这是用户在 2025-7-31 19:30 为 https://www.mdpi.com/2414-6366/9/9/190?utm_source=chatgpt.com 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Systematic Review
开放获取系统综述

Advances in Malaria Diagnostic Methods in Resource-Limited Settings: A Systematic Review
疟疾诊断方法在资源有限地区的进展:系统性综述

by 1,
作者:阿库亚·K·亚利
2,
1 、乔伊斯·奥克兰
2,
2 、雅各布·E·科宾纳
3,
埃万杰琳·奥博代
4,
艾萨克·K·扬克森
1,
安娜·A·卡芬图-夸希
1,
格洛丽亚·阿梅加彻
1,
1 ,艾萨克·阿尼姆-拜多
1,* and
1 ,尼古拉斯·I·尼-特雷比
5,6,*
1,* 和戴安娜·A·普拉
1
Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Korle Bu, Accra P.O. Box KB 143, Ghana
加纳大学科勒布校区生物医学与辅助健康科学学院医学检验科学系,邮政信箱 KB 143,阿克拉
2
Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, PMB, Cape Coast, Ghana
生物医学科学系,联合健康科学学院,海岸角大学,PMB,加纳海岸角
3
Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana
加纳大学野口纪念医学研究所病毒学系,加纳阿克拉邮政信箱 LG 581
4
CSIR-Building and Road Research Institute, Kumasi P.O. Box UP40, Kumasi, Ghana
CSIR-建筑与道路研究所,加纳库马西,邮政信箱 UP40
5
West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana
加纳大学传染病病原体细胞生物学西非研究中心,邮政信箱 LG 54,加纳阿克拉莱贡
6
Department of Science Laboratory Technology, Faculty of Applied Sciences, Accra Technical University, Barnes Road, Accra P.O. Box GP 561, Ghana
阿克拉技术大学应用科学学院科学实验室技术系 加纳阿克拉巴恩斯路邮政信箱 GP 561
*
Authors to whom correspondence should be addressed.
应向其发送通信的作者。
Trop. Med. Infect. Dis. 2024, 9(9), 190; https://doi.org/10.3390/tropicalmed9090190
《热带医学与传染病》2024 年第 9 卷第 9 期第 190 页;https://doi.org/10.3390/tropicalmed9090190
Submission received: 27 June 2024 / Revised: 31 July 2024 / Accepted: 19 August 2024 / Published: 23 August 2024
收稿日期:2024 年 6 月 27 日 / 修回日期:2024 年 7 月 31 日 / 录用日期:2024 年 8 月 19 日 / 发布日期:2024 年 8 月 23 日
(This article belongs to the Special Issue Epidemiology, Detection and Treatment of Malaria)
(本文属于"疟疾流行病学、检测与治疗"特刊)

Abstract  摘要

Malaria continues to pose a health challenge globally, and its elimination has remained a major topic of public health discussions. A key factor in eliminating malaria is the early and accurate detection of the parasite, especially in asymptomatic individuals, and so the importance of enhanced diagnostic methods cannot be overemphasized. This paper reviewed the advances in malaria diagnostic tools and detection methods over recent years. The use of these advanced diagnostics in lower and lower-middle-income countries as compared to advanced economies has been highlighted. Scientific databases such as Google Scholar, PUBMED, and Multidisciplinary Digital Publishing Institute (MDPI), among others, were reviewed. The findings suggest important advancements in malaria detection, ranging from the use of rapid diagnostic tests (RDTs) and molecular-based technologies to advanced non-invasive detection methods and computerized technologies. Molecular tests, RDTs, and computerized tests were also seen to be in use in resource-limited settings. In all, only twenty-one out of a total of eighty (26%) low and lower-middle-income countries showed evidence of the use of modern malaria diagnostic methods. It is imperative for governments and other agencies to direct efforts toward malaria research to upscale progress towards malaria elimination globally, especially in endemic regions, which usually happen to be resource-limited regions.
疟疾持续对全球健康构成挑战,其消除问题始终是公共卫生讨论的核心议题。实现疟疾消除的关键在于对寄生虫(尤其是无症状感染者)的早期精准检测,因此改进诊断方法的重要性再怎么强调都不为过。本文综述了近年来疟疾诊断工具与检测方法的进展,重点比较了这些先进诊断技术在低收入/中低收入国家与发达经济体的应用差异。研究检索了 Google Scholar、PUBMED、多学科数字出版机构(MDPI)等科学数据库。结果表明:从快速诊断检测(RDTs)、分子检测技术到先进的无创检测方法和计算机化技术,疟疾检测领域已取得重要突破。值得注意的是,分子检测、RDTs 和计算机化检测在资源有限地区也已投入实际应用。 在总共八十个中低收入国家中,仅有二十一个国家(26%)显示出采用了现代疟疾诊断方法的证据。各国政府及相关机构亟需将工作重点转向疟疾研究,以加速全球消除疟疾的进程,特别是在通常资源有限的疟疾流行地区。
Keywords:
malaria; polymerase chain reaction (PCR); loop-mediated isothermal amplification (LAMP); diagnostic methods
关键词:疟疾;聚合酶链式反应(PCR);环介导等温扩增(LAMP);诊断方法

1. Introduction  1. 引言

Malaria elimination has been a focal topic of public health discussions for the past decade or more. Despite being a tropically endemic parasitic infection, the impact of malaria is far reaching and remains a global health concern. The 2023 World Health Organization (WHO) report states that malaria cases rose to an estimated 249 million in 2022, with an increase of 5 million more cases from the year 2021 [1]. Although relentless efforts are being made and strategies put in place, much more is required to free our globe of the parasitic infection, particularly in indigenous malaria-endemic countries such as a number of sub-Saharan African countries where most cases occur [2].
疟疾消除已成为过去十余年公共卫生讨论的核心议题。尽管属于热带地区流行的寄生虫感染,疟疾的影响却极为深远,至今仍是全球性健康威胁。世界卫生组织 2023 年度报告显示,2022 年全球疟疾病例数攀升至约 2.49 亿例,较 2021 年新增 500 万病例[1]。虽然各国持续实施防控策略并付出不懈努力,但要实现全球范围内(尤其是撒哈拉以南非洲等疟疾流行区本土国家——这些地区集中了绝大多数病例[2])彻底消除这种寄生虫感染,仍需付出更多努力。
Central to eliminating malaria is early, accurate detection, quantification, and differentiation of the parasitic infection, especially among asymptomatic persons. Asymptomatic plasmodium-infected individuals represent a major threat to malaria elimination worldwide as they do not show signs of clinical disease yet serve as parasite reservoirs and significantly contribute to the spread of the infection [3]. Notably, the majority of these asymptomatic infections are missed by conventional diagnostic techniques. As a result, the need for reliable, sensitive, and specific diagnostic or detection methods arises, which would also be useful for monitoring any decline in malaria transmission [4].
消除疟疾的核心在于对这种寄生虫感染进行早期、准确的检测、定量和鉴别,尤其是在无症状人群中。无症状的疟原虫感染者虽未表现出临床症状,却作为寄生虫储存库存在,对疟疾在全球范围内的传播构成重大威胁[3]。值得注意的是,传统诊断技术往往会漏诊大多数这类无症状感染。因此,亟需建立可靠、灵敏且特异的诊断或检测方法,这些方法也将有助于监测疟疾传播的下降趋势[4]。
Technologies for malaria diagnosis have advanced in recent years; however, certain factors, such as the lack of laboratory infrastructure, operational costs, electricity requirements, and special operation expertise, have impeded the implementation of these advanced techniques in the vast majority of malaria endemic areas. This is especially the case when it comes to molecular testing, as these tests can be particularly expensive in addition to other challenges not only for malaria but for other infectious diseases [5]. The WHO describes microscopy (thin and thick film) as the primary method of detection [6]. Though microscopy is extensively used, it is unable to adequately detect low parasitemia, which is essential for effective treatment and subsequent elimination of the parasitic infection [7]. In addition, it is a laborious process requiring much expertise and experience for accurate diagnosis [4,8]. Other concerns have been the invasive approach of this technique, where blood samples are collected after a painful pierce of a needle, and yet an accurate diagnosis unassuredly relies solely on the discretion of the laboratory scientist. In several developing countries, there is inadequate expertise, equipment, and supplies required for accurate detection; as such, there are greater risks of contamination and false diagnosis [9]. Furthermore, it becomes more unreliable and difficult to distinguish low level infections as transmissions decline; hence, there is a need for alternative approaches to detection as elimination is being considered [4].
近年来,疟疾诊断技术虽取得进展,但实验室基础设施匮乏、运营成本高昂、电力供应需求以及专业操作技能等因素,阻碍了这些先进技术在绝大多数疟疾流行地区的推广应用。分子检测技术尤其如此,这类检测不仅费用特别昂贵,还面临疟疾及其他传染病共有的多重挑战[5]。世界卫生组织将显微镜检查(薄/厚血膜法)列为首要检测方法[6]。尽管显微镜检查应用广泛,却无法有效检出低原虫血症——这对实现有效治疗及后续消除寄生虫感染至关重要[7]。此外,该检测流程繁琐,需要大量专业知识和经验才能确保诊断准确性[4,8]。其他争议还包括该技术的侵入性操作(需通过疼痛的针刺采集血样),而准确诊断却仅依赖于实验室人员的主观判断。 在多个发展中国家,缺乏准确检测所需的专业知识、设备和物资;因此,存在更高的污染和误诊风险[9]。此外,随着传播率下降,区分低水平感染变得更加不可靠和困难;因此,在考虑消除疟疾时,需要采用替代检测方法[4]。
Can there be a faster, more specific, and more sensitive method of detecting malaria that can easily be implemented in resource-limited areas? The question remains among scientists globally. Can malaria be eliminated and many more lives saved by the emergence of technologies that offer early detection and differentiation of very minimal malarial infections? Does mankind stand a chance of advancement towards needle-free malaria detection, point-of-care devices, and personalized malaria medicine? For lower and lower-middle-income countries, which total 26 and 54, respectively (Table 1), according to the World Bank, will there be access to such effective diagnostic tools [10]? It is worthy of note that 11 of these countries, all in sub-Saharan Africa, bear 70% of the global malaria burden, according to the 2023 WHO report [1] (Table 1). The above-mentioned questions are but a few that remain on the minds of scientists and thus drive research.
是否存在一种更快、更特异且更灵敏的疟疾检测方法,能够轻松在资源有限地区实施?这仍是全球科学家共同关注的问题。随着能够早期检测和区分极微量疟疾感染技术的出现,人类是否有望消除疟疾并挽救更多生命?人类是否可能实现无针疟疾检测、即时诊断设备和个性化疟疾药物的突破?根据世界银行数据,对于分别有 26 个和 54 个的低收入及中低收入国家(表 1),这些地区能否获得此类高效诊断工具[10]?值得注意的是,根据 2023 年世卫组织报告[1](表 1),其中 11 个全部位于撒哈拉以南非洲的国家承担着全球 70%的疟疾负担。上述问题仅是萦绕在科学家心头、推动相关研究的诸多疑问中的一小部分。
Table 1. Countries classified by World Bank as low or lower-middle-income economies in 2024 [1,10]. The table lists all resource-limited countries divided into low (top portion) and lower-middle (bottom portion) income countries, with special emphasis placed on the 11 countries (right portion) that together bear 70% of the global malaria burden.
表 1. 2024 年世界银行定义的低收入及中低收入经济体国家分类[1,10]。该表格将所有资源有限国家划分为低收入(上部)和中低收入(下部)国家,并特别标注了共同承担全球 70%疟疾负担的 11 个国家(右侧部分)。
Subsequently, there are several techniques that have been developed over the years to address some of the challenges with the gold standard technique. Rapid diagnostic tests (RDTs) are fast and reliable. Malaria RDTs do not require skilled personnel or constant electricity, but relative to malaria microscopy, they are expensive, have a short shelf life, and only give qualitative results [11]. Other diagnostic techniques, such as enzyme-linked immunosorbent assay (ELISA), lateral flow immunoassay (LFIA), microarrays, aptamer-based biosensors, genomic sequencing, loop-mediated isothermal amplification (LAMP), nested PCR, real-time PCR, and quantitative nucleic sequence-based amplification, are usually reserved for research and surveillance purposes. These techniques have higher sensitivity and specificity for malaria diagnosis relative to microscopy and RDTs. Notwithstanding, some of them are more laborious and expensive to deploy in resource-limited areas.
随后,多年来已开发出多种技术以应对金标准技术中的部分挑战。快速诊断检测(RDTs)具有快速可靠的特点。疟疾 RDTs 无需专业人员操作或持续电力供应,但与疟疾显微镜检查相比,其成本较高、保质期较短且仅能提供定性结果[11]。其他诊断技术如酶联免疫吸附试验(ELISA)、侧流免疫层析(LFIA)、微阵列、适配体生物传感器、基因组测序、环介导等温扩增(LAMP)、巢式 PCR、实时荧光定量 PCR 以及基于定量核酸序列的扩增技术,通常仅用于研究和监测目的。相较于显微镜检查和 RDTs,这些技术在疟疾诊断方面具有更高的敏感性和特异性。尽管如此,其中部分技术在资源有限地区实施时仍存在操作繁琐且成本高昂的问题。
This systematic review looks at traditional and modern techniques in light of their main advantages and disadvantages, as well as the countries where they have been used, with emphasis placed on lower and lower-middle-income countries. Also, emphasis would be placed on molecular-based techniques and how common they are in resource-limited settings, which usually happen to be endemic to malaria.
本系统综述从主要优缺点及适用国家维度,对比分析了传统与现代疟疾诊断技术,重点关注中低收入国家的应用情况。同时将着重探讨分子诊断技术的普及程度——这类技术往往在资源有限地区(通常也是疟疾流行区)的应用现状。

2. Materials and Methods  2. 材料与方法

In conducting this systematic review, an accurate and authentic outcome was ensured by adherence to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. The review was registered in the open science framework database (https://doi.org/10.17605/OSF.IO/DV6Z3 (accessed on 28 June 2024)). Relevant details needed were obtained from articles published in journals and from databases up to 2022 since the search was done in early 2023. Key search phrases used for the search included “malaria detection methods”, “emerging technologies in malaria”, “recent advances in malaria detection or diagnosis”, “emerging methods in malaria diagnosis”, “traditional methods of malaria detection”, “Point of care devices for malaria detection”, “Non-invasive or needle-free malaria detection”, and “personalized malaria medicine”. Numerous articles were obtained from databases, journals, and other publishing sites, including Google Scholar, PUBMED, and MDPI databases.
为确保本系统综述结果的准确性与可靠性,研究团队严格遵循《系统评价与荟萃分析优先报告条目》(PRISMA)指南开展工作。本综述已在开放科学框架数据库注册(注册号:https://doi.org/10.17605/OSF.IO/DV6Z3,访问日期 2024 年 6 月 28 日)。由于文献检索工作完成于 2023 年初,所有必要数据均来自 2022 年及之前发表的期刊论文与数据库资料。检索采用的核心关键词包括:"疟疾检测方法"、"疟疾新兴技术"、"疟疾检测/诊断最新进展"、"疟疾诊断新兴方法"、"传统疟疾检测手段"、"疟疾即时检测设备"、"无创/无针疟疾检测"以及"个性化疟疾诊疗"。通过谷歌学术、PUBMED 和 MDPI 等数据库及期刊平台,我们获取了大量相关文献资料。
From the databases, a total of 327 were identified. After the searches, the publications were sorted out to remove duplicates, and 20 publications were removed. The records were further screened to remove all incomplete, unpublished articles, and ineligible publications. With articles published in recent years under consideration, all accessible publications were considerable options, leaving out articles from journals that needed to be purchased, were restricted, or there was not a PDF version of the complete paper readily available.
从各数据库中共识别出 327 篇文献。经过检索后,对出版物进行整理以去除重复项,移除了 20 篇文献。进一步筛选记录以排除所有不完整、未发表的文章以及不符合条件的出版物。考虑到近年发表的文章,所有可获取的出版物均被列为备选,排除了需要购买、受限制或无法直接获取完整论文 PDF 版本的期刊文章。
Upon abstract screening, articles were selected based on the following general criteria: a traditional or modern method of malaria detection or diagnosis was investigated. A total of 276 articles were obtained, uploaded into Mendeley Reference Manager and Endnote, and carefully reviewed for full text eligibility and results presentation.
在摘要筛选阶段,根据以下通用标准选择文章:研究采用传统或现代疟疾检测诊断方法。共获得 276 篇文章,将其上传至 Mendeley 文献管理器和 Endnote 软件,并仔细审查全文资格与结果呈现情况。
Of these articles, some investigated traditional methods, while most investigated various modern methods. Some articles were also found useful as they investigated or reviewed “emerging technologies in malaria detection” or “advances in malaria detection”, among others, and thus were used in the other parts of the review writing. After a comprehensive document screening, 167 were later removed as it was found that they did not suit the review criteria, leaving 109 to be reviewed. These articles were removed for reasons including the papers being published earlier than 2014 (for those to be analyzed), they did not specifically investigate diagnostic tools for malaria, the article obtained was not the published version, and the research scope and contents were not clear or did not focus on a possible malaria detection method. In several instances, multiple malaria detection methods were identified in a single publication; thus, the number of developed methods identified exceeded the number of publications used. Figure 1 below shows the sorting-out process.
在这些文献中,部分研究探讨了传统检测方法,而大多数则聚焦于各类现代检测技术。另有部分文献因涉及"疟疾检测新兴技术"或"疟疾检测进展"等主题研究或综述,被用于本综述的其他章节。经过全面筛选后,167 篇文献因不符合综述标准被剔除(剔除原因包括:发表时间早于 2014 年[针对待分析文献]、未专门研究疟疾诊断工具、获取版本非最终发表稿、研究范围与内容不明确或未聚焦可行的疟疾检测方法),最终保留 109 篇文献进行评述。值得注意的是,部分单篇出版物中识别出多种疟疾检测方法,因此所鉴定的检测方法数量超过了实际采用的出版物数量。图 1 展示了文献筛选流程。
Figure 1. A PRISMA flow diagram showing the method of article selection.
图 1. 展示文献筛选方法的 PRISMA 流程图。

3. Results  3. 结果

3.1. Traditional Methods Used for Malaria Detection
3.1 疟疾检测的传统方法

Table 2 below shows a summary of traditionally used methods of malaria detection, elaborating on their approach as well as the pros and cons of using these methods for diagnosis. Though there has been the development of new and innovative methods of detection over the years, microscopy, using thick and thin blood films coupled with Giemsa staining, remains the gold standard for the diagnosis of malaria parasitic infections [8,12].
下表 2 总结了传统疟疾检测方法,详细说明了这些方法的操作流程及其诊断应用的优缺点。尽管近年来已开发出诸多创新检测技术,但采用厚薄血片结合吉姆萨染色的显微镜检查法,仍是诊断疟原虫感染的金标准[8,12]。
Table 2. Traditional methods used for malaria detection.
表 2. 疟疾检测使用的传统方法

3.2. Modern Methods Used for Malaria Detection
3.2. 资源有限地区疟疾诊断方法进展:系统综述

The quest to effectively treat malaria while gravitating towards its elimination has driven the development of various tools and assays for the diagnosis of malaria (4). Table 3 and Table 4 contain recently developed methods used in the diagnosis of malaria and where they have been used. These diagnostic approaches vary greatly, ranging from biosensors and molecular assays down to computerized algorithms and automated analyzers, which have been developed or used over recent years, no earlier than 2014. The advantages and limitations of each diagnostic method are considered, as well as the summarized procedure by which it is conducted.
在有效治疗疟疾并逐步实现消除疟疾的目标驱动下,各种疟疾诊断工具和检测方法得以发展(4)。表 3 和表 4 列出了近年来(不早于 2014 年)开发或应用的疟疾诊断新方法及其使用地区。这些诊断方法差异显著,涵盖从生物传感器、分子检测到计算机算法和自动化分析仪等多种技术。每种诊断方法的优势与局限性均被纳入考量,并概述了其实施流程。
Table 3. Modern (PCR/LAMP-based) methods used for malaria detection and evidence of use in developed countries.
表 3. 用于疟疾检测的现代(基于 PCR/LAMP)方法及其在发达国家应用证据
Table 4. Modern (non-PCR/non-LAMP-based) methods used for malaria detection and evidence of use in developed countries.
表 4. 用于疟疾检测的现代(非 PCR/非 LAMP 技术)方法及其在发达国家应用证据
Table 5 analyzes evidence of the use of some recently developed detection tools in lower and lower-middle-income countries where there are often resource limitations. The test types that featured most frequently in publications were PCR techniques (eleven), followed by RDT tests (nine), then LAMP techniques and computerized/digital deep machine learning approaches (six each). In all, twenty-one countries had publications featuring modern malaria diagnostic methods.
表 5 分析了在资源往往有限的中低收入国家使用一些最新开发的检测工具的证据。出版物中最常出现的检测类型是 PCR 技术(11 项),其次是 RDT 检测(9 项),然后是 LAMP 技术和计算机化/数字深度学习技术(各 6 项)。总共有 21 个国家发表了采用现代疟疾诊断方法的出版物。
Table 5. Evidence of use of modern methods of malaria detection in low and lower-middle-income countries.
表 5. 中低收入国家采用现代疟疾检测方法的证据。
In Figure 2, the various methods of malaria detection reported from the identified studies have been represented graphically, indicating which diagnostic trends are being largely investigated, used more, or have gained much research interest. The chart represents malaria diagnostic developments investigated from 2014 until 2022. PCR-based methods and LAMP-based methods were the most prevalent methods.
图 2 以图形方式呈现了所纳入研究中报告的各种疟疾检测方法,展示了哪些诊断趋势受到广泛研究、更频繁使用或获得较多研究关注。该图表反映了 2014 年至 2022 年间研究的疟疾诊断技术发展情况。基于 PCR 的方法和基于 LAMP 的方法是最主流的检测技术。
Figure 2. Frequencies of malaria detection/diagnosis methods in reviewed publications.
图 2. 已综述文献中疟疾检测/诊断方法的使用频率。

4. Discussion  4. 讨论

Critical to achieving effective control, treatment, and subsequent elimination of malaria is the timely detection of the parasitic infection. In the face of this threatening infection, continuous progress and innovative research are required, which leads to the development of new tools that will be useful in the fight against malaria [117]. This article reviewed the recent developments in malaria diagnostic methods and their potential for point-of-care and personalized malaria care, with special emphasis on the use of these methods in economically challenged countries.
实现疟疾有效控制、治疗及最终消除的关键在于及时检测寄生虫感染。面对这一威胁性感染,需要持续进展与创新研究,从而开发出有助于抗击疟疾的新工具[117]。本文综述了疟疾诊断方法的最新进展及其在即时检测和个性化疟疾护理中的应用潜力,特别关注了这些方法在经济欠发达国家中的使用情况。
The findings from this review suggest great advancement recently in malaria diagnostics. Research efforts by many scientists around the globe have progressed from developing improved malaria microscopy techniques into enhanced and more accurate molecular, immunological, computerized, digital methods of detection, automated analyzers, and point-of-care devices. Studies suggest that the influence of the old age infection on global health outcomes has urged on the design of more efficient diagnostics, with efforts directed at the development of point-of-care devices useful for resource-limited areas [7]. For an active drive towards the elimination of malaria, an early detection approach capable of revealing low levels of the parasitic infection is imperative [3].
本综述的研究结果表明,近期疟疾诊断技术取得了重大进展。全球众多科学家的研究已从改进疟疾显微镜技术,发展到开发更精准的分子、免疫学、计算机化、数字化检测方法,以及自动化分析仪和即时检测设备。研究表明,这种古老传染病对全球健康的影响促使人们设计出更高效的诊断方法,重点开发适用于资源有限地区的即时检测设备[7]。要实现消除疟疾的积极目标,必须采用能够检测低水平寄生虫感染的早期诊断方法[3]。
As observed in Table 2, Table 3, Table 4 and Table 5, the outcome of this review indicates that recent malaria detection methods actively being used or investigated include traditional methods, molecular techniques with polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP)-based assays, and machine learning/computerized techniques (that exploit the physical and/or biological properties of Plasmodium-infected erythrocytes to enhance malaria diagnosis), among others. Figure 2 shows the frequencies of detection methods as identified from various articles published over the last decade. Several other technologies and chemical assays are also being designed to tackle the malaria burden. RDTs were among the commonly used or researched modern methods in resource-limited settings, as seen in Table 5 and Figure 2. This is not surprising since they are relatively low cost and easy to use.
如表 2、表 3、表 4 和表 5 所示,本综述结果表明当前正在使用或研究的疟疾检测方法包括传统方法、基于聚合酶链反应(PCR)的分子技术、环介导等温扩增(LAMP)检测法,以及机器学习/计算机化技术(利用疟原虫感染红细胞的物理和/或生物学特性来增强疟疾诊断)等。图 2 展示了近十年发表文献中各类检测方法的使用频率。目前还有多项其他技术和化学检测法正在研发中以应对疟疾负担。如表 5 和图 2 所示,在资源有限地区,快速诊断检测(RDTs)属于常用或重点研究的现代方法之一,这并不令人意外,因其成本相对较低且易于操作。
Studies confirm PCR-based techniques as having widespread use globally as they are highly sensitive and capable of detecting very low parasitemia levels [3,22,35]. Polymerase chain reaction basically makes use of DNA extracted from whole blood or other samples. The process continues with denaturation, amplification, and elongation steps, after which the sensitivity and specificity of the assay can be assessed [35]. It is proposed that the PCR method, under equal reaction parameters, can diagnose all five species of the plasmodium parasitic infection [35]. Our findings reveal that a wide range of PCR assays have been developed or used over the past decade, which are less laborious and provide much faster and more accurate results [22]. Furthermore, PCR-based assays are widely preferred due to several reasons, including simultaneous species-specific detection and quantification, higher sensitivity, higher specificity, less time consuming, easy to use, and capable of diagnosing subclinical infections [13,18,22,23,41,42].
研究证实基于 PCR 的技术因其高灵敏度且能检测极低寄生虫血症水平而在全球广泛应用[3,22,35]。聚合酶链式反应主要利用从全血或其他样本中提取的 DNA 进行操作。该过程包括变性、扩增和延伸步骤,之后可评估检测的灵敏度和特异性[35]。研究表明在相同反应参数下,PCR 方法可诊断所有五种疟原虫寄生感染[35]。我们的研究结果显示过去十年已开发或使用了多种 PCR 检测方法,这些方法操作简便且能提供更快速准确的结果[22]。此外,基于 PCR 的检测方法因多项优势被广泛采用,包括可同步进行虫种特异性检测与定量分析、更高灵敏度、更强特异性、耗时更少、操作简便以及能诊断亚临床感染等[13,18,22,23,41,42]。
Though PCR is an effective approach to malaria detection, it is limited by the requirement of costly laboratory facilities and expertise and thus less beneficial to resource-limited areas and at the point of care [3]. Despite that, quite a number of studies in resource-limited settings, including some African countries, utilized PCR-based techniques, as shown in Table 5 and Figure 2 [13,16,18,23,25,29,35,36,37,38,40]. Other advanced PCR techniques, such as lab chip real-time PCR (LRP) and hair qPCR, were found to be suitable alternatives for point-of-care or resource-limited settings, though no evidence was found of the former currently being used or researched in lower or lower-middle-income countries [29,31]. Gómez-Luque et al. proposed that due to limitations observed, more research is required to affirm the use of the hair qPCR as an efficient technique for malaria detection [29]. The one advantage the hair qPCR has over other PCR types is the use of non-invasive samples. LRP, however, being highly sensitive, specific, and less expensive will be beneficial for diagnosis and control in malaria-endemic countries [31].
尽管 PCR 是一种有效的疟疾检测方法,但由于需要昂贵的实验室设备和专业技术人员,其在资源有限地区和即时检测场景中的应用价值受限[3]。尽管如此,如表 5 和图 2 所示,包括部分非洲国家在内的资源有限地区仍有大量研究采用基于 PCR 的技术[13,16,18,23,25,29,35,36,37,38,40]。其他先进 PCR 技术(如实验室芯片实时 PCR(LRP)和毛发 qPCR)被发现适用于即时检测或资源有限环境,但目前尚未发现前者在低收入或中低收入国家应用或研究的证据[29,31]。Gómez-Luque 等学者指出,鉴于观察到的局限性,需要更多研究来确认毛发 qPCR 作为疟疾检测高效技术的可行性[29]。毛发 qPCR 相较于其他 PCR 类型的优势在于使用非侵入性样本。而 LRP 凭借高灵敏度、高特异性和较低成本,将为疟疾流行国家的诊断与防控提供重要帮助[31]。
LAMP-based assays have also dominated research on malaria diagnostics. As seen in Table 3, studies have shown the development or use of various LAMP assays, which are effective malaria diagnostics [118]. Rei Yan et al. reviewed LAMP assays and found them easy to use in regions where there is limited access to clinical expertise and molecular biology equipment. Modified LAMP based assays such as multiplex LAMP with dipstick DNA chromatography, high throughput LAMP, 18S rRNA LAMP, mediated LAMP combined with lateral flow detection (LFD), etc., are highly sensitive, easy to use, consistent, convenient, cost effective, and useful in point-of-care situations [55,56,58,59], thus enabling an approach towards personalized healthcare. Table 5 provides evidence of the development and use of LAMP techniques in lower and lower-middle-income countries, including countries in sub-Saharan Africa where malaria is endemic [45,48,56,57,58,59].
基于 LAMP 技术的检测方法在疟疾诊断研究中同样占据主导地位。如表 3 所示,多项研究证实了各类 LAMP 检测技术的开发与应用,这些技术都是有效的疟疾诊断手段[118]。Rei Yan 等学者对 LAMP 检测技术进行综述后发现,该技术在临床专业知识和分子生物学设备获取受限的地区易于实施。改良型 LAMP 检测技术——包括结合试纸条 DNA 色谱的多重 LAMP、高通量 LAMP、18S rRNA LAMP、联合侧流层析检测(LFD)的介导 LAMP 等——具有高灵敏度、操作简便、结果稳定、使用便捷、成本效益显著等优势,适用于即时检测场景[55,56,58,59],为实现个性化医疗提供了技术路径。表 5 列举了 LAMP 技术在低收入和中低收入国家(包括疟疾流行的撒哈拉以南非洲地区)开发与应用的相关证据[45,48,56,57,58,59]。
Other molecular methods worthy of note as they double as point-of-care or easy-to-use methods include nuclear magnetic resonance (NMR)-based hemozoin detection, ultra-bright SERS nanorattles, recombinase-aided amplification with lateral flow dipstick assay, and dye-coupled aptamer-captured enzyme-catalyzed assay [86,104,105,110,111,112]. Though the latter two could be used in resource-limited settings due to their low cost, the study found only a dye-coupled aptamer-captured enzyme-catalyzed assay used in India [104]. Veiga and Peng identified nuclear magnetic resonance (NMR)-based hemozoin detection as having the potential of enabling personalized malaria medicine (that is, malaria treatment tailored to individual characteristics) with needleless diagnosis foresighted [119]. This technology may offer the detection of phenotypic variants, which are observable variations in characteristics among parasites of the same species as a result of genetic diversity, host–parasite interactions, or environmental factors, among others [120,121]. For example, there are drug-resistant variants, those with surface antigen variations, and variants with different clinical presentations, among others [121,122,123]. The ability to detect such variants would increase diagnostic accuracy and be considerably useful against parasite drug resistance. Acquiring these time- and patient-specific phenotypic identifiers is a basic step to personalized malaria medicine as variants continually rise [119]. The one advantage that phenotypic variant determination using NMR technology may have over nucleic acid amplification-based methods for genomic profiling is the extremely fast turnaround time for some of the devices [110]. Unfortunately, there was no evidence of such methods being used in lower and lower-middle-income countries as per the studied published data in the research articles reviewed.
其他值得注意的分子检测方法因其兼具即时检测或操作简便特性,包括基于核磁共振(NMR)的血红素检测、超亮表面增强拉曼散射纳米摇铃技术、重组酶辅助扩增结合侧流层析试纸条检测法以及染料偶联适体捕获酶催化分析法[86,104,105,110,111,112]。尽管后两种方法因成本低廉可用于资源有限地区,但研究发现仅染料偶联适体捕获酶催化分析法在印度得到应用[104]。Veiga 和 Peng 指出基于核磁共振的血红素检测技术有望实现无针诊断,为个性化疟疾治疗(即根据个体特征定制治疗方案)提供可能[119]。该技术可检测表型变异——由遗传多样性、宿主-寄生虫相互作用或环境因素等导致的同种寄生虫间可观察特征差异[120,121]。 例如,存在耐药变异株、表面抗原变异株以及具有不同临床表现的变异株等[121, 122, 123]。检测此类变异株的能力将提高诊断准确性,并对抗寄生虫耐药性具有重要价值。随着变异株持续增加,获取这些具有时间特异性和患者特异性的表型标识符是实现个性化疟疾治疗的基础步骤[119]。与基于核酸扩增的基因组分析方法相比,利用核磁共振技术进行表型变异检测的一个优势在于某些设备的检测速度极快[110]。遗憾的是,根据所综述研究文章中的已发表数据,目前没有证据表明此类方法在低收入和中低收入国家得到应用。
Furthermore, a number of other technologies have emerged capable of point-of-care diagnosis. Unlike the traditional microscopy and commonly used RDTs, some of these methods were found to be highly sensitive, non-invasive as far as sample collection was concerned, and cost effective, even though there was no evidence that cost-effective ones were necessarily being used in economically challenged settings [85,95,99,100,101,102]. In addition to these, Aggarwal et al. classify omics-based diagnostics as another important category to malaria diagnosis and elimination [124]. Multi-omics combines genomics, proteomics, metabolomics, phenomics, and transcriptomics in the investigation of biomarkers optimal for disease diagnosis and treatment. Though each omics has individual limitations, collectively, multi-omics can lead to a more comprehensive understanding of malaria infections, which can lead to more effective treatments [124]. In this review, the only struggling economy we found using multi-omics was India. No African nation was indicated.
此外,多种可实现即时诊断的新技术相继涌现。与传统显微镜检测和常用快速诊断试纸不同,部分新技术被证实具有高灵敏度、样本采集无创性以及成本效益优势,尽管尚无证据表明这些高性价比方法已在经济欠发达地区得到应用[85,95,99,100,101,102]。除上述技术外,Aggarwal 等学者将组学诊断技术归类为疟疾诊断与消除领域的另一重要范畴[124]。多组学技术通过整合基因组学、蛋白质组学、代谢组学、表型组学和转录组学,筛选最适合疾病诊断与治疗的生物标志物。尽管各类组学技术均存在局限性,但多组学联用能更全面地解析疟疾感染机制,从而催生更有效的治疗方案[124]。本综述发现,印度是唯一应用多组学技术的发展中经济体,未见非洲国家相关报道。

5. Conclusions  5. 结论

Given the literature reviewed, there is adequate evidence to suggest that malaria detection or diagnosis will progress significantly in the next decade and beyond towards needleless detection. This advancement will however require increased, detailed, and specified research into the various molecular identifiers and phenotypic variant characteristics of malaria infection while enhancing the accuracy, precision, and specificity of the modernized point-of-care diagnostic tools. With this in view, precedence is duly set for the use of personalized medicine in the treatment of malaria infections. Notwithstanding, the traditional thin and thick film microscopy and RDTs will continue to play an important role in the accurate detection of malaria infections, especially in resource-limited areas where there is less access to modernized diagnostic tools and little research into advanced malaria detection methods. It is, however, encouraging to see that PCR-based and LAMP-based tests were seen being utilized in these areas, including African countries. However, other modern molecular/point-of-care tests were not being utilized in sub-Saharan Africa. Findings of this study show that approximately a quarter (26%) of a total of eighty countries in low and lower-middle-income settings employ state-of-the-art methods for malaria diagnostics. This underscores the need for governments, non-governmental organizations, and funding bodies to intensify efforts towards malaria diagnostics and research in the fight against malaria.
根据文献综述,现有充分证据表明疟疾检测诊断技术将在未来十年及更长时间内朝着无创检测方向取得重大进展。然而这一进步需要对疟疾感染的各类分子标识物和表型变异特征开展更深入、细致且针对性的研究,同时提升现代化即时诊断工具的准确性、精密度和特异性。由此可见,个性化医疗在疟疾治疗中的应用已奠定基础。尽管如此,传统薄/厚血片镜检和快速诊断试纸条仍将在疟疾精准检测中发挥重要作用,特别是在医疗资源有限、现代化诊断工具匮乏且缺乏先进疟疾检测方法研究的地区。值得欣慰的是,包括非洲国家在内的这些地区已开始应用基于 PCR 和 LAMP 技术的检测方法,但撒哈拉以南非洲地区尚未推广其他现代化分子/即时检测技术。 本研究发现,在八十个低收入和中低收入国家中,约四分之一(26%)采用了最先进的疟疾诊断方法。这凸显出各国政府、非政府组织和资助机构亟需加强疟疾诊断和研究工作,以推进疟疾防治进程。

Author Contributions  作者贡献

Conceptualization, A.K.Y.; methodology, A.K.Y., J.O. and J.E.C.; software, A.K.Y. and J.O.; validation, A.K.Y., J.O., J.E.C., N.I.N.-T., E.O., I.K.Y., A.A.K.-K., G.A., I.A.-B. and D.A.P.; formal analysis, A.K.Y. and J.O.; investigation, A.K.Y., J.O. and J.E.C.; resources, A.K.Y., J.O., J.E.C., N.I.N.-T., E.O., I.K.Y., A.A.K.-K., G.A., I.A.-B. and D.A.P.; writing—original draft preparation, A.K.Y., J.O. and J.E.C.; writing—review and editing, A.K.Y., J.O., J.E.C., N.I.N.-T., E.O., I.K.Y., A.A.K.-K., G.A., I.A.-B. and D.A.P.; funding acquisition, A.K.Y., N.I.N.-T., E.O., I.K.Y., A.A.K.-K., G.A., I.A.-B. and D.A.P. All authors have read and agreed to the published version of the manuscript.
研究构思:A.K.Y.;方法设计:A.K.Y.、J.O.和 J.E.C.;软件开发:A.K.Y.和 J.O.;验证:A.K.Y.、J.O.、J.E.C.、N.I.N.-T.、E.O.、I.K.Y.、A.A.K.-K.、G.A.、I.A.-B.和 D.A.P.;形式分析:A.K.Y.和 J.O.;调查:A.K.Y.、J.O.和 J.E.C.;资源提供:A.K.Y.、J.O.、J.E.C.、N.I.N.-T.、E.O.、I.K.Y.、A.A.K.-K.、G.A.、I.A.-B.和 D.A.P.;初稿撰写:A.K.Y.、J.O.和 J.E.C.;文稿审阅与编辑:A.K.Y.、J.O.、J.E.C.、N.I.N.-T.、E.O.、I.K.Y.、A.A.K.-K.、G.A.、I.A.-B.和 D.A.P.;资金获取:A.K.Y.、N.I.N.-T.、E.O.、I.K.Y.、A.A.K.-K.、G.A.、I.A.-B.和 D.A.P.。所有作者均已阅读并同意最终稿件版本。

Funding  资金支持

This review work received no external funding.
本综述研究未接受任何外部资助。

Institutional Review Board Statement
机构审查委员会声明

Not applicable.  不适用。

Informed Consent Statement
知情同意声明

Not applicable.  不适用

Data Availability Statement
数据可用性声明

Not applicable.  不适用

Conflicts of Interest  利益冲突

The authors declare no conflicts of interest.
作者声明无利益冲突。

References  参考文献

  1. WHO. World Malaria Report. 2023. Available online: https://www.who.int/publications/i/item/9789240086173 (accessed on 19 July 2024).
    世界卫生组织.《世界疟疾报告》.2023 年.在线访问:https://www.who.int/publications/i/item/9789240086173(访问日期:2024 年 7 月 19 日)
  2. Tetteh-Quarcoo, P.B.; Dayie, N.T.; Adutwum-Ofosu, K.K.; Ahenkorah, J.; Afutu, E.; Amponsah, S.K.; Abdul-Rahman, M.; Kretchy, J.-P.; Ocloo, J.Y.; Nii-Trebi, N.I. Unravelling the perspectives of day and night traders in selected markets within a sub-saharan african city with a malaria knowledge, attitude and practice survey. Int. J. Environ. Res. Public Health 2021, 18, 3468. [Google Scholar] [CrossRef]
    Tetteh-Quarcoo, P.B.; Dayie, N.T.; Adutwum-Ofosu, K.K.; Ahenkorah, J.; Afutu, E.; Amponsah, S.K.; Abdul-Rahman, M.; Kretchy, J.-P.; Ocloo, J.Y.; Nii-Trebi, N.I. 通过疟疾知识态度行为调查揭示撒哈拉以南非洲城市选定市场中昼夜商贩的认知差异.《国际环境研究与公共健康期刊》2021 年第 18 卷,第 3468 页。[ Google Scholar ] [ CrossRef ]
  3. Zheng, Z.; Cheng, Z. Advances in molecular diagnosis of malaria. Adv. Clin. Chem. 2017, 80, 155–192. [Google Scholar]
    郑志;程志。疟疾分子诊断技术进展。临床化学进展。2017 年,第 80 卷,155-192 页。[谷歌学术]
  4. malERA Consultative Group on Diagnoses and Diagnostics. A research agenda for malaria eradication: Diagnoses and diagnostics. PLoS Med. 2011, 8, e1000396. [Google Scholar]
    疟疾根除诊断与诊断技术咨询组。疟疾根除研究议程:诊断与诊断技术。公共科学图书馆·医学。2011 年,第 8 卷,e1000396。[谷歌学术]
  5. Yalley, A.K.; Ahiatrogah, S.; Kafintu-Kwashie, A.A.; Amegatcher, G.; Prah, D.; Botwe, A.K.; Adusei-Poku, M.A.; Obodai, E.; Nii-Trebi, N.I. A systematic review on suitability of molecular techniques for diagnosis and research into infectious diseases of concern in resource-limited settings. Curr. Issues Mol. Biol. 2022, 44, 4367–4385. [Google Scholar] [CrossRef] [PubMed]
    亚利,A.K.;阿希亚特罗加,S.;卡芬图-夸希,A.A.;阿梅加彻,G.;普拉,D.;博特韦,A.K.;阿杜塞-波库,M.A.;奥博代,E.;尼-特雷比,N.I.。资源有限地区传染病诊断与研究分子技术适用性的系统评价。分子生物学当前问题。2022 年,第 44 卷,4367-4385 页。[谷歌学术] [交叉引用] [PubMed]
  6. WHO. Global Malaria Program. 2024. Available online: https://www.who.int/teams/global-malaria-programme/case-management/diagnosis/microscopy (accessed on 10 June 2024).
    世界卫生组织。全球疟疾规划。2024 年。在线访问:https://www.who.int/teams/global-malaria-programme/case-management/diagnosis/microscopy(访问于 2024 年 6 月 10 日)。
  7. Krampa, F.D.; Aniweh, Y.; Awandare, G.A.; Kanyong, P. Recent progress in the development of diagnostic tests for malaria. Diagnostics 2017, 7, 54. [Google Scholar] [CrossRef] [PubMed]
    克拉姆帕,F.D.;阿尼维,Y.;阿万达尔,G.A.;坎永,P. 疟疾诊断检测方法的最新进展。《诊断学》2017 年第 7 卷第 54 页。[谷歌学术] [交叉引用] [PubMed]
  8. Singh, K.; Bharti, P.K.; Devi, N.C.; Ahmed, N.; Sharma, A. Plasmodium malariae Detected by Microscopy in the International Bordering Area of Mizoram, a Northeastern State of India. Diagnostics 2022, 12, 2015. [Google Scholar] [CrossRef]
    辛格,K.;巴尔蒂,P.K.;德维,N.C.;艾哈迈德,N.;夏尔马,A. 显微镜检测印度东北部米佐拉姆邦国际边境地区的三日疟原虫。《诊断学》2022 年第 12 卷第 2015 页。[谷歌学术] [交叉引用]
  9. Edwards, H. Tales from the bench: Laboratory diagnosis of malaria. Trop. Dr. 2011, 41, 106–107. [Google Scholar] [CrossRef] [PubMed]
    爱德华兹,H. 实验室轶事:疟疾的实验室诊断。《热带医生》2011 年第 41 卷第 106-107 页。[谷歌学术] [交叉引用] [PubMed]
  10. Worldbank. World Bank Country and Lending Groups. 2024. Available online: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups (accessed on 13 May 2024).
    世界银行。世界银行国家与贷款类别。2024 年。在线访问:https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups(访问日期:2024 年 5 月 13 日)。
  11. Azikiwe, C.C.; Ifezulike, C.; Siminialayi, I.; Amazu, L.U.; Enye, J.; Nwakwunite, O. A comparative laboratory diagnosis of malaria: Microscopy versus rapid diagnostic test kits. Asian Pac. J. Trop. Biomed. 2012, 2, 307–310. [Google Scholar] [CrossRef] [PubMed]
    Azikiwe, C.C.; Ifezulike, C.; Siminialayi, I.; Amazu, L.U.; Enye, J.; Nwakwunite, O. 疟疾实验室诊断方法比较:显微镜检查与快速诊断试剂盒。Asian Pac. J. Trop. Biomed. 2012, 2, 307–310. [ Google Scholar] [ CrossRef] [ PubMed]
  12. Iqbal, J.; Hira, P.R.; Al-Ali, F.; Khalid, N.; Sher, A. Modified Giemsa staining for rapid diagnosis of malaria infection. Med. Princ. Pract. 2003, 12, 156–159. [Google Scholar] [CrossRef]
    Iqbal, J.; Hira, P.R.; Al-Ali, F.; Khalid, N.; Sher, A. 改良吉姆萨染色法快速诊断疟疾感染。Med. Princ. Pract. 2003, 12, 156–159. [ Google Scholar] [ CrossRef]
  13. Nadeem, M.F.; Khattak, A.A.; Yaqoob, A.; Awan, U.A.; Zeeshan, N. Assessment of Microscopic detection of Malaria with Nested Polymerase Chain Reaction in War-torn Federally Administered Tribal Areas of Pakistan. Acta Parasitol. 2021, 66, 1186–1192. [Google Scholar] [CrossRef]
    Nadeem, M.F.; Khattak, A.A.; Yaqoob, A.; Awan, U.A.; Zeeshan, N. 巴基斯坦联邦直辖部落区战乱环境中疟疾显微镜检测与巢式聚合酶链反应评估。Acta Parasitol. 2021, 66, 1186–1192. [ Google Scholar] [ CrossRef]
  14. Awosolu, O.B.; Yahaya, Z.S.; Farah Haziqah, M.T. Efficacy of Plasmodium falciparum histidine-rich protein 2 (Pfhrp 2) rapid diagnostic test (RDT) and microscopy in the detection of falciparum malaria among symptomatic patients in Akure, Nigeria. Trop. Biomed. 2022, 39, 144–149. [Google Scholar] [CrossRef] [PubMed]
    Awosolu, O.B.; Yahaya, Z.S.; Farah Haziqah, M.T. 尼日利亚阿库雷地区症状患者中恶性疟原虫富组氨酸蛋白 2 快速诊断试剂盒与显微镜检测恶性疟的效果评估。Trop. Biomed. 2022, 39, 144–149. [ Google Scholar] [ CrossRef] [ PubMed]
  15. Badiane, A.; Thwing, J.; Williamson, J.; Rogier, E.; Diallo, M.A.; Ndiaye, D. Sensitivity and specificity for malaria classification of febrile persons by rapid diagnostic test, microscopy, parasite DNA, histidine-rich protein 2, and IgG: Dakar, Senegal 2015. Int. J. Infect. Dis. 2022, 121, 92–97. [Google Scholar] [CrossRef]
    巴迪亚内, A.; 斯温, J.; 威廉姆森, J.; 罗吉尔, E.; 迪亚洛, M.A.; 恩迪亚耶, D. 快速诊断检测、显微镜检查、寄生虫 DNA、富组氨酸蛋白 2 和 IgG 对发热患者疟疾分类的敏感性与特异性:塞内加尔达喀尔 2015 年研究。国际传染病杂志 2022 年第 121 卷,92-97 页。[谷歌学术] [CrossRef]
  16. Fontecha, G.; Escobar, D.; Ortiz, B.; Pinto, A.; Serrano, D.; Valdivia, H.O. Field Evaluation of a Hemozoin-Based Malaria Diagnostic Device in Puerto Lempira, Honduras. Diagnostics 2022, 12, 1206. [Google Scholar] [CrossRef] [PubMed]
    丰特查, G.; 埃斯科瓦尔, D.; 奥尔蒂斯, B.; 平托, A.; 塞拉诺, D.; 瓦尔迪维亚, H.O. 基于疟原虫血红素诊断设备在洪都拉斯莱姆皮拉港的现场评估。诊断学 2022 年第 12 卷,1206 页。[谷歌学术] [CrossRef] [PubMed]
  17. Ahmad, A.; Soni, P.; Kumar, L.; Singh, M.P.; Verma, A.K.; Sharma, A.; Das, A.; Bharti, P.K. Comparison of polymerase chain reaction, microscopy, and rapid diagnostic test in malaria detection in a high burden state (Odisha) of India. Pathog. Glob. Health 2021, 115, 267–272. [Google Scholar] [CrossRef] [PubMed]
    艾哈迈德, A.; 索尼, P.; 库马尔, L.; 辛格, M.P.; 维尔马, A.K.; 夏尔马, A.; 达斯, A.; 巴蒂, P.K. 聚合酶链反应、显微镜检查与快速诊断检测在印度高负担地区(奥里萨邦)疟疾诊断中的比较。全球病原体与健康 2021 年第 115 卷,267-272 页。[谷歌学术] [CrossRef] [PubMed]
  18. Ugah, U.I.; Alo, M.N.; Owolabi, J.O.; Okata-Nwali, O.D.G.; Ekejindu, I.M.; Ibeh, N.; Elom, M.O. Evaluation of the utility value of three diagnostic methods in the detection of malaria parasites in endemic area. Malar. J. 2017, 16, 189. [Google Scholar] [CrossRef] [PubMed]
    乌加, U.I.; 阿洛, M.N.; 奥沃拉比, J.O.; 奥卡塔-纳瓦利, O.D.G.; 埃克金杜, I.M.; 伊贝, N.; 埃洛姆, M.O. 三种疟疾诊断方法在流行区检测疟原虫的实用价值评估。疟疾杂志 2017 年第 16 卷,189 页。[谷歌学术] [CrossRef] [PubMed]
  19. Karimi, A.; Navidbakhsh, M.; Haghi, A.M.; Faghihi, S. A morphology-based method for the diagnosis of red blood cells parasitized by Plasmodium malariae and Plasmodium ovale. Scand. J. Infect. Dis. 2014, 46, 368–375. [Google Scholar] [CrossRef] [PubMed]
    卡里米, A.; 纳维德巴赫什, M.; 哈吉, A.M.; 法吉希, S. 基于形态学的疟原虫感染红细胞诊断方法:三日疟原虫与卵形疟原虫的鉴别. 斯堪的纳维亚传染病杂志, 2014, 46, 368–375. [谷歌学术] [CrossRef] [PubMed]
  20. Mohanty, S.; Sharma, R.; Deb, M. Usefulness of a centrifuged buffy coat smear examination for diagnosis of malaria. Indian J. Med. Microbiol. 2015, 33, 63–67. [Google Scholar] [CrossRef] [PubMed]
    莫汉蒂, S.; 夏尔马, R.; 德布, M. 离心白细胞层涂片检查在疟疾诊断中的应用价值. 印度医学微生物学杂志, 2015, 33, 63–67. [谷歌学术] [CrossRef] [PubMed]
  21. Echeverry, D.F.; Deason, N.A.; Davidson, J.; Makuru, V.; Xiao, H.; Niedbalski, J.; Kern, M.; Russell, T.L.; Burkot, T.R.; Collins, F.H.; et al. Human malaria diagnosis using a single-step direct-PCR based on the Plasmodium cytochrome oxidase III gene. Malar. J. 2016, 15, 128. [Google Scholar] [CrossRef]
    埃切韦里, D.F.; 迪森, N.A.; 戴维森, J.; 马库鲁, V.; 肖, H.; 尼德巴尔斯基, J.; 克恩, M.; 拉塞尔, T.L.; 伯科特, T.R.; 柯林斯, F.H.; 等. 基于疟原虫细胞色素氧化酶 III 基因的单步直接 PCR 人类疟疾诊断方法. 疟疾杂志, 2016, 15, 128. [谷歌学术] [CrossRef]
  22. Schneider, R.; Lamien-Meda, A.; Auer, H.; Wiedermann-Schmidt, U.; Chiodini, P.L.; Walochnik, J. Validation of a novel FRET real-time PCR assay for simultaneous quantitative detection and discrimination of human Plasmodium parasites. PLoS ONE 2021, 16, e0252887. [Google Scholar] [CrossRef] [PubMed]
    施耐德, R.; 拉米恩-梅达, A.; 奥尔, H.; 维德曼-施密特, U.; 基奥迪尼, P.L.; 瓦洛奇尼克, J. 一种新型 FRET 实时 PCR 检测方法的验证:人类疟原虫的同步定量检测与鉴别. 公共科学图书馆·综合, 2021, 16, e0252887. [谷歌学术] [CrossRef] [PubMed]
  23. Ranjan, P.; Ghoshal, U. Utility of nested polymerase chain reaction over the microscopy and immuno-chromatographic test in the detection of Plasmodium species and their clinical spectrum. Parasitol. Res. 2016, 115, 3375–3385. [Google Scholar] [CrossRef] [PubMed]
    Ranjan, P.; Ghoshal, U. 巢式聚合酶链反应在疟原虫检测及临床分型中相对于镜检和免疫层析试剂的优势。《寄生虫学研究》2016 年第 115 卷,第 3375-3385 页。[谷歌学术] [CrossRef] [PubMed]
  24. Freitas, D.R.C.d.; Gomes, L.T.; Fontes, C.J.F.; Tauil, P.L.; Pang, L.W.; Duarte, E.C. Sensitivity of nested-PCR for Plasmodium detection in pooled whole blood samples and its usefulness to blood donor screening in endemic areas. Transfus. Apher. Sci. 2014, 50, 242–246. [Google Scholar] [CrossRef] [PubMed]
    Freitas, D.R.C.d.; Gomes, L.T.; Fontes, C.J.F.; Tauil, P.L.; Pang, L.W.; Duarte, E.C. 巢式 PCR 在混合全血样本中检测疟原虫的灵敏度及其在疟疾流行区献血者筛查中的应用价值。《输血与单采科学》2014 年第 50 卷,第 242-246 页。[谷歌学术] [CrossRef] [PubMed]
  25. Li, P.; Zhao, Z.; Wang, Y.; Xing, H.; Parker, D.M.; Yang, Z.; Baum, E.; Li, W.; Sattabongkot, J.; Sirichaisinthop, J.; et al. Nested PCR detection of malaria directly using blood filter paper samples from epidemiological surveys. Malar. J. 2014, 13, 175. [Google Scholar] [CrossRef]
    李鹏; 赵志强; 王勇; 邢辉; Parker D.M.; 杨志; Baum E.; 李伟; Sattabongkot J.; Sirichaisinthop J.; 等. 基于血滤纸样本的巢式 PCR 直接检测疟疾流行病学调查方法. 疟疾杂志. 2014 年, 13 卷, 175 页. [谷歌学术] [交叉引用]
  26. Pomari, E.; Silva, R.; Moro, L.; Marca, G.L.; Perandin, F.; Verra, F.; Bisoffi, Z.; Piubelli, C. Droplet digital PCR for the detection of Plasmodium falciparum DNA in whole blood and serum: A comparative analysis with other molecular methods. Pathogens 2020, 9, 478. [Google Scholar] [CrossRef] [PubMed]
    波马里, E.; 席尔瓦, R.; 莫罗, L.; 马尔卡, G.L.; 佩兰丁, F.; 维拉, F.; 比索菲, Z.; 皮乌贝利, C. 液滴数字 PCR 技术在全血和血清中检测恶性疟原虫 DNA 的应用:与其他分子检测方法的比较分析. 《病原体》2020 年第 9 卷第 478 页. [谷歌学术] [交叉引用] [PubMed]
  27. Srisutham, S.; Saralamba, N.; Malleret, B.; Rénia, L.; Dondorp, A.M.; Imwong, M. Four human Plasmodium species quantification using droplet digital PCR. PLoS ONE 2017, 12, e0175771. [Google Scholar] [CrossRef] [PubMed]
    斯里苏塔姆, S.; 萨拉兰巴, N.; 马勒雷, B.; 雷尼亚, L.; 东多普, A.M.; 伊姆旺, M. 应用液滴数字 PCR 定量检测四种人类疟原虫. 《公共科学图书馆·综合》2017 年第 12 卷第 e0175771 页. [谷歌学术] [交叉引用] [PubMed]
  28. Xu, W.; Morris, U.; Aydin-Schmidt, B.; Msellem, M.I.; Shakely, D.; Petzold, M.; Björkman, A.; Mårtensson, A. SYBR green real-time PCR-RFLP assay targeting the Plasmodium cytochrome B gene—A highly sensitive molecular tool for malaria parasite detection and species determination. PLoS ONE 2015, 10, e0120210. [Google Scholar] [CrossRef] [PubMed]
    徐, W.; 莫里斯, U.; 艾丁-施密特, B.; 姆塞勒姆, M.I.; 沙克利, D.; 佩佐尔德, M.; 比约克曼, A.; 马滕松, A. 靶向疟原虫细胞色素 b 基因的 SYBR Green 实时 PCR-RFLP 检测技术——一种高灵敏度的疟原虫检测与虫种鉴定分子工具. 《公共科学图书馆·综合》2015 年第 10 卷第 e0120210 页. [谷歌学术] [交叉引用] [PubMed]
  29. Gómez-Luque, A.; Parejo, J.C.; Clavijo-Chamorro, M.Z.; López-Espuela, F.; Munyaruguru, F.; Lorenzo, S.B.; Monroy, I.; Gómez-Nieto, L.C. Method for malaria diagnosis based on extractions of samples using non-invasive techniques: An opportunity for the nursing clinical practice. Int. J. Environ. Res. Public Health 2020, 17, 5551. [Google Scholar] [CrossRef]
    戈麦斯-卢克,A.;帕雷霍,J.C.;克拉维霍-查莫罗,M.Z.;洛佩斯-埃斯佩拉,F.;穆尼亚鲁古鲁,F.;洛伦佐,S.B.;蒙罗伊,I.;戈麦斯-涅托,L.C. 基于非侵入性技术样本提取的疟疾诊断方法:护理临床实践中的机遇。《国际环境研究与公共健康期刊》2020 年,第 17 卷,第 5551 页。[谷歌学术] [CrossRef]
  30. Chua, K.H.; Lee, P.C.; Chai, H.C. Development of insulated isothermal PCR for rapid on-site malaria detection. Malar. J. 2016, 15, 134. [Google Scholar] [CrossRef]
    蔡,K.H.;李,P.C.;柴,H.C. 绝缘等温 PCR 技术在疟疾快速现场检测中的开发。《疟疾杂志》2016 年,第 15 卷,第 134 页。[谷歌学术] [CrossRef]
  31. Kim, J.; Lim, D.H.; Mihn, D.-C.; Nam, J.; Jang, W.S.; Lim, C.S. Clinical usefulness of labchip real-time PCR using lab-on-a-chip technology for diagnosing malaria. Korean J. Parasitol. 2021, 59, 77. [Google Scholar] [CrossRef]
    金,J.;林,D.H.;闵,D.-C.;南,J.;张,W.S.;林,C.S. 采用芯片实验室实时 PCR 技术诊断疟疾的临床实用性。《韩国寄生虫学杂志》2021 年,第 59 卷,第 77 页。[谷歌学术] [CrossRef]
  32. Barbosa, L.R.; da Silva, E.L.; de Almeida, A.C.; Salazar, Y.E.; Siqueira, A.M.; Alecrim, M.d.G.C.; Vieira, J.L.F.; Bassat, Q.; de Lacerda, M.V.; Monteiro, W.M. An Ultra-Sensitive Technique: Using Pv-mtCOX1 qPCR to Detect Early Recurrences of Plasmodium vivax in Patients in the Brazilian Amazon. Pathogens 2020, 10, 19. [Google Scholar] [CrossRef]
  33. Obaldía, N.; Barahona, I.; Lasso, J.; Avila, M.; Quijada, M.; Nuñez, M.; Marti, M. Comparison of PvLAP5 and Pvs25 qRT-PCR assays for the detection of Plasmodium vivax gametocytes in field samples preserved at ambient temperature from remote malaria endemic regions of Panama. PLoS Neglected Trop. Dis. 2022, 16, e0010327. [Google Scholar] [CrossRef] [PubMed]
  34. Bouzayene, A.; Zaffaroullah, R.; Bailly, J.; Ciceron, L.; Sarrasin, V.; Cojean, S.; Argy, N.; Houzé, S.; Joste, V.; Angoulvant, A.; et al. Evaluation of two commercial kits and two laboratory-developed qPCR assays compared to LAMP for molecular diagnosis of malaria. Malar. J. 2022, 21, 204. [Google Scholar] [CrossRef] [PubMed]
  35. Sazed, S.A.; Kibria, M.G.; Alam, M.S. An optimized real-time qpcr method for the effective detection of human malaria infections. Diagnostics 2021, 11, 736. [Google Scholar] [CrossRef]
  36. Grignard, L.; Nolder, D.; Sepúlveda, N.; Berhane, A.; Mihreteab, S.; Kaaya, R.; Phelan, J.; Moser, K.; van Schalkwyk, D.A.; Campino, S.; et al. A novel multiplex qPCR assay for detection of Plasmodium falciparum with histidine-rich protein 2 and 3 (pfhrp2 and pfhrp3) deletions in polyclonal infections. EBioMedicine 2020, 55, 102757. [Google Scholar] [CrossRef]
  37. Aimeé, K.K.; Lengu, T.B.; Nsibu, C.N.; Umesumbu, S.E.; Ngoyi, D.M.; Chen, T. Molecular detection and species identification of Plasmodium spp. infection in adults in the Democratic Republic of Congo: A populationbased study. PLoS ONE 2020, 15, e0242713. [Google Scholar] [CrossRef]
  38. Canier, L.; Khim, N.; Kim, S.; Eam, R.; Khean, C.; Loch, K.; Ken, M.; Pannus, P.; Bosman, P.; Stassijns, J.; et al. Malaria PCR detection in Cambodian low-transmission settings: Dried blood spots versus venous blood samples. Am. Soc. Trop. Med. Hyg. 2015, 92, 573–577. [Google Scholar] [CrossRef]
  39. Phuong, M.; Lau, R.; Ralevski, F.; Boggild, A.K. Sequence-based optimization of a quantitative real-time PCR assay for detection of Plasmodium ovale and Plasmodium malariae. J. Clin. Microbiol. 2014, 52, 1068–1073. [Google Scholar] [CrossRef]
  40. Leski, T.A.; Taitt, C.R.; Swaray, A.G.; Bangura, U.; Reynolds, N.D.; Holtz, A.; Yasuda, C.; Lahai, J.; Lamin, J.M.; Baio, V.; et al. Use of real-time multiplex PCR, malaria rapid diagnostic test and microscopy to investigate the prevalence of Plasmodium species among febrile hospital patients in Sierra Leone. Malar. J. 2020, 19, 84. [Google Scholar] [CrossRef] [PubMed]
  41. Murillo, E.; Muskus, C.; Agudelo, L.A.; Vélez, I.D.; Ruiz-Lopez, F. A new high-resolution melting analysis for the detection and identification of Plasmodium in human and Anopheles vectors of malaria. Sci. Rep. 2019, 9, 1674. [Google Scholar] [CrossRef]
  42. Amaral, L.C.; Robortella, D.R.; Guimarães, L.F.F.; Limongi, J.E.; Fontes, C.J.F.; Pereira, D.B.; De Brito, C.F.A.; Kano, F.S.; De Sousa, T.N.; Carvalho, L.H. Ribosomal and non-ribosomal PCR targets for the detection of low-density and mixed malaria infections. Malar. J. 2019, 18, 154. [Google Scholar] [CrossRef]
  43. Frickmann, H.; Wegner, C.; Ruben, S.; Behrens, C.; Kollenda, H.; Hinz, R.; Rojak, S.; Schwarz, N.G.; Hagen, R.M.; Tannich, E. Evaluation of the multiplex real-time PCR assays RealStar malaria S&T PCR kit 1.0 and FTD malaria differentiation for the differentiation of Plasmodium species in clinical samples. Travel Med. Infect. Dis. 2019, 31, 101442. [Google Scholar] [CrossRef] [PubMed]
  44. Lee, P.C.; Chong, E.T.J.; Anderios, F.; Lim, Y.A.L.; Chew, C.H.; Chua, K.H. Molecular detection of human Plasmodium species in Sabah using PlasmoNex™ multiplex PCR and hydrolysis probes real-time PCR. Malar. J. 2015, 14, 28. [Google Scholar] [CrossRef]
  45. Hayashida, K.; Kajino, K.; Simukoko, H.; Simuunza, M.; Ndebe, J.; Chota, A.; Namangala, B.; Sugimoto, C. Direct detection of falciparum and non-falciparum malaria DNA from a drop of blood with high sensitivity by the dried-LAMP system. Parasites Vectors 2017, 10, 26. [Google Scholar] [CrossRef]
  46. Colbert, A.J.; Co, K.; Lima-Cooper, G.; Lee, D.H.; Clayton, K.N.; Wereley, S.T.; John, C.C.; Linnes, J.C.; Kinzer-Ursem, T.L. Towards the use of a smartphone imaging-based tool for point-of-care detection of asymptomatic low-density malaria parasitaemia. Malar. J. 2021, 20, 380. [Google Scholar] [CrossRef] [PubMed]
  47. Imai, K.; Tarumoto, N.; Misawa, K.; Runtuwene, L.R.; Sakai, J.; Hayashida, K.; Eshita, Y.; Maeda, R.; Tuda, J.; Murakami, T.; et al. A novel diagnostic method for malaria using loop-mediated isothermal amplification (LAMP) and MinION™ nanopore sequencer. BMC Infect. Dis. 2017, 17, 621. [Google Scholar] [CrossRef] [PubMed]
  48. Azam, M.; Upmanyu, K.; Gupta, R.; Sruthy, K.S.; Matlani, M.; Savargaonkar, D.; Singh, R. Development of two-tube loop-mediated isothermal amplification assay for differential diagnosis of Plasmodium falciparum and Plasmodium vivax and its comparison with loopamp™ malaria. Diagnostics 2021, 11, 1689. [Google Scholar] [CrossRef] [PubMed]
  49. Jang, W.S.; Lim, D.H.; Choe, Y.; Jee, H.; Moon, K.C.; Kim, C.; Choi, M.; Park, I.S.; Lim, C.S. Development of a multiplex loop-mediated isothermal amplification assay for diagnosis of Plasmodium spp., Plasmodium falciparum and Plasmodium vivax. Diagnostics 2021, 11, 1950. [Google Scholar] [CrossRef]
  50. Mohon, A.N.; Getie, S.; Jahan, N.; Alam, M.S.; Pillai, D.R. Ultrasensitive loop mediated isothermal amplification (US-LAMP) to detect malaria for elimination. Malar. J. 2019, 18, 350. [Google Scholar] [CrossRef]
  51. Viana, G.M.R.; Silva-Flannery, L.; Barbosa, D.R.L.; Lucchi, N.; do Valle, S.C.N.; Farias, S.; Barbalho, N.; Marchesini, P.; Rossi, J.C.N.; Udhayakumar, V.; et al. Field evaluation of a real time loop-mediated isothermal amplification assay (RealAmp) for malaria diagnosis in Cruzeiro do Sul, Acre, Brazil. PLoS ONE 2018, 13, e0200492. [Google Scholar] [CrossRef] [PubMed]
  52. Cuadros, J.; Martin Ramírez, A.; González, I.J.; Ding, X.C.; Perez Tanoira, R.; Rojo-Marcos, G.; Gómez-Herruz, P.; Rubio, J.M. LAMP kit for diagnosis of non-falciparum malaria in Plasmodium ovale infected patients. Malar. J. 2017, 16, 20. [Google Scholar] [CrossRef] [PubMed]
  53. Lau, Y.L.; Lai, M.Y.; Fong, M.Y.; Jelip, J.; Mahmud, R. Loop-mediated isothermal amplification assay for identification of five human Plasmodium species in Malaysia. Am. J. Trop. Med. Hyg. 2016, 94, 336–339. [Google Scholar] [CrossRef]
  54. Patel, J.C.; Lucchi, N.W.; Srivastava, P.; Lin, J.T.; Sug-Aram, R.; Aruncharus, S.; Bharti, P.K.; Shukla, M.M.; Congpuong, K.; Satimai, W.; et al. Field evaluation of a real-time fluorescence loop-mediated isothermal amplification assay, realamp, for the diagnosis of Malaria in Thailand and India. J. Infect. Dis. 2014, 210, 1180–1187. [Google Scholar] [CrossRef] [PubMed]
  55. Moonga, L.C.; Hayashida, K.; Kawai, N.; Nakao, R.; Sugimoto, C.; Namangala, B.; Yamagishi, J. Development of a multiplex loop-mediated isothermal amplification (LAMP) method for simultaneous detection of spotted fever group rickettsiae and malaria parasites by dipstick DNA chromatography. Diagnostics 2020, 10, 897. [Google Scholar] [CrossRef]
  56. Aydin-Schmidt, B.; Morris, U.; Ding, X.C.; Jovel, I.; Msellem, M.I.; Bergman, D.; Islam, A.; Ali, A.S.; Polley, S.; Gonzalez, I.J.; et al. Field evaluation of a high throughput loop mediated isothermal amplification test for the detection of asymptomatic Plasmodium infections in Zanzibar. PLoS ONE 2017, 12, e0169037. [Google Scholar] [CrossRef] [PubMed]
  57. Lucchi, N.W.; Gaye, M.; Diallo, M.A.; Goldman, I.F.; Ljolje, D.; Deme, A.B.; Badiane, A.; Ndiaye, Y.D.; Barnwell, J.W.; Udhayakumar, V.; et al. Evaluation of the Illumigene Malaria LAMP: A Robust Molecular Diagnostic Tool for Malaria Parasites. Sci. Rep. 2016, 6, 36808. [Google Scholar] [CrossRef] [PubMed]
  58. Sharma, S.; Kumar, S.; Ahmed, M.Z.; Bhardwaj, N.; Singh, J.; Kumari, S.; Savargaonkar, D.; Anvikar, A.R.; Das, J. Advanced multiplex loop mediated isothermal amplification (mLAMP) combined with lateral flow detection (LFD) for rapid detection of two prevalent malaria species in india and melting curve analysis. Diagnostics 2022, 12, 32. [Google Scholar] [CrossRef]
  59. Aninagyei, E.; Boakye, A.A.; Tettey, C.O.; Ntiri, K.A.; Ofori, S.O.; Tetteh, C.D.; Aphour, T.T.; Rufai, T. Utilization of 18s ribosomal RNA LAMP for detecting Plasmodium falciparum in microscopy and rapid diagnostic test negative patients. PLoS ONE 2022, 17, e0275052. [Google Scholar] [CrossRef] [PubMed]
  60. Lai, M.Y.; Ooi, C.H.; Jaimin, J.J.; Lau, Y.L. Evaluation of WarmStart colorimetric loop-mediated isothermal amplification assay for diagnosis of Malaria. Am. J. Trop. Med. Hyg. 2020, 102, 1370–1372. [Google Scholar] [CrossRef]
  61. Barazorda, K.A.; Salas, C.J.; Braga, G.; Ricopa, L.; Ampuero, J.S.; Siles, C.; Sanchez, J.F.; Montano, S.; Lizewski, S.E.; Joya, C.A.; et al. Validation study of Boil & Spin Malachite Green Loop Mediated Isothermal Amplification (B&S MG-LAMP) versus microscopy for malaria detection in the Peruvian Amazon. PLoS ONE 2021, 16, e0258722. [Google Scholar] [CrossRef]
  62. Vincent, J.P.; Komaki-Yasuda, K.; Iwagami, M.; Kawai, S.; Kano, S. Combination of PURE-DNA extraction and LAMP-DNA amplification methods for accurate malaria diagnosis on dried blood spots 11 Medical and Health Sciences 1108 Medical Microbiology. Malar. J. 2018, 17, 373. [Google Scholar] [CrossRef]
  63. Cordray, M.S.; Richards-Kortum, R.R. A paper and plastic device for the combined isothermal amplification and lateral flow detection of Plasmodium DNA. Malar. J. 2015, 14, 472. [Google Scholar] [CrossRef] [PubMed]
  64. Aninagyei, E.; Abraham, J.; Atiiga, P.; Antwi, S.D.; Bamfo, S.; Acheampong, D.O. Evaluating the potential of using urine and saliva specimens for malaria diagnosis in suspected patients in Ghana. Malar. J. 2020, 19, 349. [Google Scholar] [CrossRef]
  65. Turnbull, L.B.; Ayodo, G.; Knight, V.; John, C.C.; McHenry, M.S.; Tran, T.M. Evaluation of an ultrasensitive HRP2–based rapid diagnostic test for detection of asymptomatic Plasmodium falciparum parasitaemia among children in western Kenya. Malar. J. 2022, 21, 337. [Google Scholar] [CrossRef]
  66. Briand, V.; Cottrell, G.; Tuike Ndam, N.; Martiáñez-Vendrell, X.; Vianou, B.; Mama, A.; Kouwaye, B.; Houzé, S.; Bailly, J.; Gbaguidi, E.; et al. Prevalence and clinical impact of malaria infections detected with a highly sensitive HRP2 rapid diagnostic test in Beninese pregnant women. Malar. J. 2020, 19, 188. [Google Scholar] [CrossRef]
  67. Wardhani, P.; Butarbutar, T.V.; Adiatmaja, C.O.; Betaubun, A.M.; Hamidah, N.; Aryati. Performance comparison of two malaria rapid diagnostic test with real time polymerase chain reaction and gold standard of microscopy detection method. Infect. Dis. Rep. 2020, 12, 8731. [Google Scholar] [CrossRef] [PubMed]
  68. Naeem, M.A.; Ahmed, S.; Khan, S.A. Detection of asymptomatic carriers of malaria in Kohat district of Pakistan. Malar. J. 2018, 17, 44. [Google Scholar] [CrossRef] [PubMed]
  69. Maltha, J.; Guiraud, I.; Lompo, P.; Kaboré, B.; Gillet, P.; Van Geet, C.; Tinto, H.; Jacobs, J. Accuracy of PfHRP2 versus Pf-pLDH antigen detection by malaria rapid diagnostic tests in hospitalized children in a seasonal hyperendemic malaria transmission area in Burkina Faso. Malar. J. 2014, 13, 20. [Google Scholar] [CrossRef] [PubMed]
  70. Fedele, P.L.; Wheeler, M.; Lemoh, C.; Chunilal, S. Immunochromatographic antigen testing alone is sufficient to identify asymptomatic refugees at risk of severe malaria presenting to a single health service in Victoria. Pathology 2014, 46, 551–554. [Google Scholar] [CrossRef] [PubMed]
  71. Kim, J.; Cao, X.E.; Finkelstein, J.L.; Cárdenas, W.B.; Erickson, D.; Mehta, S. A two-colour multiplexed lateral flow immunoassay system to differentially detect human malaria species on a single test line. Malar. J. 2019, 18, 313. [Google Scholar] [CrossRef] [PubMed]
  72. Abubakar, A.; Ajuji, M.; Yahya, I.U. Deepfmd: Computational analysis for malaria detection in blood-smear images using deep-learning features. Appl. Syst. Innov. 2021, 4, 82. [Google Scholar] [CrossRef]
  73. Kassim, Y.M.; Palaniappan, K.; Yang, F.; Poostchi, M.; Palaniappan, N.; Maude, R.J.; Antani, S.; Jaeger, S. Clustering-Based Dual Deep Learning Architecture for Detecting Red Blood Cells in Malaria Diagnostic Smears. IEEE J. Biomed. Health Inform. 2021, 25, 1735–1746. [Google Scholar] [CrossRef]
  74. Sriporn, K.; Tsai, C.F.; Tsai, C.E.; Wang, P. Analyzing malaria disease using effective deep learning approach. Diagnostics 2020, 10, 744. [Google Scholar] [CrossRef]
  75. Nakasi, R.; Mwebaze, E.; Zawedde, A. Mobile-aware deep learning algorithms for malaria parasites and white blood cells localization in thick blood smears. Algorithms 2021, 14, 17. [Google Scholar] [CrossRef]
  76. Yang, F.; Poostchi, M.; Yu, H.; Zhou, Z.; Silamut, K.; Yu, J.; Maude, R.J.; Jaeger, S.; Antani, S. Deep Learning for Smartphone-Based Malaria Parasite Detection in Thick Blood Smears. IEEE J. Biomed. Health Inform. 2020, 24, 1427–1438. [Google Scholar] [CrossRef] [PubMed]
  77. Manescu, P.; Shaw, M.J.; Elmi, M.; Neary-Zajiczek, L.; Claveau, R.; Pawar, V.; Kokkinos, I.; Oyinloye, G.; Bendkowski, C.; Oladejo, O.A.; et al. Expert-level automated malaria diagnosis on routine blood films with deep neural networks. Am. J. Hematol. 2020, 95, 883–891. [Google Scholar] [CrossRef] [PubMed]
  78. Islam, M.R.; Nahiduzzaman, M.; Goni, M.O.F.; Sayeed, A.; Anower, M.S.; Ahsan, M.; Haider, J. Explainable Transformer-Based Deep Learning Model for the Detection of Malaria Parasites from Blood Cell Images. Sensors 2022, 22, 4358. [Google Scholar] [CrossRef]
  79. Abdurahman, F.; Fante, K.A.; Aliy, M. Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models. BMC Bioinform. 2021, 22, 112. [Google Scholar] [CrossRef]
  80. Chibuta, S.; Acar, A.C. Real-time Malaria Parasite Screening in Thick Blood Smears for Low-Resource Setting. J. Digit. Imaging 2020, 33, 763–775. [Google Scholar] [CrossRef] [PubMed]
  81. Ashraf, S.; Khalid, A.; de Vos, A.L.; Feng, Y.; Rohrbach, P.; Hasan, T. Malaria Detection Accelerated: Combing a High-Throughput NanoZoomer Platform with a ParasiteMacro Algorithm. Pathogens 2022, 11, 1182. [Google Scholar] [CrossRef] [PubMed]
  82. Kongklad, G.; Chitaree, R.; Taechalertpaisarn, T.; Panvisavas, N.; Nuntawong, N. Discriminant Analysis PCA-LDA Assisted Surface-Enhanced Raman Spectroscopy for Direct Identification of Malaria-Infected Red Blood Cells. Methods Protoc. 2022, 5, 49. [Google Scholar] [CrossRef]
  83. Wang, W.; Dong, R.L.; Gu, D.; He, J.A.; Yi, P.; Kong, S.K.; Ho, H.P.; Loo, J.F.C.; Wang, W.; Wang, Q. Antibody-free rapid diagnosis of malaria in whole blood with surface-enhanced Raman Spectroscopy using Nanostructured Gold Substrate. Adv. Med. Sci. 2020, 65, 86–92. [Google Scholar] [CrossRef]
  84. Heraud, P.; Chatchawal, P.; Wongwattanakul, M.; Tippayawat, P.; Doerig, C.; Jearanaikoon, P.; Perez-Guaita, D.; Wood, B.R. Infrared spectroscopy coupled to cloud-based data management as a tool to diagnose malaria: A pilot study in a malaria-endemic country. Malar. J. 2019, 18, 348. [Google Scholar] [CrossRef] [PubMed]
  85. McBirney, S.E.; Chen, D.; Scholtz, A.; Ameri, H.; Armani, A.M. Rapid Diagnostic for Point-of-Care Malaria Screening. ACS Sens. 2018, 3, 1264–1270. [Google Scholar] [CrossRef] [PubMed]
  86. Ngo, H.T.; Gandra, N.; Fales, A.M.; Taylor, S.M.; Vo-Dinh, T. Sensitive DNA detection and SNP discrimination using ultrabright SERS nanorattles and magnetic beads for malaria diagnostics. Biosens. Bioelectron. 2016, 81, 8–14. [Google Scholar] [CrossRef] [PubMed]
  87. Yoon, J.; Jang, W.S.; Nam, J.; Mihn, D.C.; Lim, C.S. An automated microscopic Malaria parasite detection system using digital image analysis. Diagnostics 2021, 11, 527. [Google Scholar] [CrossRef] [PubMed]
  88. Kim, J.D.; Nam, K.M.; Park, C.Y.; Kim, Y.S.; Song, H.J. Automatic detection of malaria parasite in blood images using two parameters. Technol. Health Care 2015, 24, S33–S39. [Google Scholar] [CrossRef]
  89. Linder, N.; Turkki, R.; Walliander, M.; Mårtensson, A.; Diwan, V.; Rahtu, E.; Pietikäinen, M.; Lundin, M.; Lundin, J. A malaria diagnostic tool based on computer vision screening and visualization of Plasmodium falciparum candidate areas in digitized blood smears. PLoS ONE 2014, 9, e104855. [Google Scholar] [CrossRef] [PubMed]
  90. Post, A.; Kaboré, B.; Reuling, I.J.; Bognini, J.; Van Der Heijden, W.; Diallo, S.; Lompo, P.; Kam, B.; Herssens, N.; Lanke, K.; et al. The XN-30 hematology analyzer for rapid sensitive detection of malaria: A diagnostic accuracy study. BMC Med. 2019, 17, 103. [Google Scholar] [CrossRef]
  91. Dumas, C.; Bienvenu, A.L.; Girard, S.; Picot, S.; Debize, G.; Durand, B. Automated Plasmodium detection by the Sysmex XN hematology analyzer. J. Clin. Pathol. 2018, 71, 594–599. [Google Scholar] [CrossRef]
  92. Racsa, L.D.; Gander, R.M.; Southern, P.M.; McElvania TeKippe, E.; Doern, C.; Luu, H.S. Detection of intracellular parasites by use of the CellaVision DM96 analyzer during routine screening of peripheral blood smears. J. Clin. Microbiol. 2015, 53, 167–171. [Google Scholar] [CrossRef] [PubMed]
  93. Pillay, E.; Khodaiji, S.; Bezuidenhout, B.C.; Litshie, M.; Coetzer, T.L. Evaluation of automated malaria diagnosis using the Sysmex XN-30 analyser in a clinical setting. Malar. J. 2019, 18, 15. [Google Scholar] [CrossRef] [PubMed]
  94. Hashimoto, M.; Yokota, K.; Kajimoto, K.; Matsumoto, M.; Tatsumi, A.; Yamamoto, K.; Hyodo, T.; Matsushita, K.; Minakawa, N.; Mita, T.; et al. Quantitative detection of Plasmodium falciparum using, luna-fl, a fluorescent cell counter. Microorganisms 2020, 8, 1356. [Google Scholar] [CrossRef] [PubMed]
  95. Costa, M.S.; Baptista, V.; Ferreira, G.M.; Lima, D.; Minas, G.; Veiga, M.I.; Catarino, S.O. Multilayer thin-film optical filters for reflectance-based malaria diagnostics. Micromachines 2021, 12, 890. [Google Scholar] [CrossRef]
  96. Orbán, Á.; Longley, R.J.; Sripoorote, P.; Maneechai, N.; Nguitragool, W.; Butykai, Á.; Mueller, I.; Sattabongkot, J.; Karl, S.; Kézsmárki, I. Sensitive detection of Plasmodium vivax malaria by the rotating-crystal magneto-optical method in Thailand. Sci. Rep. 2021, 11, 18547. [Google Scholar] [CrossRef] [PubMed]
  97. Pukáncsik, M.; Molnár, P.; Orbán, Á.; Butykai, Á.; Marton, L.; Kézsmárki, I.; Vértessy, B.G.; Kamil, M.; Abraham, A.; Aly, A.S.I. Highly sensitive and rapid characterization of the development of synchronized blood stage malaria parasites via magneto-optical hemozoin quantification. Biomolecules 2019, 9, 579. [Google Scholar] [CrossRef] [PubMed]
  98. Orbán, Á.; Butykai, Á.; Molnár, A.; Pröhle, Z.; Fülöp, G.; Zelles, T.; Forsyth, W.; Hill, D.; Müller, I.; Schofield, L.; et al. Evaluation of a novel magneto-optical method for the detection of malaria parasites. PLoS ONE 2014, 9, e96981. [Google Scholar] [CrossRef]
  99. Lukianova-Hleb, E.Y.; Campbell, K.M.; Constantinou, P.E.; Braam, J.; Olson, J.S.; Ware, R.E.; Sullivan, D.J.; Lapotko, D.O. Hemozoin-generated vapor nanobubbles for transdermal reagent- and needle-free detection of malaria. Proc. Natl. Acad. Sci. USA 2014, 111, 900–905. [Google Scholar] [CrossRef]
  100. Gandarilla, A.M.D.; Glória, J.C.; Barcelay, Y.R.; Mariuba, L.A.M.; Brito, W.R. Electrochemical immunosensor for detection of Plasmodium vivax lactate dehydrogenase. Mem. Inst. Oswaldo Cruz 2022, 117, e220085. [Google Scholar] [CrossRef] [PubMed]
  101. de la Serna, E.; Arias-Alpízar, K.; Borgheti-Cardoso, L.N.; Sanchez-Cano, A.; Sulleiro, E.; Zarzuela, F.; Bosch-Nicolau, P.; Salvador, F.; Molina, I.; Ramírez, M.; et al. Detection of Plasmodium falciparum malaria in 1 h using a simplified enzyme-linked immunosorbent assay. Anal. Chim. Acta 2021, 1152, 338254. [Google Scholar] [CrossRef] [PubMed]
  102. Hemben, A.; Ashley, J.; Tothill, I.E. Development of an Immunosensor for Pf HRP 2 as a biomarker for malaria detection. Biosensors 2017, 7, 28. [Google Scholar] [CrossRef]
  103. Jang, I.K.; Jiménez, A.; Rashid, A.; Barney, R.; Golden, A.; Ding, X.C.; Domingo, G.J.; Mayor, A. Comparison of two malaria multiplex immunoassays that enable quantification of malaria antigens. Malar. J. 2022, 21, 176. [Google Scholar] [CrossRef]
  104. Singh, N.K.; Jain, P.; Das, S.; Goswami, P. Dye coupled aptamer-captured enzyme catalyzed reaction for detection of pan malaria and p. Falciparum species in laboratory settings and instrument-free paper-based platform. Anal. Chem. 2019, 91, 4213–4221. [Google Scholar] [CrossRef] [PubMed]
  105. Lin, H.; Zhao, S.; Liu, Y.; Shao, L.; Ye, Y.; Jiang, N.; Yang, K. Rapid Visual Detection of Plasmodium Using Recombinase-Aided Amplification With Lateral Flow Dipstick Assay. Front. Cell. Infect. Microbiol. 2022, 12, 922146. [Google Scholar] [CrossRef] [PubMed]
  106. Yang, D.; Subramanian, G.; Duan, J.; Gao, S.; Bai, L.; Chandramohanadas, R.; Ai, Y. A portable image-based cytometer for rapid malaria detection and quantification. PLoS ONE 2017, 12, e0179161. [Google Scholar] [CrossRef]
  107. Liu, Q.; Nam, J.; Kim, S.; Lim, C.T.; Park, M.K.; Shin, Y. Two-stage sample-to-answer system based on nucleic acid amplification approach for detection of malaria parasites. Biosens. Bioelectron. 2016, 82, 1–8. [Google Scholar] [CrossRef]
  108. Shah, J.; Mark, O.; Weltman, H.; Barcelo, N.; Lo, W.; Wronska, D.; Kakkilaya, S.; Rao, A.; Bhat, S.T.; Sinha, R.; et al. Fluorescence In Situ hybridization (FISH) assays for diagnosing malaria in endemic areas. PLoS ONE 2015, 10, e0136726. [Google Scholar] [CrossRef] [PubMed]
  109. Shah, J.; Poruri, A.; Mark, O.; Khadilka, U.; Mohring, F.; Moon, R.W.; Ramasamy, R. A dual colour fluorescence in situ hybridization (FISH) assay for identifying the zoonotic malaria parasite Plasmodium knowlesi with a potential application for the specific diagnosis of knowlesi malaria in peripheral-level laboratories of Southeast Asia. Parasites Vectors 2017, 10, 342. [Google Scholar] [CrossRef]
  110. Peng, W.K.; Kong, T.F.; Ng, C.S.; Chen, L.; Huang, Y.; Bhagat, A.A.S.; Nguyen, N.-T.; Preiser, P.R.; Han, J. Micromagnetic resonance relaxometry for rapid label-free malaria diagnosis. Nat. Med. 2014, 20, 1069–1073. [Google Scholar] [CrossRef]
  111. Thamarath, S.S.; Xiong, A.; Lin, P.-H.; Preiser, P.R.; Han, J. Enhancing the sensitivity of micro magnetic resonance relaxometry detection of low parasitemia Plasmodium falciparum in human blood. Sci. Rep. 2019, 9, 2555. [Google Scholar] [CrossRef]
  112. Fook Kong, T.; Ye, W.; Peng, W.K.; Wei Hou, H.; Marcos; Preiser, P.R.; Nguyen, N.-T.; Han, J. Enhancing malaria diagnosis through microfluidic cell enrichment and magnetic resonance relaxometry detection. Sci. Rep. 2015, 5, 11425. [Google Scholar] [CrossRef]
  113. Tomescu, O.A.; Mattanovich, D.; Thallinger, G.G. Integrative omics analysis. A study based on Plasmodium falciparum mRNA and protein data. BMC Syst. Biol. 2014, 8, S4. [Google Scholar] [CrossRef]
  114. Awasthi, G.; Tyagi, S.; Kumar, V.; Patel, S.K.; Rojh, D.; Sakrappanavar, V.; Kochar, S.K.; Talukdar, A.; Samanta, B.; Das, A. A proteogenomic analysis of haptoglobin in malaria. PROTEOMICS–Clin. Appl. 2018, 12, 1700077. [Google Scholar] [CrossRef]
  115. Lindner, S.E.; Swearingen, K.E.; Shears, M.J.; Walker, M.P.; Vrana, E.N.; Hart, K.J.; Minns, A.M.; Sinnis, P.; Moritz, R.L.; Kappe, S.H. Transcriptomics and proteomics reveal two waves of translational repression during the maturation of malaria parasite sporozoites. Nat. Commun. 2019, 10, 4964. [Google Scholar] [CrossRef] [PubMed]
  116. Gardinassi, L.G.; Arévalo-Herrera, M.; Herrera, S.; Cordy, R.J.; Tran, V.; Smith, M.R.; Johnson, M.S.; Chacko, B.; Liu, K.H.; Darley-Usmar, V.M. Integrative metabolomics and transcriptomics signatures of clinical tolerance to Plasmodium vivax reveal activation of innate cell immunity and T cell signaling. Redox Biol. 2018, 17, 158–170. [Google Scholar] [CrossRef]
  117. Commonwealth. The Commonwealth Malaria Report. 2022. Available online: https://reliefweb.int/report/world/commonwealth-malaria-report-2022 (accessed on 15 June 2024).
  118. Yan, S.L.R.; Wakasuqui, F.; Wrenger, C. Point-of-care tests for malaria: Speeding up the diagnostics at the bedside and challenges in malaria cases detection. Diagn. Microbiol. Infect. Dis. 2020, 98, 115122. [Google Scholar]
  119. Veiga, M.I.; Peng, W.K. Rapid phenotyping towards personalized malaria medicine. Malar. J. 2020, 19, 68. [Google Scholar] [CrossRef] [PubMed]
  120. Su, X.-Z.; Zhang, C.; Joy, D.A. Host-malaria parasite interactions and impacts on mutual evolution. Front. Cell. Infect. Microbiol. 2020, 10, 587933. [Google Scholar] [CrossRef]
  121. Laishram, D.D.; Sutton, P.L.; Nanda, N.; Sharma, V.L.; Sobti, R.C.; Carlton, J.M.; Joshi, H. The complexities of malaria disease manifestations with a focus on asymptomatic malaria. Malar. J. 2012, 11, 29. [Google Scholar] [CrossRef] [PubMed]
  122. Leski, T.A.; Taitt, C.R.; Colston, S.M.; Bangura, U.; Holtz, A.; Yasuda, C.Y.; Reynolds, N.D.; Lahai, J.; Lamin, J.M.; Baio, V. Prevalence of malaria resistance-associated mutations in Plasmodium falciparum circulating in 2017–2018, Bo, Sierra Leone. Front. Microbiol. 2022, 13, 1059695. [Google Scholar] [CrossRef] [PubMed]
  123. Bull, P.C.; Berriman, M.; Kyes, S.; Quail, M.A.; Hall, N.; Kortok, M.M.; Marsh, K.; Newbold, C.I. Plasmodium falciparum variant surface antigen expression patterns during malaria. PLoS Pathog. 2005, 1, e26. [Google Scholar] [CrossRef] [PubMed]
  124. Aggarwal, S.; Peng, W.K.; Srivastava, S. Multi-omics advancements towards Plasmodium vivax malaria diagnosis. Diagnostics 2021, 11, 2222. [Google Scholar] [CrossRef] [PubMed]
Figure 1. A PRISMA flow diagram showing the method of article selection.
Tropicalmed 09 00190 g001
Figure 2. Frequencies of malaria detection/diagnosis methods in reviewed publications.
图 2. 纳入文献中疟疾检测/诊断方法的使用频率分布
Tropicalmed 09 00190 g002
Table 1. Countries classified by World Bank as low or lower-middle-income economies in 2024 [1,10]. The table lists all resource-limited countries divided into low (top portion) and lower-middle (bottom portion) income countries, with special emphasis placed on the 11 countries (right portion) that together bear 70% of the global malaria burden.
LOW AND LOWER-MIDDLE INCOME COUNTRIES
70% GLOBAL MALARIA BURDEN
LOW-INCOME COUNTRIESAfghanistanBurundiCentral African RepublicChadEritreaEthiopiaGambiaBurkina FasoCongo, Dem. Rep
Guinea-BissauKorea, Dem. People’s RepLiberiaMadagascarMalawiRwandaSierra LeoneMaliMozambique
SomaliaSouth SudanSudanSyrian Arab RepublicTogoYemen, Rep NigerUganda
LOWER-MIDDLE INCOME COUNTRIESAngolaAlgeriaBangladeshBeninBhutanBoliviaCabo VerdeCameroonGhana
CambodiaComorosCongo, Rep.Côte d’Ivoire DjiboutiEgypt, Arab Rep.EswatiniIndiaNigeria
GuineaHaitiHondurasJordanIran, Islamic RepKenyaKiribatiTanzania
Kyrgyz RepublicLao PDRLebanonLesotho Mauritania Micronesia, Fed. Sts. Mongolia
MoroccoMyanmarNepal Nicaragua PakistanPapua New Guinea Philippines
Samoa São Tomé and Principe SenegalSolomon IslandsSri LankaTajikistanTimor-Leste
TunisiaUkraineUzbekistanVanuatuVietnamZambiaZimbabwe
Table 2. Traditional methods used for malaria detection.
表 2. 疟疾检测使用的传统方法
Traditional Methods  传统方法Specimen Used  使用样本Summary of Procedure  操作步骤概述Invasive/Non-Invasive  侵入性/非侵入性Advantages  优势Disadvantages  劣势Refer-ences  参考文献
Thin film microscopy  薄片显微镜检查Blood  血液Thin blood smears are prepared and stained using Giemsa stain. Thin smears are examined with a 100× oil immersion objective.
薄血涂片采用吉姆萨染色法制备。薄涂片需使用 100 倍油镜进行镜检。
Invasive  侵入性Reliable in the identification of four human plasmodium species and their various stages
可准确鉴别四种人类疟原虫及其各发育阶段
Limited by quality of blood smears as well as availability of skilled microscopists.
受限于血涂片质量及熟练显微镜技师的稀缺性。

Lack of sensitivity where non-falciparum or mixed infections exist.
对非恶性疟原虫或混合感染检测灵敏度不足。
[8,13,14,15,16,17,18]
Thick film microscopy  厚血膜镜检法Blood  血液Thick blood smears are prepared and stained using Giemsa stain. Thin smears are examined with a 100× oil immersion objective.
厚血涂片采用吉姆萨染色法制备。薄血涂片需使用 100 倍油镜进行观察。
Invasive  侵入性检测Reliable in the detection of four human plasmodium species
可可靠检出四种人类疟原虫
Limited by quality of blood smears as well as availability of skilled microscopists.
受限于血涂片质量及熟练显微镜技师的稀缺性
[8,13,14,15,16,17,18]
Morphology-based diagnosis
基于形态学的诊断
Blood  血液Optical images from Giemsa-stained infected blood are measured using Olysia and Scanning Probe Image Processor software based on morphology of red blood cells.
通过 Olysia 和扫描探针图像处理器软件,基于红细胞形态对吉姆萨染色感染血液的光学图像进行测量。
Invasive  侵入性Faster prediction of malaria cases
更快预测疟疾病例
Expertise needed  需要专业知识[19]  《资源有限地区疟疾诊断方法进展:系统性综述》
Centrifuged buffy coat smear examination (CBCS)
离心后白细胞层涂片检查(CBCS)
Blood  血液Centrifugation of buffy coat is done prior to Giemsa staining and microscopic examination
在吉姆萨染色和显微镜检查前需进行血沉棕黄层离心处理
Invasive  侵入性检测Specificity is similar to conventional method but sensitivity a bit better than conventional method
特异性与传统方法相当,但灵敏度略优于传统方法
Limited by availability of skilled microscopists
受限于熟练显微镜操作人员的稀缺性
[20]
Table 3. Modern (PCR/LAMP-based) methods used for malaria detection and evidence of use in developed countries.
Modern MethodsSpecimen UsedDescriptionInvasive/Non-InvasivePoint of Care/Molecular/OtherAdvantagesDisadvantagesDeveloped CountriesReferences
Direct conventional PCRBloodWith plasmodium cytochrome oxidase III gene (COX-III) as target, direct conventional PCR is conducted on bloodspot samples. Results are visualized on a gel.InvasiveMolecularHigh Sensitivity; faster than nested; does not require DNA isolationRequires much expertise and expensiveUSA[21]
Nested Polymerase Chain Reaction (PCR)BloodUsing different primer pairs to run 2 sequential amplification reactions. Plasmodium genomic DNA extracted from dried blood spotsInvasiveMolecularHigh sensitivity and specificityTime consuming, expensive, requires much expertiseThailand, USA, Brazil, United Kingdom, Austria[13,16,18,21,22,23,24,25]
Droplet Digital PCR (ddPCR)Blood, SerumDNA extracted from blood and serum samples are analyzed using the ddPCR method, which is based on water–oil emulsion droplet technologyInvasiveMolecularHigh sensitivity using blood samplesLow sensitivity using serum samples; expensiveItaly,
Thailand
[26,27]
Photo- Induced Electron transfer PCR (PET-PCR)Blood Total DNA is extracted from dried blood spots and PCR performed using photo-induced electron transfer fluorogenic primersInvasiveMolecularHigh sen-sitivity for parasite identification and characterization.Requires much expertise and is expensiveUSA[15]
Fluoresen-ce reson-ance energy transfer (FRET) real time PCRBloodReal-time PCR utilizing FRET whereby fluorophores are brought in close proximity after hybridization is performed on DNA extracted from lyophilized blood samples targeting the 18S rRNA geneInvasive MolecularHigh sensit-ivity, and
allows for simultaneous quantitative and species-specific detection
This specific protocol could not differentiate between P. vivax and P. knowlesi; expensiveUnited Kingdom, Austria[22]
SYBR Green Real-Time PCR-RFLP AssayBloodReal-time PCR using sybr green dye that binds to all double-stranded DNA followed by restriction fragment polymorphism to differentiate speciesInvasiveMolecularHigh sensitivityMeltcurve required in PCR since Sybr green alone can be non-specific; expensiveSweden[28]
Hair qPCRHead hairsHairs without roots are taken from patients and qPCR assay conductedNon-invasivemolecularRequires no special trans-port/storage conditions for samplesSensitivity lower than when blood samples are usedSpain[29]
Insulated Isothermal PCR (iiPCR)BloodPCR is performed in a portable device using an assay based on the Rayleigh–Bénard convection methodInvasiveMolecular/point of carePortable, easy and fast operation; direct interpretationNot as sensitive as qPCRMalaysia[30]
Lab Chip Real Time PCR (LRP)BloodDNA is extracted from collected blood samples and a portable LRP device is used to detect malarial parasites based on lab-on-chip technologyInvasiveMolecular/point of careHigh sensitivity and specificity. Fast and cost effectiveRisk of false negatives higher than traditional real-time PCRKorea[31]
Pv-mt Cox PCRBloodDNA is extracted from collected blood samples and qPCR with mitochondrial gene target is carried outInvasiveMolecularMore sensitive in the detection of P. vivaxExpensiveBrazil[32]
PvLAP5 and Pvs25qRT-PCR assaysBloodExtracted RNA is subjected to quantitative reverse transcription PCRInvasiveMolecularSuitable assay for the determination of human transmission reservoirExpensivePanama[33]
Other Quantita-tive PCR (qPCR)BloodReal-time PCR performed using primers targeting different regions and SYBR green or probe-based technology on DNA extracted from whole bloodInvasiveMolecularHigh sensitivity and rapidExtreme caution needed to prevent contamination; expensiveFrance, Canada, USA
Columbia
Germany, Brazil, China, Malaysia
[34,35,36,37,38,39,40,41,42,43,44]
Dry LAMP system (CZC-LAMP)BloodBlood samples are analyzed directly without extraction using the assay made up of dried reagentsInvasivePoint of care/molecularHigh sensitivity and specificity; no need for prior extractionNot widely available [45]
Particle Diffusometry (PD)-LAMPBloodPD, which senses images, is combined with LAMP on a smartphone-enabled device to detect low levels of parasitemiaInvasivePoint of care/molecular Sensitivitities
higher than RDTs and similar to qPCR
Sensitivity slightly lower than nested PCRUSA[46]
LAMP and MinION™ nanopore sequencerBloodPrimers targeting the 18S–rRNA gene of all five human Plasmodium species are generated and samples subjected to LAMP. Min-ION™ nanopore sequencer is used on amplicons to identify Plasmodium spp.InvasiveMolecularHighly sensitive, and simpleExpensiveJapan[47]
Other Loop-mediated isothermal amplification (LAMP), BloodExtracted DNA is subjected to loop-mediated isothermal amplification with a variety of detection methodsInvasivePoint of care/molecularSimple, low cost; can be used in resource-limited settings and point-of-care settingsSome cannot quantify par-asite density; some are insensitive towards low parasitemia and mixed infectionsFrance, Korea, Thailand
Italy, Brazil
Spain, Mala-ysia, Japan, Peru, USA
[26,34,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63]
Table 4. Modern (non-PCR/non-LAMP-based) methods used for malaria detection and evidence of use in developed countries.
Modern MethodsSpecimen UsedDescriptionInvasive/Non-InvasivePoint of Care/Molecular/OtherAdvantagesDisadvantagesDeveloped CountriesReferences
Malaria SD Bioline RDT kitUrine, Saliva, BloodUsing immuno-chromatography to detect PfhRP2 and PLDH following manufacturer’s instructionsNon-invasive/InvasivePoint of careEffective for non-invasive detection of malaria; low costLow sensitivity [64]
Other (RDTs)BloodImmunochromatography/
according to manufacturer’s instructions
Invasive Point of careSuitable for point of care in hard-to-access areas; low costLow sensit-ivity for some kits; poor identification of non-falciparum infections for some brandsIndonesia
Australia,
USA
[14,15,17,18,65,66,67,68,69,70,71]
Computeri-zed/digital deep mach-ine learnin-g approach BloodMachine learning models are used to detect malaria parasites in blood smears. Some can be integrated into smartphone detection appsInvasive OtherAccurate/
reliable
For some, results are affected by quality of smearsUSA, Taiwan, China, Turkey[72,73,74,75,76,77,78,79,80,81]
Spectros-copyBloodBlood samples are analyzed using spectroscopyInvasiveOtherHighly effective for identifying infected cellOnly qualitative results obtainedThailand,
China, Australia
[82,83,84]
Portable Optical Diagnostic System
(PODS)
BloodWorks by differential optical spectroscopy. The change in optical power before and after a magnet is applied, is monitored in order to determine β-hematin concentration in whole bloodInvasivePoint of carePortable; low cost;
useful for low resource settings; high sensitivity
Not widely availableUSA[85]
Ultra bright SERS nanorattlesBloodDNA detection method that uses sandwich hybridization of magnetic bead, target sequence, and ultrabright SERS nanorattle are employedInvasiveMolecular/point of careSensitive; can be automated and added to portable devi-ces for POC diagnosis; can identify SNPs hence, discri-minate betw-een wild-type and mutant parasitesNot widely availableUSA[86]
Automated Microscopy/Digital AnalysisBlood Comprises a fluorescent dye staining or Giemsa staining and an automated microscopy platform and digital analysisInvasiveOtherRapid diagn-osis and par-asite density monitoring. High sens- itivity, linear-ity, and precisionNot widely availableKorea, Finland, Sweden[87,88,89]
Flow cytometryBloodParasites are detected and quantified in blood by use of analyzers utilizing flow cytometry technologyInvasiveMolecularRapid and high sensiti-vity; useful for mass screeningMay not be able to distinguish plasmodium speciesNetherlands, France, USA,
South Africa,
Japan
[90,91,92,93,94]
Thin-Film Optical FiltersBloodA thin film optical device is used based on optical reflectance spectrophotometry, for the parasite detection through haemozoin quantificationInvasivePoint of careHigh sensitivityHigh transmittance regions outside target wavelengthPortugal[95]
Rotating cr- ystal magn-eto optical detection (RMOD) methodBloodRMOD works by detection of the periodic modulation of light transmission. This is induced by hemozoin crystals which co-rotates with a rotating magnetic fieldInvasiveOtherHigher sensitivity and accuracy than light microscopySensitivity is poorer than PCR methodsThailand,
Hungary
[96,97,98]
Hemozin-Based Malaria diagnostic device (GazelleTM)Blood Using magneto-optical technology, the device detects hemozoin produced by PlasmodiumInvasiveOtherSensitivities comparable to light micr-oscopy; faster than micros-copy; portab-le; can run on battery powerUnable to distinguish between species [16]
Hemozoin-generated vapor nanobubblesBlood vessel (transdermal)Hemozoin generates a transient vapor nanobubble around hemozoin in response to a short and safe laser pulse. The acoustic signals of these nanobubbles that are malaria specific enable detectionNon-invasivePoint of careNon-invasive;
rapid
Not widely availableUSA[99]
Electroche-mical immunosensorBloodEgg yolk IgY antibodies against Plasmodium vivax lactate dehydrogenase antigen are immobilized on a gold electrode surface followed by differential pulse voltammetry and contact angle measurements are made.InvasivePoint of careHigh Sensitivity for malaria caused by P. vivaxOnly malaria caused by P. vivax can be detectedBrazil[100]
Simplified ELISA)/PfHRP 2 ELISABlood Modified ElISA was performed on blood samples.InvasivePoint of careHigh sensitivity, portable and low costNot widely availableSpain
UK
Denmark
[101,102]
Multiple-xed ELISA based assayBloodMultiplexed ELISA-based (either planar-based array or magnetic bead-based platforms) technologies are used for malaria detectionInvasiveMolecularCan detect malaria spe-cies mutants; have high throughput potentialNot widely availableUSA[103]
Dye-Cou-pledApt-amer-Capt-ured Enzy-me-Cataly-zed assayBloodAptamer- and enzyme-based method is used to detect malaria infection in blood. Method can be used on instrument or instrument free platformInvasive Molecular/point of careLow cost; useful for resource-limited and point-of-care settings.Not widely available [104]
Recombinase-Aided Amplificat-ion with Lateral Flow Dip-stick Assay
(RAA-LFD)
BloodA combination of recombinase-aided amplification lasting for 15 min at 37 degrees and lateral flow dipstick is used to detect plasmodium species in blood InvasiveMolecular/point of careHighly sensitive, specific, low cost, convenient for on-site screening
and low resource settings.
Not widely available China[105]
Portable image-based CytometerBloodP. falciparum-infected blood cells are identified and counted from Giemsa-stained smears using the image based portable cytometer.InvasiveOtherSimple to operate;
low cost
Not widely availableSingapore[106]
Two-stage sample-to-answer sy-stem based on nucleic acid ampl-ification approachBloodIt combines the dimethyl adipimidate (DMA)/thin film sample processing (DTS) technique and the Mach–Zehnder interferometer isothermal solid-phase DNA amplification (MZI-IDA)
technique to detect infection in blood
Invasive MolecularHigh sensitivity, rapidNot widely availableSingapore,
Korea
[107]
Fluorescen-ce In Situ Hybridization (FISH) AssaysBloodDetects and localizes specific malaria nucleic acid sequences by hybridizing with complementary sequences that are labeled with fluorescent probesInvasive MolecularHigh sensitivity Skilled expertise required. USA[108,109]
NMR-based hemozoin detectionBloodDetection is based on the ability to recognize the paramagnetic susceptibility of malaria hemozoin crystalsInvasiveMolecular/point of careHigh sensitivity and rapidNot widely availableAustralia, Singapore, USA[110,111,112]
Multi-omicsVariesIntegrating data from different omic methodsInvasive/non-invasiveOtherComprehen-sive underst-anding of the infectionRequires skilled experitiseAustria
USA
Columbia
[113,114,115,116]
Table 5. Evidence of use of modern methods of malaria detection in low and lower-middle-income countries.
Modern MethodResource-Limited CountriesReferences
Malaria rapid test kit (SD Bioline RDT kit) using urine and saliva samplesGhana[64]
Other rapid diagnostic testsNigeria, Senegal, Kenya, Benin, Pakistan, Burkina Faso[14,15,17,18,65,66,68,69]
Nested polymerase chain reaction (PCR)Pakistan, Nigeria, Myanmar, Honduras, India[13,16,18,23,25]
Hair qPCRRwanda[29]
Other quantitative polymerase chain reaction (qPCR)Bangladesh, Eritrea, Tanzania
D.R. Congo, Sierra Leone, Cambodia
[35,36,37,38,40]
Dry LAMP system (CZC-LAMPZambia[45]
Other loop-mediated isothermal amplification (LAMP), India, Tanzania, Senegal, Ghana[48,56,57,58,59]
Computerized/digital deep machine learning approachNigeria, Uganda, Bangladesh, Ethiopia, Zambia, [59,75,77,78,79,80]
The rotating-crystal magneto-optical detection (RMOD) methodPapua New Guinea[96]
Hemozin-based malaria diagnostic device (GazelleTM)Honduras[16]
Flow cytometryBurkina Faso, India[90,93]
Dye-coupled aptamer-captured enzyme-catalyzed assayIndia[104]
Multi-omicsIndia[114]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Yalley, A.K.; Ocran, J.; Cobbinah, J.E.; Obodai, E.; Yankson, I.K.; Kafintu-Kwashie, A.A.; Amegatcher, G.; Anim-Baidoo, I.; Nii-Trebi, N.I.; Prah, D.A. Advances in Malaria Diagnostic Methods in Resource-Limited Settings: A Systematic Review. Trop. Med. Infect. Dis. 2024, 9, 190. https://doi.org/10.3390/tropicalmed9090190

AMA Style

Yalley AK, Ocran J, Cobbinah JE, Obodai E, Yankson IK, Kafintu-Kwashie AA, Amegatcher G, Anim-Baidoo I, Nii-Trebi NI, Prah DA. Advances in Malaria Diagnostic Methods in Resource-Limited Settings: A Systematic Review. Tropical Medicine and Infectious Disease. 2024; 9(9):190. https://doi.org/10.3390/tropicalmed9090190

Chicago/Turabian Style

Yalley, Akua K., Joyous Ocran, Jacob E. Cobbinah, Evangeline Obodai, Isaac K. Yankson, Anna A. Kafintu-Kwashie, Gloria Amegatcher, Isaac Anim-Baidoo, Nicholas I. Nii-Trebi, and Diana A. Prah. 2024. "Advances in Malaria Diagnostic Methods in Resource-Limited Settings: A Systematic Review" Tropical Medicine and Infectious Disease 9, no. 9: 190. https://doi.org/10.3390/tropicalmed9090190

APA Style

Yalley, A. K., Ocran, J., Cobbinah, J. E., Obodai, E., Yankson, I. K., Kafintu-Kwashie, A. A., Amegatcher, G., Anim-Baidoo, I., Nii-Trebi, N. I., & Prah, D. A. (2024). Advances in Malaria Diagnostic Methods in Resource-Limited Settings: A Systematic Review. Tropical Medicine and Infectious Disease, 9(9), 190. https://doi.org/10.3390/tropicalmed9090190

Article Metrics

Citations

PMC
 
Crossref
 
Scopus
 
PubMed
 
Web of Science
 
Google Scholar

Article Access Statistics

Created with Highcharts 4.0.4Chart context menuArticle access statisticsArticle Views3. May4. May5. May6. May7. May8. May9. May10. May11. May12. May13. May14. May15. May16. May17. May18. May19. May20. May21. May22. May23. May24. May25. May26. May27. May28. May29. May30. May31. May1. Jun2. Jun3. Jun4. Jun5. Jun6. Jun7. Jun8. Jun9. Jun10. Jun11. Jun12. Jun13. Jun14. Jun15. Jun16. Jun17. Jun18. Jun19. Jun20. Jun21. Jun22. Jun23. Jun24. Jun25. Jun26. Jun27. Jun28. Jun29. Jun30. Jun1. Jul2. Jul3. Jul4. Jul5. Jul6. Jul7. Jul8. Jul9. Jul10. Jul11. Jul12. Jul13. Jul14. Jul15. Jul16. Jul17. Jul18. Jul19. Jul20. Jul21. Jul22. Jul23. Jul24. Jul25. Jul26. Jul27. Jul28. Jul29. Jul30. Jul31. Jul0k1k2k3k4k5k
For more information on the journal statistics, click here.
Multiple requests from the same IP address are counted as one view.
Sazed, S.A.; Kibria, M.G.; Alam, M.S. An optimized real-time qpcr method for the effective detection of human malaria infections. Diagnostics 2021, 11, 736. [Google Scholar] [CrossRef]
Grignard, L.; Nolder, D.; Sepúlveda, N.; Berhane, A.; Mihreteab, S.; Kaaya, R.; Phelan, J.; Moser, K.; van Schalkwyk, D.A.; Campino, S.; et al. A novel multiplex qPCR assay for detection of Plasmodium falciparum with histidine-rich protein 2 and 3 (pfhrp2 and pfhrp3) deletions in polyclonal infections. EBioMedicine 2020, 55, 102757. [Google Scholar] [CrossRef]
Aimeé, K.K.; Lengu, T.B.; Nsibu, C.N.; Umesumbu, S.E.; Ngoyi, D.M.; Chen, T. Molecular detection and species identification of Plasmodium spp. infection in adults in the Democratic Republic of Congo: A populationbased study. PLoS ONE 2020, 15, e0242713. [Google Scholar] [CrossRef]
Leski, T.A.; Taitt, C.R.; Swaray, A.G.; Bangura, U.; Reynolds, N.D.; Holtz, A.; Yasuda, C.; Lahai, J.; Lamin, J.M.; Baio, V.; et al. Use of real-time multiplex PCR, malaria rapid diagnostic test and microscopy to investigate the prevalence of Plasmodium species among febrile hospital patients in Sierra Leone. Malar. J. 2020, 19, 84. [Google Scholar] [CrossRef] [PubMed]
Leski, T.A.; Taitt, C.R.; Colston, S.M.; Bangura, U.; Holtz, A.; Yasuda, C.Y.; Reynolds, N.D.; Lahai, J.; Lamin, J.M.; Baio, V. Prevalence of malaria resistance-associated mutations in Plasmodium falciparum circulating in 2017–2018, Bo, Sierra Leone. Front. Microbiol. 2022, 13, 1059695. [Google Scholar] [CrossRef] [PubMed]