Journal of the Mechanics and Physics of Solids
《固体力学与物理学杂志》
第 60 卷,第 6 期,2012 年 6 月,第 1201-1220 页
Slip transfer and plastic strain accumulation across grain boundaries in Hastelloy X
滑移转移和 Hastelloy X 中的晶界塑性应变累积
Abstract 摘要
在本研究中,采用高分辨率的离体数字图像相关(DIC)技术,测量了镍基高温合金 Hastelloy X 在单轴拉伸过程中的塑性应变累积,空间分辨率为亚晶粒级。此外,利用电子背散射衍射(EBSD)技术,以相似的空间分辨率表征了基体微观结构。通过结合晶体取向数据和塑性应变测量,在感兴趣区域(即包含约 600 个晶粒和退火孪晶的集合体)内,空间计算了各个滑移系统上的分切应变。全场 DIC 测量结果显示,塑性响应具有高度异质性,晶粒内部和晶界(GBs)之间的应变幅值存在显著差异。我们利用实验结果研究这些应变变化,特别关注了晶界滑移传递在应变异质性发展中的作用。 对于多晶聚集体中的每一个晶界,我们已经确定了最可能的位错反应,并利用这些信息计算了由于滑移在各个界面传递所导致的残余伯格斯矢量和塑性应变的大小。我们还使用了分子动力学模拟(MD)来确定所选情况下滑移传递的能量势垒,这些情况产生了不同大小的残余伯格斯矢量。从我们的分析中,我们展示了残余伯格斯矢量的大小与晶界处塑性应变之间的反比关系。此外,分子动力学模拟揭示了在残余伯格斯矢量较大时滑移传递具有更高的能量势垒。因此,我们强调了考虑残余伯格斯矢量大小的重要性,以获得对晶界滑移传递阻力更好的描述,这反过来又影响了晶界附近的局部塑性应变。
Highlights 要点
► 我们通过实验研究晶界附近的局部变形,识别了分解剪切应变。 ► 我们关注滑移在晶界间的传递在导致应变异质性问题中的作用。 ► 采用高分辨率 DIC 和 EBSD 技术评估核心区和包覆区的局部滑移系统活动。 ► 通过分子动力学建立滑移在晶界间传递的能量势垒。 ► 剩余伯格斯矢量的幅度影响晶界的抗力。
Keywords 关键词
晶界微观结构位错多晶材料滑移传递
1. Introduction 1. 引言
在多晶金属的变形过程中,某些晶界(GBs)充当障碍物,阻碍滑移,导致位错堆积和应力集中(Eshelby 等人,1951 年,Hall,1951 年,Petch,1953 年)。其他晶界则允许入射位错部分或完全通过晶界。在部分位错传递的情况下,晶界平面上会留下残余位错;而在完全传递的情况下,晶界两侧的位错反应发生,没有残余伯格斯矢量,即交叉滑移(Sutton 和 Balluffi,2006 年)。晶界平面上的残余伯格斯矢量的幅度对晶界抵抗滑移传递具有主要影响(Lim,1984 年,Lim 和 Raj,1985 年,Lee 等人,1989 年)。预计那些有利于滑移传递的晶界会在晶界平面上产生较低的残余伯格斯矢量,并在界面两侧表现出滑移诱导应变。相反,阻碍滑移的晶界预计会在界面一侧的晶粒中表现出高应变,但在相邻晶粒中则相对应变较小。 这种晶界对滑移传递的阻力与晶界处塑性变形的幅度之间的相关性需要进一步定量研究,因为它可以增进我们对微观结构水平塑性变形的理解,以及那些可能成为损伤起始前兆的应变积累。在本研究中,我们的目标不仅是更深入地理解多晶聚集体中晶界附近的应变积累,还定量评估晶界对滑移传递的阻力,最终可用于预测性应用。我们关注镍基超级合金 Hastelloy X 的单轴塑性变形响应中滑移传递的作用。
对滑移传递的基本理解是通过研究单个晶界(Livingston 和 Chalmers,1957 年,Shen 等人,1986 年,Lee 等人,1989 年)而发展起来的。在这些精心设计的实验工作中,利用了不同的参数来帮助预测实验中观察到的滑移传递反应。Livingston 和 Chalmers(1957 年)提出了一个几何标准,用于预测由于位错堆积而在晶界处特定滑移系统的激活。Shen 等人(1986 年)引入了这个标准的改进版本,其中他们增加了一个额外的要求,即 outgoing、激活系统上的 resolved shear stress 必须最大化。Lim 和 Raj(1985 年)提出,晶界平面中的残余位错(即部分传递的情况)在滑移传递机制中起着重要作用。Lee 等人,1989 年,Lee 等人,1990 年后来将减少边界中的这种残余位错作为滑移传递预测的附加标准(LRB 标准)。 通过原子级模拟(例如分子动力学模拟),实现了更深入的分析。这种工具为定量研究不同位错类型和晶界结构的位错/晶界相互作用细节提供了可能。例如,Jin 等人(2008)利用材料相关的能量势垒解释了除滑移传递外的不同相互作用行为,包括部分位错的形核。Dewald 和 Curtin(2011)利用分子动力学模拟提出了一个改进的滑移传递判据,该判据除了包含 LRB 判据外,还考虑了晶界位错和晶界台阶的特性,以及非 Schmid 应力的作用。这类模拟与实验研究相结合,有助于我们深化对位错/晶界相互作用的基本理解。
在滑移传递的实验研究中,通过透射电子显微镜(TEM)建立了剩余伯格斯矢量(b r ),而在分子动力学(MD)中,则根据考虑单个位错/晶界相互作用(Ezaz 等人,2010)或堆垛(Dewald 和 Curtin,2007a,Dewald 和 Curtin,2007b,Dewald 和 Curtin,2011)的模拟进行预测。在这两种情况下,都考虑了有限数量的晶界。然而,随着通过多尺度模型和实验将微观结构行为与宏观响应联系起来的需求日益增加,研究在 TEM 或通过模拟所能实现的远大于此数量的晶界上的滑移传递或阻塞将具有重要意义。因此,为了进一步深入了解 b r 在多界面滑移传递和塑性应变累积中的作用,本研究将致力于在多晶聚集体中考虑大量晶界。
实验技术如背散射电子衍射(EBSD)可识别晶粒取向和晶界类型(Engler 和 Randle,2010),而数字图像相关(DIC)提供全场应变测量(Sutton 等人,1983;Efstathiou 等人,2010)。利用这两种工具研究大量晶粒,可以更定量地理解晶界(GBs)在塑性变形过程中对局部应变异质性的发展影响。在本研究中,采用高分辨率 DIC 来获取晶界处塑性应变累积的测量数据。结合来自 EBSD 的晶体学取向测量信息,用于确定因滑移传递而产生的残余位错。基于这些定量结果,我们研究了 b r 与滑移传递导致的晶界处应变幅值之间的关系。
本研究调查的材料 Hastelloy X 是一种镍基超级合金,设计用于高温应用。在先前的研究中,研究人员已对 Hastelloy X 在静态(例如,Rowley 和 Thornton,1996)、疲劳(例如,Miner 和 Castelli,1992)、裂纹扩展(例如,Huang 和 Pelloux,1980)和蠕变载荷条件下进行了研究。然而,在微观结构水平上的局部材料响应尚未被研究过,并且将在当前工作中着重于晶界滑移传递的研究。
总之,我们旨在进一步研究残余伯格斯矢量在介观尺度滑移传递和塑性应变累积中的作用。为此,我们报告了一项系统实验的分析(详见第 2 节),其中结合数字图像相关法和电子背散射衍射技术,对整个微观结构中晶界附近的变形进行检测(第 3 节)。我们确定了微观结构中每个晶界两侧晶体学滑移系统上的剪切应变(即确定局部滑移系统活动性)。基于这些信息,关于激活的滑移系统,我们计算了由于滑移传递而在包覆区域(如第 3.2 节所定义)产生的残余伯格斯矢量和应变累积的估计值。本研究报告的结果有助于更好地理解晶界在调节滑移和导致局部变形异质性方面的作用。
2. Material and methods 2. 材料和方法
2.1. Material 2.1. 材料
本研究研究了市售的多晶 Hastelloy X,一种镍基高温合金。该合金由制造商在 1177 °C 进行固溶热处理。从退火状态下的 3.2 mm 厚板材上用电火花加工成 4.0×3.2 mm 横截面的狗骨式试样。样品的总尺寸是根据载荷框架的加载能力和 EBSD 系统可研究的最大样品尺寸选择的。试样的表面使用 SiC 砂纸(最高 P1200)进行机械抛光,然后用氧化铝抛光粉(最高 0.3 μm)进行更精细的抛光,最后用胶体二氧化硅进行振动抛光(0.05 μm)。最终表面光洁度足以使用 EBSD 进行微观结构表面表征。

Fig. 1. (a) EBSD grain orientation map of the region of interest. Notice the fiducial markers used for outlining the region of interest. (b) Enlarged view of the region outlined with the black rectangle in (a) showing a high percentage of annealing twin boundaries (Σ3 GBs).
2.2. High resolution plastic strain measurements using DIC
在 EBSD 之后,为进行 DIC 测量,在样品表面应用了细小颗粒图案。使用光学显微镜在 31 倍放大倍数下(0.14 μm/像素)拍摄参考图像。图 2 展示了一个参考图像示例,其中包含颗粒图案和本研究中使用的子集尺寸(101×101 像素)。需要 316 张重叠图像来覆盖由压痕标记界定的感兴趣区域。这些参考图像被拼接生成一张覆盖完整感兴趣区域的高分辨率参考图像。然后使用伺服液压加载框架对样品进行单轴拉伸至 2.2%名义应变(使用应变控制,应变速率为 1.83×10 −4 s −1 ),随后卸载(使用载荷控制)。卸载后,使用 12.7 mm(½″)量程引伸计测量总残余应变为 2%名义应变。随后,按照与参考图像相同的程序拍摄并拼接了 316 张变形图像。通过 DIC 获得平面位移,并对结果进行微分以获得高分辨率应变场。 用于 DIC 的子集尺寸(14 μm)小于平均晶粒尺寸(50 μm),允许进行亚晶粒级别的变形测量分辨率(每个晶粒的平均 DIC 相关点数=350)。在 EBSD 取向图和 DIC 等高线图中可见的基准标记,使得测量应变场与感兴趣区域中的基础微观结构能够精确对齐(Carroll 等人,2010)。这种测量程序的优势在于它能够定量分析多晶样品中塑性应变场与其基础微观结构的关系。利用该技术研究了微观结构的各个方面,如晶界和晶粒取向,以及它们对塑性应变积累的影响。

Fig. 2. A reference image captured using the optical microscope at 31×magnification. The subset size and one of the fiducial markers used for alignment with microstructural information from EBSD are shown in the figure.
图 2. 使用光学显微镜在 31 倍放大倍数下拍摄的一个参考图像。图中显示了子集尺寸和用于与 EBSD 微观结构信息对齐的一个基准标记。
3. Results and analysis 3. 结果与分析
3.1. Local plastic strain
3.1. 局部塑性应变


Fig. 3. (a)–(c) Contour plot of the horizontal (εxx), shear (εxy), and vertical (εyy) strain fields with overlaid grain boundaries. The reference and deformed images for DIC are a composite of 316 images at 31× magnification (exsitu). (d) Enlarged view of the region outlined with the black rectangle in (c). The red box in the upper left corner shows the subset size used for this correlation. Note that the subset size is much smaller than the average grain size providing sub-grain level measurement accuracy. High strains can be detected in the vicinity of grain boundaries (some indicated with black arrows). GB character is shown for some boundaries, where IR indicates irrational GBs.
我们分析中的第三方向剪切应变分量ε xz 和ε yz 仍然未知(与任何表面测量技术一样)。通过使用测量的和计算的塑性应变张量分量,并假设未知分量为零,我们使用以下公式空间地计算了有效塑性应变ε eff p 的估计值:(2)
为了评估和分析微观结构的影响,从 EBSD 中获取的局部晶体学取向被数字叠加到 DIC 应变数据上,即对于每个点,空间应变和取向数据被整合。最终,该区域中的每个点都具有应变张量的四个分量(ε xx ,ε yy ,ε xy ,和ε zz )、有效塑性应变以及相关的局部晶体学取向。这使得可以在所有应变等值线图上叠加晶界,例如图 3(c)中所示ε yy 的情况。
从应变等值线图中可以观察到显著的异质性。在图 3(c)中,深红色渲染的区域应变超过 3%(ε场平均=2%),而深蓝色渲染的区域应变约为 0%,在某些区域甚至为负值,即压缩应变。这种应变变化似乎与局部微观结构有关。例如,在许多晶界附近可以观察到高应变(图 3(d))。在下一节中,我们将定量评估晶界存在与塑性应变局部异质性之间的相关性。
3.2. Grain boundary mantles
3.2. 晶界包层
在晶粒尺度上的全场应变测量使我们能够针对晶粒的特定区域进行分析,从而促进非均匀应变的积累。这是通过结合高分辨率 DIC 和 EBSD 将每个晶粒分离为核心和包膜区域来实现的。核心指晶粒内部,包膜指邻近晶粒附近的区域,即靠近晶界(GB)的区域(Meyers and Ashworth, 1982)。因此,每个晶粒都有若干个包膜,对应于其邻近晶粒的数量。在界面两侧表现出高应变的包膜区域可以与晶界滑移的传递相关联,而阻碍滑移的边界,即屏蔽边界,在界面一侧的包膜中具有高应变,而在另一侧的包膜中具有低应变。
在本节中,我们通过 DIC 应变测量和晶界位置建立了晶界包覆层尺寸的实验估计。为此,我们计算了每个 DIC 测量点到最近晶界的空间距离,如图 4(a)插图所示。这有助于根据与晶界的距离对应变数据进行分组。由于本研究关注的是可能与晶界滑移传递相关的高应变区域,因此仅考虑了高应变点(>ε eff p 场平均=2.08%)。然后,我们根据这些点与最近晶界的距离进行分组,并计算了每个分组的平均应变。图 4(a)显示了平均有效塑性应变ε eff p 与最近边界距离的曲线图(该图仅考虑了>ε eff p 场平均=2.08%的点)。我们观察到,随着我们远离晶界(包覆层区域)并接近晶粒内部区域(核心),高应变的幅度逐渐减小。

Fig. 4. (a) Average effective plastic strain εeffp versus distance from the closest boundary (only high strain points were considered). For each point in the region of interest the distance to the closest GB is measured as shown schematically for a single point in the inset of (a). The data points were then binned based on their distance from the nearest boundary (x axis). The y axis represents the average strain in each distance bin. The figure indicates that high strains localize in the vicinity of the boundary (GB mantle) and that the degree of localization decreases as we move away from the boundary (core of the grain). At∼10 μm distance from the boundary, the rate of this decrease changes as observed by the change in slope of the black dashed line. This point was used as an estimate of the GB mantle size as it marks a transition in response as we move away from the GB and approach the core of the grain. (b) Examples showing the experimentally defined GB mantles.
图 4. (a) 平均有效塑性应变ε eff p 与距离最近边界(仅考虑高应变点)。对于感兴趣区域中的每个点,其到最近 GB 的距离按(a)插入图中单个点的示意图所示测量。然后根据其到最近边界的距离(x 轴)对数据点进行分组。y 轴表示每个距离分组的平均应变。该图表明高应变集中在边界附近(GB 包覆层),且随着远离边界(晶粒核心)程度增加,局部化程度降低。在距离边界约 10 μm 处,这种降低的速率发生变化,如黑色虚线斜率的变化所示。这一点被用作估计 GB 包覆层尺寸的依据,因为它标志着当我们远离 GB 并接近晶粒核心时响应的变化。 (b) 展示实验定义的 GB 包覆层示例。
距离边界约 10 μm 处,从图 4(a)中黑色虚线的斜率变化可以看出,应变随距离边界的变化出现拐点。该点被用作实验测量的边界套层尺寸估计值,因为它标志着远离边界并接近晶粒核心时滑移响应的转变。一旦确定了套层尺寸,就在整个微观结构中为每个特定边界选择套层点,即选择距离边界在 10 μm 范围内的点。每个边界都有两个与之相关的套层,分别位于界面两侧的边界上。图 4(b)展示了本工作中定义的边界套层示例。通过勾画套层区域,可以通过从每个晶粒的总点数中减去所有套层点来确定每个特定晶粒的核心点。
在感兴趣区域(约 600 个晶粒)的整个微观结构中,芯区和壳区的ε eff p 应变直方图如图 5 所示。壳区点(即红色直方图)的直方图显示应变为 0 至 6%的范围,而芯区点(即黑色直方图)的应变范围较小,为 0.1 至 4.2%。与壳区直方图(标准差=0.9)相比,芯区直方图的均值周围散布较少(标准差=0.8)。我们还注意到,在图 5 中,壳区点的平均应变(2.05%)低于芯区点的平均应变(2.18%)。这主要归因于壳区某些区域的低应变,这些低应变降低了壳区点的平均应变。我们强调,存在低应变的壳区点并不与图 4(a)中的结果相矛盾,因为构建该图时仅使用了相对高应变的点,而图 5 中的结果则考虑了所有点,无论其大小如何。

Fig. 5. Histograms of the effective plastic strains for points in mantles (red histogram) and cores (black histogram). The histogram of points belonging to mantles shows a wide range of strains between 0 and 6%. The contour plot to right shows high strains in both mantles across the boundary. This can be an indication of slip transmission across the boundary (Transmitting mantles. See also Fig. 6). Other regions show high strains in only one of the mantles across the GB and relatively zero strains on the other side. This case can be associated blockage or shielding (Shielding mantle). The histogram of the points belonging to cores, i.e., black histogram, shows a smaller strain range between 0.1 and 4.2%. Less scatter around the mean is also observed for the core histogram (standard deviation=0.8) compared to mantle histogram (standard deviation=0.9).
从图 5 右侧的插图可以看出,一些高应变区域延伸至边界另一侧的邻近晶粒,并在晶界上显示出连续的滑移痕迹,例如图 6 所示。这可能是滑移通过边界传递的标志(传递包层)。其他区域(图 5 左侧的插图)只在晶界的一侧显示高应变,而另一侧应变相对较低。这种情况可能与阻塞或屏蔽(屏蔽包层)有关。研究区域内的所有晶界都进行了单独分析,并根据每个界面包层区域的应变大小将其分类为屏蔽晶界或传递晶界。在研究滑移传递时,我们仅分析了表现出晶界两侧高应变的传递包层。

Fig. 6. (a) SEM micrograph of a select region showing continuous slip traces across multiple GBs. This can be an indication of slip transmission across the boundary. (b) Contour plot of (εyy) showing high strains across the GBs with continuous slip traces (i.e., transmitting mantles). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
图 6. (a) 展示特定区域 SEM 显微图像,显示多条晶界上的连续滑移迹线。这可能表明滑移在晶界间传递。(b) (ε yy )的等值线图,显示晶界处存在高应变和连续滑移迹线(即传递包层)。(对于本图例中颜色引用的解释,请参阅本文的网络版本。)
3.3. Local slip system activity
3.3. 局部滑移系统活动
为了建立由滑移传递引起的残余伯格斯矢量的估计,需要关于传递过程中涉及的晶体学滑移系统的额外信息。传统上,通过滑移迹分析和小施密特因子计算相结合的方法(Zhang and Tong, 2004, Zhao et al., 2008, Bartali et al., 2009, Bieler et al., 2009)从实验中确定活动滑移系统。确定活动滑移系统的另一种方法利用测量的局部塑性应变和晶体取向来求解晶体学剪切应变(Tatschl and Kolednik, 2003)。使用这两种方法的计算结果分别在第 3.3.1 节滑移迹分析和第 3.3.2 节晶体学剪切应变增量中给出。
3.3.1. Slip trace analysis
3.3.1. 滑移迹分析

Fig. 7. SEM micrograph of the deformed sample showing traces of the activated slip systems (same region outlined in Fig. 3(d)). Possible traces of crystallographic slip planes can be specified on the sample’s surface using the local orientation data obtained from EBSD. Each colored line represents a different slip plane (fcc {1 1 1} slip planes). By matching the observed slip traces with the possible traces (i.e., colored lines), the activated slip planes can be specified. The numbers written next to two of the slip traces in the central grain represent the Schmid factors of the slip systems with the highest Schmid factor for the observed traces. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
图 7. 变形样品的 SEM 显微照片,显示了激活的滑移系统的痕迹(与图 3(d)中圈出的区域相同)。使用从 EBSD 获得的局部取向数据,可以在样品表面指定晶体学滑移面的可能痕迹。每条彩色线代表一个不同的滑移面(fcc {1 1 1}滑移面)。通过将观察到的滑移痕迹与可能的痕迹(即彩色线)进行匹配,可以指定激活的滑移面。中心晶粒中两条滑移痕迹旁边的数字表示具有最高 Schmid 因子的滑移系统的 Schmid 因子(对于观察到的痕迹)。(对于本图例中颜色引用的解释,读者请参阅本文的网页版本。)
3.3.2. Crystallographic shear strain increments
在尝试求解公式(3)时出现的问题是,激活的滑移系统的数量通常未知。此外,如果假设激活系统的数量,有人提出五个系统是满足兼容性所需的最小数量(Taylor,1938),这就产生了从十二个可能的系统中选择哪一组合的问题。Taylor 提出了一个模型来解决这个问题。在他的公式中,被认为实际起作用的是使剪切增量绝对值之和最小的组合(Taylor,1938)。此后,人们提出了不同的模型和更基于物理的本构公式来解决这个问题(Roters 等人,2010)。在当前工作中,使用粘塑性本构模型来求解整个微观结构中剪切应变增量的空间分布。在所使用的公式中,该公式在许多晶体塑性框架中是标准的,剪切应变率被写为每个滑移系统上解离剪切应力的函数(Hutchinson,1976):(4)where is the shear rate on slip system α, τα is the resolved shear stress, is a reference stress state, and and n are material parameters that describe the reference strain rate and the slip rate sensitivity, respectively. The term “sgn(τα)” in Eq. (4) is present in order to ensure that and τα have the same sign (i.e., positive work is being done). Eq. (4) can be rewritten as follows: (5)

Fig. 8. (a) Contour plot of the crystallographic shear increment on system 10 across the entire region of interest ( slip system). The dark blue color indicates no activity of that particular slip system while red colored regions indicate slip system activation. (b) An enlarged view of the smaller region outlined in (a) is shown for better visualization.

Fig. 9. (a)–(d)) Contour plot of the crystallographic shear increments in the region outlined with the black box in Fig. 3(c). Only the highest 4 activated systems are shown for increased clarity (systems 5, 6, 8 and 10). Different slip system activity in different regions of the central grain is clearly seen. Some systems are only activated in the vicinity of some grain boundaries (e.g., systems 5 and 8).
3.4. Residual Burgers vector

Fig. 10. Schematic of slip transmission through a grain boundary, where b1 and b2 are the Burgers vector of the incident and transmitted dislocations across the GB plane. Also, and θ is the angle between the lines of intersection between slip planes of the incident and transmitted dislocations and the GB plane. br is the residual dislocation left in the GB plane due to slip transmission.

Fig. 11. Grain boundary Schmid factor parameter versus residual burgers vector. The point to the left represents the interaction between slip system 6 in grain 1 and system 6 in grain 2. The contour plots of the shear increments show activation of systems 6 in mantle regions across the GB. The activation of both slip systems associated with this interaction point is considered an indication of slip transmission across the GB. The point to the right represents the interaction between systems 6 and 7. No transmission from system 6 in grain 1 to system 7 in grain 2. Notice the high residual burgers vector associated with this possible interaction. Also, the geometric condition θ for this interaction is larger than the point to the left were transmission is observed (θ6,7=24.5°>θ6,6=11.5°). This makes transmission less favorable due to the larger misalignment of slip planes. This can be visualized by looking at the possible slip traces for each slip system in both grains (dashed black line for system 6 and red for system 7).

Fig. 12. (a) Histogram of the minimum |br| for each of the transmitting GBs in the region of interest (∼1000 GBs). Notice that some of the transmission cases occur leaving relatively high magnitudes of br, e.g., 14% of GBs show |br|>0.7. Three distinct spikes in the number of GBs having similar |br| can be observed at . Most of these boundaries were characterized as Σ3 type. The first spike is at |br|=0, this represent cross slip across the GB leaving no residual in the GB plane as shown schematically in (b). The second spike is at ; this reaction leaves a partial dislocation step in the GB plane as shown in (c). The third spike is at , which leaves a full dislocation step in the GB plane as shown in (d).

Fig. 13. Strain across grain boundaries versus residual Burgers vector. The strain across GBs is calculated by adding the average strains in both mantles across the boundary. Boundaries that show higher strains across the GB exhibit lower residual Burgers vectors. This can be related to the GB resistance to slip transmission.
4. Molecular dynamics simulations
4. 分子动力学模拟

Fig. 14. (a) Schematic of control volume placed around the interaction region between the incident dislocation and the GB. This control volume is used to observe the energy during slip transmission. A void is used to nucleate a dislocation that eventually interacts with the GB and transmits to the other grain across the interface. (b) Atomistic snapshot view showing the slip-GB interaction similar to (a).

Fig. 15. (a) Dislocation transmission through a Σ7 GB. (b) Dislocation transmission through a Σ9 GB. Notice that the interaction with the Σ7 GB leaves a higher |br| compared to the Σ9 GB (0.41a>0.22a). The corresponding energy barriers shown in (c) and (d) show a higher energy barrier for slip transmission in the Σ7 case (higher |br|) compared to the Σ9 case (lower |br|), respectively.
5. Discussion 5. 讨论
尽管之前提到的局限性可能会影响单个晶界的实验结果,但我们认为,由于最终结论是基于大量晶界的平均响应得出的,因此这些局限性对当前工作所做的一般性观察的影响将是最小的。
6. Conclusions 6. 结论
采用高分辨率 DIC 和 EBSD 研究了多晶样品的单轴塑性变形响应与其微观结构的关系。这项工作的目的是更深入地了解多晶聚集体中晶界附近的应变积累情况。本研究的结论总结如下:
- 1.We present an experimental and analysis procedure, that provides point-wise comparisons between strain fields (from DIC) and microstructure (from EBSD). The significance of this approach is that it enables quantitative analysis of local deformation in the vicinity of every grain boundary within a polycrystalline aggregate. These experimental tools were utilized to provide further insight into the role of the residual Burgers vector in slip transmission and plastic strain accumulation in the vicinity of GBs. This correlation between plastic strain magnitudes across GBs and the residual Burgers vector has not been investigated before. A better quantitative understanding of the local plastic strain magnitudes is of significant importance since the development of such deformation heterogeneities is a precursor to crack initiation.
我们提出了一种实验和分析程序,该程序可在应变场(来自 DIC)和微观结构(来自 EBSD)之间进行逐点比较。这种方法的重大意义在于它能够对多晶聚集体中每个晶界附近的局部变形进行定量分析。这些实验工具被用于进一步深入了解残余伯格斯矢量在晶界附近滑移传递和塑性应变累积中的作用。这种晶界处塑性应变幅度与残余伯格斯矢量之间的相关性之前尚未被研究过。对局部塑性应变幅度的更好定量理解非常重要,因为这种变形异质性的发展是裂纹萌生的前兆。 - 2.For an entire aggregate, we determined the residual Burgers vector and strain magnitudes across every GB due to slip transmission. Since a large number of GBs was investigated, we were able to establish an inverse relation between |br| and the magnitudes of strain across GBs. To the best of our knowledge, no similar results have been presented in the literature where such a large number of GBs was considered with sufficient details to derive general conclusion concerning the impact of slip transmission on the development of local deformation heterogeneity.
对于整个聚集体,我们确定了由于滑移传递而在每个晶界处产生的残余伯格斯矢量和应变大小。由于研究了大量晶界,我们能够建立|b r |与晶界处应变大小之间的逆关系。据我们所知,在文献中尚未提出过类似结果,其中考虑了如此大量的晶界,并提供了足够的细节来得出关于滑移传递对局部变形非均匀性发展影响的普遍结论。 - 3.The MD simulations revealed a higher energy barrier to slip transmission at high |br|. These energy barriers, analogous to the GB resistance to slip transmission, have an influence on the strain magnitudes across GBs.
分子动力学模拟揭示在高|b r |时滑移传递的能量势垒更高。这些能量势垒类似于晶界对滑移传递的阻力,对晶界处的应变大小有影响。 - 4.The higher strains across certain boundaries, at low |br|, were associated with lower GB resistance against slip transmission while lower strains across GBs, at high |br|, were attributed to higher resistance against slip transmission.
在低|b r |时,某些晶界处的较高应变与晶界对滑移传递的较低阻力有关,而在高|b r |时,晶界处的较低应变则归因于对滑移传递的较高阻力。 - 5.The reactions we inferred for slip transmission across Σ3 GBs revealed a larger number of boundaries with |br|=0, i.e., cross slip, compared to other types of reaction resulting in higher magnitudes of the residual Burgers vector. This in turn results in higher strain magnitudes across these interfaces, with |br|=0, compared to other GBs.
我们推断的Σ3 晶界滑移传递反应显示,与其他导致残余伯格斯矢量幅值更高的反应类型相比,存在更多|b r |=0 的边界,即交叉滑移。这反过来导致在这些界面上的应变幅值更高,与|b r |=0 的其他晶界相比。 - 6.We made a distinction between core and mantle regions for each grain through the utilization of high resolution DIC and EBSD. We also proposed a classification of each mantle as a high or low strain mantle and associated these two types of mantles with shielding or slip transmission across GBs. This demarcation of mantles based on strain magnitudes allows a better characterization of the local plastic deformation and how it relates to the microstructure of the material.
我们通过高分辨率 DIC 和 EBSD 技术区分了每个晶粒的核心区和幔区。我们还提出了将每个幔区分类为高应变幔区或低应变幔区的分类方法,并将这两种类型的幔区与晶界上的屏蔽或滑移传递相关联。基于应变幅值的幔区划分,可以更准确地描述局部塑性变形及其与材料微观结构的关系。
Acknowledgments 致谢
这项工作得到了中西部结构科学中心(MSSC)的支持,该中心由美国空军研究实验室的航空器部根据合同号 FA8650-06-2-3620 提供支持。这项工作还部分得到了 NSF 资助项目 CMMI-09-26813 和 DMR-08-03270 的支持。作者感谢 Armand J. Beaudoin 教授的启发性讨论。EBSD 结果是在伊利诺伊大学弗雷德里克·塞兹材料研究实验室中央设施助理 Dr. Jim Mabon 的帮助下获得的,该设施部分得到了美国能源部根据资助项目 DE-FG02-07ER46453 和 DE-FG02-07ER46471 的支持。
Appendix 附录
本附录提供了晶体坐标系和样品坐标系之间坐标变换的详细信息。我们还报告了计算 Schmid 因子(例如表 1 所示)的步骤,这些因子来自 EBSD 晶体取向测量(即欧拉角)。
- 1.Using the Euler angles (φ1, Φ, φ2), the rotation matrix g is determined using the following equation (Bunge definition).
使用欧拉角(φ 1 , Φ,φ 2 ),根据以下方程(Bunge 定义)确定旋转矩阵 g。(A1) - 2.To transform from sample frame to crystal frame, the following equations are used
要从样品坐标系转换为晶体坐标系,使用以下方程(A2)(A3) - 3.The Schmid factor for a particular slip system α, that is defined by slip plane normal nα and slip direction lα, can be found using the following equation:
特定滑移系统α的 Schmid 因子,由滑移面法向 n α 和滑移方向 l α 定义,可以使用以下公式计算:(A4)where Lcrystal is the loading direction written in crystal frame (found using Eq. (A2)). All vectors in Eq. (A4) are unit vectors. nα and lα are known for fcc crystals (listed in Table 1).
其中 L crystal 是晶体坐标系中的加载方向(通过公式(A2)确定)。公式(A4)中的所有向量都是单位向量。对于面心立方晶体,n α 和 l α 是已知的(见表 1)。 - 4.From DIC we establish the strain tensor in sample frame (εsample). To write the strain tensor in crystal frame, Eq. (A3) is used.
通过数字图像相关法(DIC)我们建立了样品坐标系中的应变张量ε sample 。要写出晶体坐标系中的应变张量,使用公式(A3)。(A5)
References
- Bartali et al., 2009Surface observation and measurement techniques to study the fatigue damage micromechanisms in a duplex stainless steelInt. J. Fatigue, 31 (2009), p. 2049
- Bieler et al., 2009The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metalsInt. J. Plast., 25 (2009), p. 1655
- Carroll et al., 2010An experimental methodology to relate local strain to microstructural textureRev. Sci. Instrum., 81 (2010), p. 083703
- Dewald and Curtin, 2011Multiscale modeling of dislocation/grain-boundary interactions: III. 60° dislocations impinging on Σ3, Σ9 and Σ11 tilt boundaries in AlModell. Simul. Mater. Sci. Eng. (2011), p. 19
- Dewald and Curtin, 2007aMultiscale modelling of dislocation/grain-boundary interactions: I. Edge dislocations impinging on Σ11 (1 1 3) tilt boundary in AlModell. Simul. Mater. Sci. Eng., 15 (2007), p. S193
- Dewald and Curtin, 2007bMultiscale modelling of dislocation/grain boundary interactionsII. Screw dislocations impinging on tilt boundaries in AlPhilos. Mag., 87 (2007), p. 4615
- Efstathiou et al., 2010Multiscale strain measurements of plastically deforming polycrystalline titanium: role of deformation heterogeneitiesInt. J. Plast., 26 (2010), p. 93
- Engler and Randle, 2010Introduction to Texture Analysis(2nd edn), CRC Press (2010)
- Eshelby et al., 1951The equilibrium of linear arrays of dislocationsPhilos. Mag., 42 (1951), pp. 351-364
- Ezaz et al., 2010Energy barriers associated with slip-twin interactionsPhilos. Mag., 91 (2010), pp. 1464-1488
- Foiles and Hoyt, 2006Computation of grain boundary stiffness and mobility from boundary fluctuationsActa Mater., 54 (2006), p. 3351
- Gates et al., 2011Towards high performance digital volume correlationExp. Mech., 51 (2011), p. 491
- Hall, 1951The deformation and aging of mild steel:III. Discussion of resultsProc. Phys. Soc. London, 64 (1951), pp. 747-753
- Hirth and Lothe, 1992Theory of Dislocations(2nd edn.), Krieger Publishing Company (1992)
- Huang and Pelloux, 1980Low cycle fatigue crack propagation in hastelloy- X at 25 and 760 °CMetall. Mater. Trans. A, 11 (1980), p. 899
- Humphrey et al., 1996VMD: visual molecular dynamicsJ. Mol. Graphics, 14 (1996), p. 33
- Hutchinson, 1976Bounds and Self-consistent estimates for creep of polycrystalline materials. Proceedings of the Royal Society of London Series ANATO ASI Ser., Ser. C, 348 (1976), p. 101
- Jin et al., 2008Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metalsActa Mater., 56 (2008), p. 1126
- Kelchner et al., 1998Dislocation nucleation and defect structure during surface indentationPhys. Rev. B, 58 (1998), p. 11085
- Kim et al., 2008Creep characterization of a Ni-based Hastelloy-X alloy by using theta projection methodEng. Fract. Mech., 75 (2008), p. 4985
- Kocks and Chandra, 1982Slip geometry in partially constrained deformationActa Metall., 30 (1982), p. 695
- Lee et al., 1989Prediction of slip transfer mechanisms across grain boundariesScr. Metall., 23 (1989), p. 799
- Lee et al., 1990An In Situ transmission electron microscope deformation study of the slip transfer mechanisms in metalsMetall. Trans. A, 21 (1990), p. 2437
- Lienert et al., 2011High-energy diffraction microscopy at the advanced photon sourceJOM Journal of the Minerals, Metals and Materials Society, 63 (2011), p. 70
- Lim, 1984Slip-twin interactions in nickel at 573 K at large strainsScr. Metall., 18 (1984), p. 1139
- Lim and Raj, 1985Continuity of slip screw and mixed crystal dislocations across bicrystals of nickel at 573 KActa Metallurgica, 33 (1985), p. 1577
- Livingston and Chalmers, 1957Multiple slip in bicrystal deformationActa Metall., 5 (1957), p. 322
- Meyers and Ashworth, 1982Model for the effect of grain size on the yield stress of metalsPhilos. Mag. A:, 46 (1982), p. 737
- Miner and Castelli, 1992Hardening mechanisms in a dynamic strain aging alloy, HASTELLOY X, during isothermal and thermomechanical cyclic deformationMetall. Mater. Trans. A, 23 (1992), p. 551
- Petch, 1953The cleavage strength of polycrystalsJ. Iron. Steel Inst., 174 (1953), pp. 25-28
- Plimpton, 1995Fast parallel algorithms for short-range molecular dynamicsJ. Comput. Phys., 117 (1995), pp. 1-19
- Plimpton, 2007Large−scale Atomic/Molecular Massively Parallel SimulatorSandia National Laboratories (2007)
- Rice, 1992Dislocation nucleation from a crack tip: an analysis based on the Peierls conceptJ. Mech. Phys. Solids, 40 (1992), p. 239
- Rollett et al., 2009Stress hot spots in viscoplastic deformation of polycrystalsModell. Simul. Mater. Sci. Eng. (2009), p. 18
- Rollett et al., 2010Stress hot spots in viscoplastic deformation of polycrystalsModell. Simul. Mater. Sci. Eng. (2010), p. 18
- Roters et al., 2010Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applicationsActa Mater., 58 (2010), p. 1152
- Rowley and Thornton, 1996Constitutive modeling of the visco-plastic response of Hastelloy-X and aluminum alloy 8009J. Eng. Mater. Technol., 118 (1996), p. 19
- Sangid et al., 2011Energy of slip transmission and nucleation at grain boundariesActa Mater., 59 (2011), p. 283
- Shen et al., 1986Dislocation pile-up and grain boundary interactions in 304 stainless steelScr. Metall., 20 (1986), p. 921
- Siegel, 2005Generalized stacking fault energies, ductilities, and twinnabilities of Ni and selected Ni alloysAppl. Phys. Lett., 87 (2005), p. 121901
- Sutton and Balluffi, 2006Interfaces in Crystalline MaterialsOxford Classical Texts, Oxford (2006)
- Sutton et al., 1983Determination of displacements using an improved digital correlation methodImage Vision Comput., 1 (1983), p. 133
- Tatschl and Kolednik, 2003On the experimental characterization of crystal plasticity in polycrystalsMater. Sci. Eng., A, 356 (2003), p. 447
- Taylor, 1938Plastic strain in metalsJ. Inst. Met., 62 (1938), pp. 307-325
- Tschopp et al., 2009Microstructure-dependent local strain behavior in polycrystals through <i>In-Situ</i> Scanning Electron Microscope Tensile ExperimentsMetall. Mater. Trans. A, 40 (2009), p. 2363
- Zhang and Tong, 2004An experimental study on grain deformation and interactions in an Al-0.5%Mg multicrystalInt. J. Plast., 20 (2004), p. 523
- Zhao et al., 2008Investigation of three-dimensional aspects of grain-scale plastic surface deformation of an aluminum oligocrystalInt. J. Plast., 24 (2008), p. 2278
Cited by (244)
Grain-boundary kinetics: A unified approach
晶界动力学:一种统一方法2018, Progress in Materials Science
2018, 材料科学进展Slip band-grain boundary interactions in commercial-purity titanium
2014, Acta MaterialiaGrain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces
2014, Current Opinion in Solid State and Materials ScienceDislocation interactions with grain boundaries
2014, Current Opinion in Solid State and Materials ScienceHydrogen-induced intergranular failure of iron
氢引起的沿晶断裂2014, Acta MaterialiaThe physics of fatigue crack initiation
2013, International Journal of Fatigue
2013, 《国际疲劳杂志》


