这是用户在 2025-8-1 17:31 为 https://pmc.ncbi.nlm.nih.gov/articles/PMC6572745/ 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
Skip to main content
NCBI home page
Infection and Drug Resistance logoLink to Infection and Drug Resistance
. 2019 Jun 12;12:1657–1664. doi: 10.2147/IDR.S211033
. 2019 年 6 月 12 日;12:1657–1664. doi: 10.2147/IDR.S211033

Identification and antifungal susceptibility profiles of Kodamaea ohmeri based on a seven-year multicenter surveillance study
《七年间多中心监测研究中 Kodamaea ohmeri 的鉴定及抗真菌敏感性谱型分析》

1,2,3, 1,2,3, 4, 1,3, 1,3, 1,3,, 5,
PMCID: PMC6572745  PMID: 31354314

Abstract  摘要

Background  背景

Kodamaea ohmeri has been a rare fungal pathogen in the past decades but is now becoming more common in various invasive fungal diseases, with high mortality. There are limited data on the occurrence and distribution of K. ohmeri.
Kodamaea ohmeri 在过去几十年中曾是一种罕见的真菌病原体,但现在正在各种侵袭性真菌疾病中变得越来越常见,且具有高死亡率。关于 K. ohmeri 的发生和分布的数据有限。

Methods  方法

Sixty-two K. ohmeri isolates collected from 24 hospitals in China over a 7-year period were studied. Performance of three phenotypic methods in the identification of this organism was assessed against a gold standard, 26S rDNA sequencing. Original identification results submitted by the participating local hospitals were reviewed. The Sensititre YeastOne YO10 (SYY) was evaluated in determining the in vitro antifungal susceptibilities using standard broth microdilution method (BMD) as a reference, and essential agreement (EA) was calculated.
来自中国 24 家医院,历时 7 年的 62 株 K. ohmeri 菌株被研究。评估了三种表型方法在鉴定该菌株时的性能,以 26S rDNA 测序作为金标准。审查了参与医院最初提交的鉴定结果。使用标准肉汤稀释法(BMD)评估 Sensititre YeastOne YO10(SYY)在确定体外抗真菌敏感性方面的表现,并计算了相关的一致性(EA)。

Results  结果

Accurate species identification was achieved in 82.3% and 96.8% of the cases by Vitek 2 Compact and Vitek mass spectrometry (MS), respectively. For Bruker MS, 12.9% and 96.8% of the isolates were correctly identified to species level using the direct transfer and protein extraction methods, respectively. Only 29 (46.8%) isolates were initially correctly identified as K. ohmeri by the local hospitals. The highest misidentification rate (100%, 16/16) was observed in CHROMagar. According to BMD, the highest MIC90 was seen in fluconazole (8 μg/mL), followed by 1 μg/mL for micafungin, caspofungin, 5-fluorocytosine, and amphotericin B, 0.5 μg/mL for itraconazole, 0.25 μg/mL for posaconazole and voriconazole. Significant differences in EAs for different drugs were observed, ranging from 95.2% for amphotericin B to 22.6% for itraconazole between SYY and BMD.
准确的种属鉴定分别在 Vitek 2 Compact 和 Vitek 质谱(MS)中达到了 82.3%和 96.8%。对于 Bruker MS,分别有 12.9%和 96.8%的分离株通过直接转移和蛋白质提取方法被正确鉴定到种水平。只有 29(46.8%)株分离株最初被当地医院正确鉴定为 K. ohmeri。CHROMagar 观察到最高的误鉴定率(100%,16/16)。根据 BMD,氟康唑的最高 MIC 值为 8 μg/mL,其次是米卡芬净、卡泊芬净、5-氟胞嘧啶和两性霉素 B 的 1 μg/mL,伊曲康唑的 0.5 μg/mL,泊沙康唑和伏立康唑的 0.25 μg/mL。不同药物的敏感性分析显示,两性霉素 B 的敏感性最高(95.2%),伊曲康唑的敏感性最低(22.6%)。

Conclusion  结论

Our study emphasizes the need for accurate identification of clinical K. ohmeri isolates and the importance of validating antifungal susceptibility by standard BMD.
本研究强调了准确鉴定临床 K. ohmeri 分离株以及通过标准 BMD 验证抗真菌敏感性的重要性。

Keywords: Kodamaea ohmeri, identification, antifungal susceptibility profiles, invasive fungal disease, surveillance
关键词:Kodamaea ohmeri,鉴定,抗真菌敏感性谱,侵袭性真菌病,监测

Introduction  介绍

Invasive fungal disease (IFD) is an important cause of morbidity and mortality in hospitalized patients. The China Hospital Invasive Fungal Surveillance Net (CHIF-NET) program was the first, and currently the largest, national surveillance program established to provide updated information on the epidemiology of invasive fungal infections in mainland China. It was initiated in 2009, and by the seventh surveillance year (2016), as many as 73 hospitals from 30 of the 34 provinces in China had participated, enabling collection of over 8,000 yeast isolates. Although Candida species remain the most common fungal pathogens worldwide, recent reports have highlighted the emergence of infections caused by less-common pathogenic yeasts., One such emerging pathogen is Kodamaea ohmeri.
侵袭性真菌病(IFD)是住院患者发病率和死亡率的重要原因。 中国医院侵袭性真菌监测网(CHIF-NET)项目是中国第一个,也是目前最大的全国性监测项目,旨在提供中国大陆侵袭性真菌感染流行病学的最新信息。该项目始于 2009 年,到第七次监测年(2016 年),已有来自中国 34 个省份中的 30 个省份的 73 家医院参与,收集了超过 8000 株酵母菌分离株。尽管 Candida 种属仍然是全球最常见的真菌病原体,但最近的报告强调了由较少常见的病原酵母菌引起的感染的出现。 其中一种新兴病原菌是 Kodamaea ohmeri。

K. ohmeri, previously known as Pichia ohmeri and Yamadazyma ohmeri, is an ascosporogenous yeast, and a teleomorph of Candida guilliermondii var. membranaefaciens, which has been commonly used in the food industry for the fermentation of pickles, rinds, and other fruit. Now, the genus Kodamaea is divided into 5 species (K. anthrophila, K. kakaduensis, K. laetipori, K. nitidulidarum, K. ohmeri) and only K. ohmeri shows pathogenicity in humans. Since the first case report of sepsis due to K. ohmeri, several case reports of various IFDs, including sepsis or fungemia,, catheter-related bloodstream infection,, peritonitis, and endocarditis,, with high mortality due to K. ohmeri have gradually accumulated. Moreover, nosocomial outbreaks of K. ohmeri infection in the pediatric ward have also been reported. All this evidence suggests that K. ohmeri should be added to the growing list of opportunistic fungal pathogens in humans, and calls for early recognition and appropriate treatment.
K. ohmeri,之前被称为 Pichia ohmeri 和 Yamadazyma ohmeri,是一种有性孢子酵母,是 Candida guilliermondii var. membranaefaciens 的同源真菌,常用于食品工业中的泡菜、果皮及其他水果的发酵。 现在,Kodamaea 属分为 5 个种(K. anthrophila、K. kakaduensis、K. laetipori、K. nitidulidarum、K. ohmeri),只有 K. ohmeri 在人类中表现出致病性。 自首次报道由于 K. ohmeri 引起的败血症以来, 关于各种侵袭性真菌病(包括败血症或菌血症, 导管相关血流感染, 腹膜炎, 和心内膜炎), 由于 K. ohmeri 导致的高死亡率病例逐渐累积。此外,K. ohmeri 在儿科病房引起的医院暴发感染也有所报道。 所有这些证据表明,K. ohmeri 应该被添加到人类机会性真菌病原体的不断增加的名单中,并呼吁早期识别和适当治疗。

Despite the increasing clinical significance in IFD, there are limited data on the occurrence and distribution of K. ohmeri globally. Here, we studied the epidemiology and antifungal susceptibility patterns of K. ohmeri clinical isolates based on the multicenter surveillance program-CHIF-NET in China over seven years.
尽管 K. ohmeri 在侵袭性真菌感染(IFD)中的临床意义日益增加,但全球范围内关于 K. ohmeri 的流行病学和抗真菌药物敏感性模式的数据有限。在此,我们基于中国多中心监测项目-CHIF-NET,对过去七年中的 K. ohmeri 临床分离株的流行病学和抗真菌药物敏感性模式进行了研究。

Materials and methods  材料与方法

Ethics  伦理学

The study was approved by the Human Research Ethics Committee of Peking Union Medical College Hospital (no. S-263). Written informed consent was obtained from patients for the use of the samples in research.
该研究经北京协和医院人类研究伦理委员会批准(批准号:S-263)。患者已书面知情同意将其样本用于研究。

Isolates  分离株

A total of 62 K. ohmeri clinical isolates collected from 24 different hospitals in 14 provinces, as part of the CHIF-NET study, from August 2009 to July 2016, were studied. The study inclusion criteria were as follows: for each surveillance year, all non-repetitive yeast isolates from eligible patients with IFDs were forwarded to the central laboratory, the Department of Clinical Laboratory, Peking Union Medical College Hospital (PUMCH), for species confirmative identification and antifungal susceptibility testing.
共收集了来自中国 14 个省份 24 家医院的 62 株 K. ohmeri 临床分离株,时间为 2009 年 8 月至 2016 年 7 月,作为 CHIF-NET 研究的一部分。研究纳入标准如下:对于每一年的监测,所有符合条件的 IFD 患者的非重复酵母分离株均被送往中央实验室——北京协和医学院附属北京协和医院临床实验室,进行种属确认鉴定和抗真菌敏感性测试。

DNA extraction and identification
DNA 提取与鉴定

DNA extraction and amplification of the 26S ribosomal DNA were performed with primer pairs NL1/NL4, as previously described. The PCR products were sent to Riobiotech (Beijing, China) for sequencing. Identification was carried out by querying the sequences against GenBank database with nucleotide Basic Local Alignment Search Tool (BLASTn, http://blast.ncbi.nlm.nih.gov).
使用 NL1/NL4 引物对 26S 核糖体 DNA 进行了 DNA 提取和扩增,方法如前所述。 扩增产物被送往北京瑞博泰克生物科技有限公司进行测序。鉴定通过将序列查询 GenBank 数据库中的核苷酸基本局部比对搜索工具(BLASTn, http://blast.ncbi.nlm.nih.gov )完成。

We also evaluated the performance of the Vitek-2 Compact (bioMérieux, France) and two MALDI-TOF MS systems, including the Vitek MS system (IVD Knowledgebase version 3.0; bioMérieux) and the Bruker Autoflex Speed TOF/TOF MS system (Biotyper version 3.1 software; Bruker Daltonics, USA) in the identification of K. ohmeri isolates. The Vitek-2 Compact Yeast card was used, and the final profile results were analyzed further as per the database specifications. For Vitek MS system, the results were scored in one of three ways as per the manufacturer’s recommendations. For Bruker MS, both direct transfer and the ethanol-formic acid protein extraction methods, as recommended by the manufacturer, were used for sample preparation. Identification was determined according to manufacturer-determined criteria: a score of <1.7 was interpreted as “no” identification, a score of 1.7–2.0 as identification to genus level, and a score of ≥2.0 as identification to species level.
我们也评估了 Vitek-2 Compact(法国 bioMérieux 公司)和两个 MALDI-TOF MS 系统,包括 Vitek MS 系统(IVD Knowledgebase 版本 3.0;bioMérieux)和 Bruker Autoflex Speed TOF/TOF MS 系统(Biotyper 版本 3.1 软件;美国 Bruker Daltonics 公司)在 K. ohmeri 分离株鉴定中的性能。使用了 Vitek-2 Compact 酵母卡片,并根据数据库规范进一步分析了最终的谱型结果。对于 Vitek MS 系统,结果按照制造商的建议评分,分为三种情况。对于 Bruker MS,使用了制造商推荐的直接转移法和乙醇-甲酸蛋白质提取法两种样品制备方法。鉴定结果根据制造商确定的标准确定:评分<1.7 解释为“未鉴定”,评分 1.7-2.0 解释为属水平鉴定,评分≥2.0 解释为种水平鉴定。

Antifungal susceptibility testing
抗真菌敏感性测试

In vitro susceptibilities of the isolates to eight antifungal drugs including amphotericin B, 5-flucytosine, fluconazole, itraconazole, voriconazole, posaconazole, micafungin, and caspofungin, were determined by broth microdilution method (BMD) as per Clinical and Laboratory Standards Institute (CLSI) guidelines (document M27-A3). Furthermore, we evaluated the performance of Sensititre YeastOne YO10 (SYY) (Thermo Scientific, USA) in antifungal susceptibility testing of K. ohmeri isolates as per the manufacturer’s instructions. For both methods, minimum inhibition concentrations (MIC) were read after 24 hrs incubation. Since there is neither clinical breakpoint (CBP) nor epidemiological cut-off values (ECVs) available for K. ohmeri, only essential agreement (EA) [percentage of MICs detected by SYY within a single doubling dilution of the corresponding BMD result] for each drug was calculated compared to BMD results (EA for anidulafungin was not calculated due to its inaccessibility in China). Candida parapsilosis ATCC 22019 and Candida krusei ATCC 6258 were used as the quality control strains for identification and antifungal susceptibility testing.
分离株对包括两性霉素 B、5-氟胞嘧啶、氟康唑、伊曲康唑、伏立康唑、泊沙康唑、米卡芬净和卡泊芬净在内的八种抗真菌药物的体外敏感性,按照临床和实验室标准研究所(CLSI)的指导原则(文件 M27-A3)通过肉汤稀释法(BMD)确定。此外,我们按照制造商的说明评估了 Sensititre YeastOne YO10(SYY)(Thermo Scientific,美国)在 K. ohmeri 分离株抗真菌敏感性测试中的性能。对于这两种方法,最小抑制浓度(MIC)在 24 小时孵育后读取。由于 K. ohmeri 既没有临床破折点(CBP),也没有流行病学切点值(ECVs),因此仅计算了每种药物 SYY 检测的 MIC 值与 BMD 结果之间的一致性百分比(EA)[SYY 检测的 MIC 值与相应 BMD 结果在同一倍比稀释度内的百分比],与 BMD 结果进行比较(由于卡泊芬净在中国不可获得,因此未计算其 EA)。使用 Candida parapsilosis ATCC 22019 和 Candida krusei ATCC 6258 作为鉴定和抗真菌敏感性测试的质量控制菌株。

Results  结果

Detailed information of the study isolates is summarized in Table 1. The 62 isolates were collected from 62 patients at 24 hospitals located in 14 provinces across China over seven years. Thirty-four (34/62, 54.8%) of the strains were isolated in CHIF-NET year 2016, ten of which were isolated from one single hospital (Figure 1). The majority of the isolates were from patients admitted to surgical department (38.7%), medical department (32.3%), and intensive care unit (ICU) (14.5%), followed by pediatrics (6.5%), emergency (3.2%), organ transplantation (1.6%), dermatology (1.6%), and rehabilitation (1.6%). Among various specimen types, more than half of the isolates (54.8%) were recovered from blood, followed by catheter (16.1%), wound (8.1%), ascitic fluid (8.1%), drainage fluid (6.5%), broncho-alveolar lavage fluid (3.2%), pleural effusion (1.6%), and cerebrospinal fluid (1.6%) (Table 1).
该研究分离株的详细信息总结见 Table 1 。62 株分离株来自中国 14 个省份 24 家医院的 62 名患者,历时七年。其中 34 株(34/62,54.8%)菌株在 CHIF-NET 2016 年分离,其中有 10 株来自单一医院( Figure 1 )。大多数分离株来自外科病房(38.7%)、内科病房(32.3%)和重症监护室(ICU,14.5%),其次是儿科(6.5%)、急诊科(3.2%)、器官移植科(1.6%)、皮肤科(1.6%)和康复科(1.6%)。在各种标本类型中,超过一半的分离株(54.8%)来自血液,其次是导管(16.1%)、伤口(8.1%)、腹水(8.1%)、引流液(6.5%)、支气管肺泡灌洗液(3.2%)、胸腔积液(1.6%)和脑脊液(1.6%)( Table 1 )。

Table 1.  表 1.

Distribution of the 62 Kodamaea ohmeri isolates by department and specimen type
62 株 Kodamaea ohmeri 分离株的分布情况按部门和标本类型

Gender  性别 Male (N=33, 53.2%)  男(N=33,53.2%)
Female (N=29, 46.8%)  女(N=29,46.8%)
Age  年龄 59±19.3
Department  科室 No.  编号 %
Surgery  手术 24 38.7
Medical  医疗 20 32.3
Intensive care unit  重症监护病房 9 14.5
Pediatrics  儿科 4 6.5
Emergency  急诊 2 3.2
Organ transplantation  器官移植 1 1.6
Dermatology  皮肤科 1 1.6
Rehabilitation  康复 1 1.6
Total  总计 62 100
Specimen type  标本类型 No.  编号 %
Blood  血液 34 54.8
Catheter  导管 10 16.1
Wound  伤口 5 8.1
Ascitic fluid  腹水 5 8.1
Drainage fluid  引流液 4 6.5
Bronchoalveolar lavage fluid
支气管肺泡灌洗液
2 3.2
Pleural effusion  胸腔积液 1 1.6
Cerebrospinal fluid  脑脊液 1 1.6
Total  总计 62 100

Figure 1.  图 1.

Figure 1

Distribution of 62 Kodamaea ohmeri isolated from the seven-year surveillance study.
七年间 surveillance 研究中分离出的 62 株 Kodamaea ohmeri 的分布情况

Abbreviation: CHIF-NET, China Hospital Invasive Fungal Surveillance Net. 
缩写:CHIF-NET,中国医院侵袭性真菌监测网。

Sequence-based identification
基于序列的鉴定

The 26S rDNA sequences of the study isolates exhibited 99–100% identity with the sequence of standard strain CBS 6722 in the GenBank. The DNA sequences of the representative isolates have been deposited in GenBank with accession numbers MK414609 to MK414670.
研究分离株的 26S rDNA 序列与 GenBank 中标准菌株 CBS 6722 的序列表现出 99-100%的同源性。代表株的 DNA 序列已存入 GenBank, accession 号为 MK414609 to MK414670

Original species identification results by local hospitals
当地医院原始物种鉴定结果

We looked back into the original information submitted by the local hospitals about the isolates and found that among the 62 K. ohmeri isolates re-identified by DNA sequencing in the central laboratory, only 29 (46.8%) were initially identified as K. ohmeri correctly by the local hospitals. The remaining 33 (53.2%) were misidentified as Candida albicans (n=11), Candida glabrata (n=9), Candida tropicalis (n=4), Candida guilliermondii (n=3), Candida lusitaniae (n=1), Cryptococcus neoformans (n=1), Candida famata (n=2), Candida pelliculosa (n=1) and Candida rugosa (n=1) by different methods. Vitek MS, Vitek 2 Compact, ATB32 C, and APC 20C correctly identified 100% (2/2), 70% (14/20), 66.7% (4/6), and 56.3% (9/16) of the isolates, respectively. Only one isolate each was identified using BD Phoenix100 and RapID™ YEAST PLUS, and neither of them got the correct result; one misidentified as C. tropicalis and the other one as Cryptococcus neoformans. Noticeably, the highest misidentification rate (16/16, 100%) was seen in CHROMagar among which nine, four, and three isolates were misidentified as Candida albicans, Candida glabrata, and Candida tropicalis, respectively (Table 2).
我们回顾了当地医院提交的原始信息,发现在这 62 株重新通过 DNA 测序鉴定为 K. ohmeri 的分离株中,只有 29 株(46.8%)最初被当地医院正确鉴定为 K. ohmeri。其余 33 株(53.2%)被误鉴定为 Candida albicans(11 株)、Candida glabrata(9 株)、Candida tropicalis(4 株)、Candida guilliermondii(3 株)、Candida lusitaniae(1 株)、Cryptococcus neoformans(1 株)、Candida famata(2 株)、Candida pelliculosa(1 株)和 Candida rugosa(1 株)等不同方法。Vitek MS、Vitek 2 Compact、ATB32 C 和 APC 20C 分别正确鉴定了 100%(2/2)、70%(14/20)、66.7%(4/6)和 56.3%(9/16)的分离株。仅有一株分离株分别使用 BD Phoenix100 和 RapID™ YEAST PLUS 进行鉴定,但均未得到正确结果;一株被误鉴定为 C. tropicalis,另一株被误鉴定为 Cryptococcus neoformans。值得注意的是,在 CHROMagar 中误鉴定率最高(16/16,100%),其中 9 株被误鉴定为 Candida albicans,4 株被误鉴定为 Candida glabrata,3 株被误鉴定为 Candida tropicalis( Table 2 )。

Table 2.  表 2.

Original identification results of the 62 Kodamaea ohmeri isolates submitted by local hospitals using different phenotypic methods
本地医院使用不同表型方法提交的 62 株 Kodamaea ohmeri 分离株的初步鉴定结果

Identification Results  鉴定结果 API 20C ATB32C BD Phoenix 100 CHROMagar RapID™ YEAST PLUS  RapID™ 酵母增强版 Vitek 2 Compact  Vitek 2 便携版 Vitek MS
Correct ID (n=29, 46.8%)  正确鉴定(n=29,46.8%)
Kodamaea ohmeri 9 4 14 2
Incorrect ID (n=33, 53.2%)
错误鉴定(n=33,53.2%)
Candida glabrata 4 1 4
Candida lusitaniae 1
Candida albicans 1 1 9
Candida guilliermondii 1 2
Candida tropicalis 1 3
Cryptococcus neoformans  新型隐球菌 1
Candida famata  卡达娜菌 2
Candida pelliculosa 1
Candida rugosa 1
Percentage of correct ID
正确鉴定率
56.25 66.7 0.0 0.0 0.0 70.0 100.0
Percentage of incorrect ID
错误鉴定的比例
43.75 33.3 100.0 100.0 100.0 30.0 0.0

Vitek 2 compact and MALDI-TOF MS identification results in the central laboratory
中央实验室的 Vitek 2 紧凑型和 MALDI-TOF MS 鉴定结果

As compared with 26S rDNA sequencing, 82.3% of the isolates were correctly identified by Vitek 2 Compact system while 17.7% of the isolates yielded “no identification” results. Vitek MS system correctly identified 96.8% of the isolates (confidence value, 99.9%) with only one exception of “no identification” result. For the Bruker system, considerable differences were observed in the results of the two sample preparation methods used. According to the manufacturer-determined criteria, 12.9% and 71.0% of the isolates were identified to species and genus level, respectively, while 16.1% yielded “no identification” results using the direct transfer method. A significant increase in identification accuracy was seen when using the protein extraction method with 96.8% and 3.2% of the isolates correctly identified to species and genus levels, respectively (Table 3).
与 26S rDNA 测序相比,Vitek 2 Compact 系统正确鉴定了 82.3%的分离株,而 17.7%的分离株产生了“无法鉴定”的结果。Vitek MS 系统正确鉴定了 96.8%的分离株(置信值 99.9%),仅有一个例外为“无法鉴定”的结果。对于 Bruker 系统,两种样本制备方法的结果存在显著差异。根据制造商确定的标准,使用直接转移方法,12.9%的分离株被鉴定到种水平,71.0%的分离株被鉴定到属水平,而 16.1%的分离株产生了“无法鉴定”的结果。使用蛋白质提取方法时,鉴定准确性显著提高,96.8%和 3.2%的分离株分别被鉴定到种和属水平( Table 3 )。

Table 3.  表 3.

Performance of Vitek 2 compact system, Vitek MS, and Bruker Biotyper MS compared with 26S rDNA gene sequencing for the identification of 62 Kodamaea ohmeri isolates
Vitek 2 紧_compact 系统、Vitek MS 和 Bruker Biotyper MS 质谱仪与 26S rDNA 基因测序比较用于 62 株 Kodamaea ohmeri 的鉴定性能

Identification system  鉴定系统 Correct identification to species level
正确鉴定到种水平
Correct identification to genus level
正确鉴定到属水平
No identification (invalid result)
无鉴定(无效结果)
Misidentification  误鉴定
No.  第几号 % No.   % No.   % No.   %
Vitek 2 Compact 51 82.3 0 0 11 17.7 0 0
Vitek MS system  Vitek MS 系统 61 98.4 0 0.0 1 1.6 0 0
Bruker Biotyper MS system
Bruker Biotyper MS 系统
 Direct transfer  直接转移 8 12.9 44 71.0 10 16.1 0 0
 Protein extraction  蛋白质提取 60 96.8 2 3.2 0 0.0 0 0

Antifungal susceptibility profiles
抗真菌敏感性谱型

The antifungal susceptibilities of the study isolates by BMD and SYY are shown in Table 4. Significant differences in EAs for different drugs were observed, ranging from 22.6% for itraconazole to 95.2% for amphotericin B. MIC50s and MIC90s detected by BMD were generally higher (up to four-fold) than those detected by SYY. Due to such a great inconsistency between BMD and SYY, which has been reported with high agreement in yeasts, we repeated the antifungal susceptibility testing by both methods to exclude experimental errors, and the previous results were confirmed. According to BMD, highest MIC90 was seen in fluconazole (8 μg/mL), followed by 1 μg/mL for micafungin, caspofungin, 5-fluorocytosine, and amphotericin B, 0.5 μg/mL for itraconazole, and 0.25 μg/mL for posaconazole and voriconazole.
研究中分离株对 BMD 和 SYY 的抗真菌敏感性见图 Table 4 。不同药物的 EAs 存在显著差异,从 itraconazole 的 22.6%到 amphotericin B 的 95.2%不等。由 BMD 检测的 MIC 50 和 MIC 90 通常比 SYY 检测的高(最高可达四倍)。由于 BMD 和 SYY 之间如此大的不一致性,尽管在酵母中报告有高一致性的结果,我们还是通过两种方法重复了抗真菌敏感性测试以排除实验误差,之前的结论得到了确认。根据 BMD,最高 MIC 90 出现在 fluconazole(8 μg/mL),其次是 micafungin、caspofungin、5-fluorocytosine 和 amphotericin B(1 μg/mL),itraconazole 为 0.5 μg/mL,posaconazole 和 voriconazole 为 0.25 μg/mL。

Table 4.  表 4.

Comparison of in-vitro antifungal susceptibility data (MIC, μg/mL) of the 62 Kodamaea ohmeri isolates against nine antifungal agents between BMD and SYY
比较 62 株 Kodamaea ohmeri 分离株在 BMD 和 SYY 之间对九种抗真菌剂的体外抗真菌敏感性数据(MIC,μg/mL)

Antibiotic  抗生素 AST method  AST 方法 Number  编号 MIC50 Fold  折迭 MIC90 Fold  折迭 MIC Range  最小抑菌浓度范围 Geom.Mean  几何均值 EA
Anidulafungin  安尼芬净 SYY 62 0.125 - 0.5 - 0.03–2 0.192 -
Micafungin  米卡芬净 BMD 62 0.5 4 1 4 0.12–1 0.473 43.5%
SYY 62 0.125 0.25 0.03–1 0.136
Caspofungin  卡泊芬净 BMD 62 0.5 2 1 1 0.25–2 0.691 50.0%
SYY 62 0.25 1 0.015–2 0.24
5-Fluorocytosine  5-氟胞嘧啶 BMD 62 0.032 1 1 0.5 0.03–1 0.087 88.7%
SYY 62 0.032 2 0.03–2 0.1
Posaconazole  泊沙康唑 BMD 62 0.125 4 0.25 2 <0.015–0.5 0.136 40.3%
SYY 62 0.032 0.125 0.015–0.25 0.042
Voriconazole  伏立康唑 BMD 62 0.064 2 0.25 4 <0.015–2 0.075 74.2%
SYY 62 0.032 0.064 0.004–0.5 0.038
Itraconazole  伊曲康唑 BMD 62 0.5 4 0.5 4 0.06–1 0.399 22.6%
SYY 62 0.125 0.125 0.008–0.5 0.091
Fluconazole  氟康唑 BMD 62 4 1 8 1 1–>256 5.115 91.9%
SYY 62 4 8 0.5–64 5.058
Amphotericin B  两性霉素 B BMD 62 0.5 1 1 2 0.5–1 0.598 95.2%
SYY 62 0.5 0.5 0.06–0.5 0.409

Abbreviations: BMD, broth microdilution method; SYY, Sensititre YeastOne YO10; EA, essential agreement; MIC, minimuminhibition concentrations.
缩写:BMD,肉汤微稀释法;SYY,Sensititre YeastOne YO10;EA,基本一致;MIC,最低抑菌浓度。

Discussion  讨论

For decades, K. ohmeri has been recognized as a fungal contaminant but not as a human pathogen. Systemic infections due to K. ohmeri have generally been considered to be rare. Consequently, little attention has been paid to this insignificant yeast until 1998 when the first case of fungemia caused by K. ohmeri was described. Most published studies to date on K. ohmeri infections are sporadic cases commonly seen in Asian countries like Korea,, Japan,, and India. The infections were reported more often in children than in adults, and almost all patients had one or more underlying conditions alongside immunodeficiency. Mortality rates due to K. ohmeri invasive infections have been reported to be as high as 50%., The largest cluster of K. ohmeri infection reported was set in a single hospital in North India, presenting as 38 fungemia cases, 78.9% of which were isolated from neonates in intensive care units. Several surveillance studies in Spain, Malaysia, and Tunisia have also reported the isolation of K. ohmeri but with limited numbers. So far, our study presents as the first, largest, and multicenter epidemiological study of K. ohmeri clinical isolates causing IFDs in China.
几十年来,K. ohmeri 被认为是一种真菌污染菌,而不是人类病原体。K. ohmeri 引起的全身性感染通常被认为较为罕见。因此,直到 1998 年首次报道了由 K. ohmeri 引起的血流感染病例之前,人们对这种微不足道的酵母菌的关注很少。 目前为止,关于 K. ohmeri 感染的大多数已发表研究都是零星病例,常见于韩国、 日本、 印度等亚洲国家。 感染在儿童中比在成人中更为常见,几乎所有的患者都伴有免疫缺陷或其他基础疾病。 K. ohmeri 引起的侵袭性感染的死亡率据报道高达 50%。 在北印度的一家医院中报告的最大 K. ohmeri 感染群集包括 38 例血流感染病例,其中 78.9% 的病例来自重症监护室的新生儿。 西班牙、马来西亚和突尼斯的几项监测研究也报告了 K. ohmeri 的分离,但数量有限。 到目前为止,本研究是首个、最大规模且多中心的中国临床分离株 K. ohmeri 导致侵袭性真菌病的流行病学研究。

During the 7-year surveillance, a total of 62 K. ohmeri isolates from cases of IFDs were collected and re-identified by 26S rDNA sequencing at the Central hospital, PUMCH. However, according to the original results submitted by the participating local hospitals, less than half of the isolates were correctly identified as K. ohmeri using different methods. The CHROMagar Candida chromogenic growth medium, which was developed based on the characteristic color change of the colonies, is an extremely useful tool in the clinical lab to assist in routine identification of common Candida species. However, this medium failed to correctly identify all the 16 K. ohmeri isolates reported by local hospitals in this study. It is known that K. ohmeri colonies can undergo a unique color change from pink to blue when grown on CHROMagar medium, and this phenomenon takes at least 2–3 days to form pink-blue colonies. Moreover, a full week may be required to obtain complete blue color colony development. Thus it is not surprising to note that 9, 4, and 3 isolates amongst the 16 misidentified isolates were incorrectly identified as C. albicans, C. glabrata, and C. tropicalis, respectively, which may be a result of determining the color of the isolates either too early or too late by lab staff. This identification confusion has been previously reported. Actually, this is how the largest cluster of K. ohmeri infection was discovered, in which 38 (25.7%) of 148 previously identified C. tropicalis isolates were re-identified as K. ohmeri by genotypic characterisation. Therefore, while CHROMagar is a useful and simple identification tool, careful and patient observation is necessary for correct identification of K. ohmeri.
在 7 年的监测期间,中央医院 PUMCH 通过 26S rDNA 测序共收集并重新鉴定出 62 株 K. ohmeri 分离株,用于侵袭性真菌病(IFD)病例。然而,根据参与的当地医院提交的原始结果,使用不同方法鉴定的分离株中,只有不到一半被正确鉴定为 K. ohmeri。基于菌落颜色变化特征开发的 CHROMagar Candida 选择性培养基,在临床实验室中是一个非常有用的工具,用于常规鉴定常见念珠菌属物种。然而,该培养基未能正确鉴定本研究中当地医院报告的 16 株 K. ohmeri 分离株。已知 K. ohmeri 在 CHROMagar 培养基上生长时,菌落会经历从粉红色到蓝色的独特颜色变化,这一现象至少需要 2-3 天才能形成粉蓝菌落。此外,完全蓝色菌落的形成可能需要一周时间。因此,16 株被错误鉴定的分离株中有 9 株、4 株和 3 株分别被错误地鉴定为 C. albicans、C. glabrata 和 C. 热带 isolates,这可能是由于实验室工作人员过早或过晚确定菌株颜色所致。这种鉴定混淆之前已有报道。实际上,正是通过这种方式发现了最大的 K. ohmeri 感染集群,在其中,148 株之前鉴定为 C. tropicalis 的菌株中有 38 株(25.7%)被基因型鉴定重新鉴定为 K. ohmeri。因此,虽然 CHROMagar 是一种有用的简单鉴定工具,但正确鉴定 K. ohmeri 需要仔细和耐心的观察。 实际上,正是通过这种方式发现了最大的 K. ohmeri 感染集群,在其中,148 株之前鉴定为 C. tropicalis 的菌株中有 38 株(25.7%)被基因型鉴定重新鉴定为 K. ohmeri。

Several other fungal identification methods with various levels of accuracy for specific organisms are used by many local hospitals in China. Among 16 isolates identified by API 20C system, seven (43.8%) were misidentified as C. glabrata (n=4), C. lusitaniae (n=1), C. albicans (n=1), and C. guilliermondii (n=1). The Vitek 2 Compact system correctly identified 70% (14/20) of isolates, with two misidentified as C. guilliermondii, two as C. famata, and one of each as C. pelliculosa and C. rugosa. Both the API 20C and Vitek 2 Compact systems have been shown to yield false-positive results, identifying C. haemulonii or C. parapsilosis as K. ohmeri., It is also known that C. auris and C. haemulonii are closely related and cannot be distinguished with conventional identification methods. Due to the emerging role of C. auris as a multidrug-resistant fungal pathogen with high morbidity and mortality, early accurate identification of this organism is crucial for patient management. In this case, the use of the faster molecular diagnostic tools for the proper identification of fungal pathogens is strongly recommended. The other four methods including ATB32C, BD Phoenix100, RapID™ YEAST PLUS, and Vitek MS, which were used for fungal identification by a small number of hospitals, yielded a wide variety of results which were difficult to generalize.
在中国的许多当地医院中,使用了多种不同准确度的其他真菌鉴定方法。在使用 API 20C 系统鉴定的 16 个菌株中,有 7 个(43.8%)被误鉴定为 C. glabrata(4 个)、C. lusitaniae(1 个)、C. albicans(1 个)和 C. guilliermondii(1 个)。Vitek 2 Compact 系统正确鉴定了 70%(14/20)的菌株,其中有 2 个被误鉴定为 C. guilliermondii,2 个被误鉴定为 C. famata,1 个被误鉴定为 C. pelliculosa,1 个被误鉴定为 C. rugosa。API 20C 系统和 Vitek 2 Compact 系统均被证实会产生假阳性结果,将 C. haemulonii 或 C. parapsilosis 误鉴定为 K. ohmeri。 已知 C. auris 和 C. haemulonii 关系密切,常规鉴定方法无法区分两者。 鉴于 C. auris 作为一种多重耐药真菌病原体,具有高发病率和高死亡率的新兴作用,早期准确鉴定该菌种对于患者的管理至关重要。 因此,强烈建议使用更快的分子诊断工具来正确鉴定真菌病原体。 其他四种方法,包括 ATB32C、BD Phoenix100、RapID™ YEAST PLUS 和 Vitek MS,仅少数医院使用,结果多样,难以概括。

Nevertheless, the Vitek MS system performed the best among all the methods with 100% accuracy, albeit only two isolates identified using this method. Therefore, we performed a parallel study for identification of all the 62 K. ohmeri isolates using three commonly used phenotypic methods in our lab. To the best of our knowledge, this is the first evaluation study on the performance of three phenotypic methods for the identification of K. ohmeri. In general, the Vitek 2 Compact system (82.3% vs 70%) and Vitek MS (98.4% vs 100%) showed similar results with those submitted by the local hospitals. The Bruker system demonstrated a difference in the identification accuracy of K. ohmeri based on the sample preparation method. The identification accuracy obtained using the protein extraction method (96.8%) was comparable to that of Vitek MS, while the direct transfer method was only comparable to that of Vitek 2 Compact only when the genus identification cut-off value (>1.7) was adopted (83.9%). While MALDI-TOF MS is increasingly being used to identify Candida species in clinical laboratories, only one study has previously reported on the use of Bruker system for identification of K. ohmeri. In that study, the protein extraction procedure was used, which yielded a high confidence score although only one isolate was tested. These data suggest that both Vitek MS and Bruker system with protein extraction method for sample preparation can be used as a fast and accurate tool for K. ohmeri identification.
尽管 Vite 克 MS 系统在所有方法中表现最佳,准确率为 100%,但仅识别出两个菌株。因此,我们对实验室常用的三种表型方法进行了并行研究,以识别所有 62 株 K. ohmeri 菌株。据我们所知,这是首次评估三种表型方法用于识别 K. ohmeri 性能的研究。总体而言,Vitek 2 Compact 系统(82.3% vs 70%)和 Vitek MS(98.4% vs 100%)的识别结果与当地医院提交的结果相似。Bruker 系统在基于样本制备方法识别 K. ohmeri 的准确性上存在差异。使用蛋白质提取方法(96.8%)的识别准确率与 Vitek MS 相当,而直接转移方法仅在采用属识别阈值(>1.7)时(83.9%)与 Vitek 2 Compact 相当。虽然 MALDI-TOF MS 在临床实验室中越来越多地用于鉴定念珠菌属,但仅有一项研究报道了使用 Bruker 系统识别 K. ohmeri 的情况。 ohmeri. 在该研究中,使用了蛋白质提取程序,尽管只测试了一个分离株,但获得了高置信度评分。 这些数据表明,无论是使用 Vitek MS 系统还是 Bruker 系统结合蛋白质提取方法进行样品准备,都可以作为快速而准确的 K. ohmeri 鉴定工具。

For the first time, we also compared the in-vitro susceptibilities of 8 antifungal agents using standard BMD and the commercial SYY against 62 K. ohmeri isolates. The commercial SYY system is an adapted microbroth susceptibility testing system based on the M27-A3 standard for yeasts, which has been widely used in antifungal susceptibility testing of yeasts and is now being evaluated in molds., Excellent EAs have been reported in triazoles and echinocandins against Candida spp., ranging from 92.3% to 100%., Surprisingly, significant differences in EAs against K. ohmeri isolates were observed, especially for itraconazole presenting as 22.6%. We excluded experimental errors by repeating both procedures, and the results were confirmed. We tried to find a possible explanation for this finding, but it proved difficult as there is limited data reported in literature on this aspect. Most of the published literature concerning K. ohmeri infections only used one method, either the commercial SYY or the standard BMD, to determine the MIC values. Only one previous study used BMD to confirm the MIC for micafungin using a colorimetric method for a single K. ohmeri isolate causing fungemia and found a 640-fold difference in the MIC value between the two methods. Despite the scarce evidence, this should serve as a reminder that validation of the antifungal susceptibility test by standard BMD for rare yeasts like K. ohmeri is important as susceptibility results often play an important role in the choice of antifungal agent to administer.
首次比较了 8 种抗真菌药物(包括标准 BMD 和商业 SYY)对 62 株 K. ohmeri 分离株的体外敏感性。商业 SYY 系统是基于 M27-A3 标准的改良微量肉汤稀释法,广泛用于酵母菌的抗真菌敏感性测试,目前也在评估其在霉菌中的应用。 在三唑类和棘白菌素类药物中,对念珠菌属的优秀抗菌活性(EAs)报道范围为 92.3%至 100%。 然而,令人惊讶的是,对 K. ohmeri 分离株的 EAs 存在显著差异,尤其是伊曲康唑的 EAs 仅为 22.6%。我们通过重复实验排除了实验误差,结果得到了确认。我们试图寻找这一发现的可能解释,但发现文献中关于这一方面的数据有限。大多数关于 K. ohmeri 感染的研究仅使用一种方法,要么是商业 SYY,要么是标准 BMD 来确定 MIC 值。仅有一项先前的研究使用 BMD 方法,通过比色法确认米卡芬净的 MIC 值,针对单株 K. ohmeri 导致菌血症的分离株,并发现两种方法之间的 MIC 值相差 640 倍。尽管证据有限,这仍应作为提醒,对于如 K. ohmeri 这样的罕见酵母菌,通过标准 BMD 验证抗真菌敏感性试验非常重要,因为敏感性结果往往在选择抗真菌药物方面起着重要作用。

Since no CBP or ECV has been established to date for K. ohmeri, we could not compare the susceptibility or resistance patterns of our isolates with those reported in literature. However, based on MIC distribution of susceptibility results by BMD, our findings are in agreement with previous results showing that K. ohmeri strains have low MICs to all antifungal agents tested except for fluconazole, with MIC50 and MIC90 as high as 4 and 8 μg/mL, respectively. Twenty-four of the tested isolates exhibited MICs of ≥8 μg/mL, one of which had the highest MIC of >256 μg/mL. Compared to the large cluster from India, the present isolates had similar MIC90s for amphotericin B, itraconazole and posaconazole, while a two-fold increase in MIC90 was observed for voriconazole and caspofungin, and a four-fold increase for fluconazole. Previous studies concluded that amphotericin B or echinocandin should be considered to be a good antifungal choice for treatment of K. ohmeri infections., Considering that antifungal treatment should be adjusted according to susceptibility results of the clinical isolates, based on the MIC results of our isolates, all the eight antifungal agents tested except fluconazole, may be successful in treating most of the K. ohmeri infections according to the in vitro susceptibility results.
由于目前尚未建立 K. ohmeri 的 CBP 或 ECV,我们无法将我们的分离株的敏感性或耐药模式与文献中的报告进行比较。然而,根据 BMD 方法得出的敏感性结果的 MIC 分布,我们的发现与之前的研究结果一致,即 K. ohmeri 菌株对所有抗真菌剂的 MIC 值较低,除了氟康唑外,其余抗真菌剂的 MIC 50 和 MIC 90 分别为 4 μg/mL 和 8 μg/mL。 在测试的 24 个分离株中,有 24 个分离株的 MIC 值≥8 μg/mL,其中一个分离株的 MIC 值最高为>256 μg/mL。与印度的大群落相比, 目前的分离株对两性霉素 B、伊曲康唑和泊沙康唑的 MIC 90s 相似,而对伏立康唑和卡泊芬净的 MIC 90 分别增加了两倍和四倍,对氟康唑的 MIC 增加了四倍。先前的研究得出结论,两性霉素 B 或棘白菌素应被视为治疗 K. ohmeri 感染的良好抗真菌选择。 考虑到抗真菌治疗应根据临床分离株的敏感性结果进行调整,根据我们分离株的 MIC 结果,在体外敏感性试验中,除了氟康唑外,其余八种抗真菌药物可能对大多数 K. ohmeri 感染有效。

In conclusion, this is the first systemic study regarding the epidemiology, identification, and antifungal susceptibility profiles of K. ohmeri isolates in China. Our study emphasizes the need for accurate identification of clinical K. ohmeri isolates as an emerging human pathogen in China and the importance of validation of antifungal susceptibility results by standard BMD.
总之,这是首次对中国地区 K. ohmeri 分离株的流行病学、鉴定及抗真菌敏感性谱系进行系统研究。本研究强调了准确鉴定临床 K. ohmeri 分离株作为中国新兴的人类病原体的重要性,并强调了使用标准 BMD 验证抗真菌敏感性结果的重要性。

Acknowledgments  致谢

We thank all the laboratories that participated in the CHIF-NET program in 2010–2016. This work was supported by Graduate Innovation Fund of Peking Union Medical College (grant no. 2017-1002-1-21), Hebei Science and Technology Project (17277775D), and CAMS Initiative for Innovative Medicine (grant no. 2016-I2M-3-014). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
我们感谢 2010-2016 年期间参与 CHIF-NET 项目的所有实验室。本研究得到了中国医学科学院北京协和医学院研究生创新基金(项目编号:2017-1002-1-21)、河北省科技计划项目(项目编号:17277775D)和中国医学科学院医学与健康创新工程(项目编号:2016-I2M-3-014)的资助。基金资助方未参与本研究的设计、数据收集与分析、论文发表决定或论文撰写。

Disclosure  披露

All authors report no conflicts of interest in this work.
所有作者声明在本研究中不存在利益冲突。

References  参考文献

  • 1.Kullberg BJ, Arendrup MC. Invasive candidiasis. N Engl J Med. 2015;373(15):1445–1456. doi: 10.1056/NEJMra1315399 [DOI] [PubMed] [Google Scholar]
    1. Kullberg BJ, Arendrup MC. 侵袭性念珠菌病. 新英格兰医学杂志. 2015;373(15):1445–1456. doi: 10.1056/NEJMra1315399 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 2.Miceli MH, Diaz JA, Lee SA. Emerging opportunistic yeast infections. Lancet Infect Dis. 2011;11(2):142–151. doi: 10.1016/S1473-3099(10)70218-8 [DOI] [PubMed] [Google Scholar]
    2. Miceli MH, Diaz JA, Lee SA. 新兴的机会性酵母感染. 传染病杂志. 2011;11(2):142–151. doi: 10.1016/S1473-3099(10)70218-8 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 3.Pande A, Non LR, Romee R, Santos CA. Pseudozyma and other non-candida opportunistic yeast bloodstream infections in a large stem cell transplant center. Transpl Infect Dis. 2017;19(2):e12664. doi: 10.1111/tid.12632 [DOI] [PubMed] [Google Scholar]
    3. 帕德 A, 诺 L R, 罗梅 R, 圣托斯 C A. 在一个大型干细胞移植中心中,伪卡霉和其他非卡氏机会性酵母血流感染. 移植感染疾病. 2017;19(2):e12664. doi: 10.1111/tid.12632 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 4.Kurtzman CP, Fell JW, Boekhout T. The Yeasts: A Taxonomic Study. 5th ed. Amsterdam: Elsevier; 2011. [Google Scholar]
    4. 库尔特曼 C P, 费尔 J W, 鲍克霍特 T. 酵母菌:分类学研究. 第 5 版. 阿姆斯特丹: 尔维斯; 2011. [ Google Scholar ]
  • 5.Bergman MM, Gagnon D, Doern GV. Pichia ohmeri fungemia. Diagn Microbiol Infect Dis. 1998;30(3):229–231. [DOI] [PubMed] [Google Scholar]
    5.伯格曼 MM, 加格农 D, 戴恩 GV. Ohmer 酵母菌血症. 诊断微生物学与感染疾病. 1998;30(3):229–231. [ DOI ] [ PubMed ] [ Google Scholar ]
  • 6.Yang BH, Peng MY, Hou SJ, Sun JR, Lee SY, Lu JJ. Fluconazole-resistant Kodamaea ohmeri fungemia associated with cellulitis: case report and review of the literature. Int J Infect Dis. 2009;13(6):e493–e497. doi: 10.1016/j.ijid.2009.02.003 [DOI] [PubMed] [Google Scholar]
    6.杨 BH, 彭 MY, 侯 SJ, 孙 JR, 李 SY, 陆 JJ. 与蜂窝组织炎相关的氟康唑耐药 Ohmer 酵母菌血症:病例报告及文献综述. 国际感染疾病杂志. 2009;13(6):e493–e497. doi: 10.1016/j.ijid.2009.02.003 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 7.Lee WG, Shin JH, Uh Y, et al. First three reported cases of nosocomial fungemia caused by Candida auris. J Clin Microbiol. 2011;49(9):3139–3142. doi: 10.1128/JCM.00319-11 [DOI] [PMC free article] [PubMed] [Google Scholar]
    7.李 WG, 尹 JH, 周 Y, 等. 首例由耳念珠菌引起的医院内血流感染病例报告. 临床微生物学杂志. 2011;49(9):3139–3142. doi: 10.1128/JCM.00319-11 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • 8.Kanno Y, Wakabayashi Y, Ikeda M, et al. Catheter-related bloodstream infection caused by Kodamaea ohmeri: a case report and literature review. J Infect Chemother. 2017;23(6):410–414. doi: 10.1016/j.jiac.2017.01.003 [DOI] [PubMed] [Google Scholar]
    8. Kannō Y, Waka 拜 ashi Y, 岩田 M, 等. 导管相关血流感染由 Ohmer 酵母菌引起:病例报告及文献综述. 感染化学治疗杂志. 2017;23(6):410–414. doi: 10.1016/j.jiac.2017.01.003 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 9.Hitomi S, Kumao T, Onizawa K, Miyajima Y, Wakatsuki T. A case of central-venous-catheter-associated infection caused by Pichia ohmeri. J Hosp Infect. 2002;51(1):75–77. doi: 10.1053/jhin.2002.1209 [DOI] [PubMed] [Google Scholar]
    9. 三本 S, 久野 T, 小沢 K, 宮島 Y, 長冢 T. 中心静脉导管相关感染由 Pichia ohmeri 引起一例. 《医院感染杂志》. 2002; 51(1):75–77. doi: 10.1053/jhin.2002.1209 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 10.Choy BY, Wong SS, Chan TM, Lai KN. Pichia ohmeri peritonitis in a patient on CAPD: response to treatment with amphotericin. Perit Dial Int. 2000;20(1):91. [PubMed] [Google Scholar]
    10. 乔 Y, 黄 SS, 陈 TM, 李 KN. 持续腹膜透析患者 Pichia ohmeri 腹膜炎的治疗反应. 透析国际. 2000;20(1):91. [ PubMed ] [ Google Scholar ]
  • 11.Joao I, Duarte J, Cotrim C, et al. Native valve endocarditis due to Pichia ohmeri. Heart Vessels. 2002;16(6):260–263. doi: 10.1007/s003800200034 [DOI] [PubMed] [Google Scholar]
    11. 约 I, 杜 J, 科特里姆 C, 等. 由 Pichia ohmeri 引起的原发性瓣膜心内膜炎. 心血管病学. 2002;16(6):260–263. doi: 10.1007/s003800200034 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 12.Reina JP, Larone DH, Sabetta JR, Krieger KK, Hartman BJ. Pichia ohmeri prosthetic valve endocarditis and review of the literature. Scand J Infect Dis. 2002;34(2):140–141. [DOI] [PubMed] [Google Scholar]
    12. 里纳 JP, 拉罗内 DH, 萨贝塔 JR, 克里格 KK, 哈特曼 BJ. Pichia ohmeri 假体瓣膜心内膜炎及文献综述. 北欧感染病杂志. 2002;34(2):140–141. [ DOI ] [ PubMed ] [ Google Scholar ]
  • 13.Otag F, Kuyucu N, Erturan Z, Sen S, Emekdas G, Sugita T. An outbreak of Pichia ohmeri infection in the paediatric intensive care unit: case reports and review of the literature. Mycoses. 2005;48(4):265–269. doi: 10.1111/j.1439-0507.2005.01126.x [DOI] [PubMed] [Google Scholar]
    13. 奥塔格 F, 科尤库 N, 埃尔图兰 Z, 恩斯 S, 埃梅卡达 G, 松田 T. 儿科重症监护病房 Pichia ohmeri 感染暴发:病例报告及文献综述. 真菌学. 2005;48(4):265–269. doi: 10.1111/j.1439-0507.2005.01126.x [ DOI ] [ PubMed ] [ Google Scholar ]
  • 14.Linton CJ, Borman AM, Cheung G, et al. Molecular identification of unusual pathogenic yeast isolates by large ribosomal subunit gene sequencing: 2 years of experience at the United kingdom mycology reference laboratory. J Clin Microbiol. 2007;45(4):1152–1158. doi: 10.1128/JCM.02061-06 [DOI] [PMC free article] [PubMed] [Google Scholar]
    14.Linton CJ, Borman AM, Cheung G, 等. 通过大型核糖体亚单位基因测序识别异常致病酵母菌株:英国真菌参考实验室两年的经验。临床微生物学杂志. 2007;45(4):1152–1158. doi: 10.1128/JCM.02061-06 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • 15.Zhang L, Xiao M, Wang H, et al. Yeast identification algorithm based on use of the Vitek MS system selectively supplemented with ribosomal DNA sequencing: proposal of a reference assay for invasive fungal surveillance programs in China. J Clin Microbiol. 2014;52(2):572–577. doi: 10.1128/JCM.02543-13 [DOI] [PMC free article] [PubMed] [Google Scholar]
    15.张丽, 肖敏, 王慧, 等. 基于 Vitek MS 系统补充核糖体 DNA 测序的酵母菌识别算法:中国侵袭性真菌监测项目参考试验的建议。临床微生物学杂志. 2014;52(2):572–577. doi: 10.1128/JCM.02543-13 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • 16.Ghosh AK, Paul S, Sood P, et al. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the rapid identification of yeasts causing bloodstream infections. Clin Microbiol Infect. 2015;21(4):372–378. doi: 10.1016/j.cmi.2014.11.009 [DOI] [PubMed] [Google Scholar]
    16.古普塔 AK, 帕尔 S, 苏德 P, 等. 用于快速识别引起血液感染的酵母菌的基质辅助激光解吸电离飞行时间质谱法。临床微生物学感染. 2015;21(4):372–378. doi: 10.1016/j.cmi.2014.11.009 [ DOI ] [ PubMed ] [ Google Scholar ]
  • 17.Deak E, Charlton CL, Bobenchik AM, et al. Comparison of the Vitek MS and Bruker Microflex LT MALDI-TOF MS platforms for routine identification of commonly isolated bacteria and yeast in the clinical microbiology laboratory. Diagn Microbiol Infect Dis. 2015;81(1):27–33. doi: 10.1016/j.diagmicrobio.2014.09.018 [DOI] [PubMed] [Google Scholar]
  • 18.CLSI. Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard -third edition. CLSI document M27-A3. Wayne, PA: Clinical and Laboratory Standards Institute; 2008. [Google Scholar]
  • 19.Zhou M, Wang Y, Liu C, et al. Comparison of five commonly used automated susceptibility testing methods for accuracy in the China Antimicrobial Resistance Surveillance System (CARSS) hospitals. Infect Drug Resist. 2018;11:1347–1358. doi: 10.2147/IDR.S166790 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Lee JS, Shin JH, Kim MN, et al. Kodamaea ohmeri isolates from patients in a university hospital: identification, antifungal susceptibility, and pulsed-field gel electrophoresis analysis. J Clin Microbiol. 2007;45(3):1005–1010. doi: 10.1128/JCM.02264-06 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Shin DH, Park JH, Shin JH, Suh SP, Ryang DW, Kim SJ. Pichia ohmeri fungemia associated with phlebitis: successful treatment with amphotericin B. J Infect Chemother. 2003;9(1):88–89. doi: 10.1007/s10156-002-0208-z [DOI] [PubMed] [Google Scholar]
  • 22.Tashiro A, Nei T, Sugimoto R, et al. Kodamaea ohmeri fungemia in severe burn: case study and literature review. Med Mycol Case Rep. 2018;22:21–23. doi: 10.1016/j.mmcr.2018.07.005 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Das K, Bhattacharyya A, Chandy M, et al. Infection control challenges of infrequent and rare fungal pathogens: lessons from disseminated Fusarium and Kodamaea ohmeri infections. Infect Control Hosp Epidemiol. 2015;36(7):866–868. doi: 10.1017/ice.2015.103 [DOI] [PubMed] [Google Scholar]
  • 24.Sundaram PS, Bijulal S, Tharakan JA, Antony M. Kodamaea ohmeri tricuspid valve endocarditis with right ventricular inflow obstruction in a neonate with structurally normal heart. Ann Pediatr Cardiol. 2011;4(1):77–80. doi: 10.4103/0974-2069.79632 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Menon T, Herrera M, Periasamy S, Palanivelu V, Sikhamani R, Wickes B. Oral candidiasis caused by Kodamaea ohmeri in a HIV patient in Chennai, India. Mycoses. 2010;53(5):458–459. doi: 10.1111/j.1439-0507.2009.01731.x [DOI] [PubMed] [Google Scholar]
  • 26.Chakrabarti A, Rudramurthy SM, Kale P, et al. Epidemiological study of a large cluster of fungaemia cases due to Kodamaea ohmeri in an Indian tertiary care centre. Clin Microbiol Infect. 2014;20(2):O83–O89. doi: 10.1111/1469-0691.12337 [DOI] [PubMed] [Google Scholar]
  • 27.Fernandez-Ruiz M, Guinea J, Puig-Asensio M, et al. Fungemia due to rare opportunistic yeasts: data from a population-based surveillance in Spain. Med Mycol. 2017;55(2):125–136. doi: 10.1093/mmy/myw055 [DOI] [PubMed] [Google Scholar]
  • 28.Eddouzi J, Lohberger A, Vogne C, Manai M, Sanglard D. Identification and antifungal susceptibility of a large collection of yeast strains isolated in Tunisian hospitals. Med Mycol. 2013;51(7):737–746. doi: 10.3109/13693786.2013.800239 [DOI] [PubMed] [Google Scholar]
  • 29.Ng KP, Kuan CS, Kaur H, Na SL, Atiya N, Velayuthan RD. Candida species epidemiology 2000–2013: a laboratory-based report. Trop Med Int Health. 2015;20(11):1447–1453. doi: 10.1111/tmi.12577 [DOI] [PubMed] [Google Scholar]
  • 30.Rodero L, Cuenca-Estrella M, Cordoba S, et al. Transient fungemia caused by an amphotericin B-resistant isolate of Candida haemulonii. J Clin Microbiol. 2002;40(6):2266–2269. doi: 10.1128/jcm.40.6.2266-2269.2002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Kathuria S, Singh PK, Sharma C, et al. Multidrug-resistant Candida auris misidentified as Candida haemulonii: characterization by matrix-assisted laser desorption ionization-time of flight mass spectrometry and DNA sequencing and its antifungal susceptibility profile variability by Vitek 2, CLSI Broth microdilution, and Etest method. J Clin Microbiol. 2015;53(6):1823–1830. doi: 10.1128/JCM.00367-15 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Jeffery-Smith A, Taori SK, Schelenz S, et al. Candida auris: a Review of the Literature. Clin Microbiol Rev. 2017;31(1):e00029–17. doi: 10.1128/CMR.00029-17 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Siopi M, Pournaras S, Meletiadis J. Comparative evaluation of sensititre YeastOne and CLSI M38-A2 reference method for antifungal susceptibility testing of Aspergillus spp. against Echinocandins. J Clin Microbiol. 2017;55(6):1714–1719. doi: 10.1128/JCM.00044-17 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Wang HC, Hsieh MI, Choi PC, Wu CJ. Comparison of the sensititre YeastOne and CLSI M38-A2 microdilution methods in determining the activity of amphotericin B, itraconazole, voriconazole, and posaconazole against Aspergillus Species. J Clin Microbiol. 2018;56(10):e00780–18. doi: 10.1128/JCM.00780-18 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Pfaller MA, Chaturvedi V, Diekema DJ, et al. Clinical evaluation of the sensititre YeastOne colorimetric antifungal panel for antifungal susceptibility testing of the echinocandins anidulafungin, caspofungin, and micafungin. J Clin Microbiol. 2008;46(7):2155–2159. doi: 10.1128/JCM.00493-08 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Pfaller MA, Espinel-Ingroff A, Jones RN. Clinical evaluation of the sensititre YeastOne colorimetric antifungal plate for antifungal susceptibility testing of the new triazoles voriconazole, posaconazole, and ravuconazole. J Clin Microbiol. 2004;42(10):4577–4580. doi: 10.1128/JCM.42.10.4577-4580.2004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Distasi MA, Del Gaudio T, Pellegrino G, Pirronti A, Passera M, Farina C. Fungemia due to Kodamaea ohmeri: first isolating in Italy. Case report and review of literature. J Mycol Med. 2015;25(4):310–316. doi: 10.1016/j.mycmed.2015.08.002 [DOI] [PubMed] [Google Scholar]

Articles from Infection and Drug Resistance are provided here courtesy of Dove Press

RESOURCES  资源