Data availability 数据可用性
数据将根据要求提供。

Fig. 1. Zone partitioning of FCC materials on the orientation map in the load direction and crystal rotation trends in different zones.
图 1. 负载方向上 FCC 材料在取向图上的区域划分及不同区域内的晶体旋转趋势。

Fig. 2. In-situ tensile module and the design tensile sample.
图 2. 原位拉伸模量及设计拉伸样品。

Fig. 3. Microstructure information of initial material. (a) SEM image of the region of interest before deformation, (b) IPF map, (c) microstructure information and (d) the corresponding pole figure of the material after solution treatment.
图 3. 初始材料的微观结构信息。(a)变形前感兴趣区域的 SEM 图像,(b)IPF 图,(c)材料在固溶处理后的微观结构信息,(d)相应的极图。

Fig. 4. Strain-stress results of in-situ tensile and validation experiments with the Zwick-Z250 testing machine.
图 4. Zwick-Z250 试验机进行原位拉伸和验证实验的应变-应力结果

Fig. 5. Corresponding SEM images, EBSD maps and misorientation information of the in-situ sample, (a)(b)(c) I1stage, (d)(e)(f) I2 stage, (g)(h)(i) I3 stage and (j)(k)(l) I4 stage.
图 5. 原位样品的相应 SEM 图像、EBSD 图谱和取向差信息,(a)(b)(c) I1 阶段,(d)(e)(f) I2 阶段,(g)(h)(i) I3 阶段和(j)(k)(l) I4 阶段。

Fig. 6. Dislocation density at different deformation stages.
图 6. 不同变形阶段的位错密度。

Fig. 7. SEM images of the deformation region at different stages (a) 4 % deformation, (a-1) magnified view of the local slip traces at 4 % deformation; (b) 10 % deformation; (c) 18 % deformation.
图 7. 不同变形阶段的变形区域 SEM 图像 (a) 4%变形,(a-1) 4%变形时局部滑移痕迹的放大视图; (b) 10%变形; (c) 18%变形。

Fig. 8. Microcracking due to intergranular compounds and EDS results of the elemental composition of the compounds.
图 8. 沿晶化合物引起的微裂纹和化合物的元素组成 EDS 分析结果。
Table 1. The slip systems considered in this research and the numbers.
表 1. 本研究考虑的滑移系统及其编号。
| No. 编号 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|
| Slip system 滑移系统 | (111)[01 ] | (111)[ 01] | (111)[1 0] | ( 1)[0] | ( 1)[101] | ( 1)[ 10] |
| No. 编号 | 7 | 8 | 9 | 10 | 11 | 12 |
| Slip system 滑移系统 | (1 )[0 1] | (1 )[ 0] | (1 )[110] | ( 1)[011] | ( 1)[10 ] | ( 1)[ 0] |

Fig. 9. SEM image of deformed grains and the results of slip trace analysis, (a)(b)(c) SEM images of I2, I3, and I4 stages, respectively, and (d) slip trace analysis of the example grains, (a-2)(b-2)(c-2) SEM images of grain 52 of I2, I3, and I4 stages, respectively.
图 9. 变形晶粒的 SEM 图像和滑移迹线分析结果,(a)(b)(c)分别为 I2、I3 和 I4 阶段的 SEM 图像,(d)为典型晶粒的滑移迹线分析,(a-2)(b-2)(c-2)分别为 I2、I3 和 I4 阶段晶粒 52 的 SEM 图像。
Table 2. Analysis results of the activated slip systems and the corresponding Schmid factor.
表 2. 激活滑移系统的分析结果及对应的 Schmid 因子。
| Grain ID 晶粒 ID Euler angle 欧拉角 | 1st slip system 第一滑移系统 SF and Rank SF 和 Rank | 2ed slip system 2ed 滑移系统 SF and Rank SF 和 Rank |
|---|---|---|
35 (334.8, 144.2, 250.2) | S12 −0.4829 and 1 −0.4829 和 1 | S6 −0.4793 and 2 -0.4793 和 2 |
| S7 0.3488 and 5 0.3488 和 5 | ||
| 42 (351, 154.2, 257.3) | S7 0.4366 and 1 0.4366 和 1 | S6 −0.4311 and 3 -0.4311 和 3 |
| 43 (134.6, 140.5, 215.2) | S6 −0.4760 and 1 -0.4760 和 1 | None |
49 (343.8, 146.2, 242.3) | S7 0.4746 and 1 0.4746 和 1 | S10 −0.4440 and 2 −0.4440 和 2 |
| S6 −0.4267 and 3 −0.4267 和 3 | ||
| 50 (337.1, 149.4, 236.4) | S7 0.4627 and 1 0.4627 和 1 | S6 −0.4445and 2 −0.4445 和 2 |
| 52 (314.7, 143.2, 233.9) | S12 −0.4975 and 1 −0.4975 和 1 | S6 −0.4817 and 2 −0.4817 和 2 |
| 54 (39.5, 143.3, 180.7) | S2 −0.4245 and 1 −0.4245 和 1 | None 无 |
| 56 (74.6, 148.2, 239.7) | S9 −0.4879 and 1 −0.4879 和 1 | None 无 |
| 61 (72.4, 141.9, 226.9) | S9 −0.4483 and 1 -0.4483 和 1 | None 无 |
| 64 (60.4, 139.2, 206.7) | S9 −0.4230 and 1 -0.4230 和 1 | None 无 |

Fig. 10. The phenomenon of plastic transfer between grains, (a) the identification numbers of the grains, grain boundary designations, and the schematic representation illustrating dislocation transfer on both sides of the grain boundary; (b) plasticity transfer during the I3 stage among grains numbered 42, 49, and 50; (c) plasticity transfer between grains during the I4 stage.
图 10. 晶粒间的塑性传递现象,(a) 晶粒编号、晶界标识以及示意图,展示了晶界两侧的位错传递;(b) 编号为 42、49 和 50 的晶粒在 I3 阶段的塑性传递;(c) I4 阶段晶粒间的塑性传递。
Table 3. Plasticity transfer conditions and for grain boundaries in Fig. 10.
表 3. 图 10 中晶界的塑性传递条件和 。
| GB ID | Transfer or not 转移或不转移 | Pair and m' 成对和 m' | GB ID | Transfer or not 转移或不转移 | Pair and m' 成对和 m' |
|---|---|---|---|---|---|
| 1 (35/42) | Yes 是 | S6-S6:0.9606 S7-S7:0.9571 | 9 (50/56) | No 否 | S7-S9:0.0549 S6-S9:0.7780 |
| 2 (42/43) | No 否 | S7-S6:0.1161 | 10 (50/54) | No 否 | S7-S2:0.1128 S6-S2:0.3241 |
| 3 (42/50) | Yes 是 | S6-S6:0.9760 S7-S7:0.9782 | 11 (64/61) | Yes 是 | S9-S9:0.9629 |
| 4 (42/49) | Yes 是 | S7-S7:0.9782 | 12 (61/56) | Yes 是 | S9-S9:0.9710 |
| 5 (49/50) | Yes 是 | S7-S7:0.9951 S6-S6:0.9956 | 13 (56/52) | No 否 | S9-S12:0.0008 S9-S6:0.7909 |
| 6 (49/52) | No 否 | S7-S12:0.2733 | 14 (61/54) | No 否 | S9-S2:0.0310 |
| 7 (49/56) | No 否 | S7-S9:0.0453 S10-S9:0.0348 S6-S9:0.8096 | 15 (56/54) | No 否 | S9-S2:0.0528 |
| 8 (50/43) | No 否 | S7-S6:0.1062 | 16 (54/43) | No 否 | S2-S6:0.2960 |

Fig. 11. Crytal plasticity model construction and mechanical response fitting results: (a) IPF map of initial microstructure processed through DREAM.3D, (b) RVE model constructed based on the microstructure data from Fig. (a), (c) mechanical response curves fitting results between crystal plasticity simulation and experiments.
图 11. 晶体塑性模型构建和力学响应拟合结果:(a) 通过 DREAM.3D 处理的初始微观结构 IPF 图,(b) 基于图(a)微观结构数据构建的 RVE 模型,(c) 晶体塑性模拟与实验之间的力学响应曲线拟合结果。
Table 4. Calibrated material parameters used for crystal plasticity simulation of Al-Zn-Mg-Cu alloy.
表 4. 用于 Al-Zn-Mg-Cu 合金晶体塑性模拟的校准材料参数。
| Parameter 参数 | C11 | C12 | C44 | h0 | |
|---|---|---|---|---|---|
| Values 值 | 106.9 GPa | 60.5 GPa | 28.4 GPa | 0.001 | 200 MPa |
| Parameters 参数 | m | a | |||
| Values 值 | 60 MPa | 250 MPa | 20 | 2.25 |

Fig. 12. Crystal plasticity simulation results with microscopic strain distributions of (a) 1 %, (b) 4 %, (c) 10 %, and (d) 18 %, where the dashed area indicates the size of the initial model without deformation.
图 12. 晶体塑性模拟结果及微观应变分布:(a) 1 %,(b) 4 %,(c) 10 %,(d) 18 %,其中虚线区域表示初始模型未变形时的尺寸。

Fig. 13. Crystal plasticity simulation results with microscopic equivalent stress distributions of (a) 1 %, (b) 4 %, (c) 10 %, and (d) 18 %, where the dashed area indicates the size of the initial model without deformation.
图 13. 晶体塑性模拟结果及微观等效应力分布:(a) 1 %,(b) 4 %,(c) 10 %,(d) 18 %,其中虚线区域表示初始模型未变形时的尺寸。

Fig. 14. TEM results of dislocation transfer and blocking at grain boundaries. (a-1)(a-2)(a-3) Dislocation transfer phenomenon at grain boundaries in larger view, in diffraction view of the positive lower-left grain view and in diffraction view of the positive upper-right grain; (b-1) (b-2) Dislocation blocking at grain boundaries, (b-3) HRTEM characterization of the region of the green region in Fig. (b-1), (b-4) (b-5) (b-6) IFFT results for regions 1, 2, and 3 selected by the red dashed lines in Fig. (b-3), respectively. All TEM tests were conducted under the [011] zone axis condition. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
图 14. 晶界处位错转移和阻塞的 TEM 结果。(a-1)(a-2)(a-3) 晶界处位错转移现象的放大视图,位于左下正晶区的衍射视图和位于右上正晶区的衍射视图;(b-1) (b-2) 晶界处位错阻塞,(b-3) 图(b-1)中绿色区域的区域 HRTEM 表征,(b-4) (b-5) (b-6) 分别为图(b-3)中红色虚线选定的区域 1、2 和 3 的 IFFT 结果。所有 TEM 测试均在[011]晶带轴条件下进行。(对于本图例中颜色引用的解释,读者请参阅本文的网页版本。)

Fig. 15. (a) Schematic diagram of plasticity transfer and residual dislocations at grain boundaries, (b) Example of localized plasticity transfer and dislocation plugging by in-situ SEM test.
图 15. (a) 晶界处的塑性转移和残余位错示意图,(b) 原位 SEM 测试中局部塑性转移和位错堵塞的示例。

Fig. 16. Statistical information of determination parameters, (a) versus gb misorientation; (b) multiply by Schmid factors of the corresponding slip system pairs versus gb misorientation; (c) ratio of to rBv versus gb misorientation; (d) rBv versus .
图 16. 确定参数的统计信息,(a) 与 gb 位向差; (b) 乘以相应滑移系统对的 Schmid 因子与 gb 位向差; (c) 与 rBv 的比值与 gb 位向差; (d) rBv 与 。


Fig. 17. Orientation distribution and the evolution process, the misorientation information along the line and evolution process along the tensile direction, (a-1)(a-2)(a-3)(a-4)(a-5)(a-6) grain 42; (b-1)(b-2)(b-3)(b-4)(b-5)(b-6) grain 49; (c-1)(c-2)(c-3)(c-4)(c-5) (c-6) grain 54; The black, red, blue, yellow and purple dots set represents the I0, I1, I2, I3 and the I4 stage. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
图 17. 取向分布和演化过程,沿线的取向差信息及沿拉伸方向的演化过程,(a-1)(a-2)(a-3)(a-4)(a-5)(a-6)晶粒 42;(b-1)(b-2)(b-3)(b-4)(b-5)(b-6)晶粒 49;(c-1)(c-2)(c-3)(c-4)(c-5)(c-6)晶粒 54;黑色、红色、蓝色、黄色和紫色点集分别代表 I0、I1、I2、I3 和 I4 阶段。(对于本图例中颜色引用的解释,读者请参阅本文的网页版本。)

Fig. 18. IPF maps of Al-Zn-Mg-Cu alloys at maximum deformation (18 %) and the corresponding orientation distribution characteristics along the tensile direction. (a) grain 42; (b) grain 49; (c) grain 54.
图 18. Al-Zn-Mg-Cu 合金在最大变形(18%)时的 IPF 图谱及沿拉伸方向的取向分布特征。(a)晶粒 42;(b)晶粒 49;(c)晶粒 54。

Fig. 19. Distribution of normal stresses during deformation, (a) 1 %, (b) 4 %, (c) 10 %, and (d) 18 %.
图 19. 变形过程中正应力的分布,(a) 1%,(b) 4%,(c) 10%,(d) 18%。