International Journal of Mechanical Sciences
国际机械科学杂志
第 219 卷,2022 年 4 月 1 日,107074
Hybrid experimental-numerical strategy for efficiently and accurately identifying post-necking hardening and ductility diagram parameters
高效、准确地识别颈缩后硬化和延展性图参数的混合实验-数值策略
Highlights 亮点
- •A hybrid experimental-numerical strategy to predict ductile fracture is proposed.
提出了一种预测延性断裂的混合实验-数值策略。 - •The post-necking strain behaviour and ductility diagram parameters are identified.
确定了颈缩后应变行为和延性图参数。 - •Only two simple experiments and three numerical optimisations are required.
只需要两个简单的实验和三次数值优化。 - •The proposed strategy was validated by comparing experiments and predictions.
通过比较实验和预测,验证了所提出的策略。
Abstract 抽象的
尽管已经建立了各种有效的金属材料延性断裂模拟模型,但所需参数的识别方法却鲜有阐明。延性断裂模型参数识别困难是延性断裂模拟中实现精确数值预测的真正瓶颈。本文提出了一种通过混合实验-数值方法高效识别颈缩后应变行为和延性图参数的策略。在所提出的策略中,仅需要两种类型的实验:常规拉伸试验和裂纹扩展试验。所有用于模拟颈缩后应变硬化行为和延性断裂的参数都可以通过利用两种试验的载荷-位移曲线进行数值优化来唯一识别。所提出的策略应用于 A2024T3 铝合金,并通过平板拉伸试验和 Arcan 试验识别了颈缩后硬化和延性图参数。然后使用两种带孔板试样验证了所提出的策略。实验结果与数值预测结果高度吻合,充分证明了所提策略的可行性和准确性。结果表明,该策略简单有效。因此,它可以作为表征各种金属材料力学性能的通用基础。
Keywords 关键词
延性断裂;颈缩后应变硬化;延性图;参数识别;薄板
1. Introduction 1. 简介
快速增长的能源需求和对环境问题的关注促使人类探索可再生能源并寻找提高能源效率的解决方案。铝合金和先进高强度钢 (AHSS) 作为具有优异强度的轻质金属,已在汽车、航空、船舶、风能和石油工业中得到应用。例如,在零部件和车身中使用铝合金和先进高强度钢可以减轻汽车重量,从而显著提高燃油经济性,为提高燃油经济性提供了巨大的潜力。然而,许多挑战制约着现代高强度轻质金属的广泛应用。流动强度的提高使得材料成形[1]变得困难,例如液压成形[2,3]、深拉[4]、[5]、[6]、[7] 和冲压[8]、[9]、[10]。同时,制造过程中产生的裂纹问题(例如边缘裂纹[11])非常复杂,并且从颈缩主导的失效到剪切诱导断裂的转变,使得成形极限曲线(FLC)方法对于金属板材成形[12]并不准确。数值模拟可以提供强有力的解决方案,以更好地理解高强度轻质金属部件的力学性能和断裂行为。目标材料的硬化行为(尤其是在颈缩后阶段)和断裂准则在部件的延性断裂模拟中起着重要作用。
对于金属延性断裂的数值模拟,大应变下的应力-应变关系等力学性能对于准确预测至关重要。对于大厚度部件,已提出了一些解析或逆方法,用于识别光滑圆棒试样或轴对称缺口拉伸棒的颈缩后应变硬化行为 [13]–[16]。例如,可以通过采用著名的布里奇曼法和 Le Roy 方程进行光滑圆棒拉伸试验来估算颈缩后应变硬化信息 [16]。也已有人致力于利用扁平试样进行颈缩后应变硬化识别 [17]–[18]–[19]–[20]–[21]。张等人利用数值分析和扁平试样,提出了一个经验函数来建立试样厚度减小量与最小横截面积减小量之间的关系,以获得颈缩后等效应力-应变曲线 [19]。尽管已经提出了许多识别颈缩后应变硬化的方法,但这些方法不能直接应用于薄板金属材料,因为与厚板相比,测量薄板金属材料的横截面几何变形(厚度或横截面积的减少)要困难得多。应该建立一种识别薄板金属材料颈缩后应变硬化力学性能的方法。
延性断裂一般被认为是损伤萌生、积累、微裂纹和裂纹扩展的结果。为了模拟和预测延性失效,已经提出了许多延性断裂模型。通常,这些模型可以分为耦合模型[22,23]和非耦合模型。耦合模型将损伤演化纳入本构定律,损伤积累导致力学性能下降。最著名的耦合模型之一是 Gurson 模型,该模型将损伤处理为孔洞的成核、生长和融合[23]。Gurson 模型及其扩展版本已成功应用于延性失效模拟[24-32]。Tvergaard 和 Needleman 提出了一个函数来模拟孔洞融合对基体材料承载能力的影响[24-32]。张提出了所谓的完整 Gurson 模型,其中孔洞合并是均匀孔洞增长模式和局部变形模式竞争的结果[26,31]。对于非耦合模型,损伤对基体材料的弹塑性行为没有影响,开裂的激活基于应力/应变状态[33]。延性图,也称为断裂轨迹,描述了断裂应变与应力状态的关系,以应力三轴度(平均应力与 von Mises 等效应力之比)为特征[34],[35],[36]。Bao 和 Wierzbicki 通过实验构建了应力三轴度从-0.3 到 1 的延性图[35]。基于延性图的延性断裂模型已在许多金属材料中得到报道。 最近的研究表明,Lode 参数对断裂应变也起着重要作用[37]–[38]–[39]–[40]。尽管存在许多耦合和非耦合的延性断裂模型,但由于从实验中识别参数需要耗费大量时间,因此应用起来通常并不容易,甚至实际上是不可能的。为了解决这个问题,必须开发准确而有效的参数识别策略。
本文提出了一种实验-数值混合策略,用于高效、准确地识别金属材料颈缩后应变硬化行为和延性图的参数。在该策略中,仅需要两种类型的实验:常规拉伸试验和裂纹扩展试验。通过利用两个试验的载荷-位移曲线进行数值优化,可以唯一地识别用于模拟颈缩后应变硬化行为和延性断裂的所有参数。然后对铝合金薄板进行了所提策略的验证。本文的其余部分组织如下:第 2 节介绍颈缩后应变硬化行为和延性断裂的模型;第 3 节介绍所提实验-数值混合策略的详细步骤;第 4 节介绍所提策略的验证;第 5 节总结了本文的主要结论。
2. Models for post-neck strain hardening and ductile fracture
2. 后颈应变硬化和延性断裂模型
2.1. Model for post-necking hardening behaviour
2.1 颈缩后硬化行为模型
使用引伸计进行的传统拉伸试验可以提供直至弥散颈缩的工程应力-应变曲线(也称为名义应力-应变曲线)和真实应力-应变曲线(也称为真应力-对数应变曲线)。当弥散颈缩开始发展时,单轴拉伸条件终止,导致颈缩区呈现三轴应力状态,大应变下真应力-应变曲线无效。需要注意的是,就 von Mises 等效应力和等效应变而言,颈缩前区域的真应力-应变曲线就是等效应力-应变曲线。基于 von Mises 等效应力,推导出了修正颈缩后区域无效真应力的方法。为了简单明了,我们将真应力-应变曲线称为涵盖颈缩前和颈缩后部分的等效应力-应变曲线。为了模拟大应变问题,应确定颈缩后等效应力-应变曲线。当构件厚度足够大时,已提出了许多方法来获得颈缩后等效应力-应变曲线[41]。对于本文关注的厚度非常有限的构件,通过试验确定颈缩后应变硬化问题一直很困难。本文提出了一种基于颈缩后区域载荷-伸长曲线(工程应力-应变曲线)的优化方法来获得颈缩后应变硬化性能。本节介绍用于表示颈缩后应变硬化性能的模型。
在普通塑性理论中,强化特性通常用等效应力 σ eq 和等效塑性应变来表示。因此,拉伸试验得到的等效应变(即真应变)被加法分解为弹性部分 ε e 和塑性部分 ε p :(1)
单轴拉伸试验的 ε p 也等于 von Mises 等效塑性应变。除非另有说明,下文中 ε p 均表示等效塑性应变。利用公式 (1),可以通过标准拉伸试验获得弥散颈缩前相应的等效应力-等效塑性应变曲线,并将其作为数值分析的输入信息。然而,对于延性断裂建模至关重要的颈缩后等效应力-等效塑性应变曲线仍然未知。已经提出了许多公式来根据颈缩前实验数据外推颈缩后的应变硬化特性。其中,Ramberg-Osgood 方程(公式 (2))和 Swift 方程(公式 (3))已广泛应用于金属 [42],[43],[44],[45],[46],[47],[48]。
其中,k、α、n R 、n S 和 σ Y 为拟合参数。其中,σ Y 的物理含义为材料的屈服强度。
为了表征本文的硬化特性,将等效应力-等效塑性应变曲线分为两部分,如图 1 所示。在弥漫性颈缩之前,采用拉伸试验获得的等效应力-等效塑性应变曲线;在弥漫性颈缩之后,建立等效应力与等效塑性应变的关系式:(4) where K, b, and n are the unknowns to be determined based on experimental data in the post-necking regime. In this work, the engineering stress-strain curve after the ultimate tensile stress, which shares the same meaning as the load-elongation curve in the post-necking region, is used to derive the unknown parameters in Eq. (4) via numerical optimisation. Details about the optimisation is introduced in Section 3. It is noted that Eq. (4) can be converted to Eq. (2) and (3) by properly setting the material parameters K, b and n. For example, when K = σY/αn and b = −α, Eq. (4) returns to the Swift equation. Therefore, Eq. (4) is a general form of the Ramberg-Osgood equation and the Swift equation.
其中,K、b 和 n 是根据颈缩后阶段的实验数据确定的未知量。本文采用极限拉伸应力后的工程应力-应变曲线,其含义与颈缩后区域的载荷-伸长曲线相同,通过数值优化方法推导出公式(4)中的未知参数。优化过程的细节将在第 3 节中介绍。需要注意的是,通过适当设置材料参数 K、b 和 n,公式(4)可以转换为公式(2)和公式(3)。例如,当 K = σ Y /α n 且 b = −α 时,公式(4)将恢复为 Swift 方程。因此,公式(4)是 Ramberg-Osgood 方程和 Swift 方程的一般形式。

Fig. 1. Model for post-necking hardening behaviour expressed by the equivalent stress-equivalent plastic strain curve.
图 1.用等效应力-等效塑性应变曲线表示的颈缩后硬化行为模型。
2.2. Model for ductile fracture
2.2 韧性断裂模型
为了模拟高强度薄板的断裂行为,一个既准确又简单的延性断裂模型至关重要。Kim 等人提出了应力修正断裂应变 (SMFS) 模型。SMFS 模型简单地将延性图作为断裂准则,并将应力松弛作为结果,已在模拟厚试样到结构件的延性失效应用中得到成功验证 [49],[50],[51],[52],[53]。在实践中,对于缺口和光滑圆棒试样,推导模型参数十分容易。因此,尽管 SMFS 模型在薄板金属中的应用方法尚未建立,但本研究仍采用该模型。下面将详细介绍 SMFS 模型及其相应的参数。
众所周知,对于延性断裂,断裂应变(或延性)ε 显著依赖于应力状态,通常用应力三轴度(σ m /σ eq )来表征,其中 σ m 和 σ eq 分别为平均应力和 von Mises 等效应力[34,36,50,[53], [54], [55]]。在相对较高的应力三轴度下,断裂应变随应力三轴度的增加而减小。在 SMFS 模型中,延性图仅用两个材料常数 A 和 B 表示,即(5)
图 2 为 SMFS 模型中延性图的示意图。

Fig. 2. Ductility diagram showing fracture strain and stress triaxiality relationship.
图 2. 延性图显示断裂应变和应力三轴关系。
损伤 ω 根据等效塑性应变 ε p 和断裂应变 ε 的变化过程进行评估,具体如下:(6)
当损伤累积到临界值(即ω = 1)时,假设发生延性断裂。如图 3 所示,当达到临界值时,通过急剧降低应力来模拟延性失效,这代表承载能力的丧失。下降斜率应尽可能小。在本研究中,参考传统文献[49,50,56,57],将下降斜率值设定为-1/5000。有报道称,当下降斜率小于-1/5000 时,斜率对数值结果的影响可以忽略不计[50,56]。

Fig. 3. Stress relaxation model for simulating ductile fracture.
图 3.模拟延性断裂的应力松弛模型。
结合延性图和应力松弛模型,可以实现单模态应力-应变(SMFS)模型。计算过程在每个积分点进行。裂纹扩展通过单元删除实现。基于初步研究,当一个单元中任意一半积分点的损伤达到预定的临界值(即ω = 1)时,即可删除该单元,以稳定裂纹扩展的计算过程。
本研究采用 Abaqus 进行数值模拟。我们开发了一个用户材料 (UMAT) 子程序,用于模拟延性断裂,该子程序的文档记录在补充材料中。使用 UMAT 子程序和单元删除条件进行的数值模拟结果稳定,并成功捕捉了裂纹扩展。更多详细信息请参阅补充材料。
3. Proposed strategy for parameters identification
3. 提出的参数识别策略
本节介绍了一种有效、准确地识别表征后颈缩应变硬化行为和模拟延性断裂所需所有参数的策略。该策略的显著优势在于其简单性和适用性。只需进行两次简单的实验和三次数值优化即可确定硬化参数和材料常数。每次优化只需识别一个参数,因此可以应用简单的算法(例如黄金分割搜索算法)自动找到最优解。此外,该策略不仅适用于厚度足够大的部件,也适用于厚度非常有限的部件,使其成为表征轻质高强度薄板力学性能的理想选择。实验结果可能会出现分散性,具体取决于测试材料、取样方向和测试机器。然而,实验结果的分散性超出了本研究的范围,可以在未来的研究中加以考虑。

Fig. 4. Flowchart of the proposed strategy composed of only two experiments and three numerical optimisations.
3.1. Post-necking strain hardening parameter identification
- (i)Define the averaged error in the engineering stress as a function of n:(8)
- (i)Create a finite element model used for numerical simulations with the same geometry, gauge length and boundary conditions as in the actual tensile experiment.
- (ii)Set the search range of the strain hardening exponent n, and perform the numerical optimisation by the Golden-section search algorithm. In the optimisation, numerical simulations with assuming n and evaluations based on the error index in Eq. (8) are repeated until the optimal solution of n is found.

Fig. 5. Engineering strain range for the optimisation to identify the post-necking hardening parameter (Opt. I).
3.2. Ductility diagram parameters identification
- (i)Define the averaged error in the engineering stress as a function of εf0, as(16)
- (i)Set the search range of εf0, and perform the numerical optimisation by the Golden-section search algorithm. In the optimisation, numerical simulations with assuming εf0 and evaluations based on the error index in Eq. (16) are repeated until the optimal solution of εf0 is found. Note that the numerical simulations can be performed using the same finite element model created in Opt. I.
- (i)
- (ii)For the target crack growth test, define the averaged error in load as a function of B, as(18)
- (i)Create a finite element model used for numerical simulations for the target crack growth test. Note that the finite element model for the entire specimen may be not needed if the crack growth occurs in a specific region of the specimen and the boundary conditions can be accurately extracted from the experiment (see an example presented in Section 4.1 and Section 4.3).
- (ii)Set the search range of B, and perform the numerical optimisation by the Golden-section search algorithm. In the optimisation, numerical simulations with assuming B and evaluations based on the error index in Eq. (18) are repeated until the optimal solution of B is found.
4. Application of the proposed strategy
4.1. Test layouts and finite element models

Fig. 6. Specimens and experimental set-ups for post-necking strain hardening and ductility diagram parameters identification: (a) tensile specimen; (b) Arcan test specimen and notch root geometry; (c) tensile test set-up; (d) Arcan test set-up.

Fig. 7. Finite element model for the tensile test.

Fig. 8. Finite element model for the Arcan test. (a) Finite element mesh; (b) Boundary conditions obtained from DIC systems.
4.2. Post-necking strain hardening parameter identification

Fig. 9. Engineering and equivalent stress-strain curves obtained from the tensile test.

Fig. 10. Results of Opt. I for identifying the hardening exponent n: (a) Averaged error in the engineering stress evaluated during the optimisation; (b) Engineering stress-strain curves of the experiment and the numerical simulation with identified n; (c) Closeup of post-necking region in the engineering stress-strain curves.
Table 1.. Tensile properties for the target A2024T3 aluminium alloy.
| Yield Strength σY [MPa] | Ultimate Strength σu [MPa] | Uniform elongation εu [%] | Parameters used in Eq. (4) | ||
|---|---|---|---|---|---|
| K | b | n | |||
| 336 | 493 | 18 | 690 | 0.0932 | 0.0626 |
4.3. Ductility diagram parameters identification

Fig. 11. Results of Opt. II (a) for identifying the fracture strain in tensile test εf0: (a) Averaged error in the engineering stress evaluated during the optimisation; (b) Engineering stress-strain curves of the experiment and the numerical simulation with identified εf0; (c) Close-up of post-necking region in the engineering stress-strain curves.

Fig. 12. Histories of deformations and equivalent strain fields in the experiment and the numerical simulation with identified n and εf0 in the tensile test.

Fig. 13. Stress triaxiality obtained in the numerical simulation of the tensile test.

Fig. 14. Results of Opt II (b) for identifying the ductility diagram parameter B with Arcan test: (a) Averaged error in load evaluated during the optimisation; (b) Load-displacement curves of the experiment and the numerical simulation with identified B.

Fig. 15. Deformations, the equivalent strain fields, and crack growth behaviours in the experiment and the numerical simulation with identified parameters under different stroke displacements.
4.4. Validation of the proposed strategy

Fig. 16. Specimens and experimental set-ups for tensile test plate specimens with a hole used for validation of the proposed strategy: (a) specimen geometries; (b) test set-up.

Fig. 17. Finite element models of the tensile tests using thin plate specimens with a hole.

Fig. 18. Comparisons of the load-displacement curves obtained from experiments and from numerical predictions: (a) CG0; (b) CG10.

Fig. 19. Comparisons of the histories of the crack paths and the equivalent strain distributions in the experiments and the numerical predictions.
5. Conclusion
Funding sources
Declaration of Competing Interest
Acknowledgements
Appendix. Supplementary materials
References
- [1]Qian L., Wang X., Sun C., Dai A.Materials correlation of macroscopic fracture behavior with microscopic fracture mechanism for AHSS sheet 2019. https://doi-org.ezproxy.lib.kyushu-u.ac.jp/10.3390/ma12060900.
- [2]Finite element simulation of the tube hydroforming process—Bending, preforming and hydroformingJ Mater Process Technol, 127 (2002), pp. 401-408, 10.1016/S0924-0136(02)00432-6
- [3]Optimizing tube hydroforming using process simulation and experimental verificationJ Mater Process Technol, 146 (2004), pp. 137-143, 10.1016/S0924-0136(03)00854-9
- [4]Influence of process parameters on the deep drawing of stainless steelFinite Elem Anal Des, 43 (2007), pp. 1062-1067, 10.1016/j.finel.2007.06.011
- [5]Effect of blank holder force control in deep-drawing process of magnesium alloy sheetJ Mater Process Technol, 170 (2005), pp. 579-585, 10.1016/j.jmatprotec.2005.06.028
- [6]Investigations of weld-line movements for the deep drawing process of tailor welded blanksJ Mater Process Technol, 108 (2000), pp. 1-7, 10.1016/S0924-0136(00)00536-7
- [7]Numerical and experimental investigations of hydro-mechanical deep drawing process of laminated aluminum/steel sheetsJ Manuf Process, 18 (2015), pp. 131-140, 10.1016/j.jmapro.2015.03.004
- [8]Analysis of sheet metal stamping by a finite-element methodJ Appl Mech Trans ASME, 45 (1978), pp. 73-82, 10.1115/1.3424276
- [9]The finite element analysis of ductile damage during hot stamping of 22MnB5 steelMater Des, 69 (2015), pp. 141-152, 10.1016/j.matdes.2014.12.044
- [10]Hot stamping of AA6082 tailor welded blanks: experiments and knowledge-based cloud – finite element (KBC-FE) simulationJ Mater Process Technol, 250 (2017), pp. 228-238, 10.1016/J.JMATPROTEC.2017.07.025
- [11]Prediction of edge fracture during hole-flanging of advanced high-strength steel considering blanking pre-damageEng Fract Mech, 248 (2021), Article 107721, 10.1016/j.engfracmech.2021.107721
- [12]Prediction of shear-induced fracture in sheet metal formingJ Mater Process Technol, 210 (2010), pp. 1858-1869, 10.1016/j.jmatprotec.2010.06.021
- [13]A new model for the elastoplastic characterization and the stress-strain determination on the necking section of a tensile specimenInt J Solids Struct, 41 (2004), pp. 3545-3564, 10.1016/j.ijsolstr.2004.02.011
- [14]A special notched tensile specimen to determine the flow stress-strain curve of hardening materials without applying the Bridgman correctionEng Fract Mech, 179 (2017), pp. 225-239, 10.1016/j.engfracmech.2017.04.039
- [15]A method for determining material's equivalent stress-strain curve with any axisymmetric notched tensile specimens without Bridgman correctionInt J Mech Sci, 135 (2018), pp. 656-667, 10.1016/j.ijmecsci.2017.12.012
- [16]A model of ductile fracture based on the nucleation and growth of voidsActa Metall, 29 (1981), pp. 1509-1522, 10.1016/0001-6160(81)90185-1
- [17]Determining true stress-strain curve for isotropic and anisotropic materials with rectangular tensile bars: method and verificationsComput Mater Sci, 20 (2001), pp. 77-85, 10.1016/S0927-0256(00)00128-2
- [18]A study on determining true stress-strain curve for anisotropic materials with rectangular tensile barsInt J Solids Struct, 38 (2001), pp. 4489-4505, 10.1016/S0020-7683(00)00302-4
- [19]Determining material true stress-strain curve from tensile specimens with rectangular cross-sectionInt J Solids Struct, 36 (1999), pp. 3497-3516, 10.1016/S0020-7683(98)00153-X
- [20]Procedure for the determination of true stress-strain curves from tensile tests with rectangular cross-section specimensJ Eng Mater Technol Trans ASME, 126 (2004), pp. 70-76, 10.1115/1.1633573
- [21]Mechanical Science and Technology Study on true stress correction from tensile testsJ Mech Sci Technol, 22 (2008), pp. 1039-1051, 10.1007/s12206-008-0302-3
- [22]A continuous damage mechanics model for ductile fractureJ Eng Mater Technol Trans ASME, 107 (1985), pp. 83-89, 10.1115/1.3225775
- [23]Continuum theory of ductile rupture by void nucleation and growth - 1. Yield criteria and flow rules for porous ductile mediaAm Soc Mech Eng (1976)
- [24]Analysis of the cup-cone fracture in a round tensile barActa Metall, 32 (1984), pp. 157-169, 10.1016/0001-6160(84)90213-X
- [25]Influence of voids on shear band instabilities under plane strain conditions, 17 (1981)
- [26]Complete Gurson model approach for ductile fractureEng Fract Mech, 67 (2000), pp. 155-168, 10.1016/S0013-7944(00)00055-2
- [27]Effect of the Lüders plateau on ductile fracture with MBL modelEur J Mech A/Solids, 78 (2019), Article 103840, 10.1016/j.euromechsol.2019.103840
- [28]Modification of the Gurson Model for shear failureEur J Mech A/Solids, 27 (2008), pp. 1-17, 10.1016/j.euromechsol.2007.08.002
- [29]A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids - II: determination of yield criterion parametersJ Mech Phys Solids, 60 (2012), pp. 1037-1058, 10.1016/j.jmps.2012.01.010
- [30]A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids - I: limit-analysis of some representative cellJ Mech Phys Solids, 60 (2012), pp. 1020-1036, 10.1016/j.jmps.2011.11.008
- [31]A new failure criterion for the Gurson-Tvergaard dilational constitutive model, 70 (1995)
- [32]An anisotropic Gurson type model to represent the ductile rupture of hydrided Zircaloy-4 sheets, 105 (2000)
- [33]On the ductile enlargement of voids in triaxial stress fields*J Mech Phys Solids, 17 (1969), pp. 201-217, 10.1016/0022-5096(69)90033-7
- [34]Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressuresEng Fract Mech, 21 (1985), pp. 31-48, 10.1016/0013-7944(85)90052-9
- [35]On fracture locus in the equivalent strain and stress triaxiality spaceInt J Mech Sci, 46 (2004), pp. 81-98, 10.1016/j.ijmecsci.2004.02.006
- [36]Strength and ductility of Weldox 460 E steel at high strain rates, elevated temperatures and various stress triaxialitiesEng Fract Mech, 72 (2005), pp. 1071-1087, 10.1016/j.engfracmech.2004.07.007
- [37]A local viewpoint for evaluating the influence of stress triaxiality and Lode angle on ductile failure and hardeningInt J Plast, 26 (2010), pp. 348-371, 10.1016/j.ijplas.2009.07.006
- [38]On the predictive capabilities of the shear modified Gurson and the modified Mohr-Coulomb fracture models over a wide range of stress triaxialities and Lode anglesJ Mech Phys Solids, 59 (2011), pp. 1374-1394, 10.1016/j.jmps.2011.04.006
- [39]Influence of loading path on ductile fracture of tensile specimens made from aluminium alloysInt J Solids Struct, 88–89 (2016), pp. 17-34, 10.1016/j.ijsolstr.2016.03.028
- [40]Effect of strain rate on ductile fracture initiation in advanced high strength steel sheets: experiments and modelingInt J Plast, 56 (2014), pp. 19-44, 10.1016/j.ijplas.2014.01.003
- [41]Stress-strain curves of metallic materials and post-necking strain hardening characterization: a reviewFatigue Fract Eng Mater Struct, 43 (2020), pp. 3-19, 10.1111/ffe.13134
- [42]Inversion of Ramberg–Osgood equation and description of hysteresis loopsInt J Non Linear Mech, 37 (2002), pp. 1319-1335, 10.1016/S0020-7462(02)00025-2
- [43]Ramberg–Osgood type stress–strain curve estimation using yield and ultimate strengths for failure assessmentsInt J Press Vessel Pip, 137 (2016), pp. 1-12, 10.1016/J.IJPVP.2015.04.001
- [44]A modified swift law for prestrained materialsInt J Plast, 14 (1998), pp. 537-550, 10.1016/S0749-6419(98)00027-8
- [45]Identification of post-necking stress–strain curve for sheet metals by inverse methodMech Mater, 92 (2016), pp. 107-118, 10.1016/J.MECHMAT.2015.09.004
- [46]Plastic instability under plane stressJ Mech Phys Solids, 1 (1952), pp. 1-18, 10.1016/0022-5096(52)90002-1
- [47]Characterization of the post-necking strain hardening behavior using the virtual fields methodInt J Solids Struct, 50 (2013), pp. 3829-3842, 10.1016/J.IJSOLSTR.2013.07.018
- [48]Local stress in the vicinity of the propagating cleavage crack tip in ferritic steelMater Des, 144 (2018), pp. 361-373, 10.1016/J.MATDES.2018.02.037
- [49]Development of stress-modified fracture strain for ductile failure of API X65 steelInt J Fract, 143 (2007), pp. 119-133, 10.1007/s10704-006-9036-3
- [50]A finite element ductile failure simulation method using stress-modified fracture strain modelEng Fract Mech, 78 (2011), pp. 124-137, 10.1016/j.engfracmech.2010.10.004
- [51]Application of engineering ductile tearing simulation method to CRIEPI pipe testEng Fract Mech, 153 (2016), pp. 128-142, 10.1016/j.engfracmech.2015.12.012
- [52]Quantification of the complex crack geometry effect on fracture resistance using strain-based finite element damage analysisJ Press Vessel Technol Trans ASME, 144 (2022), pp. 1-12, 10.1115/1.4050093
- [53]A fracture strain based numerical prediction method for hydrogen effect on fracture toughnessInt J Mech Sci, 202–203 (2021), Article 106492, 10.1016/J.IJMECSCI.2021.106492
- [54]A micromechanically-motivated phenomenological model for predicting ductile fracture initiationProcedia Eng, 207 (2017), pp. 2054-2059, 10.1016/j.proeng.2017.10.1062
- [55]Study of low-temperature effect on the fracture locus of a 420-MPa structural steel with the edge tracing methodFatigue Fract Eng Mater Struct, 41 (2018), pp. 1649-1661, 10.1111/ffe.12803
- [56]Comparison of fracture strain based ductile failure simulation with experimental resultsInt J Press Vessel Pip, 88 (2011), pp. 434-447, 10.1016/J.IJPVP.2011.07.006
- [57]Effect of thermal ageing of CF8M on multi-axial ductility and application to fracture toughness predictionFatigue Fract Eng Mater Struct, 38 (2015), pp. 1466-1477, 10.1111/ffe.12316
Cited by (14)
A novel dual-stage failure criterion based on forming limit curve for uncured GLARE
2024, Journal of Materials Processing TechnologyPrediction of the irradiation effect on the fracture toughness for stainless steel using a stress-modified fracture strain model
2024, International Journal of Mechanical SciencesFlow stress curves for 980MPa- and 1.5GPa-class ultra-high-strength steel sheets weakened under high-stress triaxiality
2024, International Journal of Mechanical SciencesCitation Excerpt :Conventionally, it is challenging to simulate the flow stress curves corresponding to tensile tests in the case of sheet-type specimens owing to the onset of shear banding prior to ductile fracturing. Despite these challenges, several effective methods have been proposed for evaluating flow stresses in the post-necking strain region [34–38]. However, these cannot be used to evaluate material weakening in UHSSs.
A novel deformation mode of expansion tubes accounting for extra contact
2023, International Journal of Mechanical SciencesDuctile crack propagation path depending on material properties: Experimental results and discussions based on numerical simulations
2022, Materials and DesignCitation Excerpt :In the previous sections, the crack propagation in Arcan tests of the two investigated thin flat metals were introduced, and differences in the crack paths were observed as experimental facts. Using the proposed strategy in Ref. [27], numerical simulations successfully reproduced the fracture process in the Arcan test experiments and captured the crack paths difference under different stress states. In the numerical simulations, only the mechanical properties of the two investigated materials were changed.
Characterizing springback stress behavior in VPB by experimental-numerical hybrid method
2022, International Journal of Mechanical Sciences


