TL= ºC
外壳温度,TC引线温度,TL = ºC

Peak forward current, IFM= A
峰值正向电流,IFM = A

Forward curret pulse width, tp= µs
正向卡式脉宽度,tp = μs

Duty factor= %
占空比 =%

Location of voltage meaasuring probes
电压测量探头的位置

Characteristic to be Measured
C测量的恶性

a. Peak forward voltage, VFM= V
一个。 峰值正向电压,VFM = V

JEDEC Standard No. 282B.02 Page 70
JEDEC 标准编号 282B.02 第 70 页

DC Forward Voltage, VF
DC 正向电压,VF

Terms and Definitions
Terms 和定义

DC forward voltage: the value of forward voltage measured under specified conditions of temperature and dc forward current.
直流正向电压:温度和直流正向电流的规定条件下测得的正向电压值。

Procedure
进行

A dc forward current is applied to the DUT and the resulting dc voltage is measured. The measurement is performed under conditions of thermal equilibrium; thermal management is usually necessary, therefore the test is seldom used.
直流正向电流施加到待测物,并测量产生的直流电压。测量是在平衡条件下进行的; 通常需要进行热管理 因此很少使用该测试

Registered dc voltage is the maximum forward voltage measured with the DUT operating under registered values of continuous forward current and case temperature.
寄存直流电压是在 DUT 在连续正向电流和外壳温度的寄存值下测量的最大正向电压。

Test Circuit
T电路

The circuit of Figure 30 may be used except the supply is then a dc source and the meters are dc instruments.
可以使用图 30 的电路,但电源是直流电源,仪表是直流仪器。

Test Conditions to be Specified
具体条件

Case temperature, TC, or Lead temperature, TL= ºC
外壳温度,TC引线温度,TL = ºC

DC forward
直流前向
current,
当前
I
F= A

Average Forward Voltage, VF(AV)
平均正向电压,VF(AV)

Terms and definitions
Terms 和定义

average forward voltage: the value of forward voltage averaged over one complete cycle under specified conditions of temperature and forward current.
平均正向电压: 在指定的温度和正向电流条件下,一个完整周期内的平均正向电压值。

Registered average forward voltage is measured under conditions of rated current at registered temperature.
在寄存温度下额定电流条件下测量的寄存平均正向电压。

This specification is no longer a registration requirement. This test method is included for reference purposes only.
规范不再注册要求。测试方法参考

Procedure
进行

A half cycle of 60 Hz sinusoidal forward current is applied to the DUT and the resulting average forward voltage measured.
将半周期的 60 Hz 正弦正向电流施加到 DUT,并测量由此产生的平均正向电压。

The measurement is performed under conditions of thermal equilibrium. Thermal management is usually required.
测量是在热平衡条件下进行的。通常需要热管理。

Test circuit
T电路

The test circuit of Figure 29 may be used except that an average reading voltmeter replaces the peak reading instrument.
可以使用29测试电路 平均读数电压表代替峰值读数仪器除外。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 71
第 71 页

Test conditions to be specified
具体条件待

Case temperature, TC, or Lead temperature, TL= ºC
外壳温度,TC引线温度,TL = ºC

Average forward current, IF(AV)= A
平均正向电流,IF(AV) = A

Thermal resistance of heat dissipator, RthSA= ºC/W
器的热阻,RthSA = ºC/W

Characteristic to be Measured
C测量的恶性

a.Average forward voltage, VF(AV)= V
a. 平均正向电压,VF(AV) = V

Reverse Breakdown Voltage
Reverse 击穿电压

These characteristics are applicable only to controlled avalanche rectifiers and transient voltage suppressor diodes.
这些特性仅适用于受控雪崩整流器和瞬态电压抑制二极管。

Terms and Definitions
Terms 和定义

minimum reverse breakdown voltage: the value of voltage measured in the reverse volt-ampere region of low incremental resistance under specified conditions of temperature and low reverse current.
最小反向击穿电压: 在规定的温度和低反向电流条件下,在低增量电阻的反向伏安区域测量的电压值。

maximum reverse breakdown voltage:
最大反向击穿电压:
the value of maximum instantaneous voltage measured in the reverse
反向测量的最大瞬时电压值
volt-ampere
伏安
region
地区
of
low
incremental
增量
resistance
电阻
under
conditions
条件
of
a specified
指定
peak
reverse
反向
current and operating temperature. The product of the maximum breakdown voltage times the peak reverse current must be equal to the registered non-repetitive reverse power dissipation rating in the breakdown
电流和工作温度。最大击穿电压乘以峰值反向电流的乘积必须等于击穿中记录的非重复反向功耗额定值
region.
地区。

Method for Minimum Reverse Breakdown Voltage
满足最小反向击穿电压

The voltage applied to the DUT sufficient to result in a specified reverse current is measured. The specified current must be in the region of low incremental resistance immediately past the region of high incremental resistance.
测量施加到被测物的电压足以产生指定的反向电流。 指定的电流必须位于紧邻增量电阻区域之后增量电阻区域

The measurement shall be performed under conditions of thermal equilibrium. Thermal management may be necessary.
测量应在热平衡条件下进行。热管理可能是必要的。

Test Circuit
T电路

The minimum reverse breakdown voltage can be determined by using a dc or an ac signal source. The test circuit is shown in Figure 32.
最小反向击穿电压可以通过使用直流或交流信号源来确定。测试电路如图32所示。

Figure 32 — Minimum Reverse Breakdown Voltage Test Circuit
图32 — 最小反向击穿电压测试电路

JEDEC Standard No. 282B.02 Page 72
JEDEC 标准编号 282B.02 第 72 页

Test Circuit (cont’d)
测试电路 (续)

The variable amplitude signal source may be a current or voltage source; dc, rectified ac, or pulse. In any case its current magnitude shall be limited to the specified current.
可变幅度信号源可以是电流源或电压源;直流、整流交流或脉冲。在任何情况下,其电流大小应限制在规定的电流范围内。

If a dc source is used, a dc voltmeter and ammeter shall be used to measure the voltage directly across the DUT, and the current through the DUT.
如果使用直流电源,则应使用直流电压表和电流表测量直接 DUT 两端的电压,以及通过 DUT 的电流。

If an ac or a pulse technique is used it is expedient to apply the voltage across the DUT to the horizontal input of an oscilloscope and apply the voltage drop across the current viewing resistor, R2, to the vertical input.
如果使用交流或脉冲技术,则最好将 DUT 两端的电压施加到示波器的水平输入端,并将电流观察电阻 R 2 端的压降施加到垂直输入端。

The resulting display of the volt-ampere characteristic is used to read the desired characteristic values. Figure 33 details an implementation of standard line voltage for the ac method.
伏安特性的最终显示用于读取所需的特性值。图33详细介绍了交流方法的标准线电压的实现。

Diode D1 passes a half cycle current, which can be varied in amplitude by autotransformer T2. R1 is a current- limiting resistor. D2 bypasses the normally opposite half cycle from the output.
二极管 D1 通过 周期电流, 该电流的幅度可以通过 自耦变压器 T2 改变 R 1 是一个 限流电阻器。D2 绕过输出通常相反的半周期

Test Conditions to be Specified
具体条件

Case temperature, TC, or Lead temperature, TL= 25 ºC
外壳温度,TC,引线温度,TL = 25 ºC

Minimum breakdown current, I(BR)= A
最小击穿电流,I(BR) = A

Maximum thermal resistance of heat
最大的热阻
dissipator
耗散器

upon which the DUT is to be mounted, RthSA= ºC/W
安装 DUT 的 R,R thSA = ºC/W

Characteristic to be Measured
C测量的恶性

a.Minimum reverse breakdown
a.最小反向击穿
voltage,
电压
V
(BR)= V

Figure 33 — Variable Amplitude AC Source for Reverse Breakdown Voltage Test
图 33 — 用于反向击穿电压测试的可变幅度交流电源

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 73
第 73 页

Method for Maximum Reverse Breakdown Voltage
最大反向击穿电压测量 hod

This method is applicable only to controlled avalanche diodes.
该方法仅适用于受控雪崩二极管。

A voltage pulse that results from a specified reverse current is measured. The specified current must be a maximum instantaneous value in the region of low incremental resistance.
测量由指定反向电流产生的电压脉冲。规定的电流必须是低增量电阻区域的最大瞬时值。

The measurement shall be performed under conditions of thermal equilibrium. Thermal management may be necessary.
测量应在热平衡条件下进行。热管理可能是必要的。

Test Circuit
T电路

The test circuit is shown in Figure 34. It is required by definition that the product of the voltage and current to which the DUT is subjected is equal to the registered maximum non-repetitive reverse power dissipation rating of the device under test. In addition, the circuit in Figure 34 will produce the current waveform that is required for this test.
测试电路如图 34 所示。根据定义 ,DUT 所承受的电压和电流的乘积等于器件注册最大非重复反向功耗额定值 此外,34 中的电路产生测试所需的电流波形

Procedure
进行

The initial reverse pulse applied to the test device connected in the circuit in Figure 24 shall be of low magnitude and shall be increased on successive pulses until the maximum reverse power specified is reached. The value of V(BR) of the DUT shall be estimated and R1 shall be calculated from:
施加到图 24 中电路中连接的测试器件的初始反向脉冲应为低幅度,并应在连续脉冲上增加,直到达到规定的最大反向功率 估计 DUT 的 V(BR) 值,R 1 应从以下公式计算:

𝑅1 =
1 =

(𝑉𝑐1 − V𝐵𝑅 )𝑉𝐵𝑅
(Vc1 − VBR )VBR

𝑃𝑅𝑀
PRM

Estimate C1 from C1R1 = 1/2 tw. Adjust the dc supply until VR = rated VRWM. The voltage across C1 (VC1) should be 3000 V or 3xV(BR) of the DUT (whichever is greater); the spark gap should not arc over. Open SW1 - the gap should arc over. Readjust, if necessary, the value of C1, R1 and VC1 until the specified value of Peak Reverse Power and average width of the current pulse are obtained.
根据 C1 R 1 = 1/2 tw 估计 C1。调整直流电源,直到 VR = 额定 VRWM。C1 (VC1) 两端的电压应为 DUT 的 3000 V 或 3xV(BR)(较大者为准);火花隙不应产生电弧。打开 SW1 - 间隙应该呈弧形。如有必要,重新调整 C1、R1 和 VC1 的值 ,直到获得峰值反向功率的指定值和电流脉冲的平均宽度。

NOTE𝑃𝑅𝑀 = 𝑉𝐵𝑅 𝑥 𝐼𝐵𝑅
PRM = VBR xIBR

The time between pulses shall be long enough to allow the device virtual junction temperature to return to its initial temperature.
脉冲之间的时间应足够长,以允许器件虚拟结温度恢复到其初始温度。

JEDEC Standard No. 282B.02 Page 74
JEDEC 标准第 282B.02 号,第 74 页

Procedure (cont’d)
程序 (续)

Figure 34 — Maximum Reverse Breakdown Voltage Test Circuit
图34 — 最大反向击穿电压测试电路

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 75
第 75 页

Test Condition to be Specified
预计条件指定

Case temperature, TC, or Lead temperature, TL= ºC
外壳温度,TC引线温度,TL = ºC

Peak reverse breakdown current, I(BR)M
峰值反向击穿电流,I(BR)M

(V(BR)M x I (BR)M must equal the specified PRM).= A
(V(BR)M x I (BR)M 必须等于指定的 PRM)。 = 一个

Reverse breakdown curret pulse width, tp= µs
反向击穿当前脉冲宽度,tp = μs

Maximum thermal resistance of heat dissipator
散热的最大热阻

upon which the DUT is to be mounted, RthSA= ºC/W
安装 DUT 的 R,R thSA = ºC/W

Characteristic to be Measured
C测量的恶性

a. Maximum Reverse Breakdown Voltage, V(BR)= V
一个。 最大反向击穿电压,V(BR) = V

Forward Switching Characteristics
用于病房切换特性

When a step function of forward current (high di/dt) is applied to a semiconductor rectifier diode the carrier gradient does not develop immediately, resulting in an overshoot voltage, which decreases with time to the dc static level. The diode appears to be inductive; however, transit time and conductivity modulation, not inductance, are normally responsible for the effect.
对半导体整流二极管施加正向电流 (高 di/dt阶跃函数 载波梯度不会立即产生,从而导致过冲电压,该电压会随着时间的推移而降低,直至直流静态水平。二极管似乎是电感的;然而,传输时间和电导率调制(而不是电感)通常是造成这种影响的原因

Forward switching voltage-current characteristics may have to be considered in analyzing the effectiveness of clamping transient voltages (as in bypass or free-wheeling applications) and in the calculation of diode average power dissipation in high frequency pulse circuits (as in some inverters and switching regulators).
在分析箝位瞬态电压的有效性(如在旁路或续流应用中)和计算高频脉冲电路中的二极管平均功耗(如某些逆变器和开关稳压器)时,可能必须考虑正向开关电压-电流特性。

Relevant
提升
Parameters
参数

Forward recovery time, tfr, is the time interval between the instant when the forward voltage rises through a specified first value, usually 10% of its final value, and the instant when it falls from its peak value, VFRM, to a specified low second value, vFR, upon the application of a step of current following a zero voltage or a specified reverse voltage condition.
正向恢复时间 tfr 是正向电压上升到指定第一个值(通常为其最终值的 10%)的瞬间,以及正向电压从其峰值 VFRM 下降到指定的低第二个值 vFR 的瞬间之间的时间间隔 ,在零电压或指定的反向电压条件下施加一阶级电流。

Peak forward recovery voltage, VFRM, is the maximum instantaneous value across the DUT resulting from the application of a specified step function of forward current. This characteristic is sometimes referred to as modulation voltage. Also, VF(PK), VFM(DYN) and VFM are sometimes used, but VFRM is preferred.
峰值正向恢复电压 VFRM 是 DUT 上施加指定正向电流阶跃函数产生的最大瞬时值。此特性有时称为调制电压。此外, 有时还使用 V F(PK)、VFM(DYN) 和 VFM,但首选 V FRM

Procedure
进行

The DUT is subjected to a specified step function of forward current. The resulting current waveform through the device and voltage waveform across the device are graphically monitored with amplitude displayed versus time. The desired characteristics are obtained from the display.
DUT 受制于指定的正向电流阶跃函数。通过器件产生的电流波形和器件两端的电压波形以图形方式监控,并显示幅度与时间的关系。从显示器中获得所需的特性。

Test Circuit and Waveform
Test 电路和波形

The general test circuit is shown in Figure 35 and the waveforms in Figure 36.
一般测试电路如图35所示,波形如图36所示。

The current pulse source may be a pulse generator, charged line, pulse forming network, an arc-gap circuit, or the like. If the nature of the source requires an internal switch, devices such as a mercury switch, thyratron, thyristor, power transistor, power MOSFET or similar devices may be used. Compliance voltage (open circuit output voltage) of the pulse current source shall be 50 V, or 3 times VFM whichever is greater. In any event, the combination must provide the specified conditions of the pulse to the DUT.
电流脉冲源可以是脉冲发生器、带电线、脉冲形成网络、电弧间隙电路 如果 性质需要 内部 开关,开关 设备 可以使用晶闸管、晶闸管、功率晶体管、功率 MOSFET 或类似器件。脉电流 顺应电压(开输出电压) 应为 50 V, 3 V FM者为准 在任何情况下,组合必须向 DUT 提供指定的脉冲条件

Aberration of the pulse top shall not exceed +10% of IFM. The di/dt of the leading edge shall be measured between the 10% and 90% amplitude points.
脉冲顶部的像差不应超过 I FM 的 +10%。 前缘的 di/dt 应在 10%和 90%振幅点之间测量。

JEDEC Standard No. 282B.02 Page 76
JEDEC 标准编号 282B.02 第 76 页

Test Circuit and Waveform (cont’d)
测试电路和波形 (续)

R is a non-inductive shunt or current viewing calibrated resistor. A suitable high frequency current probe may be used instead. The external switch shown is electronic and is left open if no reverse voltage is specified, otherwise it is synchronized to be open only for the duration of the current pulse.
R 是无感分流或电流观察校准电阻器。可以使用合适的高频电流探头代替。所示的外部开关是电子开关,如果未指定反向电压,则保持打开状态,否则它将同步为仅在电流脉冲持续时间内打开。

It is expedient to observe the waveforms on a suitable dual-channel oscilloscope. The common connection shown will result in the inversion of the current waveform. Most oscilloscopes provide a method by which a trace can be inverted to display the waveforms as shown in Figure 35.
在合适的双通道示波器上观察波形是方便的。所示的公共连接将导致电流波形的反转。大多数示波器都提供了一种方法,通过该方法可以反转迹线以显示波形,如图35所示。

VR

Figure 35 — Forward Switching Characteristics Test Circuit
图35 — 正向开关特性测试电路

Figure 36 — Forward Switching Characteristics Waveforms
图36 — 正向开关特性波形

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 77
第 77 页

Test Conditions to be Specified
具体条件

Rise time of current pulse.
电流脉冲的上升时间

(Measured from 10% to 90% of IFM), tr= µs
(从 IFM 的 10% 到 90% 测量 ),t r = μs

Peak forward current, IFM= A
峰值正向电流,IFM = A

Forward recovery voltage defining the end of the
定义末端的正向恢复电压

forward recovery time, if different from 1.1 VF, vFR.= V.
前向恢复时间,如果与 1.1 VFvFR 不同 = 五。

NOTE 1If VFRM is expected to exceed 10 V, select vFR = 3 times the expected maximum value of VF. NOTE 2If VFRM is expected to be less than 1.3 V, select vFR = 0.5 (VFRM - VF) + VF
注 1 如果预计 VFRM 超过 10 V,则选择 VFR = V F 预期最大值的 3 倍 。注 2 如果 VFRM 预计小于 1.3 V,则选择 vFR = 0.5 (VFRM - VF) +VF
.

Test current pulse duration, tp= µs
测试电流脉冲持续时间,tp = μs

Test repetition rate, f (1000 max.)= pps
测试重复率,f(最大 1000=pps

Reverse voltage prior to application of
应用前的反向电压

current pulse VR.= V
电流脉冲 VR = V

Case temperature, TC, or Lead temperature, TL= ºC
外壳温度,TC 或引线温度,TL = ºC

Maximum thermal resistance of heat dissipator
散热的最大热阻

upon which the DUT is to be mounted, RthSA= ºC/W
安装 DUT R,RthSA = ºC/W

Characteristics to be Measured
C测量的恶性

Forward recovery time, tfr= µs
正向恢复时间,tfr = μs

Peak Forward Recovery voltage, VFRM= V
峰值正向恢复电压,VFRM = V

DC forward
直流前向
voltage,
电压
V
F= V

Reverse Recovery Characteristics
Reverse 恢复特性

When a forward current is flowing in a semiconductor diode, a carrier gradient is produced in the high- resistance side of the junction, resulting in an apparent storage of charge. If the source of forward bias is suddenly changed to a reverse bias, the stored charge maintains a current flow (now a reverse current) until the charge is depleted by a combination of reverse current flow and internal carrier recombination.
当正向电流在半导体二极管中流动时,结的高电阻侧会产生载流子梯度,从而产生明显的电荷存储。如果正向偏置源突然变为反向偏置,则存储的电荷将保持电流(现在是反向电流),直到电荷被反向电流和内部载流子复合的组合耗尽。

Power rectifier diodes can possess different degrees of recovery characteristics. After the test current reaches its peak reverse value, it may immediately, or a short time later in the recovery period, decrease very abruptly (abrupt recovery) or it may decrease slowly and smoothly to its steady state reverse blocking value (soft recovery). In the former case, the effect of the rapid current change and the loop inductance producing transient voltages across the test device must be considered. It should be further noted that the abrupt rectifier diodes can exhibit a reverse current waveform that crosses the zero axis and/or have a di/dt that is greater at some period in the trrf portion of the recovery curve compared to trrr so as to produce a voltage that meets or exceeds the rated reverse breakdown voltage of the device (optionally monitored), or an excessive RF noise condition. Therefore, the abrupt classification of a diode in an application, or in a given test circuit, cannot be exclusively defined by the test current reverse recovery waveforms, illustrated in Figure 43.
功率整流二极管可以具有不同程度的恢复特性。测试电流达到峰值反向值后,可能会立即或在恢复期后不久突然下降(突然恢复),也可能缓慢而平稳地下降到其稳态反向阻断值(软恢复)。在前一种情况下,必须考虑快速电流变化和环路电感在测试器件两端产生瞬态电压的影响。还应该进一步注意的是,突流整流二极管可以表现出穿过零轴的反向电流波形和/或在恢复曲线的 trrf 部分的某个时期具有比 t rrr 更大的 di/dt ,从而产生达到或超过 额定反向穿电压的电压设备 可选监控)或 过大的射频噪声条件。因此,二极管在应用或给定测试电路中的突然分类不能仅由测试电流反向恢复波形来定义,如图 43 所示。

6.6.9.1 Terms and Definitions
6.6.9.1 术语和定义

reverse recovery time, (trr): The time interval required for the reverse current to recover to a specified value as the result of the driving source having been switched from a forward-current to a reverse-voltage condition.
反向恢复时间 (trr): 反向电流 恢复 由于驱动源已从正向电流切换到反向电压条件而指定的

JEDEC Standard No. 282B.02 Page 78
JEDEC 标准编号 282B.02 第 78 页

Terms and Definitions (cont’d)
术语和定义 (续)

NOTE For conditions C and D of the test method in clause 6.6.9.3, trr is the sum of the two intervals, trrr and trrf, as shown in Figure 43 and Figure 46. Note that for go-no-go reverse recovery testing, limit points IRM(REC) and 0.25 IRM(REC) should be based upon the actual IRM(REC) maximum value.
注意 对于第 6.6.9.3 条中测试方法的条件 C 和 D,trr 是两个区间 trrr 和 trrf 的总和,如图 43 和图 46 所示。注意 forgo-no-goreverserecoverytesting,限点 RM(REC) 和 0.25RM(REC)基于实际 I RM(REC) 最大值。

peak reverse recovery current, (IRM(REC)): The maximum instantaneous value of reverse current that occurs when switching from a forward current condition to a reverse voltage condition.
峰值反向恢复电流,(IRM(REC)) :发生的反向电流的最大 瞬时值 从正向电流条件切换到反向电压条件时。

NOTE It applies to the methods of conditions C and D only because conditions A and B use a reverse current, IRM, that is to be specified and is controlled by the test circuit. Recovered charge, Qrr, is the quantity of excess electrical charge within the device structure that is delivered externally when switching from a forward current to a reverse voltage condition.
注意它仅适用于条件 C 和 D 的方法,因为条件 A 和 B 使用反向电流 IRM, 该电流是指定的,并由测试电路控制。回收电荷 Qrr 器件结构内从正向电流切换到反向电压条件时向外部输送的多余电荷量

General Description
G 一般描述

A specified pulse of forward current is applied to the DUT. The resulting current waveform enables the desired characteristics to be measured.
向 DUT 施加指定的正向电流脉冲。由此产生的电流波形可以测量所需的特性。

It is expedient to graphically monitor the waveform by observing current versus time. A suitable oscilloscope may be used.
通过观察电流与时间的关系图形方式监控波形方便的。 可以使用合适的示波器

The measurement shall be performed under conditions of thermal equilibrium. Thermal management may be necessary.
测量应在热平衡条件下进行。热管理可能是必要的。

The recovered charge is represented by the area under the reverse current-time curve. An approximate value of the recovered charge when using Conditions C or D of the test method in clause 6.6.9.3 can be calculated by the expression:
回收的电荷向电流-时间曲线下的面积表示。 使用6.6.9.3测试方法条件 CD回收近似可以通过以下表达式计算:

Qrr = (1/2) trr IRM(REC)
Qrr = (1/2)trr IRM(REC)

It may be measured by some integration (graphical or electronic) process if the beginning and ending time point for the integration are defined. For our purposes, the starting point is the instant of current reversal and the ending point is at some specified reverse current point IRX or time trx
如果定义了积分 开始和结束时间点,则可以通过某种积分(图形或电子)过程来衡量它 我们的目的而言 电流反转瞬间 终点是某个指定的反向电流点 IRX 或时间 t rx
.

Test Methods, Circuits, and Waveforms
方法、电路和波形

The purpose of this test is to measure the reverse recovery time and other specified recovery characteristics related to signal, switching and rectifier diodes by observing the reverse transient current vs. time when switching from a specified forward current to a reverse biased state in a specified manner.
本测试的目的是通过观察以指定方式从指定正向电流切换到反向偏置状态时的反向瞬态电流与时间的关系,测量与信号、开关和整流二极管相关的反向恢复时间和其他指定恢复特性。

Four conditions are given to include recommended practice for the range of diodes considered. A general guide for selecting the appropriate condition letter is:
给出了四个条件,以包括所考虑的二极管范围的推荐实践。选择适当条件信的一般指南是:

Signal diodes with reverse recovery time less than 6 ns.
反向恢复时间小于 6 ns 的信号二极管

Low to medium current rectifiers with maximum specified recovery times of 50 ns to 3,000 ns.
中低电流整流器,最大指定恢复时间为 50 ns 至 3,000ns。

High current rectifiers with maximum specified recovery times of 350 ns or greater.
最大指定恢复时间为 350 ns 或更长的大电流整流器

Ultra-fast rectifiers, particularly on new specifications.
超快整流器,特别是在新规格上

Further, detailed guidance is given under each condition below.
此外,在以下每种条件下给出了详细的指导。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 79
第 79 页

6.6.9.3 Test Methods, Circuits, and Waveforms: Test Condition A (cont’d) Test Condition A:
6.6.9.3 测试方法、电路和波形:测试条件 A(续) 测试条件 A:

This condition is particularly relevant to low-current, signal diodes faster than 6 ns and tested at 10 mA. However, it is practicable for measurements up to 20 ns and 100 mA.
这种情况与速度超过 6 ns 的低电流信号二极管特别相关,并在 10 mA 下进行测试。然而,它适用于高达 20 ns 和 100 mA 的测量。

Circuit Notes for Test Condition A:
测试条件 A 的电路说明:

Rise time of the reverse voltage pulse across a noninductive calibration resistor in place of the DUT shall be less than 1/5th the recovery time of the DUT, for greatest accuracy.
代替被测物的无感校准电阻器两端的反向电压脉冲的上升时间应小于被测物恢复时间的 1/5,以获得最大精度。

Oscilloscope rise time shall be less than 1/5th of device recovery time, for greatest accuracy.
示波器上升时间应小于设备恢复时间的 1/5,以获得最大的精度。

Proper coaxial networks and terminations shall be employed to ensure against error-producing pulse reflections.
应采用适当的同轴网络和端接,以确保防止产生错误的脉冲反射。

R > 10 RL

RL = ZPG + Zscope = 100 , unless otherwise specified.
除非另有 说明 ,否则 R L = Z PG + Z 范围 = 100

C > 10 PW RL

PW > 2 x maximum specified t
PW > 2 x 最大指定吨
rr (See Figure
(见图
37)

Figure 37 — Test Circuit for Reverse Recovery Condition A
图 37 — 反向恢复条件 A 的测试电路

NOTE The test circuit shall comply with the test conditions, and circuit notes stated under clause 6.1. PW = Pulse width of reverse voltage pulse. (See Figure 38)
注意 测试电路应符合第 6.1 条规定的测试条件和电路注释。PW = 反向电压脉冲的脉冲宽度。(见图 38)

RL = Load resistance.
RL = 负载电阻。

C = Coupling capacitance.
C = 耦合电容。

Procedure for Test Condition A:
测试条件 A 的程序:

The specified forward current shall be adjusted by resistor R and the + supply. Voltage E, developed across the 50 oscilloscope input impedance shall be measured. Specified forward current shall be calculated by the expression IF = E/50. The time duration of IF shall be at least 10 times the device recovery time. The oscilloscope trace deflection above zero reference shall be adjusted by the oscilloscope vertical sensitivity to produce an amplitude of 2 cm minimum vertical deflection. Adjustment of the reverse transient current (IRM) shall be made by varying the pulse generator output, observing the voltage E across the 50 oscilloscope input impedance, and calculating IRM by the expression I = E/50. When reverse bias voltage VR is specified, and IRM is not, the DUT shall be replaced with a shorting bar and IRM shall be calculated by the expression VR/50. (See Figure 39)
规定的正向电流应通过电阻 R 和+电源进行调节。 应测量在 50 示波器输入阻抗上产生的电压 E。指定的正向电流应通过表达式 IF = E/50 计算。IF 的持续时间应至少为设备恢复时间的 10 倍。 示波器迹线偏转高于零参考时应通过示波器垂直灵敏度进行调整,以产生 2 cm 最小垂直偏转的幅度。反向瞬态电流 (IRM) 的调整应通过改变脉冲发生器输出、观察 50 示波器输入阻抗两端的电压 E 计算 I RM 来进行表达式 I = E/50。 指定反向偏置电压 VR 而未指定 I RM 时 ,应将 DUT 替换为短路条,并且 IRM 应通过表达式 VR/50 计算。(见图 39)

JEDEC Standard No. 282B.02 Page 80
JEDEC 标准编号 282B.02 第 80 页

6.6.9.3 Test Methods, Circuits, and Waveforms: Test Condition A (cont’d)Figure 38 — Response Pulse Waveforms for Condition A Summary for Condition A:
6.6.9.3 测试方法、电路和波形:测试条件 A(续) 图 38 — 条件 A 的响应脉冲波形 条件 A 的摘要:

The following conditions shall be specified in the detail specification:
详细说明书中应规定以下条件:

Forward current, IF
正向电流,IF
.

Reverse current IRM (preferred), or reverse voltage (optional alternative).
反向电流 IRM(首选)或反向电压(可选替代方案)。

Load resistance, if other than 100 . (This is the sum of ZPG and Zscope).
负载阻力,如果不是 100 。(这是 Z 的总和 PG Z 范围 )。

Ambient temperature in ºC.
环境温度(ºC)。

Generator impedance, if other than 50
发电机阻抗,如果不是 50 
.

Recovery current measuring point, iR(REC), if different from 10% of IRM
恢复电流测量点,iR(REC), 如果与 IRM 的 10% 不同
.

The following measurement shall be made:
应进行以下测量:

a.trr (See Figure 38)
a. trr(见图 38)

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 81
第 81 页

6.6.9.3 Test Methods, Circuits, and Waveforms (cont’d) Test Condition B:
6.6.9.3 测试方法、电路和波形(续) 测试条件 B:

See suggested conditions, B1, B2, etc. in Table 10. This condition is particularly relevant to medium current (axial and similar) types of standard and fast rectifiers with maximum specified recovery times between 50 ns and 3,000 ns that are measured at peak forward currents greater than 100 mA and less than or equal to
参见10 中的建议条件 B1B2 等 这种情况特别适用于峰值正向电流大于 100 mA 测量的最大指定恢复时间在 50 ns3,000ns 之间的中等电流(轴向和类似)类型的标准和快速整流器并且

1.0 ampere. It is readily adapted to lower test currents. This test is also appropriate for devices with recovery times less than 50 ns that are measured at peak forward currents of 1 A or less; below 25 ns, or at higher current, particular care must be used to achieve low loop inductance and low circuit rise times to achieve acceptable repeatability.
1.0 安培。很容易适应较低测试电流。测试适用于恢复时间小于 50 ns 的器件,这些器件在峰值正向电流为 1 A 或更低时测量;低于 25 ns 或在较高电流下,必须特别注意实现低环路电感和低电路上升时间,以实现可接受的可重复性。

This condition differs from condition D in that the reverse current (IRM) is limited by the test circuit, not by the DUT.
该条件与条件 D 的不同之处在于,反向电流 (IRM) 受测试电路限制,而不是DUT 限制。

Table 10 — Reverse Recovery: Test Condition B
表 10 — 反向恢复:测试条件 B

Designation (condition)
名称(条件)

B1

B2

B3

B4

B5

Test currents (A),IF See Figure 40
测试电流 (A), IF 见图 40

IRM
RM

iR(REC)
iR(REC)

0.5

0.5

1.0

1.0

0.01

1.0

0.5

1.0

1.0

0.01

0.25

0.1

0.5

0.1

0.005

Circuit resistors.*RF ( )
电路电阻器。* RF

33

33

50

50

1200

RR

9

9

15

15

200

R4

1.00

1.00

1.00

1.00

10.0

NOTEPreferred nominal resistance values are shown; modification of RF and RR may be needed to achieve the rise time noted in a, below, and the IRM specified above.
注: 显示了优选的标称电阻值;可能需要修改 RFR R 才能达到下面 a、 和上面指定的 I RM 中提到的上升时间。

JEDEC Standard No. 282B.02 Page 82
JEDEC 标准编号 282B.02 第 82 页

6.6.9.3 Test Methods, Circuits, and Waveforms: Test Condition B (cont’d) Circuit Notes for Test Condition B:
6.6.9.3 测试方法、电路和波形:测试条件 B(续) 测试条件 B 的电路说明:

The timing and test circuit of Figure 39 is a guide to that needed. An equivalent circuit may be used.
图39的时序和测试电路是所需指南。可以使用等效电路。

The rise time of the reverse voltage pulse across a noninductive calibration resistor in place of DUT shall be less than 1/5th the recovery time of DUT.
代替 DUT 的无感校准电阻器两端的反向电压脉冲的上升时间应小于 DUT 恢复时间的 1/5

The oscilloscope rise time shall be less than one half of the pulse generator rise time.
示波器上升时间应小于脉冲发生器上升时间的二分之一

V3 and RF control forward current IF
V3 RF 控制正向电流 IF

V4 and RR control reverse current IRM
V4 和 RR 控制反向电流 IRM

trr (max) is the longest to be measured
trr(max) 测量的最

trr (min) is the shortest expected
trr (min) 是最短的预期

DUT Current i = Vo/ R4
DUT 电流 i = Vo/ R4

t1 > 5 trr(max)
1 > 5rr(最大)

t2 > trr

t3 > 0
3 >0

L1 / R4 < irr(min) / 10
L1 / R4 < 和 rr(min) /10

L1 is the self-inductance of
是 的自感
R
4

Figure 39 — Test Circuit for Reverse Recovery Condition B
图 39 — 反向恢复条件 B 的测试电路

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 83
第 83 页

6.6.9.3 Test Methods, Circuits, and Waveforms: Test Condition B (cont’d)
6.6.9.3 测试方法、电路和波形:测试条件 B(续)

Figure 40 shows a suggested configuration for R4. Duty factor shall be 5% maximum.
图 40 显示了 R 4 的建议配置 。占空比最高应为 5%。

NOTE 1 Resistor assembly R
注 1:电阻器组件 R
4 is made from ten 1
由十个1制成
, 1/4 W metal film resistors, 5 on top and 5 on the bottom foils.
,1/4 W 金属膜电阻器,顶部 5 个,底部箔 5 个。
The center of resistor bodies is not shown, and leads are shown dotted so that conducting foils may be more clearly
电阻体的中心没有显示,引线是虚线显示的,以便导电箔可以更清晰
shown. Bottom
脚凳
resi
铃木
stor
curre
nt flo
弗洛
w L to
R () is
oppo
OPPO 的
site
这儿
to top
返回页首
resi
铃木
stor
curre
nt flo
弗洛
w R to
L (), providing
提供
magnetic
field
cancellation.
取消。
Sense
意义
lead
to
the
center
中心
conductor
导体
of
the
probe
探针
jack
千斤顶
exits
出口
at
right
angle
角度
to
resistor
电阻器
axes
and
is located between the top and bottom resistor
位于顶部和底部电阻器之间
layers.
层。

NOTE 2Cross hatched circular areas show the connections between those top and bottom foil regions indicated by arrows.
2: 交叉影线圆形区域显示了由箭头指示的顶部和底部箔区域之间的连接。

NOTE 3To ground of circuit and probe.
3:电路和探头接地。

NOTE 4To center conductor of miniature probe jack. NOTE 5 To cathode of DUT.
4: 微型探头插孔的中心导体。注 5 到 DUT 的阴极。

Figure 40 — Suggested Board Layout for Low L1/R4 for Condition B
图 40 — 条件 B 的低 L 1/R4 的建议电路板布局

JEDEC Standard No. 282B.02 Page 84
JEDEC 标准第 282B.02 号 第 84 页

6.6.9.3 Test Methods, Circuits, and Waveforms: Test Condition B (cont’d) Procedure for Test Condition B:
6.6.9.3 测试方法、电路和波形:测试条件 B(续) 测试条件 B 的程序:

Specified forward current (IF) shall be adjusted by varying positive voltage, V3. Reverse current (IRM) shall be controlled by varying the negative voltage, V4, see Figure 39 and Figure 41. With the DUT in place the circuit must be capable of higher than specified IRM; the circuit, and not the diode, must limit IRM
规定的正向电流 (IF) 应通过改变正电压 V3 进行调整 。反向电流 (IRM) 应通过改变负电压 V4 来控制 ,见图 39 和图 41。安装 DUT 后,电路必须能够高于规定的 IRM; 电路(而不是二极管)必须限制 IRM
.

Figure 41 — DUT Current Waveform for Condition B Summary for Test Condition B:
图 41 — 条件 B 的 DUT 电流波形测试条件 B 的摘要:

Test condition (B1, B2, etc. - see Table 10). If not in Table 10, specify bullet c through bullet f.
测试条件(B1、B2 等 - 见表 10)。如果不在表 10 中,请指定项目符号 c 到 项目符号 f。

Ambient temperature, if other than 25ºC.
环境温度,如果不是 25ºC。

Forward current, IF
正向电流,IF
.

Reverse current, IRM
反向电流,IRM
.

Load resistances RF and RR
负载电阻 RF 和 RR
.

Recovery measuring point, iR(REC)
恢复测量点,R(REC)
.

NOTE Specify bullet c through bullet f only if not using a condition designated in Table 10.
注意 仅当不使用表 10 中指定的条件时,才指定项目符号 c 到项目符号 f。

The following measurement shall be made:
应进行以下测量:

a) trr (See Figure 41).
a) trr(见图 41)。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 85
第 85 页

6.6.9.3 Test Methods, Circuits, and Waveforms (cont’d) Test Condition C:
6.6.9.3 测试方法、电路和波形(续) 测试条件 C:

This test is intended for high-current rectifiers with reverse recovery times equal to or greater than 350 ns and tested at peak forward currents greater than 10 amperes.
该测试适用于反向恢复时间等于或大于 350 ns 并在峰值正向电流大于 10 安培下进行测试的大电流整流器。
Figure 42 — Circuit for Measuring Reverse Recovery Characteristics: Test Condition C Circuit Notes for Test Condition C:
图 42 — 用于测量反向恢复特性的电路:测试条件 C 测试条件 C 的电路注释:

The circuit is designed to simulate the commutation duty encountered in power rectifier diode circuits while also keeping average power dissipation low to minimize the need for thermal management.
该电路旨在模拟功率整流二极管电路中遇到的换向占空比,同时保持较低的平均功耗,以最大限度地减少对热管理的需求

The
resistance
电阻
of
the
C, L,
L
and
DUT
loop
(R
(右
2 and
parasitics)
寄生虫)
must
必须
be
small,
e.g.,
例如
2 𝐿/𝐶
信用状
>> R , so
所以
the
test
测试
current
当前
will
essentially
本质上
be
sinusoidal,
正弦
possessing
拥有
a width
宽度
𝐿𝐶
立法会
a di/dt
对/分秒
of
V/L and
a peak
value
价值
of
V/𝐿/𝐶 . The
peak
voltage
电压
across
the
capacitor
电容器
shall
be
as
small
as
practicable
可行
to
achieve
实现
the
desired
期望
test
测试
conditions.
条件。
The effect
效果
of reverse voltage magnitude on the test device recovery characteristics are
测试装置的反向电压幅度恢复特性为
neglected.
忽视。

The minimum forward current pulse time (tp) shall be at least 5 times the recovery time (trr) of the DUT so that the di/dt will be linear and of the same value before and after current reversal.
最小正向电流脉冲时间 (tp至少 恢复时间 (trr), 以便 di/dt 将是线性的,并且在电流反转之前和之后具有相同的值。

The oscilloscope rise time shall be less than 1/5th of trrr or trrf (See Figure 43), whichever is less.
示波器上升时间应小于 trrr 或 trrf 的 1/5 (见图 43),以较小者为准

The inductance of the current viewing resistor shall be extremely low, e.g., 0.01 µH. Abrupt
电流观察电阻的电感应极低,例如 0.01 μH。 突然的

recovery rectifiers (See Figure 43) can cause current oscillations which may be reduced by using a lower inductance current viewing resistor and by properly terminating the oscilloscope cable. A current transformer with suitable rise time (Pearson Electronics, Inc., or equivalent types) may be substituted for the current viewing resistor. Rectifier diode RD2 provides a very low inductance path around SCR1 if the reverse recovery time of SCR1 is shorter than that of the DUT. An external SCR triggering source may be required to achieve stable triggering.
恢复整流器(见图 43)会导致电流振荡,通过使用较低的电感电流观察电阻器并正确端接示波器电缆,可以减少电流振荡。可以使用具有适当上升时间的电流互感器(Pearson Electronics, Inc. 或同等类型) 代替电流观察电阻器。 如果 SCR 1 的反向恢复时间短于 DUT 的反向恢复时间,整流二极管 RD 2SCR 1 周围提供非常低的电感路径 。可能需要外部 SCR 触发源才能实现稳定的触发。

JEDEC Standard No. 282B.02 Page 86
JEDEC 标准编号 282B.02 第 86 页

6.6.9.3 Test Methods, Circuits, and Waveforms: Test Condition C (cont’d)
6.6.9.3 测试方法、电路和波形:测试条件 C(续)

A slight oscillation may appear on the waveform following device recovery. This may be reduced by reducing the current viewing resistor's inductance, or properly terminating the viewing cable. The oscillation, however, does not affect the measured recovery time.
设备恢复后,波形上可能会出现轻微的振荡。这可以通过降低电流观察电阻的电感或正确端接观察电缆来减少。 但是,振荡不会影响测量的恢复时间。

D2 and its circuit branch should provide a very low inductance path around the SCR if the reverse recovery time of the SCR is shorter than that of the DUT.
如果 SCR 的反向恢复时间短DUT 的反向恢复时间,则 D2 及其电路分支应在 SCR 周围提供非常低的电感路径

R3 must be sufficiently large such that the SCR triggers only after the capacitor, C, has had ample time to charge to its desired value. If stable triggering or ample charging is a problem, a momentary pushbutton switch may be inserted in line with R3 to provide triggering. A pulse transformer technique is also acceptable in the triggering circuit.
R3 必须足够大,以便 SCR 仅在电容器 C 有足够的时间充电到其所需值后触发。如果触发稳定或充电充足是问题,可以 插入与 R 3 一致 的瞬时按钮开关提供触发。 在触发电路也可以接受变压器技术

Procedure for Test Condition C:
测试条件 C 的程序:

C, L, and V are adjusted to obtain the specified test current di/dt and magnitude, IFM. The recovery time for rectifier diodes is defined as trr = trrr + trrf (See Figure 44). trrr is measured from the instant of current reversal to the instant that current reaches its peak reverse value, IRM(REC) and trrf is measured from IRM(REC) to the instant the straight line connecting IRM(REC) and 0.25 IRM(REC) intercepts the zero current axis. Alternatively, the end point of the trrf may be specified as a point on the i vs t waveform, such as the actual 0.25 IRM(REC), without extrapolation. The recovery time for devices with abrupt recovery characteristic is defined in the same manner except trrf is measured from IRM(REC) to the instant the test current waveform intercepts the zero current axis, if applicable.
调整 C、L 和 V 以获得指定的测试电流 di/dt 和幅度 IFM。整流二极管的恢复时间定义 trr=trrr+trrf(见 44)。 trrr电流瞬间 电流达到其峰值反转值的瞬间测量,IRM(REC),TRRF 是从 IRM(REC) 测量的到连接 I RM(REC) 和 0.25 IRM(REC) 的直线取零电流轴的瞬间。或者,可以将 trrf 的终点指定为 i 与 t 波形上的一个点,例如实际的 0.25I RM(REC),而无需外推。具有突然恢复特性的器件的恢复时间相同的方式定义,只是 trrf 是从 IRM(REC) 到测试电流波形截获零电流轴的瞬间( 如果适用 测量的。

𝐿1
L1

𝑅4
R4

𝑡𝑟𝑟(min)
yy(分钟)

<

10

NOTEtrrr is now the preferred symbol for ta and trrf is preferred for tb
注意 trrr 现在是 t a 的首选符号 ,trrf tb 的 首选符号
.

Figure 43 — Current Waveforms for Various Types of Rectifier Diodes in the Circuit of Figure 42
图 43 — 图 42 电路中各种类型整流二极管的电流波形

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 87
第 87 页

6.6.9.3 Test Methods, Circuits, and Waveforms: Test Condition C (cont’d) Summary for Test Condition C:
6.6.9.3 测试方法、电路和波形:测试条件 C(续) 测试条件 C 的总结:

The following conditions shall be specified in the detail specification:
详细说明书中应规定以下条件:

Case or lead temperature in ºC.
外壳或引线温度( 以 ºC 为单位)。

Test repetition rate, in Hz.
测试重复率,以 Hz 为单位

Peak forward current, IFM, in amperes.
峰值正向电流,IFM,安培为单位

Rate of decrease of forward current, di/dt in A/ms
正向电流的下降率,di/dt,单位:A/ms

Minimum test current pulse width, tp, in microseconds. (Duty factor shall be1%).
最小测试电流脉冲宽度,tp,以微秒为单位。(占空比 1%)。

The following characteristics shall be specified for measurement in the detail specification as required:
根据要求在详细规范中规定了以下特性进行测量:

trrr, trrf. Reverse recovery time shall be computed, trr = trrr + trrf
trrrtrrf 逆向恢复时间 hallbecomputed,trr=trrr+trrf
.

Peak reverse recovery current, IRM(REC) in amperes.
峰值反向恢复电流,IRM(REC), 单位为安培。

JEDEC Standard No. 282B.02 Page 88
JEDEC 标准编号 282B.02 第 88 页

6.6.9.3 Test Methods, Circuits, and Waveforms (cont’d) Test Condition D:
6.6.9.3 测试方法、电路和波形(续) 测试条件 D:

This condition is intended for ultra-fast medium current rectifiers (axial and case mount, or equivalent style) measured at IF 1A and with reverse recovery time 100 ns. With good engineering practice, condition D can adequately measure trr down to about 10 ns; it can also utilize IF up to at least 10 A. See suggested conditions D1, D2, D3, etc. below.
条件适用于 I 处测量的超快电流整流器 (轴向外壳安装,等效样式) F 1A,反向恢复时间 100 ns。通过良好的工程实践,条件 D 可以充分测量至约 10 ns 的 t rr;它还可以利用至少 10 A 的 I F。请参阅建议的条件 D1、D2、D3 等。 下面。

Table 11— Reverse Recovery: Test Condition D
表 11 — 反向恢复:测试条件 D

Device Ratings
设备额定值

Values for Testing
测试值

IO or IF (AV) (A)
O 或 IF (AV) (A)

trr (ns)
TRR (NS)

Designation (condition)
名称(条件)

IF (A)
女( 甲)

di/dt
对/分秒

(A/µs)
(A/μs)

1 to 4
1 至 4

>65 to 100
>65 至 100

D1

2

100

to 20
至 20

>65 to 100
>65 至 100

D2

6

100

over 20
20岁以上

>65 to 100
>65 至 100

D3

10

100

1 to 4
1 至 4

65

D4

2

200

to 20
至 20

65

D5

6

200

over 20*
20 岁以上*

65

D6

10

200

NOTEFor devices with substantially higher rated current it is desirable to use test conditions for IF close to rated current, and higher values of di/dt.
注意对于额定电流要高得多的器件,最好使用接近额定电流的测试条件,以及较高的 di/dt 值

Circuit Notes for Test Condition D:
测试条件 D 的电路注释:

Refer to Figure 44 and Figure 45 for circuit and construction details. Equivalent circuits may be used. The forward current generator consisting of Q1, Q2, R1, and R2 may be replaced with any functionally equivalent circuit, as can the current-ramp generator consisting of Q3, Q4, R3 and C1. The duty factor shall be 5%
有关电路和结构的详细信息,请参阅图 44 和图 45。可以使用等效电路。Q1、Q2、R1 和 R2 组成的正向电流发生器可以替换为任何功能上的 等效电路,由 Q3、Q4、R3 和 C1 组成的斜坡发生器也是如此 。占空率应为 5%

This method presumes that good engineering practice will be employed in the construction of the test circuit, e.g., short leads, good ground plane, minimum inductance of the measuring loop and minimum self- inductance (L1) of the current sampling resistor (R4). Also, appropriate high speed generators and instruments must be used.
该方法假定在测试电路的构建中将采用良好的工程实践, 例如,引线、 良好的接地层、 测量路的 最小电感 电流采样电阻 (R 1) 的最小感 (L 4)。此外, 必须使用适当的高速发电机和仪器。

The measuring-loop inductance (LLOOP, see Figure 44) represents the net effect of all inductive elements, whether lumped or distributed, e.g., bonding wires, test fixture, circuit board foil, inductance of energy storage capacitors, etc. The value of LLOOP should be 100 nH or less. The reason for controlling this circuit parameter is that it, combined with diode characteristics including CT, determines the value of trrf
测量环路电感 (LLOOP 见图 44)表示净效应电感元件,无论是集总的还是分布的,例如键合线、测试夹具、电路板箔、储能电容器的电感等。LLOOP 的值应为 100 nH 或更小。控制该电路参数的原因是,它与包括 C T 在内的二极管特性相结合 ,决定trrf 的
.

The turn-off reverse-voltage overshoot shall not be allowed to exceed the device rated
关断反向电压过冲不得超过器件额定值
breakdown
故障
voltage.
电压。
Ringing and overshoot may become a problem with
振铃和过冲可能会成为一个问题
R
LOOP << 2 𝐿/𝐶
信用状
, where L =
其中 L =
L
LOOP. That
is
another reason
另一个原因
for
minimizing
最小 化
L
LOOP.

Regarding breakdown voltage, V4 should be kept as low as practicable, especially when testing low voltage devices. A value of approximately -30 V is recommended.
关于击穿电压,V4 应尽可能低,尤其是在测试低压设备时。建议使用大约 -30 V 的值

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 89
第 89 页

6.6.9.3 Test Methods, Circuits, and Waveforms: Test Condition D (cont’d)
6.6.9.3 测试方法、电路和波形:测试条件 D(续)

The time constant of the self-inductance of the current sampling resistor R4 (See Figure 44) must be kept low relative to trrr because the observed values of trrr and IRM(REC) increase with increasing self- inductance. Since the value of R4 is not specified, the recommended maximum inductance is expressed as a time constant (L1/R4) with a maximum value of trrr (minimum) /10, where trrr (minimum) is the lowest trrr value expected. This ratio was chosen as a practical compromise and would yield an observed trrr which is a maximum of 10% high (trrr = L1/R4). The IRM(REC) error is a function of the L1/R4 time constant and di/dt. For a di/dt of 100 A/s the observed IRM would also be 10 percent high. IRM(REC) = [L1/R4 x di/dt].
电流采样电阻 R 4 的自感时间常数 (见图 44) 必须 相对于 trrr 保持较低,因为 t RRR 和 IRM(REC) 的观测值随着的增加而增加 。由于没有指定 R 4 的值 ,因此推荐的最大电感表示为时间常数(L1/R4),最大值为 trrr(最小值)/10,其中 tRRR(最小值)为最低 trrr 预期值。选择该比率作为实际折衷方案,将产生观察到的 trrr, 最高可高 10% (trrr = L1/R4)。IRM(REC) 误差是 L1/R4 时间常数和 di/dt 的函数 对于 100 A/s 的 di/dt,观察到的 I RM 也将高出 10%。 IRM(REC) = [L1/R4 x di/dt]。

The di/dt of 100 A/µs was chosen so as to provide reasonably high signal levels and still not introduce the large IRM errors caused by higher di/dt. Higher values of di/dt, without large errors, can be achieved with lower L1/R4
选择 100 A/μs 的 di/dt 是为了提供相当高的信号电平,并且仍然不会引入 较高 的 I RM 误差,而较高的 di/dt 值没有大的误差,可以在较低的 L1/R 下实现 4

V1 amplitude controls forward current IF
V1 幅度控制正向电流 IF

V2 amplitude controls di/dt
V2 幅度控制 di/dt

trrr (max) is the longest to be measured
tRRR(max) 是最 测量

trrr (min) is the shortest trrr to be measured
tRRR(min)是测量的最短 t RRR

DUT Current i = Vo/ R4
DUT 电流 i = Vo/ R4

t1 > 5 trr(max)
1 > 5rr(最大)

t2 > trr

t3 > 0

L1 / R4 < irr(min) / 10
L1 / R4 < 和 rr(min) /10

L1 is self=inductance of
是自=电感
R
4.

Figure 44 — trr Test Circuit for Test Condition D
图 44 — 测试条件 D 的 t rr 测试电路

JEDEC Standard No. 282B.02 Page 90
JEDEC 标准第 282B.02 号 第 90 页

6.6.9.3 Test Methods, Circuits, and Waveforms: Test Condition D (cont’d)
6.6.9.3 测试方法、电路和波形:测试条件 D(续)

NOTE 1 Resistor assembly R4 is made from ten 1 , 1/4 W metal film resistors, 5 on top and 5 on the bottom foils. The center of resistor bodies is not shown, and leads are shown dotted so that conducting foils may be more clearly shown. Bottom resistor current flow L to R () is opposite to top resistor current flow R to L (), providing magnetic field cancellation. Sense lead to the center conductor of the probe jack exits at right angle to resistor axes and is located between the top and bottom resistor layers.
注 1:电阻器组件 R4 由 10 个 1 、1/4 W 金属膜电阻器制成,顶部 5 个,底部箔 5 个。电阻体的中心没有显示,引线以点状显示,以便可以更清楚地显示导电箔底部电阻电流流 LtoR(→)与顶部电阻电流 RtoL()相反,提供磁场消除。探头插孔中心导体的检测引线与电阻轴成直角,位于顶部和底部电阻层之间。

NOTE
注意
2Cross hatched circular areas show the connections between those top and bottom foil regions indicated by
2交叉影线圆形区域显示了由以下方式指示的顶部和底部箔区域之间的连接
arrows.
箭头。

NOTE 3To ground of circuit and probe.
3:电路和探头接地。

NOTE 4To center conductor of miniature probe jack. NOTE 5To cathode of DUT.
注 4: 微型探头插孔的中心导体。注 5: 到 DUT 的阴极

Figure 45 — Suggested Board Layout for Low L1/R4 for Test Condition D
图 45 — 测试条件 D 的低 L 1/R4 的建议电路板布局

Procedure for Test Condition D:
测试条件 D 的程序:

Adjust V1 for the specified forward current IF. Adjust V2 for the specified di/dt. (See Figure 44 and Figure 45)
将 V1 调整为指定的正向电流 IF。将 V2 调整为指定的 di/dt。 (见图 44 和45)

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 91
第 91 页

6.6.9.3 Test Methods, Circuits, and Waveforms: Test Condition D (cont’d) Summary for Test Condition D:
6.6.9.3 测试方法、电路和波形:测试条件 D(续) 测试条件 D 总结:

The following conditions shall be specified:
应规定以下条件:

Designation (condition, See Table 11 for Condition D). If another is desired, d. and e. must be specified.
名称 (条件, 条件 D 11)。如果需要另一个 d.e. 必须指定。

V4, Reverse ramp power supply voltage.
V4,反向斜坡电源电压。

TC, Case temperature, if other than 25 ºC.
TC,外壳温度,如果不是 25 ºC。

IF, One-half continuous rated current is the suggested alternative.
IF,建议的替代方法是分之一连续额定电流

di/dt, 100 A/µs is the suggested alternative.
di/dt,100 A/μs 是建议的替代方案。

Choice of criterion for terminating trr, extrapolated (See Figure 46) or the specified point on the waveform.
选择终止 trr、外推(见图 46)或波形指定点的标准。

The following measurements shall be taken:
应进行以下测量:

trrr, trrf. Reverse recovery time shall be computed, trr = trrr + trrf
trrrtrrf 逆向恢复时间 hallbecomputed,trr=trrr+trrf
.

IRM(REC) (See Figure 46).
IRM(REC)(见图 46)。

Reverse Recovery Softness Factor may be computed
可以计算反向恢复柔软度系数
(See Figure 9).
(见图 9)。

NOTE The figure shows the extrapolated criterion for terminating trrf. Alternatively, a specified point on the waveform may be used, e.g., 0.25 IRM(REC). The choice shall be specified, as it may affect the value of trr
注意:该图显示了终止 t rrf 的外推标准 。或者,可以使用波形上的指定点,例如,0.25 IRM(REC)。 应指定选择,因为它可能会影响 trr 的值

Figure 46 — Generalized Reverse Recovery Waveforms for Test Condition D
图 46 — 测试条件 D 的广义反向恢复波形

JEDEC Standard No. 282B.02 Page 92
JEDEC 标准第 282B.02 号,第 92 页

Total Capacitance, CT
Total 电容,CT

In a semiconductor diode's transition region from p-type to n-type material there exists a charge dipole region or depletion layer with ionized impurity atoms on either side. As the junction bias is varied the width of the depletion layer varies. It is the effect in this region which gives rise to the apparent behavior like a charge capacitance. This effect is measured as junction capacitance; is it essentially independent of frequency over the range of test frequencies normally used (100 Hz to 10 MHz).
半导体二极管从 p 型材料n 型材料的过渡 存在一个电荷偶极区或耗尽层,两侧都有电离杂质原子。随着结偏置的变化,耗尽层的宽度也会发生变化。正是该区域的影响产生了电荷电容等表观行为。这种效应以结电容来测量;它是否基本上与通常使用的测试频率范围内的频率无关(100 Hz 至 10MHz)。

Definitions
D 函数

Total capacitance, CT, is the sum of junction capacitance, CJ, and case capacitance, CC, and is the small- signal capacitance between the diode terminals of the complete device under specified conditions of temperature, dc bias voltage and test signal amplitude and frequency.
总电容 CT 是结电容 CJ 和外壳电容 CC 的总和 ,是整个器件在温度、直流偏置电压和测试信号幅值和频率指定条件下二极管端子之间的小信号电容。

Procedure
进行

As a dc bias voltage is applied to the DUT the capacitance is measured using any of a variety of suitable bridge techniques.
当直流偏置电压施加到待测物时,使用各种合适的电桥技术中的任何一种来测量电容。

Test temperature (25 ± 5 C), although specified, is not critical as capacitance is not very sensitive to temperature. Thermal management is normally unnecessary, unless the bias is such that excessive heating could be experienced.
测试温度(25 ± 5 C)虽然有规定,但并不重要,因为电容对温度不是很敏感。通常不需要热管理,除非偏置可能导致过度加热。

Junction
capacitance
电容
is
principally
主要
voltage
电压
dependent:
依靠:
recognizing
识别
this,
the
small
signal
信号
test
测试
voltage
电压
shall
be such that doubling or halving it shall cause no error greater than the required accuracy of the
使其加倍或减半不应造成大于所需精度的误差
measurement
测量

Test Circuit
测试电路

The test circuit is shown in Figure 47.
测试电路如图 47 所示。

Figure 47 — Capacitance Test Circuit
图 47 — 电容测试电路

Thermal Characteristics Test
T 密封特性测试

The thermal resistance of a semiconductor device is a measure of the ability of its mechanical structure to provide for heat removal from the active semiconductor element. Therefore, thermal resistance is an important factor in establishing the power handling ability of a semiconductor device.
半导体器件的热阻是衡量其机械结构从有源半导体元件中去除热量的能力的指标。因此,热阻是建立半导体器件功率处理能力的重要因素。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 93
第 93 页

Thermal Characteristics Test (cont’d)
热特性测试 (续)

The transient thermal impedance of a semiconductor device is a measure of the ability of its mechanical structure to provide for heat storage as well as heat removal from the active semiconductor element. Therefore, transient thermal impedance is an indication of the short-pulse-duration power handling ability of a semiconductor device.
半导体器件的瞬态热阻是衡量其机械结构提供热存储以及从有源半导体元件中去除热量的能力的指标。因此,瞬态热阻是半导体器件短脉冲持续时间功率处理能力的指标。

One dimension heat flow is assumed in thermal resistance and transient thermal impedance specifications and such specifications must always include the two points or planes between which the thermal resistance or transient thermal impedance value applies. The term virtual junction temperature is here applied to indicate the temperature of the active semiconductor element for use in the device test methods and specifications. The reference temperature is usually established at one of the following:
在热阻和瞬态热阻规范中假设一维热流,并且此类规范必须始终包括热阻或瞬态热阻值适用的两个点或平面。此处使用术语虚拟结温来表示用于器件测试方法和规范的活性半导体元件的温度。参考温度通常在以下条件之一确定:

A specified point on the case A specified point on a lead The ambient air.
外壳上的指定点 引线上的指定点 环境空气。

When the semiconductor may be either single- or double-side cooled, as with a disk or axial lead package, the applicable type of cooling must be specified.
当半导体可以进行单面或双面冷却时,如圆盘或轴向引线封装,必须指定适用的冷却类型。

Terminology
T 人类学

Definitions
D 函数

Thermal
烫的
resistance
电阻
of
a semiconductor
半导体
device
装置
is
defined
定义
as
the
temperature
温度
difference
差异
between
之间
two
specified points or regions of the device divided by the power dissipated which causes the temperature difference under conditions of thermal
器件的指定点或区域除以在热条件下导致温差的功耗
equilibrium.
平衡。

Transient thermal impedance of a semiconductor device is defined as the change in temperature difference between two specified points or regions of the device at the end of a time interval divided by the step function change in power dissipation which causes the change in temperature difference during the same time interval.
半导体器件的瞬态热阻定义为器件时间间隔结束两个指定区域之间的温差变化除功耗阶跃函数变化会导致同一时间间隔的变化

Letter Symbols
符号后面 L

RthJR= Thermal resistance, junction to reference point, in oC/Watt.
RthJR = 热阻,结点到参考点,单位为 oC/瓦。

ZthJR(t)= Transient thermal impedance, junction to reference point, in oC/Watt. TJ= Virtual junction temperature, in oC.
ZthJR(t) = 瞬态热阻,结到参考点,单位为 o C/Watt。 时间 J = 虚拟结温度,单位为 oC。

TR= Reference point temperature, in oC.
TR = 参考点温度,单位为 oC。

PP(AV)= Magnitude of average heating power causing temperature difference TJ - TR, in Watts. IF(MET)= Value of metering current, in milliamperes.
PP(AV) = 引起温差 TJ - TR 的平均加热功率大小 ,以瓦特为单位。 F(MET) = 计量电流值,单位为毫安。

VF(MET) = Value of forward voltage at IF(MET) (the temperature sensitive parameter), in millivolts.
VF(MET) = I F(MET)(温度敏感参数) 处的正向电压值 ,单位为毫伏。

T(CAL) = Difference between two calibration temperatures applied to the reference point, in oC
T(CAL) = 施加到参考点的两个校准温度之间的差值,单位为 oC

VF(MET) = Difference in VF(MET) when measured at two calibration temperatures, in millivolts.
VF(MET) = 在两个校准温度下测量时 V F(MET) 的差异 ,单位为毫伏。

Other symbols are defined in clause 6.7.2 and clause 6.7.5.2 as they relate to the equations used.
第6.7.2条和第6.7.5.2条对其他符号进行了定义,因为它们与所使用的方程式有关。

JEDEC Standard No. 282B.02 Page 94
JEDEC 标准编号 282B.02 第 94 页

General Test Description
G 通用测试说明

Since virtual junction temperature is difficult to measure directly, a temperature sensitive device parameter is used as its indicator. Forward voltage at a small percentage of rated current, VF(MET), is the parameter used. The corresponding value of the low level forward current used in this test method is called metering current, IF(MET) .
由于虚拟结温难以直接测量,因此使用温度敏感器件参数作为指标。 电流百分比的正 电压 VF(MET) 是使用的参数。该测试方法中使用的低电平正向电流的相应值称为计量电流,IF(MET)

To measure thermal resistance, RthJR, or transient thermal impedance, ZthJR, measurements are taken to satisfy the appropriate equations given below
测量阻、RthJR 或瞬态热阻抗, Z thJR 测量需要满足下面给出的适当方程

Thermal Resistance
T 耐阻

Two methods of measuring junction temperatures in order to determine thermal resistance are described herein. For the first method, referred to as the constant Junction Temperature Method (external heating method), thermal resistance is defined as:
本文描述了两种测量结温以确定热阻的方法。对于第一种方法,称为恒结温法(外部加热法),热阻定义为:

where:
哪里:

TR1= Measured
量过的
reference
参考
(case,
(案例,
lead,
or
ambient)
环境)
temperature
温度
with
only
metering
计量
current
当前
flowing
流动
while external heat is applied such that T
同时施加外部热量,使 T
J , when T
,当 T
R1 is measured, equals T
被测量,等于 T
J when T
当 T
R2 is
measured.
量过的。

TR2= Measured reference (case, lead, or ambient) temperature when operated with power applied. IF(HTG)= Heating current used to produce the power dissipated in the active element of the diode.
TR2 = 通电作时测得的参考温度(外壳、引线或环境温度)。 F(HTG) = 用于产生二极管源元件中耗散功率的加热电流。

VF(HTG) = Measured value of forward voltage when IF(HTG) is applied. DF= Duty Factor
VF(HTG)= 施加 I F(HTG) 时的正向电压测量值 DF = 占空比

A more commonly used method is the Calibration Curve Method. Thermal resistance is defined as:
更常用的方法是校准曲线法。热阻定义为:

where:
哪里:

VF(MET)1= Value of the temperature-sensitive parameter at the reference temperature used in the test procedure.
VF(MET)1 = 测试程序中使用的参考温度下的温度敏感参数值

VF(MET)2= Value of the temperature-sensitive parameter immediately after the IF(HTG) pulse is terminated. DF= Duty Factor.
VF(MET)2 = I F(HTG) 脉冲终止后 立即的温度敏感参数 DF = 占比。

TR= Rise in reference point temperature due to the application of heating current. K= Thermal Calibration Factor = 𝛥𝑇(CAL)/𝛥𝑉F(MET)
TR = 由于施加加热电流而导致的基准点温度升高 K = 热校准系数 = ΔT(CAL)/ΔVF(MET)

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 95
第 95 页

Thermal Resistance (cont’d)
热阻 (续)

Data to calculate thermal resistance are obtained by using a switching circuit which applies pulsed power at a high duty factor. The metering voltage is read out and from this the virtual junction temperature at the end of each power pulse is determined.
计算的数据通过使用开关电路获得电路占空比施加脉冲功率 计量电压 并据确定每个功率脉冲末端虚拟

The calibration curve method, which requires a somewhat more involved calibration procedure uses simpler apparatus.
校准曲线方法需要更复杂的校准程序,使用更简单的设备。

Transient Thermal Impedance
Transient 热阻抗

Transient thermal impedance is defined as:
瞬态热阻定义为:

where:
哪里:

TR is the reference junction temperature prior to the heating pulse and T
是加热脉冲和 T 之前的参考结温
J(t) is the junction temperature at the
是结温
conclusion of the heating pulse of duration t.
持续时间 t 的加热脉冲的结论。

Either of these two methods may be used to determine transient thermal impedance. A typical curve is shown in Figure 48.
这两种方法中的任何一种都可用于确定瞬态热阻。典型曲线如图 48 所示。

Figure 48 — Typical Transient Thermal Impedance Characteristic
图48 — 典型瞬态热阻抗特性

JEDEC Standard No. 282B.02 Page 96
JEDEC 标准编号 282B.02 第 96 页

6.7.2.2 Transient Thermal Impedance (cont’d)
6.7.2.2 瞬态热阻抗(续)

Although the curve represents the junction temperature response to heating provided by the application of single rectangular power pulses of specified time durations, the curve can also be arrived at from the cooling curve of the active semiconductor element following interruption of continuously applied steady-state power. This cooling method is generally recommended for high current rectifier diodes since it is easier to perform than the heating pulse method which requires very high level power pulses to give significant junction temperature rise, particularly for short pulse durations.
虽然该曲线表示施加指定持续时间单个矩形功率脉冲提供的结温对加热的响应 曲线也可以连续施加稳态电源中断后有源半导体元件的冷却曲线。这种冷却方法通常推荐用于大电流整流二极管,因为它比加热脉冲方法更容易执行,加热脉冲方法需要非常高的功率脉冲才能产生显着的结温升,特别是对于短脉冲持续时间

Since measurements of thermal resistance, or of transient thermal impedance by the cooling method, involves high average power levels, considerable attention must be given to the heat dissipator used and the diode mounting arrangement
由于通过冷却方法测量热阻或瞬态热阻涉及较高的平均功率水平, 因此必须非常注意所使用的散热器和二极管安装布置

Heat Dissipator Requirements
对耗散器的要求

Stud- and Based-Mounted Types
StuD 和底座安装类型

An acceptable type of heat dissipator for the junction-to-case thermal resistance test on stud-mounted rectifier
用于螺柱安装整流器结到外壳热阻测试的可接受散热器类型
diodes
二极管
is
a flat
plate
盘子
with
the
test
测试
device
装置
centrally
集中
mounted
安装
on
it.
它。
For
stud
螺 柱
types,
类型
the
mounting
安装
shall be through a clearance hole in the plate with the device fastened by means of a nut. The clearance hole in the plate should only be large enough to allow free passage of the stud. The plate thickness should be no more
应穿过板上的间隙孔,该装置用螺母固定。板上的间隙孔应仅足够大,以允许螺柱自由通过。板厚不应再
than
one-half
二分之一
the
stud
螺 柱
length
长度
to
allow
允许
the
mounting
安装
nut
坚果
to
be
properly
适当地
attached.
附加。
The
mounting
安装
surface should be flat, burr-free, etc., as described in chapter 6. The device should be mounted using the manufacturer's recommendations regarding torque values, thread lubricants (or absence of same) and thermal compound applied to the device and heat dissipator
表面应平整、无毛刺等,如第 6 章所述。应使用制造商关于扭矩值、螺纹润滑剂(或没有相同的润滑剂)以及应用于设备和散热器的导热剂的建议来安装设备
interface.
接口。

For base-mounted rectifier diodes a similar flat plate should be used, drilled to accept the mounting hardware required by the DUT. The plate thickness should be the same as it would be for a stud-mounted rectifier of similar mounting dimensions at the seating plane.
对于底座安装的整流二极管 使用类似,钻接受 DUT 所需的安装硬件。板厚应与在座平面上具有相似安装尺寸的螺柱安装整流器的厚度相同

The conductor connected to the top terminal of a stud- or base-mounted rectifier diode should be such that its heat dissipation does not add to the virtual junction temperature of the rectifier diode under test. For solder terminal devices, it is recommended that the wire size used be the largest size doubled back to its point of origin is recommended. Devices with flexible top leads should have the lead bolted to a heavy copper bus.
连接到螺柱或底座安装整流二极管顶部端子的导体应使其散热不会增加被测整流二极管的虚拟结温。对于焊接端子设备,建议使用的导线尺寸是最大尺寸,建议将其原点加倍。具有柔性顶部引线的设备应将引线用螺栓固定在重型铜总线上。

For all types of devices there should be no forced air cooling of the device case, lead or terminal.
对于所有类型的设备,设备外壳、引线或端子都不应强制空气冷却。

Lead-Mounted Types
Lead-Mounted 类型

The recommended type of heat dissipator for the junction-to-lead thermal resistance test on axial lead type devices consists of two flat plates with the test device centrally mounted. The plate thickness should be much larger than the device lead diameter.
用于轴向引线型器件的结到引线热阻测试的推荐散热器类型由两个平板组成,测试设备安装在中央。板厚应远大于器件引线直径。

If forced air cooling is used, the cooling air should blow over the heat dissipators only and the device case and lead structures should be isolated. The connections to the leads should be such that heat dissipated there does not add to the virtual junction temperature of the diode under test; similarly, the leads should not be cooled so as to remove heat from the device.
如果采用强制风冷,冷却空气应仅吹过散热器,并应隔离器件外壳和引线结构 引线连接使那里散的热量不会增加被测二极管的虚拟结温;同样,引线不应冷却以带走器件的热量

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 97
第 97 页

Lead-Mounted Types (cont’d)
引线式 (续)

If natural convection cooling is used, the following conditions must be met:
如果采用自然对流冷却,必须满足以下条件:

The diode shall be mounted horizontally in a cubic enclosure of volume of not less than 0.028 cubic meter (1 cubic foot). If the diode is mounted on heat dissipators, e.g., square metal plates, they should be suspended vertically in the cubic enclosure. Each dimension of the enclosure should be a minimum of four times the dissipator height.
二极管应水平安装在体积不小于 0.028 立方米(1 立方英尺)的立方外壳中。如果二极管安装在散热器上,例如方形金属板,则应将它们垂直悬挂在立方外壳中。外壳的每个尺寸应至少为耗散器高度的四倍

There shall be no radiation sources in the enclosure other than the diode under test.
外壳内除被测二极管外不得有辐射源

The interior enclosure wall shall have a low reflectance finish. (Emissivity = 1.0).
内围墙应具有低反射率饰面。(发射率 =1.0)。

More than one diode may be put in the enclosure, but all must be mounted on the same horizontal plane and they shall be at least five case dimensions away from each other and from the walls. Only one may be energized at time.
外壳可以放置多个二极所有二极管都必须安装在同一水平,并且它们彼此之间和与墙壁的距离应至少为五个外壳尺寸。一次只能通电。

The ambient temperature should be measured by means of a thermocouple mounted at a distance approximately 1.3 cm (0.5 inch) directly beneath the device under test
环境温度应通过安装在被测设备正下方约 1.3 厘米(0.5 英寸)处的热电偶进行测量

Disk Types
Disk 类型

It is recommended that water cooled heat dissipator(s) be used with disk type rectifier diodes. Thermal compound
建议水冷散热器与盘式整流二极管一起使用。导热膏
shall
be
applied
应用的
between
之间
the
rectifier
正确
diode
二极管
pole
piece(s)
件数
and
the
mounting
安装
surface(s)
表面
of
the
heat dissipator(s), which shall be flat and smooth, as described in clause 6.7.1.1 The mounting force recommended by the device manufacturer shall be applied perpendicularly to the rectifier diode pole
散热器,应平整光滑,如第 6.7.1.1 条所述 设备制造商推荐的安装力应垂直于整流二极管极
pieces using a recommended clamping
使用推荐夹紧的件
arrangement.
安排。

Since thermal resistance is affected somewhat by junction temperature, it is recommended that the thermal resistance test be performed so that the test device virtual junction temperature is within 20% of its maximum rated value. The size of the heat dissipator used for the power application test must be chosen to accomplish this or a controlled temperature system must be employed. The approximate case, lead or ambient temperature, TR2, at which the device must be operated can be determined from the basic thermal resistance equation in clause 6.7.2.1.
由于热阻受结温的影响较大,建议进行测试 ,使 测试设备的虚拟温度 最大额定 20%。 用于电源应用测试 器的尺寸 必须 选择 完成此作,否则必须采用受控温度系统。设备必须作的近似情况、铅或环境温度 T R2 可以根据第 6.7.2.1 条中的基本热阻方程确定。

Determining Reference Temperature
D 确定参考温度

Stud- and Base-Mounted Rectifier Diodes:
螺柱和底座安装整流二极管:

The measurement of TR (or TR1 and TR2) is made by means of a thermocouple attached to the specified reference point. For details on reference points, types of thermocouples and methods of thermocouple attachment, see clause 7.8.
T R(或 TR1 和 TR2 的测量是通过连接到指定参考点的热电偶进行的。有关参考点、热电偶类型和热电偶连接方法的详细信息,请参阅第 7.8 条。

Lead-Mounted Rectifier Diodes:
引线式整流二极管:

The measurement of both TR1 and TR2 is made by means of a thermocouple attached to the diode on either the anode or the cathode lead at the specified reference point. Clause 7.8 has details on reference points, types of thermocouples and methods of thermocouple attachment.
T R1 和 TR2 的测量是通过连接到阳极或阴极引线上指定参考点的二极管的热电偶进行的 。第 7.8 条详细介绍了参考点、热电偶的类型和热电偶连接方法。

JEDEC Standard No. 282B.02 Page 98
JEDEC 标准编号 282B.02 第 98 页

Determining Reference Temperature (cont’d)
确定参考温度 (续)

Disk-Type Rectifier Diodes:
盘式整流二极管:

Single Side Cooling: The device is mounted between a flat plate of minimum size and thickness and a heat dissipator which is usually liquid cooled. See clause 7.8 for details on reference points, type of thermocouples and methods of thermocouple attachment. The anode is cooled by placing the anode side of the rectifier against the heat dissipator while the opposite (cathode) side is not cooled. TR1 and TR2 are obtained from a thermocouple located in the anode reference point. To measure the thermal resistance with the cathode side cooled the disk type rectifier is removed, turned over and remounted. The thermocouple used to obtain TR1 and TR2 is now located on the cathode pole piece of the rectifier diode.
单侧冷却:该设备安装在最小尺寸和厚度的平板与通常采用液冷的散热器之间。有关参考点、热电偶类型和热电偶连接方法的详细信息,请参阅第 7.8 条。 通过将整流器的阳极侧靠在散热器上来冷却阳极,而另一侧(阴极)则不冷却。TR1 和 TR2 是从位于阳极参考点的热电偶获得的。为了测量阴极侧冷却的热阻,将盘式整流器拆下、翻转并重新安装。 用于获得 TR1 和 TR2 的热电偶现在位于整流二极管的阴极片上。

Double Side Cooling: The disk type rectifier diode is placed between two heat dissipators of equal cooling efficiency with thermocouples for measuring TR1 and TR2 located on both the anode and cathode pole pieces. Thermal resistance based on both the anode pole piece and the cathode pole piece thermocouple readings should be obtained and then averaged to determine the double side cooled thermal resistance. Alternatively, single side cooled values of TR1 and TR2 can be used to calculate the double side cooled value by using a parallel thermal resistance analog.
双面冷却:盘式整流二极管放置在两个冷却效率相等的散热器之间 用于测量 T R1 和 T R2 的热电偶位于两个 阳极 片。 获得基于阳极片和阴极极片热电偶读数的热阻 然后平均值确定 冷却热 电阻。 或者, T R1 和 T R2 的单侧冷却值可用于使用并联热阻模拟来计算双侧冷却值

Thermal Resistance Test Methods
T 耐热性测试方法

These test methods consist of two distinct steps; a power application test and a calibration test.
这些测试方法包括两个不同的步骤;电源应用测试和校准测试。

Constant Junction Temperature Test
onstant 结温测试
Method
方法

Clause 6.7.5.2 through clause 6.7.5.5 describe the constant junction temperature test method.
第 6.7.5.2 条至第 6.7.5.5 条描述了恒结温测试方法。

Test Procedure
T程序

Step 1 - Power Application Test
第 1 步 - 电源应用测试

First, the device is operated with power intermittently applied, but at a very high duty factor. During the interval between power pulses (when the heating current has been removed), the metering current continues to flow and the forward voltage is measured. The diode current and voltage waveforms are shown in Figure 49 for a 60 Hz repetition rate. For testing very high current devices, a slower repetition rate may be required (thereby lengthening time interval t1’ - t1) in order that the interval t4 - t1 can be made greater than
首先,该设备在间歇性通电的情况下运行,但占空比非常高。功率脉冲之间的间隔期间( 当加热电流 移除 ), 电流 继续流动并测量正向电压。二极管电流和电压波形如图 49 所示 ,重复频率为 60 Hz。对于测试非常高电流的器件,可能需要较慢的重复速率 (从而延长时间间隔 t1' - t1),以便使间隔 t4 - t1

0.333 ms and still meet the requirement of a minimum duty factor of 98%. The metering current which
0.333 ms,但仍满足 98%的最小占空比的要求。计量电流

flows continuously must be held constant. This is particularly important during the metering interval between power pulses because the test device impedance will vary considerably during that time.
连续流量必须保持恒定。这在功率脉冲之间的计量间隔内尤为重要,因为在此期间测试设备的阻抗会发生很大变化。

It would be desirable to arrive at the diode virtual junction temperature at the exact instant when heating current removal is initiated since the virtual junction temperature will be maximum at that time. However, this is not possible by direct measurement. First it takes a finite time for the diode current to decay from the heating current value to the metering current value (t2 - t1 in Figure 49). This fall time must be controlled and the rate of forward current decay is listed as a test condition. Secondly, transients will exist in the forward voltage waveform for some time after the metering current value has been reached. These induced voltages are due primarily to the reduction in forward current and may also cause some forward voltage waveform distortion. Consequently the forward voltage cannot be used as an indicator of virtual junction temperature until after these transients have subsided.
最好在开始加热电流去除的确切时刻达到二极管虚拟结温度,因为此时虚拟结温度将达到最高。然而,这 无法 通过直接测量。 首先 二极管电流 从加热电流值到计量电流值需要有限的时间 (t2 - 图 49 中的 t 1)。必须控制此下降时间,并将正向电流衰减率列为测试条件。其次,在达到计量电流值后,正向电压波形中会存在一段时间的瞬变。这些感应电压主要是由于正向电流的减少,也可能导致一些正向电压波形失真。因此,在这些瞬变消退之前,正向电压不能用作虚拟结温的指标。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 99
第 99 页

6.7.5.2 Test Procedure (cont’d)
6.7.5.2 测试程序(续)

The time t3 on the waveforms represents the shortest time after the removal of heating current at which forward voltage may be measured. Time t3 should be expected to be in the range of 100 µs to 200 µs for diodes up to DO-205AA(DO-8) size and up to 400 µs and longer for larger devices. For a particular device type, the time t3 is best found by performing the test at various power levels and noting the shortest time where the measured value of thermal resistance is essentially independent of the power dissipated. Power levels of 25% above and below the power corresponding to the specified heating current are recommended for this determination.
波形上的时间 t 3 表示加热电流消除后可以测量正向电压的最短时间。 对于最大 DO-205AA(DO-8) 尺寸的二极管,时间 t 3 应在 100 μs 至 200 μs 的范围内 ,对于较大的器件,时间 t 3 应在 400 μs 或更长的范围内。对于特定的设备类型, 最好通过在各种功率水平下进行测试并注意热阻测量值基本上与功耗无关的最短时间来找到时间 t 3。建议在与指定加热电流相对应的功率高和低 25% 的功率水平上进行此测定。

Since some active element cooling occurs between the time when the heating current is removed (t1) and time t3, the thermal resistance value determined from a voltage measurement at t3 will be in error. It is therefore desirable to extrapolate the voltage waveform back to t1 from t3 based on the shape of the waveform from t3 to t4 where the waveform is a true representation of the junction temperature cooling curve.
由于一些有源元件冷却发生在加热电流被移除的时间 (t1) 和时间 t 3 之间 ,因此根据 t 3 的电压测量确定的热阻值将出现误差。因此, 最好根据从 t 3 到 t4 的波形形状, 将电压波形从 t3 外推回 t 1 其中波形是结温冷却曲线的真实表示

Figure 49 — Current and Voltage Waveforms During Thermal Resistance Test
图 49 — 热阻测试期间的电流和电压波形

JEDEC Standard No. 282B.02 Page 100
JEDEC 标准编号 282B.02 第 100 页

6.7.5.2 Test Procedure (cont’d)
6.7.5.2 测试程序(续)

Time constants of the device cooling curve are relatively long. Linear extrapolation of the actual cooling curve from time t3 back to time t1 results in little error and is recommended. Figure 50 illustrates the extrapolation.
器件冷却曲线的时间常数相对较长。时间 t3 到时间 t 1 的实际冷却曲线线性外推 ,误差很小,建议这样做。图 50 说明了外推。

Figure 50 — Illustration of Forward Voltage Waveform Extrapolation
图50 — 正向电压波形外推示

The heating current magnitude should be between one and two and one-half times the average current rating of the device. It must be applied for a time duration long enough for the diode active element and case to reach thermal equilibrium. The DUT junction temperature shall be considered stabilized when halving the time between the initial application of power and the taking of the reading causes no change in the indicated results within the required accuracy of measurement. The metering current magnitude should be low enough so that the resultant active element heating is negligible. A recommended procedure is to use 0.1% to 1.0% of rated current to put the diode in the linear portion of its voltage-temperature characteristic.
加热电流大小设备平均额定电流二分之一之间 。它必须施加足够长的时间,以便二极管有源元件和外壳达到热平衡。当将初始通电读取读数之间的时间减半时,应认为 DUT 结温稳定,导致指示结果要求精度没有变化测量。 计量电流幅度足够,以便由此产生的有源元件加热可以忽略不计。推荐的程序是使用额定电流的 0.1%至 1.0%将二极管置于其电压-温度特性的线性部分。

In addition to recording the metering voltage waveform, the value of heating current, IF(HTG), and the diode reference (case, lead or ambient) temperature are to be recorded during Step 1.
除了记录计量电压波形外, 还应在步骤 1 中记录加热电流值、I F(HTG) 和二极管基准温度(外壳、引线或环境温度)。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 101
第 101 页

Test Procedure (cont’d)
测试程序 (续)

Step 2 - Calibration Test:
第 2 步 - 校准测试:

The power application test (Step 1) produces a value of forward voltage at the metering current level (extrapolated back to time t1) which corresponds to the maximum virtual junction temperature attained.
电源应用测试(步骤 1)在计量电流水平( 外推回时间 t1)下产生一个正向电压值,该值应于达到的最大虚拟结温。

Step 2 consists of operating the test device with no significant power dissipation so that for all practical purposes, the diode virtual junction temperature and the reference temperature are equal. The diode is operated at the same value of metering current as in Step 1. The forward voltage is monitored while the diode is externally heated on a temperature controlled block or in an oven until the measured value of forward voltage equals the extrapolated value, VF(t1), obtained previously. When the forward voltage has stabilized, the rectifier diode reference temperature is recorded. This is the value of TR1. In the event that the determined value (in ºC) is not within 20% of maximum rated temperature, which is a specified test condition, Step 1 must be repeated using a different heating current amplitude. However, since thermal resistance is not strongly dependent upon junction temperature, the thermal resistance value computed may be used as a fairly accurate estimate for the second trial
步骤 2 包括在没有明显功耗的情况下作测试设备,以便出于所有实际目的,二极管虚拟结温度和基准温度相等。二极管以与步骤 1 相同的计量电流值运行。当二极管 烘箱 外部加热时,监测正向电压, 直到 测量 正向电压等于之前获得的外推值 VF(t1)。 当正向电压稳定时,记录整流二极管参考温度。这是 TR1 的值 。如果确定值(以ºC 为单位)不在最高额定温度的 20%以内,这是指定的测试条件,则必须使用不同的加热电流幅度重复步骤 1。然而,由于热阻对结温的依赖性不强,因此计算出的热阻值可以用作第二次试验的相当准确的估计

Test Circuit
T电路

A basic circuit which may be used for testing the rectifier diode in Step 1 with high-level (heating) current present is shown in Figure 51. The active element of the device under test is heated by a direct current having
图 51 显示了可用于测试步骤 1 中存在高电平(加热)电流的整流二极管的基本电路。被测设备的有源元件由具有
an
rms
均方根
ripple
脉动
content
内容
of
5% or
less
which
is
passed
通过
continuously
不断
through
通过
the
device
装置
under
test
测试
except for the metering periods. During the metering periods, the junction temperature is determined by reducing the forward current to the metering current value and measuring the forward voltage. This circuit will produce the forward current and forward voltage waveshapes shown in Figure 49. Variations of this circuit that produce the same waveforms are
计量周期除外。在计量期间,结温是通过将正向电流降低到计量电流值并测量正向电压来确定的。该电路将产生图49所示的正向电流和正向电压波形。产生相同波形的电路的变体是
permissible.
允许。

Control of the heating current through the device under test is accomplished by SCR1 and SCR2 (refer to Figure 51) which functions as a flip-flop switching with a sufficient repetition rate to facilitate oscillography observations. Current is carried by SCR1 only during the forward voltage metering interval so this SCR may be considerable smaller than SCR2. Capacitor C, which is charged by a low current dc power supply, has the function of turning off SCR2 when SCR1 is triggered.
通过被测器件的加热电流控制由 SCR1 和 SCR2(参见 51) 完成, 它们充当 触发 开关, 具有 足够的 重复 以促进示波观察 电流 仅在正向电压计量间隔期间由 SCR 1 承载 因此该 SCR 可能 比 SCR 2 小得多 。由低电流直流电源充电的电容器 C 具有触发 SCR 1 时关闭 SCR 2 的功能

Unavoidable inductance in the heating current power supply and associated circuit wiring makes it impossible to turn off the heating current abruptly without creating transient voltages which would interfere with the measurement of forward voltage. To overcome this, the diverter circuit consisting of rectifier diodes D1 through D5 is included so that heating current is not interrupted by SCR2, but simply finds a different path. The inductor L may be included to make certain that the heating current does not vary while it transfers from one path to the other. This inductor also serves to reduce, to a negligible amount, undesired flow of current C through the device under test and the heating current supply. The inductance in the diverter circuit should be kept low so that after SCR1 begins to conduct, all heating current will be diverted away from the device under test fast enough to allow the specified rate of forward current decay to be achieved. In Figure 51 the portion of the circuit in which inductance must be carefully controlled is indicated by heavy lines.
加热电流、电源和相关电路接线中不可避免的电感使得在不产生瞬态电压的情况下无法 突然关闭 加热电流 而瞬电压 干扰正向电压测量 为了克服这个问题, 包括整流二极管 D1 到 D 5 组成 分流器电路 以便加热电流不会被 SCR2 中断 ,但只是找到了一条不同的路径。 可以 包括电感器 L 以确保 加热电流 不会变化 从一条路径转移到另一条路径时 。 该电感器还用于将流经器件 加热电流电源 电流 C 减少到可以忽略不计的量。 分流器电路中的 电感应保持在较低水平,以便在 SCR1 开始导通后,所有加热电流将以足够快的速度从被测设备转移出去,以允许达到指定的正向电流衰减速率。在图 51 中, 电路中必须仔细控制电感的部分用粗线表示。

JEDEC Standard No. 282B.02 Page 102
JEDEC 标准编号 282B.02 第 102 页

Test Circuit (cont’d)Figure 51 — Thermal Resistance test Circuit (High-Current Devices)
测试电路 (续) 图 51 — 热阻测试电路(大电流器件)

In order to observe the forward voltage of the test device during the metering current interval, the use of a differential comparator oscilloscope preamp is recommended. With care, this should allow magnification of the forward voltage waveform during the metering current interval without distortion or zero shift being introduced due to the presence of the heating voltage waveform. Care must be taken to ensure that distortion or zero shift is not significant compared to the signal being measured. A DSO or oscilloscope camera is extremely useful for recording the waveform so that the pictures can be used to obtain the data for the necessary extrapolation of the metering voltage waveform.
为了观察测试设备在计量电流间隔期间的正向电压,建议使用差分比较器示波器前置放大器。小心翼翼地,这应该允许在计量电流间隔内放大正向电压波形,而不会加热电压波形存在引入失真或零移。 必须注意确保被测信号相比,失真或零偏移并不显着。DSO 或示波器相机对于记录波形非常有用,以便可以使用图片获取数据,以便对计量电压波形进行必要的外推

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 103
第 103 页

Test Conditions to be Specified
具体条件

Metering Forward Current Amplitude= A dc
计量正向电流幅度 = A dc

Heating Forward Current Amplitude= A pk
加热正向电流幅度 = Apk

Heating Forward Current Duty Factor= 98% min.
加热正向电流占空比 = 98%min。

Heating Forward Current Repetition Rate= Hz
加热正向电流重复 =Hz

Rate of Forward Current Decay (90% point to metering current level)
正向电流减率 (90% 点到计量电流水平)

(See NOTE)= 100 A/µs min.
(见注)= 100 A/μsmin。

Measurement time t3
测量时间 t 3

(After metering current level is reached.)= µs
(达到计量电流水平后 = 微秒

Total Heating Time Duration= s min.
加热持续时间 = s 分钟。

Reference Temperature Measurement Point (Point on Case or Pole Piece, or Point on Lead at stated distance from Device Body.
参考温度测量点(外壳或极片上的点,或引线上距设备主体规定距离的点

Refer to clause 7.7)=
请参阅第 7.7 条)=

iReference Temperature, TR1 (ºC)
i 参考温度,TR1(ºC)

Maximum rated TJ + 0% to 20%.=
最大额定 TJ + 0% 至 20%。=

NOTE It may be necessary to take exception to this condition. This is particularly true for large rectifier diodes, which are operated at heating currents in excess of 100 A . When exception is taken, the actual rate of decay used must be
注意:可能有必要对这种情况进行例外处理。对于在超过 100 A 的加热电流下运行的大型整流二极管尤其如此。当采取例外时,实际使用的衰减率必须是
specified.
指定。

Characteristic to be Determined
C 恶劣待

Steady State Thermal Resistance,
稳态热阻 /

Junction to Specified Reference Point= ºC/W
指定参考的结 =ºC/W

Calibration Curve Test Method
C 词汇曲线测试方法

Clause 6.7.5.7 through clause 6.7.5.10 describe the calibration test method
第 6.7.5.7 条至第 6.7.5.10 条描述了校准测试方法

Test Procedure
T程序

Step 1 - Power Application Test:
第 1 步 - 电源应用测试:

The power application test shall be performed in two parts. For both portions of the test, the reference point (case or lead) temperature shall be held constant at a specified value. (a) The value of the temperature- sensitive parameter VF(MET) shall be measured for the specified metering current IF(MET) at TR. (b) The diode under test shall then be operated with heating power (PF(AV)) intermittently applied at a greater than 98% duty factor, maintaining the reference point at TR. The temperature-sensitive parameter VF(MET) shall be measured during the interval between heating pulses (<300 µs) with constant measuring current IF(MET) applied.
电力应用测试 部分进行 对于测试 两个部分 参考点(外壳或引线)温度应保持在指定值恒定。(a) 温度敏感参数 VF(MET) 的值应测量 TR规定的计量电流 IF(MET)。(b) 然后,被测二极管应以大于 98% 的占空比间歇施加加热功率 (PF(AV)) 运行,将参考点保持在 TR。温度敏感参数 VF(MET) 应在加热脉冲 (<300 μs) 之间的间隔内测量,并施加恒定测量电流 IF(MET)。

If, as can be the case with lead mounted devices, it is not possible to maintain the reference point (lead) temperature constant during the power application test, the difference in the reference point (lead) temperature at which VF(MET)1 and VF(MET)2 are measured should be recorded.
如果像引线安装器件一样,在电源应用测试期间无法保持基准点(引线)温度恒定,则 应记录测量 VF(MET)1VF(MET)2 的基准点(引线)温度的差值。

JEDEC Standard No. 282B.02 Page 104
JEDEC 标准编号 282B.02 第 104 页

Test Procedure (cont’d)
测试程序(续)

This lead temperature difference (TR) divided by the heating power (PF(AV)), shall be subtracted from the calculated thermal resistance to correct for the error. Refer to the calibration curve method equations for thermal resistance, RthJR, in clause 6.7.2.1.
应从计算的热阻中减去该导线温差 (TR) 除以加热功率 (PF(AV),以校正误差。请参阅第 6.7.2.1 条中的热阻 RthJR 校准曲线方法方程。

In the case of thermally unsymmetrical devices where the reference point temperature on one lead is higher than on the other the correction factor should be based on the average of the two reference point temperatures.
对于热不对称器件,其中一根引线上的参考点温度高于另一根引线上的基准点温度,校正系数应基于两个基准点温度的平均值。

It would be desirable to arrive at the diode virtual junction temperature at the exact instant when heating current removal is initiated since the virtual junction temperature will be maximum at that time. However, as explained in clause 6.7.5.2, this is not possible.
最好在开始加热电流去除的确切时刻达到二极管虚拟结温度,因为此时虚拟结温度将达到最高。然而,正如第 6.7.5.2 条所解释的,这是不可能的。

Time t3 represents the shortest time after the removal of heating current that forward voltage may be measured. (Figure 49) Time t3 should be expected to be in the range of 10 µs to 50 µs for lead mounted diodes. For a particular device type, time t3 is best found by performing the test at various power levels and noting the shortest time where the measured value of thermal resistance is essentially independent of the power dissipated. Power levels of 25% above and below the power corresponding to the specified heating current are recommended for this determination.
时间 t 3 表示加热电流消除后可以测量正向电压的最短时间。(图 49) 对于引线安装二极管,时间 t 3 应在 10 μs 至 50 μs 的范围内。对于特定设备类型,最好通过在各种功率水平下进行测试并注意热阻测量值基本上与功耗无关的最短时间来找到时间 t 3。建议在与指定加热电流相对应的功率高和低 25% 的功率水平上进行此测定。

In
general,
常规
since
因为
some
一些
active
积极
element
元素
cooling
冷却
occurs
发生
between
之间
the
time
时间
when
什么时候
the
heating
加热
current
当前
is
removed
删除
and
time
时间
t
3, the
thermal
烫的
resistance
电阻
value
价值
determined
确定
from
a voltage
电压
measurement
测量
at
t
3 will
be
found
发现
in
error.
错误。
Nevertheless, in the case of lead mounted diodes this error in the calculated junction-to-lead thermal resistance is negligible since most of the thermal resistance (>95%) is in the terminal pins and leads of the device under test. The junction-to-lead thermal resistance may therefore be calculated from the value of the
然而,对于引线安装二极管,计算的结引线热阻中的误差可以忽略不计,因为大部分热阻 (>95%) 位于被测器件的端子引脚和引线中。因此,结到引线的热阻可以根据
temperature- sensitive parameter V
温度敏感参数 V
F(MET) as measured at time t
在时间 t 测量
3. For other than lead mounted diodes the
.对于引线安装二极管以外的
procedure given in clause 6.7.5.2 should be
第6.7.5.2条中给出的程序应为:
followed.
跟着。

The heating current magnitude should be between one and two and one-half times the average current rating of the device. It must be applied for a time duration long enough for the diode active element and case to reach thermal equilibrium. The DUT junction temperature shall be considered stabilized when halving the time between the initial application of power and the taking of the reading causes no error in the indicated results within the required accuracy of measurement. The metering current magnitude should be low enough so that the resultant active element heating is negligible. A recommended procedure is to use 0.1% to 1.0% of rated current to put the diode in the linear portion of its voltage-temperature characteristic.
加热电流大小设备平均额定电流二分之一之间 。它必须施加足够长的时间,以便二极管有源元件和外壳达到热平衡。当将初始通电和读取读数之间的时间减半时,应认为 DUT 结温是稳定的 ,在所需的测量精度范围内不会导致指示结果出现误差 计量电流幅度足够,以便由此产生的有源元件加热可以忽略不计。推荐的程序是使用额定电流的 0.1%至 1.0%将二极管置于其电压-温度特性的线性部分。

Step 2 - Measurement of the Temperature Coefficient of the Temperature-Sensitive Parameter (Calibration)
第 2 步 - 测量温度敏感参数的温度系数(校准)

The temperature coefficient of the temperature-sensitive parameter shall be measured utilizing the specified measuring current IF(MET) used during the Power Application Test. Under this condition TRTJ. The device under test shall be externally heated in an oven or on a temperature-controlled block. The reference point temperature range used during calibration shall encompass the temperature range encountered in the Power Application Test. The value of the temperature-sensitive parameter temperature coefficient VF(MET)
温度敏感参数 温度系数 使用电源期间使用的指定测量电流 IF(MET) 进行 测量 应用测试。在这种情况下 测设备应在烘箱或温控块上进行外部加热。校准期间使用的参考点温度范围应包括电源应用测试中遇到的温度范围。温度敏感参数温度系数的值VF(MET)

/ T(CAL) shall be calculated from the calibration curve
/ T(CAL)从校准曲线计算

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 105
第 105 页

Test Circuit
T电路

The test circuit described in clause 6.7.5.3, Figure 51, may be used when testing high current devices by the calibration curve test method. For lead-mounted rectifier diodes, the circuit shown in Figure 52 is more appropriate.
6.7.5.3 51 描述测试电路可用于通过校准曲线测试方法测试大电流设备。对于引线式整流二极管,图 52 所示的电路更为合适。

Figure 52 — Thermal Resistance Test Circuit (Low Current Devices)
图 52 — 热阻测试电路(低电流器件)

The circuit is controlled by a timing pulse with a width of <300 s and a repetition rate <60 Hz (sufficient to facilitate oscillography observations). When the voltage level of the timing pulse is zero, the transistor Q is off and the forward current through the diode under test (DUT) is the sum of the constant heating current and the constant measuring current. Biasing transistor Q on shunts the heating current to ground and effectively eliminates conduction through D1 - DN
该电路由宽度为 <300 s 的定时脉冲控制 ,重复率为 <60 Hz(足以促进示波观察)。当定时脉冲的电压电平为零时,晶体管 Q 关断,通过被测二极管(DUT)的正向电流是恒定加热电流和恒定测量电流的总和。偏置晶体管 Q 将加热电流分流到地,并有效消除通过 D1 - DN 的传导
.

The sample-and-hold unit (or cathode ray oscilloscope) is triggered when the heating current is removed and is used to monitor the forward voltage of the diode under test. During calibration (Step 2), switch S is open.
样保持单元 (或阴极射线示波器)加热电流被移除触发 用于监测二极管正向电压 在校准期间 (步骤 2), 开关 S 打开

JEDEC Standard No. 282B.02 Page 106
JEDEC 标准编号 282B.02 第 106 页

Test Conditions to be Specified
具体条件

Metering Current Amplitude= A dc
计量电流幅度 = A 直流

Heating Current Amplitude= pk
加热电流幅度 = pk

Heating Current Duty Factor= 98% Min.
加热电流占空比 = 98%Min。

Heating Current Repetition Rate= Hz Max.
加热电流重复 = Hz max。

Rate of Forward Current Decay
正向电流衰减率

(90% Point to Metering Current Level)= 5 A/µs Min.
(90% 点到计量电流水平)= 5 A/μs 最小值

Measurement time t3
测量时间 t 3

(After Metering Current Level is reached)= s
(达到计量电流水平后 =s

Total Heating Time Duration= s Min.
加热持续时间 = s 分钟。

Reference Point Temperature Measurement Point (Point on case or lead at stated distance from device body
参考点温度测量点(外壳或引线上的点,距设备主体规定距离

(See clause 7.8)=
(见第 7.8 条)=

Reference Point Temperature for
参考点温度

Power Application Test= ºC
电源应用测试 =ºC

6.7.6.10Characteristic to be Determined
6.7.6.10待确定的特性

Steady State Thermal Resistance,
稳态热阻 /

Junction to Specified Reference Point= ºC/W
指定参考的结 =ºC/W

6.7.6 Transient Thermal Impedance Test Methods
6.7.6 瞬态热阻抗测试方法

Measurement of transient thermal impedance by the Heating Pulse Method is very similar to the measurement of thermal resistance, except that the heating current is applied as a single pulse. For the Cooling Curve Method, a steady-state condition is established under dc power conditions; upon power removal the forward voltage with metering current applied is displayed on an oscilloscope and recorded.
通过加热脉冲法测量瞬态热阻与测量热阻非常相似,不同之处在于加热电流作为单个脉冲施加。对于冷却曲线法,在直流电源条件下建立稳态条件;断电后,施加计量电流的正向电压显示在示波器上并记录下来。

6.7.6.1 Heating Pulse Test Method Procedure
6.7.6.1 加热脉冲测试方法程序

Considerations to be given to the metering current and proper extrapolation of the metering voltage waveform are discussed in 5.7.5.2. Two distinct steps are utilized; a power application test and a calibration test.
5.7.5.2 讨论了计量电流和计量电压波形的正确外推的注意事项 。使用两个不同的步骤 ; 电源应用测试校准测试。

Step 1 - Power Application Test
第 1 步 - 电源应用测试

The heating current is applied as a single pulse approximately rectangular in shape and of specified width, corresponding to the time value for which the transient thermal impedance is to be measured. Care must be taken, when applying heating current pulses, to avoid exceeding device non-repetitive surge current capabilities.
加热电流以形状近似矩形和指定宽度的单个脉冲形式施加,对应于要测量瞬态热阻抗的时间值。在施加加热电流脉冲时,必须小心避免超过器件的非重复浪涌电流能力。

The heating pulse current amplitude should be high enough to raise the test device virtual junction temperature to its maximum rated value +0% - 20% in ºC. Since the transient thermal impedance is lower for short pulse widths than for long pulse widths, a higher amplitude current pulse is required to heat the device junction when the pulse width is short. If the current pulse is so short that an excessive current amplitude would be required to attain rated junction temperature, external heating of the test device to an intermediate temperature may be employed.
加热脉冲电流幅度应足够高,以将测试设备的虚拟结温度提高到其最大额定值+0%-20%(以ºC 为单位)。由于短脉冲宽度的瞬态热阻低于长脉冲宽度,因此当脉冲宽度较短时,需要更高幅度的电流脉冲来加热器件结。如果电流脉冲太短,需要过大的电流幅度才能达到额定结温,则可以采用将测试器件外部加热到中间温度。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 107
第 107 页

6.7.6.1 Heating Pulse Test Method Procedure (cont’d)
6.7.6.1 加热脉冲测试方法程序(续)

For all but very short pulse widths it is generally necessary to employ an external heat dissipator to prevent appreciable device case temperature rise during the interval when power is applied. When an external heat dissipator is employed, the information regarding heat dissipators, mounting, and connection to the top terminal given in clause 6.7.3 should be adhered to.
对于除非常短的脉冲宽度外的所有脉冲宽度,通常需要使用外部散热器,以防止在通电间隔期间器件外壳温度明显升高。当使用外部散热器时,应遵守第 6.7.3 条中给出的有关散热器、安装和与顶部端子的连接的信息。

When an approximate value for the test device transient thermal impedance is known, the equation for ZthJR(t) in clause 6.7.2.2 may be employed to calculate the approximate value of heating current required to raise the device virtual junction temperature to maximum rated value; otherwise, the required current magnitude must be arrived at by trial and error.
已知测试设备瞬态 近似 Z6.7.2.2 中的 thJR(t)可用于计算 所需的电流 将设备虚拟提高最大额定值; 否则, 必须通过反复试验来达到所需的电流幅度

The measured values of heating current magnitude, IF(HTG), heating voltage magnitude, VF(HTG), and rectifier diode reference temperature, TR2, all must be recorded during Step 1. If the heating current waveform deviates much from a truly rectangular pulse, then graphical integration of the product of the heating current and heating voltage waveforms must be employed to determine the rectifier diode power dissipation.
在步骤 1 中, 必须记录加热电流幅度 IF(HTG)、加热电压幅度 VF(HTG) 和整流二极管参考温度 TR2 的测量值 。如果加热电流波形真正的矩形脉冲 很大偏差 图形积分 的乘 必须采用加热电流和加热电压波形来确定整流二极管的功耗

It must be recognized that thermocouple measuring system response time may cause some error in the measurement of TR2 for mid-range heating pulse widths. This may cause discontinuity in a transient thermal impedance curve obtained for a wide range of pulse widths. Also, because of an inability of the heat dissipator to respond to the mid-range heating pulse widths, variations in TR2 may have to be compensated for.
必须认识到,热电偶测量系统响应时间可能会导致 T R2 在测量 中量程加热脉冲宽度出现一些误差。 可能会导致 很宽的脉冲宽度范围内获得的瞬态热阻曲线 连续。 此外,由于散热器无法响应中档加热脉冲宽度, 因此可能需要补偿 T R2 的变化。

As
noted,
著名的
Step
1 includes
包括
a metering
计量
voltage
电压
measurement
测量
that
is
used
使用
to
determined
确定
device
装置
virtual
虚拟
junction temperature at the exact instant when heating current removal is initiated since the virtual junction temperature
自虚拟结温以来,启动加热电流消除的确切时刻的结温
will
be
maximum
最大
at
that
time.
时间。
However,
然而
this
is
not
possible
可能
by
direct
直接
measurement;
测量;
because
因为
of
transients which exist on the forward voltage waveform, readout cannot commence until time t
正向电压波形上存在的瞬变,读出要到时间 t 才能开始
3. It is necessary to use linear extrapolation from time
.有必要使用时间的线性外推
t
3 to t
到 t
1 for most accurate results. For an illustration of the
以获得最准确的结果。对于
waveforms and the extrapolation required, see Figure 53. The discussion in clause 6.7.5.1 provides further details.
波形和所需的外推,见图53。第6.7.5.1条中的讨论提供了进一步的细节。

Step 2 - Calibration Test
第 2 步 - 校准测试

The power application test (Step 1) produces a value of forward voltage at the metering current level (extrapolated back to time t1) which corresponds to the maximum virtual junction temperature attained. Step 2 consists of operating the test device with no significant power dissipation so that for all practical purposes, the rectifier diode virtual junction temperature and the reference temperature will be equal. The procedure is the same as given for the measurement of thermal resistance in clause 6.7.5.2 under “Step 2 - Calibration Test”. The value obtained is TR1. In the event that the determined value of TR1 (in ºC) is not within the range 100% to 80% of rated junction temperature, which is a specified test condition, Step 1 must be repeated using a higher or lower heating pulse current amplitude as may be required. The transient thermal impedance can now be calculated using the equation for ZthJR(t) in clause 6.7.2.2.
电源应用测试(步骤 1)在计量电流水平( 时间 t1)产生一个正向电压值,值对 最大虚拟 达到的温度 2 包括 没有显着功耗 的情况下 测试设备 ,以便 对于所有 实际用途,整流二极管虚拟结温与参考温度相等。该程序与第 6.7.5.2 条“第 2 步 - 校准测试”中给出的热阻测量程序相同 。得到的值是 TR1。 如果 TR1 的确定值 (以 ºC 为单位)不在额定 100% 80% 范围内 这是指定的 测试条件, 必须 使用更高更低加热脉冲电流幅度重复 步骤 1 根据 需要。 现在可以使用第 6.7.2.2 条中的 Z thJR(t) 方程计算瞬态抗。

JEDEC Standard No. 282B.02 Page 108
JEDEC 标准编号 282B.02 第 108 页

Heating Pulse Test Method Procedure (cont’d)NOTE V
加热脉冲测试方法程序 (续) 注 V

F(t1) is equal to VF(MET)2 in the equation for ZthJR(t) in clause 6.7.2.2 .
F(t1) 等于第 6.7.2.2 条中 Z thJR(t) 方程中的 V F(MET)2

Figure 53 — Current and Voltage Waveforms for Heating Pulse Transient Thermal Impedance Test
图 53 — 加热脉冲瞬态热阻抗测试的电流和电压波形

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 109
第 109 页

Cooling Curve Test Method Procedure
Cooling 曲线测试方法程序

Two separate steps are also required for this method: a power application test and a calibration test. Step 1 - Power Application Test
该方法还需要两个单独的步骤:电源应用测试和校准测试。第 1 步 - 电源应用测试

The heating current is applied as a continuous current for a time duration long enough to establish thermal equilibrium and then is interrupted. The magnitude of the heating current may range from the average current rating of the device up to two and one-half times this rating.
加热电流作为连续电流施加足够长的时间以建立热平衡 然后中断 加热电流大小范围可以设备的平均额定电流到该额定电流的两倍半。

It is recommended that the transient thermal impedance test be performed so that the test device virtual junction temperature (in ºC) before the heating current is interrupted is in the range of maximum rated value
建议进行瞬态热阻测试,使加热电流中断的测试设备虚拟结温度 以ºC 为单位 最大额定范围内

+0% -20%. The size of the heat dissipator used must be chosen to accomplish this. The approximate reference temperature can be determined from the basic thermal resistance equation, RthJR, in clause 6.7.2.1.
+0% -20%。必须选择所用散热器的尺寸才能实现此目的。近似参考温度可以6.7.2.1 的基本方程 RthJR 确定。

The recommended heat dissipators and conductors to use with various types of devices when transient thermal impedance, junction to case, is to be measured are given in clause 6.7.3.
第 6.7.3 条给出了在测量瞬态热阻(结到外壳)时与各种类型设备一起使用的推荐散热器和导体。

After thermal equilibrium has been reached, the heating current magnitude I
达到热平衡后,加热电流幅度 I
F(HTG) and the corresponding heating voltage magnitude V
和相应的加热电压大小 V
F(HTG) are recorded. The rectifier diode reference temperature T
被记录下来。整流二极管参考温度 T
R2 must also be recorded. The heating current is then interrupted at the time t
还必须记录下来。然后加热电流在 t 时中断
1, so that the test device only conducts the low
,使测试装置仅导电低
level metering current. The rate of decay of heating current is an important test condition and must be specified. The forward voltage waveshape from the value when heating current is interrupted to the value
液位计量电流。加热电流的衰减率是一个重要的测试条件,必须指定。正向电压波形从加热电流中断时的值到值
at
the
time
时间
t
x, when
什么时候
the
transient
短暂的
thermal
烫的
impedance
阻抗
is
to
be
measured,
量过的
with
metering
计量
current
当前
flowing,
流动
must
必须
be recorded as a function of time. This may be accomplished by recording the oscilloscope trace of the voltage
被记录为时间的函数。这可以通过记录示波器电压迹线来实现
change.
改变。
The
trace
跟踪
will
be
similar
类似
to
that
shown
显示
in
Figure
数字
54. The
test
测试
may
五月
be
repeated
重复
several
几个
times using
使用
a range
范围
of
oscilloscope
示波器
sweep
rates
to
accurately
准确
record
记录
all
portions
部分
of
the
voltage
电压
decay
衰变
curve.
曲线。
Again,
it is necessary to extrapolate the metering voltage back to time
有必要将计量电压推断回时间
t
1 to obtain the maximum virtual junction
获取最大虚拟交汇点
temperature. The test device reference point temperature decay with time must also be recorded as it may vary
温度。还必须记录测试设备参考点温度随时间的衰减,因为它可能会变化
during
intermediate
中间
portions
部分
of
the
cooling
冷却
cycle.
周期。
Mounting
安装
the
test
测试
device
装置
on
a heat
dissipator
耗散器
of
large thermal capacity will minimize the change in DUT reference point temperature following the interruption of heating
大热容量将最大限度地减少加热中断后 DUT 参考点温度的变化
current.
当前。

This information allows the virtual junction temperature of the test device to be determined for any specific time duration, tx - t1, after interruption of the heating current. Information given in clause 6.7.6.1 regarding the metering current supply and choice of metering current magnitude, applies for the cooling curve method also.
信息允许 确定测试设备的虚拟 用于 任何特定 持续时间,tx - t1,加热电流中断后。第 6.7.6.1 条中给出的有关计量电流供应计量电流大小选择 的信息适用于 冷却曲线 方法也。

Step 2 - Measurement of the Temperature Coefficient of the Temperature Sensitive Parameter (Calibration)
第 2 步 - 测量温度敏感参数的温度系数(校准)

Step 1 produces a curve versus time of low level forward voltage at the metering current level which must be converted by a calibration curve to junction temperature versus time. This calibration curve may be obtained by measuring forward voltage at the metering current level (metering voltage) at various values of case or ambient (reference point) temperature. Since there is no appreciable power dissipation at the metering current level, for all practical purposes the rectifier diode virtual junction temperature will be equal to the measured case, lead or ambient temperature.
步骤 1 生成计量电流电平下低电平正向电压的曲线与时间的关系,必须通过校准曲线将其转换为结温与时间的关系。该校准曲线可以通过测量各种外壳或环境(参考点)温度值下的计量电流水平(计量电压)的正向电压来获得。由于在计量电流水平上没有明显的功耗 因此出于所有实际目的 整流二极管虚拟等于测量的情况、引线或环境温度。

JEDEC Standard No. 282B.02 Page 110
JEDEC 标准第 282B.02 号第 110 页

6.7.6.2 Cooling Curve Test Method Procedure (cont’d)NOTE — In the equation for Z
6.7.6.2 冷却曲线测试方法程序(续) 注意 — 在 Z 的方程中

thJR(t) in clause 6.7.2.2, VF(MET)2 and time (t) are equal to VF(tx) and time tx - t1
6.7.2.2 条中的 thJR(t),V F(MET)2时间(t)等于 VF(tx) 和时间 tx - t1

Figure 54 — Current and Voltage Waveforms for Cooling Curve Transient Thermal Impedance Test
图 54 — 冷却曲线瞬态热阻抗测试的电流和电压波形

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 111
第 111 页

Cooling Curve Test Method Procedure (cont’d)
冷却曲线测试方法程序 (续)

This measurement should be made for at least three values of reference point temperature with the maximum value being equal to the rated operating junction temperature of the rectifier diode. A straight line drawn through the measured points is the desired graph. The general form of this graph is shown in Figure 55.
测量针对至少三个参考温度进行, 最大值等于整流二极管的额定工作结温。通过测量点绘制的直线是所需的图形。该图的一般形式如图 55 所示。

Transient thermal impedance at any time duration following the interruption of heating current can now be calculated by converting the measured values of VF(tx) from a photograph or digital recording obtained in Step 1 to junction temperatures using the calibration curve obtained as described above. The initial value of TJ (in ºC) (at the instant of interruption of heating current) should be within 20% of rectifier diode maximum rated junction temperature, since this is a specified test condition. If the initial value of TJ determined from the calibration curve does not fall within this range, then Step 1 must be repeated using either a different value of heating current or a different size of heat dissipator in order to satisfy the specified TJ range condition. TR2 is the reference temperature at the instant that heating power is removed. If this temperature decays during the period when the junction is cooling, the measured junction temperature must be adjusted upward by the amount of reference temperature cooling that occurs.
现在可以通过将步骤 1 中获得的照片或数字记录中的 V F(tx) 测量值转换为使用校准 结温来计算加热电流中断后任何持续时间的瞬态热阻抗 如上所述获得 的曲线 T J(以ºC 为单位)的初始 在加热电流中断 瞬间 整流二极管最大额定结温 20% 以内 ,因为这是指定的测试条件。如果校准曲线确定的 T J 初始值不在此范围内,则必须使用不同值的加热电流或不同尺寸的散热器重复步骤 1,以满足指定的 TJ 范围条件。 TR2 是加热功率被移除时的参考温度。如果该温度在结冷却期间衰减,则必须通过发生参考温度冷却量向上调整测量的结温。

A value
价值
of
transient
短暂的
thermal
烫的
impedance
阻抗
for
the
time
时间
interval
间隔
being
存在
considered
考虑
can
now
现在
be
obtained
获得
by
using
the equation
等式
for Z
Z 用
thJR(t) in clause 6.7.2.2
在第6.7.2.2条中
. However, since a cooling curve has been employed, the above
.但是,由于采用了冷却曲线,因此上述
calculated
计算
value
价值
must
必须
be
subtracted
减去
from
the
rectifier
正确
diode
二极管
steady-state
稳态
thermal
烫的
resistance
电阻
to
obtain
获得
a point
on the transient thermal impedance curve (such as Figure 48) applicable to a power pulse of width
在瞬态热阻抗曲线上(如图48)适用于宽度
(t
(吨
x - t
- 吨
1) equal to the time interval between the interruption of heating current (t
)等于加热电流中断之间的时间间隔(t
1) and the point (t
)和点(t
x) where the above
) 其中上述
temperature determination has been
温度测定已
made.
䍬。

Figure 55 — Rectifier Diode Calibration Curve
图55 — 整流二极管校准曲线

For time values less than approximately 100 µs, the calculated values of transient thermal impedance may be in error because of device and equipment transients resulting from the interruption of the heating current. The point in time where the cooling curve starts to be a true representation of rectifier diode virtual junction cooling may be determined by employing heating currents which produce power levels 25% above and below the value which produces maximum rated junction temperature. This procedure, and a method of extrapolation of the curve to the time of interruption of the heating current, are further described in clause 6.7.5.2.
对于小于约 100 μs 的时间值, 由于加热电流中断导致的设备设备瞬变 态热阻的计算值可能会 冷却曲线开始真实表示流二极管虚拟结冷却的时间可以通过采用加热电流来确定,加热电流产生的功率水平高于和低于产生最大额定结温的值 25%。该过程以及将曲线外推到加热电流中断时间的方法,在第 6.7.5.2 条中进一步描述。

JEDEC Standard No. 282B.02 Page 112
JEDEC 标准编号 282B.02 第 112 页

Test Circuits
T图尔

A simplified basic test circuit for testing the rectifier diode in Step 1 is shown in Figure 56. The active element of the device under test is heated by direct current having an rms ripple content of 5% or less. The heating current is applied continuously when the cooling curve method is used for Step 1. When the heating pulse method is used for Step 1, the heating current must be interrupted after flowing for the time interval for which the transient thermal impedance measurement is to be made. See Figure 53 and Figure 54. The metering current supply remains connected throughout the heating current duration so that metering current will be maintained after interruption of the heating current.
56 显示了用于测试步骤 1 中整流二极管的简化基本测试电路。被测器件的有源元件采用均方根纹波含量为 5%以下的直流电加热。步骤 1 使用冷却曲线,加热电流连续施加的。步骤 1 使用加热脉冲法时,加热电流在流动到要进行瞬态热阻测量的时间间隔后必须中断。参见图 53 和 图 54。计量电流电源整个加热电流持续时间保持连接 以便在加热电流中断后保持计电流

Control of the heating current amplitude is accomplished by adjustment of the supply voltage and/or variation of series resistance. Interruption of the heating current is made by opening switch S. S may be a manual switch when the cooling curve method is used. However, the switch must provide positive interruption and be free from contact bounce. The diverter circuit, (D1, D2, and D3), will assure clean interruption of the heating current through the DUT. An SCR, together with a suitable commutation circuit, may be used when the heating pulse is too short to be controlled by manual control. Thus, the basic circuit shown in Figure 51 for the steady-state Thermal Resistance Test Method may be used with a trigger circuit suitable for single pulse operation. Variations of this circuit which will produce the specified test conditions are permissible. In order to achieve control of the rate of decay of heating current, care must be taken to control the inductance in the heating current circuit.
加热电流幅度的控制是通过调整电源电压和/或串联电阻的变化来实现的。通过打开开关 S 来中断加热电流,当使用冷却曲线方法时,S 可以是手动开关。但是,开关必须提供正中断并且没有触点反弹。分流器电路(D1、D2 和 D3)将确保通过 DUT 的加热电流干净中断。当加热脉冲太短而无法通过手动控制控制时,可以使用 SCR 和合适的换向电路。因此,图 51 所示的稳态热阻测试方法的基本电路可以与适用于单脉冲作的触发电路一起使用。允许产生指定测试条件的电路变体。为了实现对加热电流衰减速率的控制,必须注意控制加热电流电路中的电感。

In order to observe the forward voltage of the test device during the metering current interval following heating
为了观察加热后计量电流间隔内测试装置的正向电压
current
当前
interruption,
中断
the
use
of
a differential
微分
comparator
比较仪
oscilloscope
示波器
preamp
前置放大器
is
recommended.
推荐。
With care, this should allow magnification of the forward voltage waveform during the metering current interval without distortion or zero shift being introduced due to the presence of the heating voltage waveform. An oscilloscope
小心翼翼地,这应该允许在计量电流间隔内放大正向电压波形,而不会因加热电压波形的存在而引入失真或零移。示波器
is
required
必填
to
record
记录
the
DUT
forward
向前
voltage
电压
during
the
time
时间
the
junction
of
the
DUT
is
cooling and to extrapolate the metering voltage back to the instant when the heating current was
冷却并将计量电压外推回加热电流
interrupted.
打断。

Figure 56 — Basic Test Circuit for Transient Thermal Impedance Test Method
图 56 — 瞬态热阻抗测试方法的基本测试电路

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 113
第 113 页

Test Condition to be Specified
预计条件指定

Method: (Heating
方法:(加热
or
Cooling)
冷却)
=

Metering Forward Current Amplitude= A dc
计量正向电流幅度 = Adc

Heating Forward Current Amplitude= A pk
加热正向电流幅度 = Apk

Heating Forward Current Pulse Width= s
加热正向电流脉冲宽度 =s

Rate of Forward Current Decay (90% Point to Metering Current Level)
正向电流衰减率 (90% 点到计量电流水平)

(See NOTE)= 100 A/µs min.
(见注)= 100 A/μsmin。

NOTE It may be necessary to take exception to this condition. This is particularly true for large rectifier diodes which are operated at heating currents greater than 100 A. When exception is taken, the actual rate of decay used must be specified.
注意:可能有必要对这种情况进行例外处理。对于在大于 100 A 的加热电流下运行的大型整流二极管尤其如此。当出现例外时,必须指定实际使用的衰减率

Measurement Time t3
测量时间 t 3

(After Metering Forward Current is Reached)= µs
(达到计量正向电流后 =μs

External Reference Temperature
外部参考温度

Measurement Point=
测量点 =

Transient Thermal Impedance, Junction to Specified Reference Point,
瞬态热阻抗,结到指定参考点,

for time duration of seconds= ºC/W
持续时间 =ºC/W

Table 12 — Example for Recording Data
表 12 — 记录数据的示例

Time Duration (Seconds)
持续时间(秒)

Transient Thermal Impedance (C°/W)
瞬态阻抗 (C°/W)

JEDEC Standard No. 282B.02 Page 114
JEDEC 标准编号 282B.02 第 114 页

Effective Thermal Resistance of Bridge Rectifier Assemblies
E 桥式整流器组件的有效热阻

This method describes a means to cause current to flow alternately through the legs of a single-phase or three-phase bridge assembly under conditions making it possible to determine its effective thermal resistance. The bridge is operated under steady-state IO conditions, and the current in each leg is interrupted while readings are taken from which to calculate thermal resistance.
该方法描述了一种在可以确定其有效热阻的条件下使电流交替流过单相或三相桥组件的支腿的方法 。电桥在稳态 IO 条件下运行,每个支路中的电流被中断 同时从中获取读数以计算热阻。

Definitions
D 函数

The following symbols and terminology shall apply for the purposes of this test method:
以下符号和术语应适用于本测试方法的目的:

VFThe forward-biased junction voltage drop of the device under test (DUT) used for junction temperature sensing. For a bridge, this applies to individual legs (i.e. one ac to one dc terminal).
VF 用于结温检测的被测器件 (DUT) 的正向偏置结压降 。对于网桥,这适用于单个支路(即一个交流到一个直流端子)。

VF1The forward voltage at room temperature at IREF
VF1 温下 I REF 的正向电压
.

VF2The forward voltage at IREF and 100 ºC above the temperature at VF1. VF2AThe computed forward voltage at IREF and at maximum rated TJ
VF2 I REF 处的正向电压VF1 温度 高 100 ºC V F2A 在 I REF 和最大额定 TJ 处计算的正向电压
.

VF3The initial VF value at IREF before the application of heating power, with the device at reference case temperature (T3 ).
VF3 施加加热功率之前 I REF 处的初始 V F,其中 参考外壳温度 (T3) 下的 设备

VF4The final VF value at IREF after stabilization of temperatures due to the application of rated current at rated case temperature.
VF4 由于应用而稳定温度后 I REF 处的最终 VF 定外壳温度下的额定电流

VFThe change in the temperature-sensitive parameter, V
温度敏感参数 V 的变化
F, in volts, due to the application of heating
,以伏特为单位,由于加热的应用
power to the
电源
DUT.
有。

VFHThe maximum forward voltage resulting from the application of IO to the DUT. IOThe rated average current applied to the DUT.
VFH 向 DUT 施加 I O 产生的最大正向电压 O 施加到 DUT额定平均电流

IREFThe low-level measurement dc current used to forward-bias each diode junction for measurement of VF
IREF 用于正向偏置每个二极管结以测量 V F 的低电平测量直流电流
.

TCVF The voltage-temperature coefficient of VF with respect to TJ at a fixed value of IREF; in V/ ºC. TJThe DUT junction temperature.
TCVF V F固定值 IREF 下相对于 TJ 的电压-温度系数 ;单位为 V/ºC。 时间 J DUT 结温。

TJThe change in TJ caused by the application of IO
TJ 应用 I O 引起的 T J 的变化
.

TNThe reference case temperature for measuring VFN. (N = 1, 2, 3, or 4.) TSPThe temperature-sensitive parameter (VF ).
TN 测量 V FN 的参考外壳温度 。(N = 1、2、3 或 4。TSP 温度敏感参数 (V F)。

tF4Step trace time.
tF4 步进跟踪时间。

RthJCThe thermal resistance from device junction to a defined reference point on the outside surface of the case; in units of ºC / W.
RthJC 从设备结点到外壳外表面上定义参考点的热阻 ;单位为 ºC / W。

RthJLThermal resistance from device junction to a lead, at a specified distance from the body; in units of
RthJL 从器件结点到引线的热阻,距主体的指定距离;单位为

ºC / W.
ºC/W。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 115
第 115 页

Test Circuit
T电路

The apparatus required for this test shall include the following, configured as shown in Figure 57 and Figure 58.
本试验所需的设备应包括以下设备,配置如图 57 和图 58 所示。

High current source: A source for 60 Hz single- or three-phase sinewave ac power capable of being adjusted to the desired value of IO and able to supply the VFH value required by the DUT. The current source should be able to maintain the desired current to within + or 2% during the entire time needed for temperature stabilization and measurements.
电流源:60 Hz 单相或三相正弦波交流电源的电源,能够调整 所需的 I O 值 ,并能够 提供 VDUT 所需的 FH 电流应能够在温度稳定和测量所需的整个时间内所需的电流保持在 + 或 2% 以内

Measuring current: A constant-current source to supply IREF with sufficient compliance voltage range to turn on fully the junction of the diode leg being measured.
Measuring 电流: 一个恒流源,用于为 IREF 提供足够的顺应电压范围 ,以完全导通被二极管支路的结。

Anti-parallel fast recovery: Anti-parallel fast recovery rectifier diodes with ratings exceeding IO, to provide isolation of the high-current source from IREF during commutation of IO between legs.
NTI 并联快速恢复 额定值超过 I O 的反并联快速恢复整流二极管 ,用于在支路之间的 I O向期间大电流源与 IREF 隔离。

Voltage measurement circuit: A voltage measurement circuit capable of accurately making the VF measurements within the available time interval (when the anti-parallel diodes are not conducting), with millivolt resolution .
电压测量电路: 一种电压测量电路,能够可用时间间隔内(当反并联二极管不导通时)准确进行 V F 测量,分辨率为毫伏。

Procedure
进行

Refer to Figure 57 and Figure 58, test circuits for single-phase and three-phase bridges.
请参阅图 57 和图 58,单相和三相电桥的测试电路。

Compute TCVF and
ompute TCVF 和
V
F2 at
T
Jmax
麦克斯

NOTE 1VDET measurements shall be made using leads Kelvin-connected directly to the bridge terminals. NOTE 2VAC: See Figure 59, Note 2.
注:1 VDET 测量应使用直接连接到电桥端子的开尔文引线进行。注 2 VAC:见图 59,注 2。

Figure 57 — Single Phase Bridge
图57 — 单相电桥

JEDEC Standard No. 282B.02 Page 116
JEDEC 标准编号 282B.02 第 116 页

6.7.7.4 Compute TCVF and VF2 at TJmax (cont’d)NOTE 1V
6.7.7.4 计算 TCVF 和 VF2 at TJmax(续) 1 V

DET measurements shall be made using leads Kelvin-connected directly to the bridge terminals. NOTE 2VAC: See Figure 59, Note 2.
DET 测量应使用直接连接到桥接端子的开尔文引线进行。注 2 VAC:见图 59,注 2。

Figure 58 — Three-Phase Bridge
图 58 — 三相电桥

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 117
第 117 页

Compute TCVF and VF2 at TJmax (cont’d)
计算 TCVF 和 VF2 at TJmax(续)

With S1 open, and DUT at 20 to 30 ºC (temperature T1), read VF1 of each leg at current IREF. Elevate the device temperature to 100 ºC above temperature T1 (temperature T2). Allow the device to stabilize until the junction temperature is at T2. Read VF2 of each leg at IREF current. Compute the TCVF of each leg as follows:
当 S1 打开,DUT 处于 20 至 30 ºC(温度 T 1)时 ,在电流 I REF 下读取每条腿的 V F1。将设备温度提高到温度 T 1( 温度 T 1)以上 100 ºC。让器件稳定,直到 I REF 电流每条 T 2ReadVF2 按如下方式计算 条腿 TCVF

TCVF = (VF1 VF2)/100 ºC
TCVF = (VF1 VF2)/100 °C

Compute the expected VF2 at TJ = max. rated as follows: VF2A = VF1 [(TCVF) x (TJMAX T1)]
计算 T J = 最大值时预期 VF2 额定值如下: VF2A = VF1 [(TCVF) x (TJMAX T1)]

Determine the average TCVF and the standard deviation of the individual TCVFs from the readings on each leg. If the standard deviation is less than or equal to 3 percent of the average value of TCVF, average TCVF may be used for all devices. If the standard deviation is greater than 3 percent of the average value of TCVF, then the individual TCVFs shall be used in determining the performance of the bridge.
确定平均 TCVF各个 TCVF每条腿标准。如果标准于或TCVF 平均3%,所有设备均可使用平均 TCVF。如果标准大于 TCVF 平均3%, 则应使用各个 TCVF 来确定桥梁的性能

Measuring VF3
VF3

With the device held at or below the rated case temperature for IO, apply IREF and read VF3 for each leg.
将设备保持在或低于 I O 的额定外壳温度时 ,应用 IREF 并读取每条腿的 V F3

Application of Rated Current
额定电流的应用

After
closing
关闭
S
1, adjust
调整
the
power
权力
source
and/or
和/或
the
load
负荷
resistor
电阻器
to
obtain
获得
maximum
最大
rated
额定
I
O (depending
(取决于
on the rated T
在额定 T
C selected) and readjust the case temperature to the chosen rated value within + or
已选择)并将外壳温度重新调整为 + 或
5 ºC. Allow
5 ºC. 允许
stable junction temperatures to be achieved. See NOTE 1 in clause
要实现稳定的结温。见第1条注1
6.7.7.10

NOTE 1“Step trace” is provided when antiparallel diodes in the circuit briefly commutate off (IAC passes through zero) during each cooling cycle of individual bridge legs under ac test conditions.
1:当电路中的反并联二极管在各个桥腿的每个冷却循环中短暂换向(I 交流通过零)时,提供 “步进迹线” 交流测试条件。

NOTE 2VAC is adjusted so that the step t F4 is 100 µs + 50 s long and is clearly defined. A typical VAC might be 10 volts peak.
注: 调整 2 VAC 使步骤 tF4为 100 μs + 50 s,并明确定义。典型的 VAC 峰值可能是 10 伏

NOTE 3VAC for bridges with parasitic inductive elements must be adjusted so that after the inductive ringing settles, the VF4 step is 100 µs + 50 µs.
注: 对于带有寄生电感元件的电桥,必须调整 3 VAC 以便在电感振铃稳定后,VF4 步长为 100 μs + 50 μs。

Figure 59 — Criteria to Adjust VAC
图 59 — 调整 VAC 的标准

JEDEC Standard No. 282B.02 Page 118
JEDEC 标准编号 282B.02 第 118 页

Measuring VF4 and VFH
保证 VF4 VFH

Measure VF4 for each leg at the same reference current ( + or 1%) as in the steps of clause 6.7.7.5 and clause 6.7.7.6. (The instrumentation used to measure VF4 must have sufficient resolution to read it within 1 mV or 2% whichever is greater.)
第 6.7.7.5 条和第 6.7.7.6 条的步骤相同的参考电流(+ 或 1%)下测量每个支路的 V F4 。(用于测量 V 的仪器 F4 必须具有足够的分辨率才能在 1 mV 或 2% 以较大者为准的范围内读取它。

NOTE If VF3 for the leg is greater than VF2,TJ is less than TJMAX
注意 如果腿的 V F3 大于 VF2,则 T 小于 TJMAX
.

Measure VFH for each leg.
测量每条腿的 VFH

Thermal Resistance
T 耐阻

Compute thermal resistance as follows:
计算热阻如下:

a. Compute ΔVF = VF4 VF3 for each leg.
a. 计算每条腿的 Δ V F = VF4 VF3

b. Compute 𝛥𝑇𝑗 = 𝛥𝑉𝐹/𝑇𝐶𝑉𝐹, (See NOTE 1 following clause 6.7.7.10)
湾。 计算 ΔTj = ΔVF/TCVF,(参见第 6.7.7.10 条后面的注 1)

c. Compute RthJC of the full bridge RthJC = (𝛥𝑇𝐽)/(𝐼𝑂 𝑥 2𝑉𝐹𝐻 )
c. 计算 R 全桥的 thJC R thJC=(ΔTJ)/(IO x 2VFH

where:
哪里:

TJ is the average of all legs,
TJ 是所有腿的平均值,

VFH is the average of all legs, and
VFH 是所有腿的平均值,并且

IO is the rectified output current of the full bridge.
是全桥的整流输出电流。

See NOTE 2, NOTE 3, and NOTE 4 following clause 6.7.7.10.
见第 6.7.7.10 条后面的注 2、注 3 和注 4。

Test Conditions
T条件

Test conditions to be specified are Io, Tc, IREF and frequency (if other than 60 Hz).
要指定的测试条件是 Io、Tc、IREF 和频率(如果不是 60 Hz)。

Characteristics
C 性病

Steady state thermal resistance,
稳态热阻 /

Junction to Case (unless otherwise specified):= ºC/W
结到外壳(除非另有说明):=ºC/W

NOTE 1 If, under power, the case is held to T4, slightly above T3, a corrected TJ, (TJ(corr) = TJ (T4 T3)), should be used for step (b) above.
注 1 如果在冪下,将情况保持在 T4 略高于 T3,则校正后的 TJ,TJ(corr) = T (T4 T3)), 应用于上述步骤(b)。

NOTE 2 Step (c) above gives Rth for the bridge. The average per-leg Rth for a single-phase bridge is four times this value a three; six times for -phase bridge. (See NOTE 3.)
注 2:上面的步骤(c)给出了桥的 Rth 单相电桥的平均每条腿 R th 是该值 3 的四倍 ;相桥的六倍。(见注 3。

NOTE 3If desired, Rth of individual legs may be computed from the individual values of TJ and VFH. NOTE 4The power calculation, IO x 2VFH, is a reasonable approximation of the power.
注 3 如果需要, 可以根据T 和 VFH 的单个值计算单个腿的 Rth。注 4 功率计算 I.O.x2V FH 是功率的合理近似值

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 119
第 119 页

User’s Guide
User's 指南

Introduction
国际生产

The optimum use of rectifier diodes requires considerable knowledge of the device on the part of the user. The purpose of this chapter is to give some explanations of diode ratings and characteristics and to point out how they must be considered in actual diode applications. This chapter will not give minute device or application details. Rather it will serve as a guide or outline from which the user may proceed to additional technical information sources.
整流二极管的最佳使用需要用户对设备有相当多的了解。目的二极管额定值特性进行一些解释 ,并指出实际二极管应用中必须如何考虑它们。本章不会提供微小的设备或应用程序详细信息。相反,它将作为指南或大纲,用户可以从中继续访问其他技术信息源。

NOTEThe word “diode(s)” will be used throughout chapter 7 to indicate power rectifier diode(s).
注意 “二极管”一词将在整个第 7 章中用于表示功率整流二极管。

Diode Safety Considerations
D 碘安全注意事项

The designer, maker and user of electrical equipment containing diodes should give attention to the following points relative to the safety of personnel who may operate the equipment:
含有二极管电气设备的设计者、 制造商用户注意以下几,以保障可能作设备的人员的安全

The electrical potentials on the anode and cathode terminals of a diode present an electrical shock hazard when the equipment is energized.
设备通电时 二极管极端子上的存在危险。

The normal operating case temperature of energized diodes is often high enough to present burn hazards to operating personnel and charring of flammable material touching the diode.
通电二极管正常工作外壳温度通常足够高 ,足以给作人员带来烧伤危险,并对接触二极管的易燃材料造成烧焦

In the event that equipment output short circuit or internal fault condition develops, very high surge current can be passed through the diodes. If this surge current exceeds diode ratings in magnitude and/or duration, the diode may be damaged; if the surge is severe enough, internal heating can cause the diode to rupture and an arc may
如果设备输出短路或内部故障情况发生,则可以通过非常高的浪涌电流通过二极管。如果该浪涌电流的幅度和/或持续时间超过二极管额定值,则二极管可能会损坏;如果浪涌足够严重,内部加热会导致二极管破裂并可能产生电弧
occur.
发生。

Voltage Considerations
Voltage 注意事项

Two common voltage ratings are assigned to diodes which are discussed below. In addition, the effects of overvoltage and series operation are discussed in this chapter.
二极管有两种常见的额定电压,下面将讨论。此外,本章还讨论了过压和串联工作的影响。

Repetitive Peak Reverse Voltage
R 重复峰值反向电压

This is the normal maximum allowable value of reverse voltage which may be applied to the diode. At this voltage, reverse power dissipation is generally small and contributes little to the total dissipation in the diode.
这是可以施加到二极管的反向电压的正常最大允许值。在此电压下, 反向功耗通常很小 二极管功耗贡献很小

The repetitive peak reverse voltage occurring in a diode circuit is a known or measurable periodic function and may be considered to be under the control of the equipment designer. Any repetitive peak voltage occurring in the circuit even of short duration, such as those due to the switching action of the diode, should be included in this category.
二极管电路中出现的重复峰值反向电压是已知或可测量的周期函数,可以认为在设备设计人员的控制之下。电路中出现的任何重复峰值电压 即使是时间 例如由于二极管开关动作引起的峰值电压, 也应包括在此类中

Non-Repetitive Peak Reverse Voltage
N 导通重复峰值反向电压

For short time intervals, the reverse voltage may be permitted to exceed the steady-state ratings. During this time the instantaneous dissipation may become significant, but will still remain below the level which the manufacturer has found to be destructive. While the energy dissipated during this time causes an increase of junction temperature, the level reached is not sufficient to cause thermal runaway, and removing the excess voltage within the time period specified will allow the junction temperature to rapidly drop back to the steady- state operating level.
对于较短的时间间隔, 可以允许反向电压超过稳态额定值。 在此期间,瞬时耗散可能会变得显着,但仍将保持在制造商发现的破坏性水平以下。虽然在此期间耗散的能量会导致结温升高,但达到的水平不足以引起热失控,在指定的时间段内去除多余电压将使结温迅速下降到稳态工作水平。

JEDEC Standard No. 282B.02 Page 120
JEDEC 标准编号 282B.02 第 120 页

Non-Repetitive Peak Reverse Voltage (cont’d)
非重复峰值反向电压 (续)

In addition to considerations of thermal runaway, non-repetitive peak reverse voltage ratings are often limited by the manufacturer for other reasons, such as an abrupt change in slope of the reverse blocking volt- ampere characteristic, or hysteresis, a discontinuity (including a sharp knee) or instability exhibited in the same characteristic. Non-repetitive reverse voltages may occur as random transients, which may or may not originate within the equipment. These voltages may often be minimized by the provision of voltage surge suppression components as discussed in the following clauses.
除了热失控的考虑外,非重复峰值反向额定电压通常由于其他原因受到制造商的限制, 例如反向阻塞伏安特性突然变化 ,或滞后、不连续性(包括尖拐)或不稳定表现出相同的特征。 非重复反向电压可能随机瞬变的形式出现, 这些瞬可能源于设备内部,也可能不源自设备内部。这些电压通常可以通过提供电压浪涌抑制组件来最小化,如以下条款所述。

Overvoltage
电压

Because of the sensitivity of silicon diodes to voltage transients in excess of their ratings, proper circuit design may require some built-in means to afford safe operation. Transient voltages generally are caused by the following:
由于硅二极管对超过其额定值的电压瞬变的敏感性,正确的电路设计可能需要一些内置方法确保安全作。 瞬态电压通常是 以下原因引起的

De-energizing a transformer primary.
使变压器初级电源断电

Energizing a transformer primary.
变压器初级通

External disturbances caused by lightning, motors, solenoids, relay circuits, etc., which share the same alternating current source with the diode circuit.
雷电、电机、电磁阀、继电器电路等引起的外部干扰,它们与二极管电路共享相同的交流电源

Alternating current supply switching.
交流电源开关。

Diode Reverse Recovery (See clause 7.5.2).
二极管反向恢复(参见第 7.5.2 条)。

Opening dc load switches when using an LC filter with high L/C ratio.
使用高 L/C 比的 LC 滤波器时打开直流负载开关

Regenerative types of
再生类型
loads.
负荷。

Fuse blowing when used for isolating a defective diode in a parallel-connected group.
用于隔离并联组中有缺陷的二极管时,熔断器熔

Each transient voltage source produces a different degree of voltage oscillation, e.g., some generate up to twice the working peak reverse voltage of a circuit, while others can generate as high as eight or ten times this value.
每个瞬态电压源都会产生不同程度的电压振荡,例如,有些电压源产生的电压高达电路工作峰值反向电压的两倍,而另一些电压源则可产生高达该值的八倍或十倍。

The surest method to observe transients is with a high-speed storage oscilloscope. It should have a frequency response of at least 40 MHz. Peak reading voltmeters are also used to measure transient voltages but generally with a lesser degree of certainty. However, they are very useful when the occurrence of the transient is unpredictable.
观察瞬变的最可靠方法是使用高速存储示波器。 它的频率响应至少40 MHz。峰值读数电压表也用于测量瞬态电压,但通常确定性较低。但是,当瞬态的发生不可预测时,它们非常有用。

In order to maintain peak voltages within diode ratings, the following points should be considered:
为了将峰值电压保持在二极管额定值内,应考虑以下几点:

The speed of current interruption by the switching elements (circuit breaker, fuse, etc.)
开关元件(断路器、保险丝等)中断电流的速度

The location of switching elements or the sequence of switching.
开关元件的位置或开关顺序。

Provision for additional energy storage or dissipation means in the circuit. (Examples: Capacitive filter or voltage clipping devices, such as those made from silicon-carbon, selenium, metal oxide, etc., across transformer windings, across the diode, and, sometimes, across output terminals.)
电路中提供额外的能量存储或耗散手段。(例如:电容式滤波器或压削波器件,例如由硅碳、硒、金属氧化物等制成的器件,跨变压器绕组、二极管,有时跨输出终端。

Provision of peak voltage capability equal to the maximum anticipated transient by the use of diodes with adequate voltage ratings or the use of an adequate number of diodes in series.
通过使用具有足够额定电压的二极管或使用足够数量的串联二极管,提供等于最大预期瞬变的峰值电压能力

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 121
第 121 页

Series Operation
服务运营

The usual principles of series operation for obtaining higher voltage ratings can be readily used with diodes without difficulty providing the device manufacturer's recommended procedures are followed. Generally, these procedures depend on the type of electrical characteristics which are considered typical of the device as manufactured and, also on the actual application conditions.
只要遵循设备制造商推荐的程序,就可以很容易地将获得更高额定电压串联原理二极管一起使用,而不会有困难。通常,这些程序取决于被认为是制造时设备的典型电气特性类型,以及实际应用条件。

It is important when diodes are operated in series that the proper division of voltage is assured. Generally, manufacturers will recommend one or more of the following procedures:
当二极管串联运行时,确保电压的正确分配非常重要。通常,制造商会推荐以下一项或多项程序:

Factory matched reverse and/or reverse recovery characteristics.
工厂匹配的反向和/或反向恢复特性。

Resistive and/or varistor voltage dividers shunting the diodes.
和/或压敏电阻分压极管。

Capacitive voltage dividers shunting the diodes.
容式分压器分流极管。

Multiple transformer windings supplying rectifier circuits having outputs connected in series.
多个变压器绕组为直电路供电 ,输出联。

Use of avalanche type rectifier diodes.
使用雪崩式整流二极管。

Diodes which have been factory-matched with respect to reverse breakdown characteristics and reverse current have operated successfully with no voltage dividers. The use of resistors placed across each diode or
在反向击穿特性和反向电流方面经过工厂匹配的二极管在没有分压器的情况下成功运行。使用放置在每个二极管上的电阻器或
group
of
diodes,
二极管
the
magnitude
大小
of
which
is
equal
平等
to
some
一些
fraction,
分数
say
one-half,
二分之一,
of
the
minimum
最低
blocking resistance of the diode, will force voltage division during steady-state operation. Differences in reverse recovery time may also be an important factor as this affects the proper division of voltage during transient switching.
二极管的阻断电阻,将在稳态工作期间强制分压。反向恢复时间的差异也可能是一个重要因素,因为这会影响瞬态开关期间电压的正确分配。
Moreover,
此外
the
variation
变化
of
the
capacitance
电容
between
之间
the
individual
个人
devices
设备
and
even
甚至
the
variation of capacitance to ground (when many units in series are used) can cause an unequal voltage division. A capacitive
对地电容的变化(当使用许多串联单元时)会导致不等的分压。电容式
voltage
电压
divider
minimizes
最大限度 地 减少
these
这些
effects
影响
and
can
be
provided
提供
by
connecting
连接
a capacitor
电容器
across
each diode or group of diodes. When capacitive dividers are used, a damping resistance should be used in series with each capacitor to prevent oscillatory
每个二极管或一组二极管。使用电容式分压器时,应与每个电容器串联使用阻尼电阻,以防止振荡
overvoltage
电压

When only a few diodes are operated in series, multiple transformer windings may be used where each winding supplies a diode assembly consisting of one diode in each circuit leg. The outputs of each diode assembly are then connected in series to obtain the desired voltage. Generally, the choice of circuit will depend upon the application and number of units in series.
当只有几个二极管串联运行时,可以使用多个变压器绕组,其中每个绕组都为一个二极管组件供电,该组件由每个电路支路中的一个二极管组成。然后将每个二极管组件的输出串联以获得所需的电压。通常,电路的选择将取决于应用和串联单元的数量。

JEDEC Standard No. 282B.02 Page 122
JEDEC 标准编号 282B.02 第 122 页

Current Considerations
Current 注意事项

Maximum operating junction temperature, power dissipation and thermal resistance are important factors in determining current ratings. Diodes may be operated in parallel to provide increased current output. (See clause 7.4.6).
最大工作温、 功耗决定额定电流的重要因素。二极管可以并联运行以提供更大的电流输出。(见条款 7.4.6)。

Maximum Operating Junction Temperature
最大工作结

Diode steady-state current ratings are ultimately limited by the maximum allowable junction temperature rating of the device. The semiconductor manufacturer determines the maximum junction temperature rating by evaluating the following factors and then deciding upon the best compromise:
二极管稳态额定电流最终受到器件最大允许结温额定值的限制 半导体制造商通过评估以下因素,然后决定最佳折衷方案确定最大额定值:

The melting temperature or temperatures causing other physic al changes of device materials. This consideration places the absolute upper limit on device operating temperatures.
化温度或引起器件材料其他物理变化的温度。这种考虑因素对设备工作温度设定了绝对上限

The temperature dependence of the blocking current. Reverse blocking current is an exponential function of temperature and this produces an exponential blocking power generation relationship with respect to temperature. If blocking power losses become too high, the device may run away destructively in the reverse direction because of the regenerate relationship between blocking power and junction temperature rise.
阻断电流的温度依赖性。反向阻塞电流是温度的指数函数,这产生了相对于温度的指数阻塞发电关系 如果阻断功率损耗高, 由于阻断功率与结温升之间的再生关系,器件可能会向相反方向破坏地跑

Reliability considerations. In general, the lower the operating junction temperature, the greater the life expectancy of any semiconductor device.
可靠性考虑。一般来说,工作结温越低,任何半导体器件的预期寿命就越长

Effect on device characteristics. Since minority carrier lifetime is quite temperature dependent, reverse recovery time, which depends on lifetime, will likewise be temperature
对设备特性的影响。由于少数载流子的寿命与温度有关,因此取决于寿命的反向恢复时间同样将是温度
dependent.
依靠。

To complete this discussion of junction temperature effects, it should be mentioned that the low junction temperature limits are generally determined by mechanical stress exerted on the silicon crystal. This stress is produced by imperfect matching of the thermal expansion coefficients of the various materials used in the fabrication of the device.
为了完成对结温效应的讨论,应该提到,低结温限制通常是由施加在硅晶体上的机械应力决定的。这种应力是由于设备制造中使用的各种材料膨胀系数完美匹配产生的

Junction Heat Generation
JunctionHeatGeneration

The conduction current flowing through the diode causes power dissipation and heat generation. The heat produced in the device by the flow of steady direct conduction current is simply this current multiplied by the voltage drop across the device. The heat produced in the device by a periodic current may be determined by integrating the instantaneous product of device current and voltage as follows:
流过二极管的传导电流会导致功耗和发热。稳定的直通电流在器件中产生的热量只是该电流乘以器件两端的 周期性电流设备产生的热量可以通过将设备电流和电压的瞬时乘积积分来确定,如下所示:

where:
哪里:

P= Average power dissipated in the device T= Period of the current
P = 器件中的平均功耗 T = 电流周期

e(t)= Instantaneous voltage across the device i(t)= Instantaneous conduction current
e(t) = 器件两端的瞬时电压 i(t) = 瞬时导通电流

Since the diode conduction current and voltage are related in a nonlinear manner, this integration must be carried out by such means as graphical integration or by determining a mathematical approximation for the diode volt-ampere characteristics which will permit integration in closed form.
由于二极管传导电流和电压以非线性方式相关,因此必须通过图形积分或确定二极管伏安特性的数学近似值等方式进行这种积分,这将允许以封闭形式进行积分。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 123
第 123 页

Junction Heat Generation (cont’d)
结热产生 (续)

Other sources of device heat generation include power loss when the device is in the reverse blocking state. Switching losses, except at very high operating frequencies, are quite small compared to the power loss produced by conduction current. To simplify various calculations, all heat generated in the diode is assumed to be uniformly generated at the center plane of the silicon crystal, the virtual junction.
设备发热的其他来源包括设备处于反向阻塞状态时的功率损耗 。与传导电流产生的功率损耗相比,开关损耗(工作频率非常高)非常小 为了简化各种计算, 假设二极管产生的所有热量都在硅晶体的中心平面(虚拟结)处均匀产生

Thermal Resistance
T 耐阻

A measure of the effectiveness with which a semiconductor device is able to get rid of heat is called thermal resistance. The lower the device thermal resistance, the lower the junction temperature rise for a given conduction current and resulting junction power generation. When thermal resistance is specified, the beginning and end of the thermal path must be clearly indicated. The common diode device thermal resistance specification is the value from the junction to a particular point on the case or lead. For stud- mounted diodes, this point is generally the center of one of the hex flats. (See clause 7.8.3.)
衡量半导体器件能够散有效性的一种标准称为热阻 。器件热阻越低,给定传导电流的结温升越低,从而产生结发电量。当指定热阻时,必须清楚地标明热路径的起点和终点。通用二极管器件热阻规格是从结点到外壳或引线上特定点的值。对于螺柱安装的二极管,该点通常是其中一个六角平面的中心。(见第 7.8.3 条。

The heat flow associated with diode junction-to-case thermal resistance may be considered unidirectional. For the direct conduction current situation, Fourier's steady-state heat flow relations are analogous to Ohm's steady-state direct current flow relations.
与二极管结到外壳的热阻相关的热流可以被认为是单向的。对于直流导通电流情况, 傅里叶稳关系类似于欧姆稳态直流电流关系。

where;
哪里;

I= Direct current flow through in amperes R= Electrical resistance in ohms
I = 直流电流,单位为安培 R = 电阻,单位为欧姆

V=Voltage difference across R in volts P= Power or heat flow in watts
V = R 两端的电压 以伏特为单位)P = 功率(以瓦特为单位)

RthJC = Thermal resistance from junction to case in oC/W
RthJC = 从结到外壳的热阻,单位为 oC/W

TJC = Temperature difference in oC
TJC = 温差(单位:oC

When the heat flow (device current flow) is periodic or pulsating, the small thermal capacitance (heat storage capability) of the silicon crystal in the diode permits the junction temperature to rise and fall with the pulsating power generation (See clause 7.8.2).
(器件电流 周期性的脉动的 二极管中硅晶体的小热电容(蓄热能力)允许结温随着脉动发电而升高和下降(见第 7.8.2 条)。

Thus, if the diode dc or effective junction-to-case thermal resistance is multiplied by the average power generated by a pulsating current, the result will be the average junction temperature rise above the case temperature. To find the peak junction temperature in this instance, the diode transient thermal impedance characteristic must be used in a power superposition calculation. The reader is referred to the literature where this procedure is adequately covered.
因此,如果二极管直流或有效结到外壳的热阻乘以脉动电流产生的平均功率,则结果将是平均结温升高于外壳温度。在这种情况下,为了找到峰值结温,必须在功率叠加计算中使用二极管瞬态热阻特性。读者被参考充分涵盖此程序的文献。

JEDEC Standard No. 282B.02 Page 124
JEDEC 标准编号 282B.02 第 124 页

Thermal Resistance
热阻

For the maximum operating junction temperature rating, different manufacturers may use any one or more of the following:
对于最大工作结温额定值,不同的制造商可以使用以下任何一项或多项:

the highest instantaneous junction temperature produced by periodic conduction current waveform.
周期性导通电流波形产生的最高瞬时结温

the average junction temperature produced by periodic conduction current waveforms.
周期性导通电流波形产生的平均结温

the instantaneous temperature at the conclusion of the conduction current or the junction temperature at the instant the reverse voltage is applied.
传导电流结束瞬时温度施加反向电压时

the instantaneous temperature when sinusoidal reverse voltage at a specified frequency has reached a given fraction of its rated value.
当指定频率下的正弦反向电压达到其额定值的给定分数时的瞬时温度

The most common thermal resistance specification published by diode manufacturers is the dc (sometimes called the effective) thermal resistance parameter. This parameter is measured by using dc device heating current which produces dc device power dissipation. Often a thermal parameter called apparent thermal resistance is also published. This parameter applies only for a specified periodic conduction current waveform. It is useful in that it can eliminate the use of the transient thermal impedance characteristic in determining the diode junction-to-case temperature rise for that current waveform. This is done by multiplying the average power produced by a particular magnitude of the periodic current waveform in question by its corresponding apparent thermal resistance value. Commonly published apparent thermal resistance parameters are for 60 Hz single phase (180° sinusoidal conduction), three phase (120° rectangular conduction), and six phase (60° rectangular conduction).
二极管制造商发布的最常见的热阻规格是直流(有时称为有效)热阻参数。该参数是通过使用直流器件加热电流来测量的,该电流会产生直流器件功耗。通常还会发布一个称为表观热阻的热参数。此参数仅适用于指定的周期性传导电流波形。它的有用之处在于,它可以消除瞬态热阻特性的使用,以确定该电流波形的二极管结到外壳的温升。这是通过将相关周期性电流波形的特定幅度产生的平均功率乘以其相应的表观热阻值来完成的。通常公布的表观热阻参数60Hz(180°传导)、(120° 矩形传导)和六相(60°矩形传导)。

If
如果
a diode
二极管
manufacturer
制造者
does
确实
not
publish
发布
apparent
表观
thermal
烫的
resistance
电阻
parameters,
参数
they
他们
can
be
calculated
计算
from the following
从以下内容
information
信息

Average power dissipated, PF(AV), vs current magnitude, IF(AV), for the periodic current waveform in question,
平均耗散功率,PF(AV) 与电流幅度,IF(AV),对于讨论的周期性电流波形

Maximum current rating, IF(AV), vs case temperature, TC, for the same current waveform,
最大额定电流 IF(AV)vscasetemperature,TC 对相同电流波形,

Maximum operating junction temperature rating, TJ(MAX), for the device.
器件的最大工作额定值,TJ(MAX)。

Therefore, apparent thermal resistance = (TJ(MAX)−TC)/ PF(AV)
因此,表观热阻 = TJ(MAX)−TC)/ PF(AV)

Note that by using the apparent thermal resistance parameter and the current vs power dissipation curve for the current waveform of interest, it is a simple matter to determine the operating junction temperature of a diode for any selected case temperature and conduction current magnitude.
请注意,通过使用表观热阻参数和感兴趣电流波形的电流与功耗曲线,可以确定二极管在任何选定外壳温度和导通电流幅度下的工作结温是一件简单的事情。

Steady State Current Ratings
稳态电流额定值

The maximum allowable operating current of a diode depends upon its maximum allowable junction temperature rating, the internal power produced in the diode by the conduction and reverse currents, the total thermal resistance from junction to ambient and finally the maximum ambient temperature. Since the diode manufacturer has no control over the user's ambient temperature, the size of the heat dissipator that he attaches to the diode, or how the heat dissipator is cooled, diode current ratings are usually based upon the case (or lead) temperature of the device.
二极管的最大允许工作电流取决于其最大允许结温额定值、 导通反向电流二极管产生的内部功率 从结到环境的总热阻,最后是最高环境温度。由于二极管制造商无法控制用户的环境温度、连接到二极管的散热器的尺寸或散热器的冷却方式,因此二极管额定电流通常基于外壳(或引线)温度

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 125
第 125 页

Steady State Current Ratings (cont’d)
稳态电流额定值 (续)

Since the maximum operating temperature is fixed, diode current ratings are described by a curve relating maximum allowable current to case (or lead) temperature. The lower the case temperature maintained by the user, the higher the maximum allowable device current, and vice versa. The maximum allowable current will approach zero as the case temperature approaches the maximum operating junction temperature. This is true, of course, because the difference between the case and maximum operating junction temperature is determined by the product of the dissipated power and the junction-to-case thermal resistance. For lead mounted diodes, the current rating curves are often presented as a function of ambient temperature by assuming that no heat dissipator is attached to the device.
由于最高工作温度是固定的,因此二极管额定电流由最大允许电流与外壳(或引线)温度相关的曲线来描述。用户保持的外壳温度越低 最大允许器件电流越高 反之亦然 当外壳温度接近最大工作结温时,最大允许电流将接近于零。当然,这是正确的,因为外壳和最大工作结温之间的差异是由耗散功率和结到外壳热阻的乘积决定的。对于引线安装二极管,额定电流曲线通常以环境温度的函数表示,假设器件上没有安装散热器

Published current rating curves for diodes are generally given in terms of average current with the current waveform being half sine wave of frequency 50 Hz to 400 Hz. In addition, curves for sinusoidal or rectangular waves with various duty factors or conduction periods are often given. These basic current waveforms apply for resistive or inductive loads. Capacitive loads may cause very high peak current for a given average value because the diode can only conduct when the supply voltage exceeds the voltage presented by the capacitor. Derating data for capacitive loads is sometimes given on manufacturer's data sheets.
已公布的二极管额定电流曲线通常以平均电流给出,电流波形为频率为 50 Hz 至 400 Hz 的半正弦波。此外,还经常给出具有各种占空比或传导周期的正弦波或矩形波的曲线。这些基本电流波形适用于电阻或电感负载。容性负载可能会在给定平均值下产生非常高的峰值电流,因为只有当电源电压超过电容器提供的电压时,二极管才能导通。制造商的数据表上有时会给出容性负载的降额数据。

Overload Current Ratings
负载电流

Overload current ratings may be divided into two types: Non-repetitive and repetitive.
过载电流额定值可分为两种类型:非重复电流和重复电流额定值。

Non-Repetitive
重复
Overload
超载

Non-repetitive overloads are those which occur rarely and are not a part of the normal application of the device. Examples of such overloads are faults caused by accidental shorting of the load. Non-repetitive overload ratings permit the device to exceed its maximum operating junction temperature for short periods of time, nevertheless the device must block rated voltage in the reverse direction following the current overload. Only one hundred non-repetitive current overloads are permitted over the life of the device.
非重复过载是那些很少发生的过载,并且不是设备正常应用的一部分。此类过载的例子是由负载意外短路引起的故障。非重复过载额定值允许器件在短时间内超过其最大工作结温,但器件必须在电流过载后以相反方向阻断额定电压。在器件的整个生命周期内,只允许一百次非重复电流过载。

The
non-repetitive
非重复
overload
超载
ratings
评级
just
described
描述
may
五月
be
divided
划分
into
two
types:
类型:
multicycle
多循环
(which
(其中
includes single
包括单人
cycle)
循环)
and
sub-cycle.
子循环。
The
multicycle
多循环
overload
超载
current
当前
rating,
额定值
or
surge
current
当前
rating
额定值
as
it
is
commonly called,
俗称,
is
a curve
曲线
giving
the
maximum
最大
peak
value
价值
of
half
sine
正弦
wave
forward
向前
current
当前
pulses
脉冲
of
equal
平等
amplitude as
波幅
a function
功能
of
overload
超载
duration
期间
based
基于
on
the
number
of
cycles
周期
from
a 60 Hz
赫兹
supply.
供应。
Usually
通常
these
这些
ratings are
评分是
given
鉴于
for
from
one
to
sixty
六十
cycles.
周期。
For
this
type
类型
of
surge
rating
额定值
curve,
曲线
the
current
当前
values
can
be
converted from
转换自
peak
to
rms
均方根
values
by
dividing
划分
by
2. Multicycle
多周期
surge
curves
曲线
are
used
使用
to
select
选择
proper
适当
circuit
电路
breakers and series line impedance to prevent damage to the diode in the event of an equipment
断路器和串联线阻抗,以防止在设备发生时损坏二极管
fault.
故障。

The sub-cycle overload or sub-cycle surge rating curve is so called because the time duration of the current is usually from about one to eight milliseconds, which is less than the time of one half cycle of a 60 Hz power source. Again, overload current is given in curve form as a function of overload duration. RMS current is used rather than the peak value in order to make the curve as general as possible. This rating also applies following any rated load condition. However, the reverse blocking capability is not required on the part of the diode immediately following the overload current. The sub-cycle surge current rating is of assistance when selecting the proper current-limiting fuse for protection of the diode in the event of an equipment fault. Note the manufacturer may often publish the I2t rating for the device for one or more values of t in the one to eight millisecond range in place of the sub-cycle current overload curve. The reason for this is that fuses are commonly rated in terms of I2t. Incidentally, the “I” in this rating is rms computed over the time base “t” which is the duration of the overload current.
子周期过载或子周期浪涌额定曲线之所以如此称呼,是因为电流的持续时间通常约为一到八毫秒,小于 60 Hz 电源的半个周期的时间。同样,过载电流以曲线形式给出,作为过载持续时间的函数。使用 RMS 电流而不是峰值,以使曲线尽可能通用。该额定值也适用于任何额定负载条件。然而,在过载电流之后,二极管部分不需要反向阻断能力。子周期浪涌电流额定值有助于选择合适的限流保险丝,以便在设备发生故障时保护二极管。 请注意 制造商通常可能会发布器件 1 到 8 毫秒范围内的一个多个 t 值2 额定值 ,以代替子周期电流过载曲线。这样做的原因是保险丝通常以 I 2 t 为额定。顺便说一句,此额定值中的“I”是在时基“t”(过载电流的持续时间)上计算的均方根

JEDEC Standard No. 282B.02 Page 126
JEDEC 标准编号 282B.02 第 126 页

Repetitive Overloads
R 重复重

Repetitive overloads are those which are an intended part of the device application. An example of such an overload would be in a dc motor drive application where the motor furnishes the drive for an electric locomotive used for commuter service. This type of overload may occur any number of times during the life of the diode. Therefore, its rated maximum operating junction temperature must not be exceeded during the overload if long diode life is required.
重复重载是设备应用程序的预期部分。这种过载的一个例子是在直流电机驱动应用中,其中电机用于通勤服务电力机车提供驱动。二极管的使用寿命期间 ,这种类型的过载可能会发生任意次数 因此, 如果需要较长的二极管寿命,则在过载期间不得超过额定最大工作

Since this type of overload can have any conceivable complex current waveform and duty cycle, a current rating analysis involving the use of the transient thermal impedance characteristics is the only practical approach. In this type of analysis, the diode junction-to-case transient thermal impedance characteristic is added to the user's heat dissipator transient thermal impedance characteristic. Then by making calculations based upon the superposition theory using the expected power waveforms in conjunction with the composite thermal impedance curve, the overload current rating can be obtained. The exact calculation procedure is found in the power semiconductor literature.
由于这种类型的过载可能具有任何可以想象的复杂电流波形和占空比,因此涉及使用瞬态热阻特性的额定电流分析是唯一实用的方法。在这种类型的分析中,二极管结到外壳的瞬态热阻特性被添加到用户的散热器瞬态热阻特性中。然后,通过基于叠加理论 使用期望功率波形结合复合热阻曲线进行计算,可以得到过载电流额定值。确切的计算过程可在功率半导体文献中找到

Parallel Operations
Parallel 作

Sometimes it is desirable to operate diodes in parallel to obtain higher circuit output current. The primary design consideration to achieve successful paralleling is to balance the current in the parallel paths. This may be accomplished in three ways:
有时需要并联作二极管以获得更高的电路输出电流。实现成功并联的主要设计考虑因素是平衡并联路径中的电流。这可以通过三种方式实现:

Add
sufficient
足够
identical
相同
impedance
阻抗
in
each
path
路径
to
force
current
当前
sharing
共享
even
甚至
if
如果
the
very
非常
low
impedance diode conduction V-I characteristics and individual path impedances are grossly mismatched. The
阻抗二极管传导 VI 特性和各个路径阻抗严重不匹配。这
addition of resistance to each path will produce this current sharing, but of course it is a very inefficient method. The use of series reactors affords a more efficient
在每条路径上增加电阻会产生这种均流,但当然这是一种非常低效的方法。串联反应器的使用提供了更高效的
method.
方法。

Introduce “paralleling reactors” (which actually function as transformers) that induce the proper correcting voltages in response to the current unbalance in the parallel paths.
引入“并联电抗器”(实际上充当变压器),以响应并联路径中的电流不平衡来感应适当的校正电压

Factory match the diode conduction characteristics and very carefully design the parallel paths so that their impedances (self inductance, mutual inductance and resistance) are balanced without the addition of lumped impedances. (A circular device configuration and coaxial power leads may be required to achieve this objective.)
工厂匹配二极管的导通特性,并非常仔细地设计并联路径,以便它们的阻抗(自感、互感和电阻)在不添加集总阻抗的情况下得到平衡。(可能需要圆形设备配置和同轴电源线才能实现这一点客观的。

Since diode conduction V-I characteristics are somewhat temperature dependent, it is well to mount all paralleled diodes on a common heat dissipator to ensure the same operating junction temperature. Perfect current sharing seldom can be achieved using any paralleling method, so the average current per diode should be reduced, accordingly, somewhat below the maximum rating. Generally the derating used is about 10%.
由于二极管导通 VI 特性在某种程度上取决于温度,因此最好将所有并联二极管安装在公共散热器上,以确保相同的工作结温。 使用任何并联方法很少实现完美的流, 因此每个二极管的平均电流应相应地降低到略低于最大额定值。一般使用的降额约为 10%。

Switching Characteristics
Sw 瘙痒特征

There are two distinct switching conditions which can occur with diodes, forward recovery, and reverse recovery. A recovered charge is associated with reverse recovery.
二极管可能出现两种不同的开关条件:正向恢复和反向恢复。回收的电荷与反向回收相关联。

7.5.1 Forward Recovery and Turn-on Time
7.5.1 正向恢复和开启时间

Forward recovery time is the time required for voltage across the diode to reach a defined level, close to its steady-state value, when an abrupt forward current pulse is applied. When a step of forward current is applied to a diode, the carrier gradient does not develop immediately, resulting in an overshoot voltage. As carriers begin to cross the junction, they build up the charge gradient and also cause an apparent decrease in the resistivity that is observed as a decrease in the overshoot voltage as time increases.
正向恢复时间是当施加突然的正向电流脉冲时,二极管两端的电压达到定义水平(接近其稳态值)所需的时间。当向二极管施加一阶级正向电流时,载波梯度不会立即产生,从而导致过冲电压。当载流子开始穿过结时, 它们会增加电荷梯度 ,并导致电阻率明显降低,随着时间的增加,过冲电压会降低

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 127
第 127 页

Forward Recovery and Turn-on Time (cont’d)
正向恢复和开启时间 (续)

Forward recovery is observed only when the step application of forward current is very steep and, for this reason, is seldom seen in 60 Hz power circuits. For forward recovery to be apparent, circuit inductance must be sufficiently low to provide a di/dt of at least 10 A/μsec (much higher for some low voltage diodes). High voltage diodes have longer forward recovery times as a result of the higher resistivity and/or thicker silicon material required to make them.
只有当正向电流的阶跃施加非常陡峭时,才会观察到正向恢复,因此,在 60 Hz 电源电路中很少见。为了使正向恢复明显,电路电感必须足够,以提供至少 10A/μsecdi/dt 对于某些二极管来说要高得多)。 高压二极管具有更长的正向恢复时间,因为制造它们需要更高的电阻率和/或更厚的硅材料

The turn-on time, ton, is the time required for the forward current through the DUT to go from 10% to 90% of the maximum amplitude. Since diodes do not exhibit a delay time, the turn-on time is identical to the rise time of standard pulse symbology. Turn-on time is of concern only in circuits with low forcing voltages, less than several times the vFRM observed herein. It is a consequence of the forward recovery phenomenon but only appears in low voltage, nonconductive applications. As such it is normally of no significance in the use of rectifier diodes in pulse power circuits.
导通时间 ton 是通过 DUT 的正向电流从最大幅度的 10% 到 90% 所需的时间。由于二极管不表现出延迟时间,因此导通时间与标准脉冲符号系统的上升时间相同。导通时间仅在具有低强制电压的电路中受到关注 ,该电压小于本文观察到的 v FRM 的几倍。这是正向恢复现象的结果 ,但仅出现在低压、非导电应用中。因此,在脉冲电源电路中使用整流二极管通常没有意义

Reverse Recovery
Reverse 恢复

In switching from forward conduction to reverse blocking, a large initial reverse current may flow through a diode. The rate of rise of this current is determined only by the external circuit. After a short interval, usually less than a few microseconds, the diode will become able to block reverse voltage and the reverse current
在从正向导通切换到反向阻断时,可能会有较大的初始反向电流流过二极管。该电流的上升速率仅由外部电路决定。经过一小段时间间隔(通常不到几微秒),二极管将能够阻止反向电压和反向电流
will
decay
衰变
to
the
normal
正常
blocking
阻塞
level.
水平。
The
magnitude
大小
of
this
reverse
反向
recovery
恢复
current
当前
may
五月
be
large enough to warrant consideration in determining the rating of other circuit components which supply this current. In some high frequency circuits, the power generated by this recovery current (the switching losses) may require derating or selection of faster recovery rectifier diodes. In addition, the decay of the peak reverse recovery current may be abrupt enough to generate large transient overvoltage in inductive circuit elements feeding this current.
足够大,值得在确定提供此电流的其他电路组件的额定值时考虑。在一些高频电路中,该恢复电流产生的功率(开关损耗)可能需要降额或选择更快恢复的整流二极管。此外,峰值反向恢复电流的衰减可能足够突然,以至于在提供该电流的电感电路元件中产生较大的瞬态过电压。
Such overvoltage may be controlled in a variety of ways, the simplest of
这种过电压可以通过多种方式进行控制,最简单的
which
is
to
use
a snubber
缓冲
circuit,
电路
a series-connected
串联
resistor
电阻器
and
capacitor,
电容器
in
parallel
平行
with
the
diode.
二极管。
The capacitor must be of sufficient size to accept the stored inductive energy from the circuit without excessive voltage
电容器必须具有足够的尺寸,以接受来自电路的存储电感能量,而不会产生过大的电压
rise.
上升。

Power rectifier diodes can possess either of two types of recovery characteristics. After the reverse current reaches its peak value, IRM(REC), it may immediately or a short time later decrease very abruptly (abrupt recovery) or it may decrease slowly and smoothly to its steady-state reverse blocking value (soft recovery).
功率整流二极管可以具有两种类型的恢复特性之一。反向电流达到其峰值 IRM(REC),它可能会立即或短时间后非常突然地下降(突然恢复),或者可能会缓慢而平稳地下降到其稳态反向阻塞值(软恢复)。

In the former case, the effect of the rapid current change and the loop inductance producing a transient voltage across the test device must be considered. The recovery time for rectifier diodes possessing “soft” recovery characteristics is defined as trr = trrr + trrf (See Figure 60), where trrr is measured from the instant of current reversal to the instant the current reaches its peak reverse value, IRM(REC), and trrf is measured from IRM(REC) to the instant the straight line connecting IRM(REC), and 0.25 IRM(REC) intercepts the zero current axis. The recovery time for a diode possessing “abrupt” recovery characteristics is defined in the same manner, except trrf is measured to the instant the test current waveform initially intercepts the zero current axis. Note that the shape of the recovery characteristics may be expressed as Reverse Recovery Softness Factor (RRSF) by the ratio of the maximum absolute magnitude of di/dt within the trrr region compared to that in the trrf region.
在前一种情况下,必须考虑快速电流变化和环路电感在测试器件两端产生瞬态电压的影响。具有“软”恢复特性的整流二极管的恢复时间定义为 trr = trrr + trrf(见图 60),其中 trrr 是从电流反转的瞬间到电流达到其峰值反向值的瞬间 IRM(REC) 测量的,trrf 是从 I 测量的 RM(REC) 到连接 I RM(REC) 的直线的瞬间 ,0.25I RM(REC)取零电流轴。 具有“突然”恢复特性的二极管的恢复时间以相同的方式定义, 只是 trrf 被测量 测试电流波形最初瞬间 截取 电流轴。 请注意 ,恢复特性的形状可以通过 trrr 区域内 di/dt 的最大绝对大小与 t rrf 区域中的 di/dt 的最大绝对大小之比表示为反向恢复柔软度因子 (RRSF)。

Observed values of trr in a given circuit may differ from the specified value, as this characteristic is circuit dependent, varying principally with di/dt, IFM, IRM(REC), and temperature.
给定电路中 t rr 的观测值可能与指定值不同,因为该特性取决于电路,主要随 di/dt、IFM、IRM(REC) 和温度而变化。

JEDEC Standard No. 282B.02 Page 128
JEDEC 标准编号 282B.02 第 128 页

7.5.2Reverse Recovery (cont’d)
7.5.2 反向恢复 (续)

The recovered charge of the device under test is defined as the area under the reverse current - time curve. An approximate value of the recovered charge, in microcoulombs, can be calculated by the expression:
被测器件的恢复电荷定义为反向电流-时间曲线下的面积。回收电荷的近似值(以微库仑为单位)可以通过以下表达式计算:

Qrr = (1/2) trr IRM(REC)
Qrr = (1/2)trr IRM(REC)

where:
哪里:

trr= reverse recovery time, in microseconds
trr = 反向恢复时间,以微秒为单位

IRM(REC) = peak reverse current during the reverse recovery period, in amperesNOTE t
IRM(REC) = 反向恢复期间的峰值反向电流,单位为安培注 t

rrr is now the preferred symbol for ta, and trrf is preferred for tb
RRR 现在是 T A 的首选符号 ,TRrf 是 T B 的首选符号
.

Figure 60 — Test Current Waveforms for Various Types of Rectifier Diodes Under Test in the Circuit for Measuring Reverse Recovery Characteristics
图 60 — 用于测量反向恢复特性的电路中被测各种类型整流二极管的测试电流波形

7.6Fundamental Rectifier Circuits
7.6 基波整流电路

The circuits shown in Figure 61 through Figure 64 are presented as an aid to understanding the application of diodes in various rectifier circuits. Data are from theoretical calculations based on undistorted input waveforms, no power loss in the semiconductor device(s), and no reactance or losses in the transformer(s) or associated leads. This circuit table is useful in approximating the values of circuit voltages and currents but the designer must also consider transformer and lead impedance, semiconductor devices(s) losses, voltage transients, surge current conditions, etc., for proper circuit design.
图 61 至图 64 所示的电路有助于理解二极管在各种整流电路中的应用。数据来自基于未失真的输入波形的理论计算,半导体器件没有功率损耗,变压器或相关引线没有电抗或损耗。该电路表可用于近似电路电压和电流的值,但设计人员还必须考虑变压器和引线阻抗、半导体器件损耗、电压瞬变、浪涌电流条件等,以进行正确的电路设计。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 129
第 129 页

7.6Fundamental Rectifier Circuits (cont’d)
7.6 基波整流电路 (续)

NOTE Semiconductor rectifier diode and transformer are assumed to have no losses or reactance. Form factor (F.F.) — Ratio of rms to average value of a wave form. Ea — RMS value of load (L) voltage. Ed — Average value of load voltage. Ee — RMS value of line input voltage (line to line).
注意:假设半导体整流器二极管和变压器没有损耗或电抗。外形因子 (F.F.) — 均方根与波形平均值的比率。Ea — 负载 (L) 电压的 RMS 值。Ed — 负载电压的平均值。Ee — 线路输入电压(线路到线路)的 RMS 值。

Figure 61 Fundamental Rectifier Circuits – Resistive Load
图 61 基波整流电路 – 电阻负载

JEDEC Standard No. 282B.02 Page 130
JEDEC 标准编号 282B.02 第 130 页

7.6Fundamental Rectifier Circuits (cont’d)
7.6 基波整流电路 (续)

NOTE Form factor (F.F.) — Ratio of rms to average value of a wave form. Current Factor (C.F.) — Ratio of rms value of input line current (IS) to average value of load current (Id). Voltage Factor (V.F.) — Ratio of rms value of input line voltage (line to line) (Ee) to average value of load voltage (Ed).
注意 外形因子 (F.F.) — 均方根与波形平均值的比率。电流因数 (CF) — 输入线路电流 (IS) 的均方根值与负载电流平均值 (Id) 的比值。电压系数 (V.F.) — 输入线路电压(线路到线路)(E e)的均方根值与负载电压平均值 (Ed) 的比值。

Figure 62 — Fundamental Rectifier Circuits – Resistive Load
图 62 — 基波整流电路 – 电阻负载

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 131
第 131 页

7.6Fundamental Rectifier Circuits (cont’d)
7.6 基波整流电路 (续)

NOTESemiconductor rectifier diode and transformer are assumed to have no losses or reactance. Form factor (F.F.)
注意 :假设半导体整流器二极管和变压器没有损耗或电抗。外形尺寸 (F.F.)

Ratio of rms to average value of a wave form. Ea — RMS value of load (L) voltage. Ed — Average value of load voltage. Ee RMS value of line input voltage (line to line). Ripple current A finite value of inductance in the load is assumed for the calculation of ripple having knowledge of the ratio of L/R.
均方根与波形平均值的比率。Ea — 负载 (L) 电压的 RMS 值。Ed — 负载电压的平均值。 Ee 线路输入电压 RMS (线线)。 纹波电流 假设负载中的 电感有限,用于计算纹波 ,并了解 L/R比。

Figure 63 — Fundamental Rectifier Circuits – Inductive Load
图 63 — 基波整流电路 – 感性负载

JEDEC Standard No. 282B.02 Page 132
JEDEC 标准第 282B.02 号,第 132 页

Fundamental Rectifier Circuits (cont’d)
基波整流电路 (续)

NOTE Form factor (F.F.) — Ratio of rms to average value of a waveform. Current Factor (C.F.) — Ratio of rms value of input line current (IS) to average value of load current (Id). Voltage Factor (V.F.) — Ratio of rms value of input line voltage (line to line) (Ee) to average value of load voltage (Ed). Maximum theoretical conversion efficiency
注意 外形尺寸 (F.F.) — 均方根与波形平均值的比率。电流因数 (CF) — 输入线路电流 (IS) 的均方根值与负载电流平均值 (Id) 的比值。电压系数 (V.F.) — 输入线路电压(线路到线路)(E e)的均方根值与负载电压平均值 (Ed) 的比值。最大的理论转换效率

Load inductance is assumed infinite and current flows continuously through load.
假设负载电感无限的 电流连续负载。

Figure 64 Fundamental Rectifier Circuits – Inductive Load
图 64 基波整流电路 – 感性负载

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 133
第 133 页

Cooling Considerations
Cooling 注意事项

In order to achieve the full current carrying capability of rectifier diodes, consideration must be given to providing proper cooling. Disk and stud- or base-mounted type rectifier diodes have high current ratings and, therefore, a relatively large amount of heat is generated within the junction assembly that must be effectively removed in order to prevent excessive temperature rise of the junction and possible damage to it. Diodes that possess large integral heat dissipators are exceptions, and normally are not attached to heat dissipators.
为了实现整流二极管的全部载流能力,必须考虑提供适当的冷却。盘式和螺柱式或底座式整流二极管具有高额定电流,因此,结组件内会产生相对较多的热量,必须有效去除这些热量 以防止过高可能损坏它。具有大型集成散热器的二极管是例外,通常不连接到散热器上。

Heat Dissipator / Rectifier Diode Interface: The two main considerations regarding the heat dissipator / rectifier diode interface are ensuring adequate heat transfer and either very low, or very high electrical resistance (if the diode is to be isolated electrically from the heat sink). Good heat transfer requires high thermal conductance. Thermal conductance is influenced by surface and mounting conditions. Surface conditions apply to both stud- and disk-type semiconductors and are explained in clause 7.7.1.1. The mounting conditions depend on the type of device involved and are explained in later clauses.
散热器/整流二极管接口:关于散热器/整流器二极管接口的两个主要考虑因素是确保足够的热传递和非常低或非常高的电阻(如果二极管要与散热器进行电气隔离)。良好的传热需要高热导率。热导率受表面和安装条件的影响。表面条件适用于螺柱型和盘式半导体,并在第 7.7.1.1 条中进行了解释。安装条件取决于所涉及的设备类型,并在后面的条款中进行解释。

7.7.1 General Mounting Considerations
7.7.1 一般安装注意事项

7.7.1.1 Surface Conditions
7.7.1.1 表面条件

Air
空气
pockets
口袋
can
be
trapped
被 困
in
the
depressions
萧条
and
voids
空隙
between
之间
two
mating
交配
surfaces.
表面。
The
majority
大多数
of
these can be avoided with proper care and handling of the two surfaces before mounting. Since devices generally are cooled by the contact of heat dissipators or heat exchangers against device mounting surfaces, the mounting method used must distribute the pressure evenly across the mating
在安装前对两个表面进行适当的保养和处理可以避免这些情况。由于设备通常通过散热器或热交换器与设备安装表面的接触来冷却,因此所使用的安装方法必须将压力均匀分布在配合上
surfaces.
表面。

In general, the heat dissipator mounting surface should have a flatness and surface finish comparable to that of the mating part of the semiconductor package. In lower power applications, the heat dissipator surface is satisfactory if it appears flat against a straight edge and is free from deep scratches. In high power applications, a more detailed examination of the surface is required.
一般来说 安装具有半导体封装配合部分相当的平整度表面光洁度 。在低功率应用中,如果散热器表面在直尺上看起来平坦并且没有较深的划痕,则该表面是令人满意的。在高功率应用中,需要对表面进行更详细的检查

“Surface Flatness” is determined by comparing the variance in height (h) of the test specimen to that of a reference standard as indicated in Figure 65. Flatness is normally specified as a fraction of the Total Indicator Reading (TIR). The mounting surface flatness, i.e., TIR, is satisfactory in most cases if it is less than 4 micrometers per millimeter (4 mils per inch), which is normal for extruded aluminum. Disk type devices usually require 1 micrometer per millimeter (1 mil per inch) and spot facing of the heat sink may be required to achieve this. “Surface Finish” is the average of the deviations both above and below the mean value of surface height. For minimum interface resistance, a finish in the range of 1.3 to 1.5 micrometers (50 μ-inches to 60 μ-inches) is satisfactory; a finer finish is costly to achieve and does not significantly lower contact thermal resistance.
“表面平整度”是通过将试样的高度 (h) 方差与图 65 所示的参考标准的方差进行比较来确定的。平坦度通常指定为总指标读数 (TIR) 的一小部分。如果安装表面平整度(即 TIR)小于 4 微米/毫米(4 密耳/英寸),则在大多数情况下是令人满意的,这对于挤压铝来说是正常的。盘式设备通常需要毫米 1 微米 (每英寸 1 密耳 ), 并且可能需要热器的才能实现这一点。“表面光洁度”是高于和低于表面高度平均值的偏差的平均值。对于最小界面电阻,1.3 至 1.5 微米(50μ 英寸60μ 英寸) 范围内的光洁度是令人满意的; 实现更精细表面处理成本高昂 ,并且不会显着降低接触热阻。

Figure 65 — Surface Flatness
图 65 — 表面平整度

JEDEC Standard No. 282B.02 Page 134
JEDEC 标准编号 282B.02 第 134 页

Surface Conditions (cont’d)
表面条件 (续)

Care should be taken to ensure that all mating surfaces are free from foreign materials and oxides. If the diodes and heat dissipators are stored, a cleaning operation before use is good practice. A satisfactory cleaning technique is to polish the mounting areas with No. 400-600 grit paper, followed by a solvent rinse. No. 000 steel wool can be used to polish contact areas, but care must be exercised to remove all steel particles so that device flash-over will not occur.
应注意确保所有配合表面没有异物和氧化物。如果存放了二极管和散热器,则在使用前进行清洁作是很好的做法。一种令人满意的清洁技术No.400-600 粒度纸, 然后溶剂冲洗。不。000丝绒可用于抛光接触区域,必须注意去除所有颗粒,以免发生设备闪络

Many aluminum sinks are black anodized to improve heat radiation ability and prevent corrosion. Anodizing results in significant electrical but negligible thermal insulation. It need only be removed from the mounting area when electrical contact is required. Another treated aluminum finish is irradiate, or chromic acid dip, which offers low thermal resistance because of its thin surface, yet has good electrical properties because it resists oxidation. For economy, paint is sometimes used on dissipators; removal of the paint where the semiconductor is attached is required because of paint's high electrical resistance.
许多水槽都经过黑色阳极氧化处理 以提高散热能力防止腐蚀。 阳极氧化可产生显着的电气绝缘性,但效果可以忽略不计 只有需要电气接触时才需要将其安装区域取下 。另一种经过处理的铝饰面是辐照或铬酸浸渍,由于其表面薄,热阻低,但由于抗氧化,具有良好的电气性能。为了经济起见,有时会在消散器上使用油漆;由于涂料的高电阻,需要去除附着半导体的涂料

However, when it is necessary to electrically insulate the semiconductor package from the heat dissipator, anodized or painted surfaces may be satisfactory.
然而,当需要将半导体封装与散热器进行电绝缘时,阳极氧化或涂漆表面可能令人满意。

Even
甚至
though
虽然
all
the
procedures
程序
listed
上市
are
followed,
跟着
minute
分钟
air
空气
voids
空隙
between
之间
mating
交配
surfaces
表面
will
still
exist. To
存在。自
reduce
减少
the
thermal
烫的
resistance
电阻
introduced
介绍
at
these
这些
mating
交配
surfaces,
表面
a thermal
烫的
joint
关节
compound
复合
may
五月
be
used. Such a compound also has the desirable property of keeping moisture away from the mating surfaces, and hence,
使用。这种化合物还具有使水分远离配合表面的理想特性,因此,
inhibiting
抑制
corrosion.
腐蚀。
These
这些
compounds
化合物
may
五月
contain
包含
deoxidizers
脱氧剂
for
the
purpose
目的
of
further
进一步
inhibiting corrosion which may also be done by plating the bare metal
抑制腐蚀,也可以通过电镀裸露的金属来完成
surfaces.
表面。

Thermal Compounds
Thermal 化合物

To reduce thermal resistance, thermal joint compounds or greases are used to fill air voids between mating surfaces. Values of thermal resistivity vary from 0.10 °C inch per watt for copper oxide film to 1200 °C inches per watt for air, whereas satisfactory joint compounds have a resistivity of approximately 60 °C inches per watt. Therefore, the voids, scratches and imperfections that are filled with a joint compound will have a thermal resistance of about 1/20th of the original value, making a significant reduction in the overall interface thermal resistance.
为了降低热阻,使用热接头化合物或润滑脂来填充配合表面之间的空隙。热阻率值从氧化铜膜的 0.10 °C 英寸/瓦到空气的 1200 °C 英寸/瓦不等 令人满意接头化合物电阻率约为每瓦 60°C 英寸。因此,用接缝胶填充的空隙、划痕和缺陷将具有原始1/20 左右 使整体界面热显着降低

Joint compounds are usually a formulation of fine metallic particles in a silicone oil which maintains a grease- like consistency with time and temperature. Since some of these compounds do not spread well, they should be evenly applied in a very thin layer using a spatula or lint less brush, and wiped lightly to remove excess material. Partial rotation of the device case will help the compound spread evenly over the entire contact area. Experience will indicate whether the quantity is sufficient, as excess will appear around the edges of the contact area. To prevent accumulation of airborne particulate matter, excess compound should be wiped away using a cloth moistened with acetone or alcohol. These solvents should not contact plastic encapsulated devices, as they may enter the package and cause a leakage path or carry in substances which might attack the assembly.
接缝化合物通常是硅油中细小金属颗粒的配方,可随时间和温度保持油脂般的稠度。由于其中一些化合物不能很好地涂抹,因此应使用抹刀或无绒刷将它们均匀地涂抹在非常薄的一层中,并轻轻擦拭以去除多余的材料。设备外壳的部分旋转将有助于化合物均匀分布在整个接触区域。经验会表明数量是否足够,因为接触区域的边缘会出现多余的数量。为防止空气中的颗粒物积聚,应使用蘸有丙酮或酒精的布擦去多余的化合物。这些溶剂不应接触塑料封装设备,因为它们可能会进入包装并导致泄漏路径或携带可能侵蚀组件的物质。

If re-assembly of a disk type semiconductor to a heat dissipator is required where a metal filled joint compound was used, the device and heat dissipator surfaces should be thoroughly cleaned and new joint compound applied. If any indication of damage is evident consult manufacturer. The semiconductor device or joint compound manufacturer may be consulted for more information on these compounds and their application.
如果需要将盘式半导体重新组装到散热器上,其中使用了金属填充的接头化合物,则应彻底清洁器件和散热器表面并应用新的接头化合物。如果有任何明显的损坏迹象,请咨询制造商。有关这些化合物及其应用的更多信息,可以咨询半导体器件或联合化合物制造商。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 135
第 135 页

Insulation Considerations
保险注意事项

Since most rectifier diodes have either the anode or cathode electrically common to the case, the problem of isolating the case from ground is a common one. For lowest overall thermal resistance, it is best to isolate the entire heat dissipator/semiconductor structure from ground, rather than to use an insulator between the semiconductor and the heat dissipator. Where heat dissipator isolation is not possible, because of safety reasons or in instances where a chassis serves as the heat sink or where a heat dissipator is common to several devices, insulators may be used to isolate the individual components from the heat dissipator sink.
由于大多数整流二极管阳极阴极电上外壳共有 ,因此将外壳与地隔离的问题是一个常见的问题。为了获得最低的整体热阻,最好将整个散热器/半导体结构与地面隔离,而不是在半导体和散热器之间使用绝缘体。如果由于安全原因而无法进行散热器隔离,或者在机箱用作散热器或散热器对多个设备通用的情况下,可以使用绝缘体将各个组件与散热器接收器隔离。

When such insulators are used, thermal compounds assume greater importance than with a metal-to-metal contact, because two interfaces exist instead of one and some insulating materials, such as mica, have a markedly uneven surface. Reduction of interface thermal resistance by 50% to 70% is typical when a thermal compound is used in such instances.
当使用这种绝缘体时,导热化合物比金属与金属接触更重要,因为存在两个界面而不是一个界面,并且一些绝缘材料(例如云母)具有明显不平整表面。 在这种情况下使用导热膏 界面降低 50% 70%典型的

With some arrangements, the interface thermal resistance may exceed that of the semiconductor junction- to- case thermal resistance. When high power is handled, beryllium oxide is unquestionably the best insulator choice but care must be exercised in handling as small particles are toxic. Polyimide material is fairly popular for low power applications because it is low in cost, withstands high temperatures and is easily handled, in contrast to mica which chips and flakes easily.
在某些布置中,界面热阻可能超过半导体结到外壳的热阻。当处理大功率时,氧化铍无疑是最佳绝缘体选择,但处理时必须小心,因为小颗粒有毒。聚酰亚胺材料功率应用相当受欢迎 ,因为它成本高温易于处理,而云母则容易碎裂和剥落

When using insulators, care must be taken to keep the mating surfaces clean. Small particles of foreign matter can puncture the insulation, rendering it useless or seriously lowering its dielectric strength. In addition, when voltages higher than 300 V are encountered, problems with creepage may occur. Dust and other foreign material can shorten creepage distances significantly so that having a clean assembly area is important. Surface roughness and humidity also lower insulation resistance. Use of a thermal compound usually raises the breakdown voltage of the insulation system. Because of these factors, which are not amendable to analysis, hi-pot testing should be done on prototype and a large margin of safety employed.
使用绝缘子时,必须注意保持配合表面清洁。小颗粒的异物会刺穿绝缘层,使其无用或严重降低其介电强度。此外,当遇到高于 300 V 的电压时,可能会出现爬电距离问题。灰尘和其他异物可以显着缩短爬电距离,因此拥有清洁的装配区域非常重要。表面粗糙度和湿度也会降低绝缘电阻。使用导热膏通常会提高绝缘系统的击穿电压。由于这些因素无法进行分析,因此应在原型上进行耐压测试,并采用较大的安全边际。

Installation of Stud-Mounted Semiconductor Devices
螺柱安装半导体器件内部安装

Hole and Surface Preparation
料和表面处理

When diodes possessing studs with machine threads are mounted through a clearance hole, optimum heat transfer depends on adequate contact between the diode base and heat dissipator surface. Care should be taken to ensure a clean flat area for contact, free of ridges or high spots, burrs, etc. The diode base should also be checked for removal of all burrs or peened-over corners that may have occurred during previous handling. Mounting holes generally should only be large enough to allow clearance of the stud.
当具有带有机器螺纹的螺柱的二极管通过间隙孔安装时,最佳传热取决于二极管底座和散热器表面之间的充分接触。应注意确保接触区域干净平坦,无脊或高点、毛刺等。还应检查二极管底座是否去除了先前处理过程中可能出现的所有毛刺或喷丸角。安装孔通常只能足够大,以允许螺柱间隙。

If the mounting holes are punched, care must be exercised so that the area around any punched hole is not depressed in the process. The device can be damaged by distortion of the package as the mounting pressure attempts to conform it to the shape of the heat dissipator depression, or the device may only bridge the depression and leave a significant percentage of its heat dissipating surface out of contact with the heat dissipator. The first effect may often be detected immediately by visible cracks in the package but usually an unnatural stress is imposed on the junction assembly, resulting in an early-life failure. The second effect results in hotter operation and may not be manifested until much later.
如果安装孔是冲孔的,则必须小心,以免在此过程中压低任何冲孔周围的区域。当安装压力试图使其符合散热器凹陷的形状时,封装可能会损坏设备,或者设备可能只桥接凹陷并使其散热表面的很大一部分不与散热器接触。封装中可见的裂纹通常可以立即检测到第一种影响,但通常会对结组件施加不自然的应力,从而导致早期故障。第二种影响导致运行温度更高,并且可能要到很久以后才会显现出来。

When mounting holes are drilled, surface cleanup is important. Chamfers must be avoided because they reduce heat transfer surface and increase mounting stress. However, mounting hole edges should be “broken” to remove burrs which cause poor contact between device and heat dissipator and may puncture insulation material.
钻安装孔时,表面清理很重要。必须避免倒角,因为它们会减少传热表面并增加安装应力。然而,安装孔边缘应“折断”以去除毛刺,毛刺会导致设备与散热器接触不良,并可能刺穿绝缘材料。

JEDEC Standard No. 282B.02 Page 136
JEDEC 标准编号 282B.02 第 136 页

Mounting Torque
土墩扭矩

Good thermal contact between the base of the diode and the heat dissipator requires adequate pressure between the two contact surfaces. This is a produced by torque on the threads of the device. However, a torque beyond a certain value no longer significantly improves the thermal contact and may mechanically stress the semiconductor crystal and associated materials inside the housing. The torques specified for lubricated and nonlubricated stud threads are normally different. Most torques specifications are for dry threads and care must be exercised when applying thermal compounds to avoid contact with the threads. Precise adherence to the manufacturer's torque recommendation is necessary and should be verified using a torque wrench.
二极管基极和散热器之间的良好热接触需要两个接触表面之间有足够的压力。这是由设备螺纹上的扭矩产生的。然而,超过一定值的扭矩不再显着改善热接触,并且可能会对外壳内的半导体晶体和相关材料产生机械应力。润滑和非润滑螺柱螺纹的扭矩通常不同。大多数扭矩规格适用于干螺纹,在使用导热膏时必须小心,以避免与螺纹接触。精确遵守制造商的扭矩建议是必要的,并且应使用扭矩扳手进行验证。

Mounting Procedure – Stud-Mounted Devices
起床程序 – 螺柱安装设备

Unequal thermal expansion of the mounting stud and the heat dissipator, e.g., a copper stud and an aluminum heat dissipator, can cause the mounting to gradually loosen as the assembly is cycled through temperature extremes. A spring washer on the reverse side of the heat dissipator minimizes this effect by allowing the aluminum to expand against the washer compression rather than the copper.
安装螺柱散热器( 例如铜螺柱铝制散热器)膨胀不均会导致安装在组件在极端温度下循环时逐渐松动。散热器反面的弹簧垫圈允许铝而不是铜在垫圈压缩下膨胀,从而最大限度地减少这种影响

Installation of Disk-Type Semiconductor Devices
盘式半导体器件的 Ins Tallation

Mounting Procedure – Disk-Type Devices
安装程序 – 磁盘型设备

A self-leveling
自流平
type
类型
mounting
安装
clamp
is
recommended
推荐
to
ensure
确保
parallelism
排比
and
an
even
甚至
distribution
分配
of
force on each contact area. A swivel type clamp will apply the mounting force in the desired manner. Other configurations such as narrow leaf springs in contact with the heat dissipator can provide acceptable performance. Also the material thickness of the heat dissipator must be sufficient to make possible uniform force over contacting
力施加在每个接触区域。旋转式夹具将以所需的方式施加安装力。其他配置,例如与散热器接触的窄板簧可以提供可接受的性能。此外,散热器的材料厚度必须足以使接触力均匀
surfaces.
表面。

Force Application
应用

The clamping force should be applied gradually, evenly and perpendicularly to the semiconductor device to ensure that there is no deformation of either the device or the heat dissipator mounting surfaces during installation. The spring used should provide a mounting force within the range recommended by the device manufacturer.
夹紧逐渐、 均匀 垂直施加半导体器件,以确保在安装过程中器件或散热器安装面都不会变形。所使用的弹簧应在设备制造商推荐的范围内提供安装力

Clamping Procedure
C 程序

Installation of an assembly of a disk-type semiconductor device mounted between two heat dissipators should be done in a manner to permit one heat dissipator to move with respect to the other. This will avoid stresses being built up, due to thermal expansion, which could damage the semiconductor junction. However, the clamping structure must be such that proper pressure is maintained throughout the temperature range of the system.
安装在两个散热器之间的圆盘型半导体器件组件的安装方式应允许一个散热器相对于另一个散热器移动。这将避免由于热膨胀而产生的应力,这可能会损坏半导体结。然而, 夹紧结构必须使在系统的整个温度范围内保持适当的压力

Similarly, when two or more disk-type devices are to be operated electrically in parallel, one of the heat dissipators used may be common to all the devices, but it is preferred practice to provide individual heat dissipators against the other mounting surfaces of the semiconductor devices so that the mounting force applied to each device is independent of the force(s) applied to the other(s).
类似地,当两个或多个圆盘型器件要并联电气运行时,所使用的散热器之一可能对所有器件都是通用的,但优选做法是针对半导体器件的其他安装表面提供单独的散热器,以便施加到每个器件的安装力与施加到其他器件的力无关。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 137
第 137 页

Installation of Lead-Mounted Semiconductor Devices
引线贴装半导体器件检测

Devices Storage, Cleaning and Handling – Lead Mounted Devices
D 设备存储、清洁和处理 – 铅安装设备

Storage of devices should be under conditions which minimize lead contamination. When handling devices, avoid coating leads with foreign materials such as oils or grease. Many solvents are available for lead degreasing or flux removal. Care should be taken to choose a solvent that will not damage the device seals. When large quantities of devices are to be used, it may be an advantage to have them taped and reeled per the latest version of EIA Standard, EIA-296, Lead Taping of Components in Axial Lead Configuration for Automatic Handling, and the latest revision of EIA-481, Taping of Surface Mount Components for Automatic Handling, for handling by automatic equipment.
设备的储存在尽量减少污染条件下进行。 处理设备,避免在引线上涂上油或油脂等异物。许多溶剂可用于铅脱脂或助焊剂去除。应注意选择不会损坏设备密封件的溶剂。当要使用大量设备时,根据最新版本的 EIA 标准 EIA-296, 用于自动处理的轴向引线配置组件的引线编带 以及最新版本EIA-481, 自动表面贴装组件的胶带,对它们进行胶带和卷取可能是一个优势搬运 ,用于自动设备搬运

Lead Cutting and Forming
Lead 切割和成型

When bending leads, the lead should be held between the bending point and the body of the device to avoid internal damage to the device. This holding point should be designed into lead forming fixtures.
弯曲引线时,应将引线夹在弯曲点和设备主体之间,以免对设备造成内部损坏。该保持点应设计在引线成型夹具中。

A properly designed fixture may also include lead cutting, thereby eliminating repeated handling of the device. Excessive lead tension should be avoided as this may result in device damage. Repeated lead bending at one point should be avoided, as this will cause lead fatigue and breakage. A slack or expansion elbow should be formed in the lead, if room allows, to prevent excessive tension on leads during mounting and subsequent operations.
正确设计的夹具还可能包括铅切割,从而消除对设备的重复处理。避免力过大 ,因为可能会导致设备损坏。避免某一点反复弯曲铅,因为这会导致铅疲劳和断裂。如果空间允许,应在导线上形成松弛或膨胀弯头,以防止在安装和后续作过程中导线过度张力

Met
hods of Lead
铅的成堆
Attachment
附件

Soldering
焊环

Care should be exercised in the selection of soldering flux. Rosin or activated rosin type fluxes are preferred. Organic or acid type fluxes should be avoided if possible. The manufacturer's recommendations for maximum soldering temperature, time, and distance from the device body should be observed as excessive heating may damage the device. If possible, a removable heat dissipator may be placed on the lead between the device and soldering point to reduce device heating during soldering.
选择小心 选松香活性松香助焊剂 。如果可能,应避免使用有机或酸性助焊剂。应遵守制造商关于最高焊接温度、时间和与设备主体距离的建议,因为过度加热可能会损坏设备。 如果可能, 可以在器件和焊点之间的引线放置一个可拆卸的散,以减少器件在焊接过程中的发热

Welding
我们 lding

Care should be taken to assure none of the welding current is transmitted through the semiconductor device. The manufacturer should be consulted as to the type of lead material. Weld schedules may be obtained from the American National Standards Institute (ANSI), or the device manufacturer.
注意确保没有焊接电流通过半导体器件传输 应咨询制造商有关材料的类型 焊接时间表从美国国家标准协会 (ANSI) 或设备制造商获得

Wire Wrapping
绕线

The lead should be restrained between the body of the device and the point of wrapping to avoid excessive lead tension.
引线应约束在设备主体和缠绕点之间,以避免引线张力过大。

JEDEC Standard No. 282B.02 Page 138
JEDEC 标准编号 282B.02 第 138 页

Installation of Press-Fit Semiconductor Devices
接半导体器件的行业

Device Storage and Cleaning – Press-Fit Devices
Device 存储和清洁 – 压接设备

Storage of devices should be under conditions which minimize mounting surface contamination. Care should be taken to avoid coating mounting surfaces with foreign materials such as oils or grease. Many solvents are available for degreasing or flux removal of the mounting surfaces. Care should be taken to choose a solvent that does not damage the device seals.
设备的储存应在尽量减少安装表面污染的条件下进行。应注意避免在安装表面涂上油或油脂等异物。许多溶剂可用于对安装表面进行脱脂或助焊剂去除。应注意选择不会损坏设备密封件的溶剂。

Selection and Preparation of Heat Dissipator
散热器的选择和制备

The heat dissipator material may be copper, aluminum or steel. The heat dissipator thickness should be at least 3.18 mm (1/8 inch).
散热器材料可以是铜、铝或钢。散热器的厚度应至少为 3.18 毫米(1/8 英寸)。

The diameter of the hole into which the diode is to be pressed must have a dimension that falls within a very tight tolerance (usually + 0.025 mm (+0.001 inch)) of the diameter recommended by the semiconductor device supplier. A slight chamfer should be given to the hole.
极管直径必须具有非常严格的公差 通常+ 0.025 毫米 (+0.001 英寸))半导体器件供应商推荐的直径。应对孔进行轻微的倒角

Installation of Press-Fit Diode in Heat Dissipator
中压接二极管的安装

The entire knurled section of the rectifier diode case should be in contact with the heat dissipator to ensure maximum heat transfer. The diode must not be inserted deeper than the knurl
整流二极管外壳的整个滚花部分应与散热器接触,以确保最大的热传递。二极管的插入深度不得超过滚花

The diode insertion force must not exceed the maximum value stated by the manufacturer. If the insertion force approaches this value before complete insertion, either the diode is misaligned with the hole or the diode-to-hole interference is excessive. The insertion force must be uniformly applied to the top face (terminal end) of the diode within an annular ring, the dimensions of which should be as given by the diode manufacturer.
二极管插入力不得超过制造商规定的最大值。如果插入力在完全插入之前接近该值,则二极管与孔未对准或二极管与孔的干扰过大。插入力必须均匀地施加在环形极管顶面(端子端),尺寸二极管制造商给出的一致

Installation of Button-Type Semiconductor Devices
纽扣型半导体器件研发

Device Handling and Mounting
Device 搬运和安装

Handling of button-type devices should be relatively gentle to minimize sharp impact shocks. Care should be taken to avoid nicking the body, especially at the interface to the mounting surface. When mounting button- type devices, the connection to one side should be flexible to allow for stress relief. This stress relief should also be chosen for maximum contact area to afford the best heat transfer.
按钮式设备的处理应相对温和,以尽量减少剧烈冲击。应注意避免划伤主体,尤其是在与安装表面的界面处。安装按钮设备时, 与一的连接灵活,减轻应力 还应选择这种应力消除装置以获得最大的接触面积,以提供最佳的传热

Device Soldering
Device 焊接

The manufacturer's recommendations for maximum soldering temperature and time should be observed. Solders available as either preforms or paste may be used. Most solder pastes contain flux. Solder preforms may be obtained with or without internal flux. Solder preforms without flux require the application of a flux to assure good wetting during soldering. Fluxes used may range from a mild rosin to a strong acid type, depending on the materials to be soldered
应遵守制造商关于最高焊接温度和时间的建议。可以使用瓶坯或浆料形式的焊料。大多数焊膏都含有助焊剂。焊料瓶坯可以带或不带内部助焊剂。 没有助焊剂焊料预制件需要应用助焊剂以确保焊接过程中良好的润湿性。使用的助焊剂范围从温和松香到强酸类型,具体取决于要焊接的材料

To prevent poor solder connections, it is suggested that a weight or spring loaded fixture be employed during the soldering operation. This will keep the device from floating on the solder when it becomes liquid.
防止焊接连接不良 建议在焊接作过程中使用重物弹条加载的夹具 。这将防止设备在焊料变成液体时漂浮在焊料上

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 139
第 139 页

Heating Techniques
治疗技术

Belt furnace, flame soldering, stationary ovens, hot plates, or soldering irons may be used in soldering button- type devices. A soldering profile giving the time-temperature relationship of the chosen method should be obtained to assure good soldering and compliance with manufacturer's recommendations for the device. It is important that severe thermal shock during heating or cooling be avoided, at this may lead to damage of the device die or encapsulation.
带式炉、火焰焊、固定式烤箱、热板或烙铁可用于焊接按钮式设备。应获得给出所选方法的时间-温度关系的焊接曲线,以确保良好的焊接并符合制造商对设备的建议。重要的是要避免在加热或冷却过程中发生严重的热冲击,这可能会导致设备芯片或封装损坏。

Post Soldering Considerations
焊接注意事项

After soldering, the completed assembly should be unloaded, cleaned and inspected. Unloading should be done with care to avoid unnecessary stress. If an acid flux was used, because of its ionic and corrosive nature, the entire assembly should be cleaned. One method is to wash with hot water and detergent. After washing, rinse, blow off excessive water and bake dry to remove trapped moisture. Inspection should be of both the electrical and physical characteristics of the device and its connections.
焊接后,应将完成的组件卸载、清洁和检查。卸货时应小心,避免不必要的压力。如果使用酸助焊剂,由于其离子和腐蚀性,应清洁整个组件。一种方法是用热水和洗涤剂清洗。洗完后冲洗干净,吹去多余的水,烘干,去除滞留的水分。应检查设备及其连接的电气和物理特性。

Temperature Measurement
温度测量

Temperature measurements of diodes include direct measurement of ambient and surface temperatures and indirect measurement of internal virtual junction temperature. Since the temperature rise of components above ambient temperature will depend on parameters such as dissipated power, air velocity, altitude and ambient temperature, an arbitrary choice of these parameters may be made to provide the necessary standardization between the user's and the semiconductor or heat dissipator manufacturer's testing procedures. Correlation between these tests and specific equipment tests is the responsibility of the user.
二极管的温度测量包括直接测量环境温度和表面温度以及间接测量内部虚拟结温度。由于组件高于环境温度的温升将取决于耗散功率、风速、高度和环境温度等参数,因此可以任意选择这些参数,以便在用户和半导体或散热器制造商的测试程序之间提供必要的标准化。这些测试与特定设备测试之间的关联性由用户负责。

Acceptable methods of temperature measurement such as thermocouples, thermometers, pyrometers, temperature-sensitive resistors and temperature-sensitive paints may be used. Where specific temperatures may be measured accurately only with specific methods (such as virtual junction temperature), the methods used must be specified in sufficient detail to permit duplication. For further details covering procedures and instruments for temperature measurements, refer to clause 6.5.6.
可以使用可接受的温度测量方法,例如热电偶、温度计、高温计、温度敏感电阻器和温度敏感油漆。如果只能使用特定方法 例如虚拟)精确测量特定温度,则必须足够详细指定所使用的方法允许重复。 有关温度测量程序和仪器更多详细信息 ,请参阅6.5.6 条。

The following clauses outline methods of determining diode junction and case temperatures, heat sink temperature and air ambient temperature which are of particular value to the equipment manufacturer.
以下条款概述了确定二极管结和外壳温度、散热器温度和空气环境温度的方法,这些方法对设备制造商具有特别的价值。

7.8.1 Diode Junction Temperature
7.8.1 二极管结温

Diode junction temperature is usually calculated rather than measured in operating equipment. In most applications the forward current of the diode is pulsating, causing the junction temperature to fluctuate as shown in Figure 66. Calculation of peak or some instantaneous junction temperature requires the use of transient thermal impedance. The procedure may be somewhat involved and is covered in the literature. The average junction temperature rise is shown in Figure 66 and may be calculated by multiplying average power loss by the value of thermal resistance. (See clause 7.4.3) Both transient thermal impedance and thermal resistance are required on current JEDEC registration formats for rectifier diodes.
二极管结温通常是在运行设备中计算而不是测量的。在大多数应用中,二极管的正向电流是脉动的,导致结温波动,如图 66 所示。计算峰值或某些瞬时结温需要使用瞬态热阻。该过程可能有些复杂,并在文献中有所介绍。平均结温升如图 66 所示,可以通过将平均功率损耗乘以热阻值来计算。(见第 7.4.3 条)在当前整流二极管的 JEDEC 配准格式上,需要瞬态热阻和热阻。

If the apparent transient thermal impedance or apparent thermal resistance for some other specified waveform (single phase, three phase, etc.) is given, the product of this value and the average power loss for the particular current waveform will give the peak junction temperature. (See clause 7.4.3.)
如果给出了其他指定波形(单相、三相等)的表观瞬态热阻或表观热阻,则该值与特定电流波形的平均功率损耗的乘积将得到峰值结温。(见条款 7.4.3.)

JEDEC Standard No. 282B.02 Page 140
JEDEC 标准编号 282B.02 第 140 页

Diode Junction Temperature (cont’d)
二极管结温 (续)

Figure 66 — Typical On-State Current and Corresponding Junction and Case Temperature in a Half-Wave AC Circuit
图66 — 半波交流电路中的典型导通电流以及相应的结和外壳温度

Case Temperature
Case 温度

The case temperature of a stud-mounted, hexagonal base diode is measured at the center of any flat on the hex. For disk-type devices, the case temperature should be measured at a point on the cylindrical surface of a designated mounting pole. The case temperature of other base-mounted diodes is measured at a point specified by the manufacturer. The recommended case temperature test method employs the use of thermocouples and is defined as follows:
螺柱安装的六边形基极二极管的外壳温度是在六角形上任何平面的中心测量的。对于圆盘式设备,应在指定安装杆的圆柱面上的一点测量外壳温度。其他底座安装二极管的外壳温度在制造商指定的点测量。推荐的外壳温度测试方法采用热电偶,定义如下:

Type of Thermocouple: The thermocouple material shall be copper-constantan (Type-T) as recommended by the Standards Handbook for Electrical Engineers (latest edition) for the range of -183 °C to 371 °C. The wire size shall be no larger than #30 AWG. The junction of the thermocouple shall be welded together to form a bead rather than soldered or twisted. (See latest edition Annual Book of ASTM Standards
热电偶类型 热电偶材料应为《电气工程师标准手册》(最新版)推荐的铜康铜(T 型),温度范围为-183°C 至 371°C。 电线尺寸不得#30AWG。 热电偶点应焊接在一起形成子, 而不是焊接扭曲。(参见最新ASTM 标准年度手册

- Part 30, Method E220, for Calibration of Thermocouples by Comparison Techniques and for information on construction and usage of thermocouples.)
- 第 30 部分,方法 E220,用于通过比较技术校准热电偶以及有关热电偶结构和使用的信息。

Mounting Method: A small hole, just large enough to insert the thermocouple, shall be drilled approximately 1/32 inch deep in the flat of the case hex at the point specified by the manufacturer. The edge of the hole should then be peened with a small center punch to force a rigid mechanical contact with the welded bead of the thermocouple. If forced-air cooling is used, the thermocouple shall be mounted away from the air stream, and the thermocouple leads close to the junction shall be shielded.
安装方法: 应在制造商指定的外壳六角形的平面钻一个小孔,刚好足以插入热电偶 ,深约 1/32 英寸 然后,应用小中心冲头对孔的边缘进行喷丸处理,以迫使与热电偶的焊道进行刚性机械接触。如果使用强制空气冷却,热电偶应安装在远离气流的地方,并且靠近结处的热电偶引线应屏蔽。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 141
第 141 页

Case Temperature (cont’d)
外壳温度 (续)

Accuracy: An accuracy of plus or minus 1/2 °C should be expected of the thermocouple. Under load conditions, slight variations in the temperature of different points on the case may reduce this accuracy to plus or minus 1 °C for free convection cooling, and plus or minus 2 °C for forced air-cooling.
精度: 热电偶的精度应为正负 1/2 °C。在负载条件下,外壳上不同点温度的微小变化可能会将该精度降低到自由对流冷却的正负 1 °C,强制风冷的正负 2 °C

Other Methods of Mounting: Methods of mounting thermocouples other than by soldering or welding them directly to the case, will result in temperature readings lower than the actual temperature. These deviations will result, for example, from inadequate contact with the case when using cemented thermocouples.
其他安装方法 除了直接焊接焊接到外壳上之外 安装热电偶的方法会导致温度读数低于实际温度。例如,这些偏差将导致在使用胶合热电偶时与外壳接触不充分。

Mounting Surface Temperature
土墩表面温度

The mounting surface temperature is measured using a thermocouple imbedded in a washer. The mounting surface technique for measuring the reference point temperature is nondestructive and is generally as repeatable as the case temperature measuring technique. The mounting surface technique is “application oriented” in that it takes into account the mounting surface interface. However, it may introduce a significant error into transient thermal impedance measurements made using the cooling technique. The thermocouple characteristics and details of the washer design are given below. It should be noted that case temperature and mounting surface temperature are sometimes used interchangeably.
安装表面温度使用嵌入垫圈中的热电偶进行测量。用于测量参考点温度的安装表面技术是无损的,通常与外壳温度测量技术一样可重复。安装面技术是“面向应用”的, 因为它考虑安装界面。 然而,可能会给使用冷却技术进行的瞬态热阻测量带来显着误差。下面给出了热电偶特性和垫圈设计的细节。应该注意的是,外壳温度和安装表面温度有时可以互换使用。

Type of Thermocouple
热电偶型号

The thermocouple material shall be copper-constantan (Type T). Its useful temperature range for standard temperature measurements is from -180 °C to +371 °C. The wire size shall be no larger than #30 AWG. The junction of the thermocouple shall be formed by welding the wires together to form a bead rather than soldered or twisted.
热电偶材料应为铜-康铜(T 型)。其用于标准温度测量的有用温度范围为 -180 °C 至 +371 °C。 电线尺寸不得大于 #30 AWG。热电偶的结应通过将导线焊接在一起形成珠子而不是焊接或绞合来形成。

Mounting Washer Construction
土墩垫圈结构

The following general rules apply:
以下一般规则适用:

The base material of the washer shall be copper (half hard or softer is preferred).
垫圈的基材应为铜(最好是半硬或半软)。

The thickness of the washer shall be 3.18 mm + 0.13 (0.125 + 0.005 inch).
垫圈厚度3.18mm+0.13(0.125+0.005 英寸)。

The outline of the washer shall be larger by 0.76 to 1.52 mm (0.03 to 0.06 inch) than the outline of the seating surface of the package for which the washer is intended.
垫圈的轮廓应比垫圈所针对的包装的安装表面轮廓大 0.76 至 1.52 毫米(0.03 至 0.06 英寸)。

Clearance holes shall be 0.41 to 0.79 mm (0.016 to 0.031 inch) larger than the maximum outside diameter of the studs or screws intended to pass through the holes.
间隙孔应比用于穿过孔的螺柱或螺钉的最大外径大 0.41 至 0.79 毫米(0.016 至 0.031 英寸)。

The surface of the washer shall be flat within 1 µm per mm (1 mil per inch) and parallel within 3 µm per mm (3 mils per inch) and shall be nickel plated to a thickness of 1.3 µm to 2.6 µm.
垫圈的表面应在每毫米 1 微米(每英寸 1 密耳)以内平整,在每毫米 3 微米(每英寸 3 密耳)以内平行,并应镀镍至厚度为 1.3 微米至 2.6 微米。

(50 µ-inches to 100 µ-inches). (See ANSI B46.1 - 1995, Surface Texture, for further details.).
(50 μ 英寸至 100 μ 英寸)。(有关进一步的信息,请参阅 ANSI B46.1 - 1995,表面纹理细节。

The surface of the washer shall be free from burrs, but the maximum chamfering of edges or holes shall not exceed 0.41 mm (0.016 inch) by 45 degrees so as not to effectively reduce the contact area of the washer.
垫圈表面毛刺,边缘的最大倒角不得超过 0.41 毫米 (0.016 英寸)x45,以免有效减少垫圈接触面积

Both surfaces of the washer shall have a 1.6 µm (63 microinch) finish or better and be free of oxides. (See ANSI B46.1 - 1995, Surface Texture, for further details.)
垫圈的两个表面应具有 1.6 μm(63 微英寸)或更好的表面,并且不含氧化物。(有关进一步的信息,请参阅 ANSI B46.1 - 1995,表面纹理细节。

The thermocouple hole shall be drilled into the washer midway between and parallel to the top and bottom surfaces. The size of the thermocouple hole shall be no greater than 1.52 mm (0.06 inch) in diameter, but it is recommended that it be no larger than necessary to accept the thermocouple.
热电偶孔应在垫圈中钻入顶部和底部表面之间的中间并平行于顶部和底部表面。 热电偶直径不应大于 1.52 毫米 (0.06 英寸), 但建议不要大于接受热电偶所需的尺寸。

JEDEC Standard No. 282B.02 Page 142
JEDEC 标准编号 282B.02 第 142 页

7.8.3.2 Mounting Washer Construction (cont’d)
7.8.3.2 安装垫圈结构(续)

For flat-type packages the bottom of the thermocouple hole shall extend approximately 0.76 mm (0.03 inch) beyond the geometric center of the washer. The radial orientation of the thermocouple hole is arbitrary.
对于扁平封装,热电偶孔的底部应超出垫圈的几何中心约 0.76 毫米(0.03 英寸)。 热电偶径向方向任意的。

For stud-type packages the bottom of the thermocouple hole shall be approximately 0.76 mm (0.03 inch) from the inside hole of the washer.
对于螺柱式封装, 热电偶底部垫圈内孔0.76 毫米 (0.03 英寸)。

For tab-type packages, the bottom of the thermocouple hole shall extend approximately 0.76 mm (0.03 inch) beyond geometric center of the seating surface.
对于标签式封装,热电偶孔的底部应延伸约 0.76 毫米(0.03 英寸)超出座面的几何中心

It is recommended that the thermocouple be secured into the washer with a thermal conducting adhesive and that particular attention be paid to minimizing air voids around the bead of the thermocouple. (The thermocouple bead should be in direct contact with the copper washer.)
建议使用导热粘合剂将热电偶固定垫圈,并特别注意尽量减少热电偶珠周围的空隙。(热电偶珠应与铜直接接触洗衣机。

Clearance holes for device leads should allow suitable clearance to prevent electrical shorting to the washer. It is recommended that the clearance holes be approximately 1.52 mm (0.06 inch) larger in diameter than the leads to allow clearance for insulating sleeving which should be used on the leads.
设备引线的间隙孔应留出适当的间隙,以防止垫圈电气短路。 建议的直径比引线大1.52 毫米 (0.06 英寸), 以便为应在引线上使用的绝缘套管留出间隙

Device mounting torque should comply with the manufacturer's recommendations.
设备安装扭矩应符合制造商的建议。

A thermally conducting compound should be used on both sides of the washer to interface with the device case and the heat dissipator.
圈的两侧应使用导热化合物,以与设备外壳和散热器连接

Special care must be taken so that only the bead of the thermocouple is allowed to come into mechanical contact with the washer.
必须特别小心 ,以便允许热电偶子与垫圈进行机械接触

Lead Temperature
ead 温度

The lead temperature of a lead-mounted diode is measured on the specified lead(s) at a specified point from the body of the device or its tubulation(s). For thermally unsymmetrical double-side cooled devices in which the anode or cathode can be connected to either device terminal, the specified lead temperature shall be the higher of the two lead temperatures measured with both leads terminated thermally in the same manner. The lead temperatures are to be measured by means of a copper-constantan thermocouple containing a maximum wire size of #36 AWG. The thermocouple(s) are to be welded or soldered to the specified lead contact point(s) with the weld or solder material kept to an absolute minimum.
引线安装极管引线温度是在器件主体状结构的指定指定引线测量。对于阳极或阴极可以连接到任一器件端子的热不对称冷却器件 规定的引线温度应是测量的两个引线温度较高的一个, 其中两根引线均在同样的方式。 引线温度通过包含最大导线尺寸 #36 AWG 铜-康铜热电偶进行测量 。热电偶应焊接或焊接到指定的引线接触点,并将焊接或焊接材料保持绝对最低限度。

Free-Air Convection Measurements of Assemblies
组件自由空气对流测量

The heat dissipator should be suspended vertically in a cubic enclosure whose dimensions are a minimum of four times the dissipator height. The enclosure should be so designed that the inside walls are insulated from ambient, i.e., they are substantially at the inside ambient temperature. See Figure 67.
散热器应垂直悬挂在尺寸至少为散热器高度四倍的立方体外壳中。外壳的设计应使内壁与环境隔绝,即它们基本上处于内部环境温度。参见图 67。

The ambient temperature should be measured by means of a thermocouple mounted at a distance 1/4 the dissipator height directly below the center of the bottom of the heat dissipator.
环境温度应通过安装在散热器底部中心正下方散热器高度 1/4 处的热电偶来测量。

The heat dissipator temperature should be measured by means of a thermocouple attached to the dissipator by peening at a radius of 6.35 mm (1/4 inch) greater than the maximum diode base radius.
散热器温度应通过连接到散热器的热电偶来测量,其半径大于最大二极管基极半径 6.35 毫米(1/4 英寸)。

The case temperature of the diode should be measured as described in clause 7.8.2.
二极管的外壳温度应按照第 7.8.2 条中的说明进行测量。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 143
第 143 页

Free-Air Convection Measurements of Assemblies (cont’d)Figure 67 — Free-Air Convection Measurement
组件的自由空气对流测量 (续) 图 67 — 自由空气对流测量

Forced-Air Convection Measurements of Assemblies
组件d-Air 对流测量

The heat dissipator, oriented parallel to the air stream, should be rigidly fastened inside a rectangular duct whose width and height exceed the corresponding dimensions of the dissipator by 25.4 mm (1 inch) or 25% (whichever is smaller). Any additional parts of the diode and/or test lead may protrude through a sealed hole in the duct or out of the duct as shown on Figure 68. The dissipator should be supported by mounting brackets, using insulating material. Mounting brackets and high current leads should not cover more than 2% of the duct cross-section area. The length of the duct, from air input end to air exhaust end, should be seven times the dissipator length. The inside duct walls should have a smooth surface. The dissipator should be located so that its leading edge is four fin lengths downstream from the air input end of the duct.
热器平行于气流,应牢固地固定在矩形管道内,其宽度高度超过散热器的相应尺寸 25.4 毫米 (1 英寸)25%(以较小者为准)。二极管和/或测试引线的任何其他部件都可能通过管道中的密封孔或从管道中突出,如图 68 所示。耗散器应由安装支架支撑,使用绝缘材料。安装支架和大电流引线不应覆盖管道横截面积的 2% 以上。管道的长度,从进气端到排气端,应为散气器长度管道具有光滑的表面。 消散器的位置应使其前缘位于管道进气端下游的四个翅片长度

The air velocity should be measured one dissipator width upstream from the leading edge of the dissipator. The recommended test air velocity will be considered the average of all point velocities over the air stream cross-section. The dissipator air pressure drop should be measured between one dissipator length upstream from the leading edge of the dissipator and one dissipator length downstream from its trailing edge.
风速应在耗散器前缘上游一个耗散器宽度处测量。推荐的测试风速将被视为气流横截面上所有点速度的平均值。耗散器气压降应在耗散器前缘上游的一个耗散器长度和其后缘下游的一个耗散器长度之间测量。

JEDEC Standard No. 282B.02 Page 144
JEDEC 标准编号 282B.02 第 144 页

7.8.6Forced-Air Convection Measurements of Assemblies (cont’d)
7.8.6 组件的强制空气对流测量 (续)

The ambient temperature should be measured one dissipator length upstream from the leading edge of the dissipator by means of a thermometer or thermocouple.
环境温度应通过温度计或热电偶在耗散器前缘上游一个耗散器长度处测量。

The dissipator temperature should be measured by means of a thermocouple attached by peening to the dissipator at a radius of 6.35 mm (1/4 inch) greater than the maximum diode base radius. This measurement point should also be located on the dissipator centerline parallel to the air flow and on the downstream of the diode.
耗散器温度应通过热电偶测量,热电偶通过喷丸连接到耗散器,最大二极管基极半径 6.35 毫米 (1/4 英寸)。测量点还应位于平行于气流的耗散器中心线和二极管的下游。

The case temperature of the diode should be measured as described in clause 7.8.2.
二极管的外壳温度应按照第 7.8.2 条中的说明进行测量。

Figure 68 — Forced Convection Measurement
图 68 — 强制对流测量

7.9Diode Failure Modes
7.9 二极管故障模式

Diode failures may be broadly classified as either catastrophic or degradation failures. Catastrophic failure occurs when a device exhibits a sudden change in characteristic that renders it inoperable. A degradation failure is generally defined as a failure because some characteristics change more than a specific amount. The device may still function satisfactorily in the circuit.
二极管故障可大致分为灾难性故障或退化故障。当设备表现出特性突然变化导致其无法运行时,就会发生灾难性故障。退化失效通常被定义为失效,因为某些特性的变化超过了特定量。该器件在电路中仍可能令人满意地运行。

7.9.1Catastrophic Failure
7.9.1 灾难性故障

Catastrophic failure can occur whenever the diode is operated beyond its published ratings or it contains an unknown fabrication defect. This type of failure generally results in an electrical short circuit between anode and cathode terminals. However, if the resulting short circuit current is high enough, device internal parts may melt and thus render the device an open circuit.
每当二极管的运行超出其公布的额定值或包含未知的制造缺陷时,就会发生灾难性故障 这种类型的故障通常会导致阳极和阴极端子之间的电气短路 。但是,如果产生的短路电流足够高,则器件内部部件可能会熔化,从而使器件路。

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 145
第 145 页

Catastrophic failure (cont’d)
灾难性故障 (续)

Generally, it is over-voltage or over-current operation that produces catastrophic failures. Over-voltage failures may be due to excessive circuit transient voltages that were not accounted for in the circuit design. Voltage failures may also occur if inadequate device cooling raises the operating junction temperature above rated value and thereby invalidates the steady-state voltage rating of the diode. Over-current catastrophic failures are generally caused by improper fusing or poor circuit protection coordination in the event of a circuit fault condition. Of course, improper handling or mounting during the installation of diodes in equipment can mechanically damage the devices to the extent that they fail catastrophically as soon as electric power is applied. Excessive device mounting torque and excessive force applied to insulating terminals or the lead are two common causes of physical damage to diodes.
通常,过压或过流作会导致灾难性故障。过压故障可能是由于电路设计中未考虑的电路瞬态电压过高造成的。 如果器件冷却不足使工作高于额定值,从而使二极管的稳态额定电压失效 ,也可能发生电压故障 。过流灾难性故障通常是由于熔断不当或电路故障情况下电路保护协调不良引起的。当然,在设备中安装二极管时处理或安装不当可能会对设备造成机械损坏,一旦通电,它们就会发生灾难性故障。过大的器件安装扭矩和施加在绝缘端子或引线上的力过大是二极管物理损坏的两个常见原因。

Degradation Failure
D 渐变失败

Any
任何
significant
重要
degradation
退化
of
the
diode
二极管
forward
向前
or
switching
开关
characteristics
特性
is
quite
相当
rare.
罕见。
The
characteristic most vulnerable to degradation is the reverse blocking voltage characteristic. This effect is outside the control of the user, assuming that the device is operated at all times within all of its maximum ratings. It should be pointed out, however, that the occurrence of this type of degradation increases with increasing operating voltage and temperature levels. Hence, the user can reduce the possibility of blocking voltage degradation by operating below the maximum temperature and/or voltage ratings of the device. Thus, the probability of long diode operating life can be increased simply by using heat dissipators which are somewhat oversized and selecting diodes of a voltage grade somewhat in excess of the actual maximum circuit voltage.
最容易退化的特性是反向阻断电压特性。假设设备始终在其所有最大额定值内运行,则此效果超出了用户的控制范围。然而,应该指出的是,这种退化的发生随着工作电压和温度水平的增加而增加。因此,用户可以通过在设备的最高温度和/或额定电压以下运行来减少阻止电压下降的可能性。因此,只需使用尺寸稍大的散热器并选择电压等级略高于实际最大电路电压的二极管,就可以增加二极管长工作寿命的可能性。

Simple Measurements in Troubleshooting
故障排除中的 Simple 测量

An ohmmeter may be used to determine whether a diode is shorted in the reverse direction. Disconnect one terminal from the circuit and then measure the device resistance in the reverse direction. Use the highest resistance range of the ohmmeter to assure that the driving voltage is several volts. Resistance readings will range upward from 10 kilohms depending upon the particular device reverse characteristics. Very high reverse resistance may indicate that the diode is open. In this case, the forward direction should be checked by reversing the ohmmeter leads. Forward resistance readings are usually a few ohms.
欧姆表可用于确定二极管是否在相反方向上短路。断开一个端子与电路的连接,然后以相反的方向测量器件电阻。使用欧姆表最高电阻范围确保驱动电压伏。 电阻读数将从 10 千欧姆起,具体取决于特定的设备反向特性。非常高的反向电阻可能表明二极管开路。在这种情况下,应通过反转欧姆表引线来检查正向方向。正向电阻读数通常为几欧姆。

The ohmmeter test will not determine whether the diode reverse characteristics have degraded. When it is believed that the diode has been overstressed and there is some doubt as to whether it will block rated voltage, dc voltage should be gradually applied to the device through a suitable resistor and dc milliammeter. The diode specification sheets should be consulted for typical values of room temperature reverse current at rated voltage. The supply voltage used in this test and the series resistor and ammeter should be chosen so that if the diode breaks down during the reverse voltage test, the resistor will limit the current to the full scale value of the milliammeter. Thus, reverse current will be read low on the milliammeter scale, but no particular accuracy is required in this test. The dc supply should be free of voltage transients.
欧姆表测试不会确定二极管反向特性是否下降。当认为二极管力过大 是否阻断额定电压存在时,应通过合适的电阻器和直流毫安表逐渐将直流电压施加到器件上。 应查二极管规格 了解额定电压反向电流典型。应选择本测试中使用的电源电压以及串联电阻器和电流表,以便在向电压测试期间二极管穿时, 电阻器电流限制量程毫安表的值。因此,反向电流将在毫米刻度上读取低电平,但在此测试中不需要特别的精度。直流电源应无电压瞬变。

The simple test mentioned above will generally determine whether a diode is operational. If precise device rating or characteristic information is required, refer to the test information given in chapter 5 and chapter 6 of this standard.
上面提到的简单测试通常会确定二极管是否正常工作。如果需要精确的设备额定值特性信息 请参阅本标准第 5第 6给出测试信息

JEDEC Standard No. 282B.02 Page 146
JEDEC 标准第 282B.02 号第 146 页

Surface Mounting
Surface 安装

This is an approach for reducing size and often reducing the overall cost in the application of the smaller components typically assembled on printed circuit boards.
这是一种减小尺寸的方法,并且通常可以降低通常组装在印刷电路板上的较小组件的应用中的总体成本。

Surface mounting involves soldering parts onto the surface of a printed circuit board rather than inserting pins or leads through holes in the board and soldering them on the underside. Surface-mount component packages are much smaller than those typically used in through-hole mounting, and the leads are short or folded under the package. The result is a much higher packing density with potential improvements in reliability.
表面贴装涉及将零件焊接到印刷电路板的表面上,而不是通过电路板上的孔插入引脚或引线并将它们焊接在底面。表面贴装元件封装比通孔安装中通常使用的封装小得多,并且引线很短或折叠在封装下方。其结果是更高的填料密度,并可能提高可靠性。

The technique lends itself to automation. A drawback is the potentially closer proximity of the chip, to the molten solder during the soldering process, thus subjecting the surface-mounted devices to an abnormally high temperature. Therefore, the package and internal construction undergo a greater thermal shock. On the other hand, the available soldering equipment for this type of component can be effectively controlled to create optimum conditions, which hand soldering may not be capable of doing.
该技术适用于自动化。一个缺点是在焊接过程中芯片可能更接近熔融焊料,从而使表面贴装器件处于异常高温的环境中 因此, 封装内部结构受到更大的冲击。 另一方面,可以有效控制此类组件的可用焊接设备,以创造最佳条件,而手工焊接可能无法做到这一点。

It is imperative that the component manufacturer clearly define the mounting procedures and that the user follow them; these include, but are not limited to, a profile of the recommended time and temperature steps.
组件制造商必须明确定义安装程序并让用户遵循这些程序; 这些包括限于推荐的时间温度步长

JEDEC Standard No. 282B.02
JEDEC 标准编号 282B.02

Page 147
第 147 页

Annex A(Informative) Differences Between JESD282B.02 and its Predecessors
附件 A(资料性)JESD282B.02 与其前身之间的差异

This annex briefly summarizes changes in this standard, JESD282B.02, compared to its predecessors. If the change to a concept involves any words added or deleted (excluding deletion of accidentally repeated words), it is included. Punctuation changes (e.g., spaces, commas, semicolons, and hyphens added or deleted) may not be included.
附件总结了标准 JESD282B.02 前身相比的变化 如果对概念更改涉及添加删除的任何单词 (不包括删除意外重复的单词),则将其包括在内。标点符号更改(例如,添加或删除的空格、逗号、分号和连字符)可能不包括在内。

Differences between JESD282B.02 and JESD282B.01 (November 2002):
JESD282B.02 和 JESD282B.01 之间的区别(2002 年 11 月):

ClauseItem and description of change
条款项目及变更说明

Chapter 1Added Scope.
第 1 章增加了范围。

GeneralEditorial revision that updates the formatting to JEDEC standard.
格式更新为 JEDEC 标准的一般编辑修订版。

Updated JEDEC logo and back pages to standard format
将 JEDEC 徽标和背页更新为标准格式

Equation numbering deleted, replaced by equation identification by clause. Consolidation of several clauses for streamlining.
删除了方程编号,替换为方程标识 by 子句。合并若干条款以简化。

Replace the terms Section and Paragraph with Chapter and Clause.
将术语“节”和“段落”替换为“章节”和“条款”。

Changes to sensitive terminology (specifically, the following three line items).
对敏感术语的更改(具体而言,以下三个行项)。

3.4.32nd paragraph;
3.4.3 第 2 款;

7.7.1.1Last sentence; sensitive terminology replaced with “inhibiting”.
7.7.1.1 最后一句;敏感术语改为 “抑制”。

7.82nd paragraph; the cited IEEE reference with sensitive terminology removed (The reference is no longer available from
段;引用的 IEEE 参考文献删除了敏感术语(该参考文献不再可从
IEEE).
IEEE)。

Differences between JESD282B.01 and JESD282-B (April 2000):
JESD282B.01 和 JESD282-B 之间的区别(2000 年 4 月):

PageItem and description of change
页面项目和变更说明

13Revision to Figure 1.8(c): Replaced figure.
13 对图 1.8(c)的修订: 替换了图。

93Revision to Figure 5.15: Corrected missing letters in the label ‘Diode Response Measured at E’.
93 对图 5.15 的修订: 更正了标签“ 在 E 处测量的二极管响应”中缺失的字母

111Revision to Figure 5.25: The vertical axis label ‘OG Zth(t)’ was missing the ‘L’, changed to ‘LOG Zth(t)’.
111 对图 5.25 的修订: 垂直轴标签“OG Zth(t) 缺少 “L”, 更改为“LOGZth(t)”。

6.5.2 Reverse Recovery, 3rd paragraph: Made minor editorial change in last sentence.
6.5.2 反向恢复, 第 3 段:在最后一句中进行了轻微的编辑更改

Revision to Title of Figure 6.1: Changed ‘t’ to ‘various types’.
对图 6.1 标题的修订:“t”更改为“各种类型”。

152Revision to Figure 6.2a: Changed Output wave value for Ea under Full-wave bridge from ‘0.707’ to ‘1.00’.
152 对图 6.2a 的修订: 将全波电桥下 E a 的输出波值 从“0.707”更改为 “1.00”。

Revision to Figure 6.2a: Changed Output wave value for F.F. (now Ea/Ed) under Full-wave bridge from ‘1.57’ to ‘1.11’.
对图 6.2a 的修订: 将全波桥下 F.F.(现在的 Ea/Ed 的输出波值从“1.57”更改为 “1.11”。

Revision to Figure 6.2b: Changed Rectifier diode wave values ‘It’ to IF(RMS)’.
对图 6.2b 的修订:将整流二极管波值“I”更改为 IF(RMS)'

Revision to Figure 6.2b: Changed Voltage Factor (V.F.) under Six phase from ‘0.406’ to ‘0.408’.
对图 6.2b 的修订: 将六相下的电压因数 (VF) 从“0.406”更改为 “0.408”。

Revision to Figure 6.3a: Made minor line adjustment to the table header.
图 6.3a 的修订: 对表头进行了细微的行调整

This page intentionally left blank.
此页面故意留空。

Standard Improvement FormJEDECJESD282B.02
标准改进 JEDEC JESD282B.02

The purpose of this form is to provide the Technical Committees of JEDEC with input from the industry regarding usage of the subject standard. Individuals or companies are invited to submit comments to JEDEC. All comments will be collected and dispersed to the appropriate committee(s).
该表格的目的是向 JEDEC 的技术委员会提供行业关于主题标准使用的意见。邀请个人或公司向 JEDEC 提交意见。所有意见将被收集并分发给适当的委员会。

If you can provide input, please complete this form and return to:
如果您可以提供意见,请填写此表格并返回:

JEDEC
杰德克

Attn: Publications Department 3103 North 10th Street, Suite 240 S Arlington, VA 22201
收件人:出版部 3103 North 10th Street, Suite 240 S Arlington, VA22201

Fax: 703.907.7583
传真:703.907.7583

I recommend changes to the following: Requirement, clause number Test method numberClause number The referenced clause number has proven to be: UnclearToo RigidIn ErrorOther
我建议对以下内容进行更改: 要求、条款编号 测试方法编号条款编号 引用的条款编号已被证明是: 不清楚 过于僵化 错误其他

Recommendations for correction:
纠正建议

Other suggestions for document improvement:
其他文档改进建议:

Submitted by
提交人

Name:Phone: Company:E-mail: Address:
姓名: 电话: 公司:E-mail: 地址:

City/State/Zip: Date:
城市/州/邮政编码: 日期: