这是用户在 2025-7-21 16:24 为 https://journals.sagepub.com/eprint/ES7FGJZCHYI3RUKV2UKN/full 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
Skip to main content
Intended for healthcare professionals
适用于医疗保健专业人员
Skip to main content
Available access  可用访问权限
Research article  研究论文
First published online November 15, 2024  首次在线发布 2024 年 11 月 15 日

Investigating the efficacy of ergothioneine to delay cognitive decline in mild cognitively impaired subjects: A pilot study
研究麦角硫因延缓轻度认知障碍受试者认知能力下降的功效:一项初步研究

Abstract  抽象

Background  背景

Dementia, particularly Alzheimer's disease, is a major healthcare challenge in ageing societies.
痴呆症,尤其是阿尔茨海默病,是老龄化社会面临的主要医疗保健挑战。

Objective  目的

This study aimed to investigate the efficacy and safety of a dietary compound, ergothioneine, in delaying cognitive decline in older individuals.
本研究旨在调查膳食化合物麦角硫因在延缓老年人认知能力下降方面的有效性和安全性。

Methods  方法

Nineteen subjects aged 60 or above with mild cognitive impairment were recruited for this double-blinded, randomized, and placebo-controlled study (ClinicalTrials.gov identifier: NCT03641404, registration date: 19/08/2018). Subjects received either ergothioneine (25 mg per capsule) or a placebo, taken 3 times a week for one year. The whole blood profile, markers of renal and liver functions, neurocognitive performance, plasma levels of ergothioneine and its metabolites, and plasma biomarkers related to neurodegeneration were measured across the study.
这项双盲、随机和安慰剂对照研究招募了 19 名年龄在 60 岁或以上患有轻度认知障碍的受试者(ClinicalTrials.gov 标识符:NCT03641404,注册日期:19/08/2018)。受试者接受麦角硫因(每粒胶囊 25 毫克)或安慰剂,每周服用 3 次,持续一年。在整个研究过程中测量了全血谱、肾功能和肝功能标志物、神经认知表现、麦角硫因及其代谢物的血浆水平以及与神经退行性变相关的血浆生物标志物。

Results  结果

Ergothioneine intake did not alter clinical safety markers (blood counts, kidney and liver function) throughout the study, further validating its safety for human consumption. Subjects receiving ergothioneine demonstrated improved performance in assessment of learning ability and stabilized plasma levels of neurofilament light chain, compared with the placebo group, which saw no improvement in cognitive assessments and a significant increase in neurofilament light chain levels.
麦角硫因的摄入量在整个研究过程中没有改变临床安全标志物(血细胞计数、肾和肝功能),进一步验证了其对人类食用的安全性。与安慰剂组相比,接受麦角硫因的受试者在评估学习能力和稳定的神经丝轻链血浆水平方面表现出更好的表现,安慰剂组的认知评估没有改善,神经丝轻链水平显着增加。

Conclusions  结论

Prolonged intake of ergothioneine showed no toxicity in elderly people. Enhanced Rey Auditory Verbal Learning Test performance and stabilized neurofilament light chain levels suggest improvements in memory and learning abilities and a deceleration of neuronal damage, respectively. Our results add to existing data that ergothioneine is safe for extended consumption and may hold the potential to delay cognitive decline in elderly adults.
长期摄入麦角硫因对老年人没有毒性。增强的 Rey 听觉语言学习测试性能和稳定的神经丝轻链水平分别表明记忆和学习能力的提高以及神经元损伤的减速。我们的结果补充了现有数据,即麦角硫因可以安全长期食用,并且可能有可能延缓老年人的认知能力下降。

Introduction  介绍

Dementia, especially Alzheimer's disease (AD), presents an escalating challenge to ageing societies worldwide. The World Health Organization reported that more than 55 million people are living with dementia in 2019 and projects this number to almost triple to 153 million within the next three decades.1 The global economic costs associated with dementia are also projected to rise from US$1.3 trillion in 2019 to US$2.8 trillion by 2030,1 necessitating more effective interventions to delay or prevent its onset.
痴呆症,尤其是阿尔茨海默病 (AD),给全球老龄化社会带来了不断升级的挑战。世界卫生组织报告称,2019 年有超过 5500 万人患有痴呆症,并预计这一数字在未来三十年内将增加近两倍,达到 1.53 亿。1 与痴呆症相关的全球经济成本预计也将从 2019 年的 1.3 万亿美元上升到 2030 年的 2.8 万亿美元,1 需要更有效的干预措施来延缓或预防其发作。
The pathophysiology of AD is characterized by progressive neuronal loss, memory impairment, and decline in cognitive functions. Key pathological events include the accumulation of toxic amyloid oligomers and neurofibrillary tangles that lead to synaptic dysfunction and neuronal death.25 Mitochondrial dysfunction, oxidative damage, inflammation, and metabolic dysfunction in neurons are key pathological mechanisms underlying the neurodegenerative cascade.69 There have recently been significant advances in anti-amyloid antibody therapies, such as lecanemab (Leqembi). Nonetheless, while this effectively clears amyloid-β in early AD patients, it only demonstrates a modest impact on disease progression and poses a significant risk of developing brain swelling and/or cerebral microhaemorrhage.10 This underscores the pressing need to explore novel mechanisms to prevent or delay onset of dementia.
AD 的病理生理学特征是进行性神经元丧失、记忆障碍和认知功能下降。关键病理事件包括有毒淀粉样蛋白寡聚物的积累和神经原纤维缠结,导致突触功能障碍和神经元死亡。2-5 神经元的线粒体功能障碍、氧化损伤、炎症和代谢功能障碍是神经退行性级联反应的关键病理机制。6-9 最近在抗淀粉样蛋白抗体疗法方面取得了重大进展,例如 lecanemab (Leqembi)。尽管如此,虽然这有效地清除了早期 AD 患者的淀粉样蛋白β,但它对疾病进展的影响很小,并且存在发生脑肿胀和/或脑微出血的重大风险。10 这凸显了探索预防或延缓痴呆发作的新机制的迫切需要。
Ergothioneine (ET), a thione derivative of histidine, has recently garnered great interest for its diverse physiological properties, including antioxidant, anti-inflammatory, metal-chelating activities, and neuroprotective capabilities.1117 While not produced in the human body, ET can be readily absorbed from the diet, by means of a specific membrane transporter, the organic cation transporter novel type-1 (OCTN1), which is widely expressed in the intestinal tract, and many tissues throughout the body, including the brain,1820 and facilitates accumulation in these tissues.21 Studies have shown that ET can mitigate amyloid-β toxicity in neuronal cultures, Caenorhabditis elegans and rodent models of AD2226 and our prior study demonstrated the association between mushroom consumption (a major dietary source of ET) and decreased risk of mild cognitive impairment (MCI) in an elderly Singaporean cohort.27 We have also demonstrated that individuals with MCI and dementia exhibit significantly lower plasma levels of ET compared to age-matched healthy controls.28,29 Even more strikingly, our observational study revealed that lower plasma levels of ET in cognitively normal subjects correlated with faster cognitive decline and, worsening brain pathology on follow-up for up to 5 years.30
麦角硫因 (ET) 是组氨酸的硫酮衍生物,最近因其多样化的生理特性而引起人们的极大兴趣,包括抗氧化、抗炎、金属螯合活性和神经保护能力。11-17 虽然不在人体内产生,但 ET 可以通过特定的膜转运蛋白、有机阳离子转运蛋白新型 1 型(OCTN1)从饮食中轻松吸收,该转运蛋白广泛表达于肠道和全身许多组织,包括大脑,18-20,并促进这些组织的积累。21 研究表明,ET 可以减轻神经元培养物、 秀丽隐杆线虫和 AD22-26 啮齿动物模型中的淀粉样蛋白β毒性,我们之前的研究表明,蘑菇消费(ET 的主要膳食来源)与轻度认知障碍 (MCI) 风险降低之间存在关联新加坡老年人队列。27 我们还证明,与年龄匹配的健康对照相比,患有 MCI 和痴呆症的个体表现出显着较低的血浆 ET 水平。28,29 更引人注目的是,我们的观察性研究表明,认知正常受试者的血浆 ET 水平较低与认知能力下降更快相关,并且在长达 5 年的随访中脑部病理学恶化。30
Despite evidence suggesting its potential benefits in aging3133 and dementia from previous human, animal, and cell studies, the direct impact of ET supplementation on cognitive health remains unexplored in humans. ET is approved for human consumption by the US FDA and European Union (generally recognized as safe status; GRAS) as well as the European Food Safety Authority,34,35 but has never been given for prolonged periods to elderly subjects. To bridge the gap, this pilot study aimed to explore the safety and possible cognitive benefits of ET consumption in older individuals with MCI. We recruited participants aged between 60–90 years of age, from three study cohorts diagnosed with MCI and provided them with ET or placebo in a double-blinded and randomized manner. Throughout the course of the study, we examined the neurocognitive performance of the MCI subjects and their biochemical markers, including assessments of potential toxicity. We hope that our preliminary findings will inspire future research directions and larger clinical studies to evaluate the beneficial effects of ET in slowing or preventing cognitive impairment.
尽管之前的人类、动物和细胞研究表明其对 31-33 岁年龄和痴呆症的潜在益处,但补充 ET 对人类认知健康的直接影响仍未得到探索。ET 被美国 FDA 和欧盟批准供人类食用(通常被认为是安全状态;GRAS)以及欧洲食品安全局,34,35,但从未长期给予老年受试者。为了弥合差距,这项试点研究旨在探讨 ET 消费对患有 MCI 的老年人的安全性和可能的认知益处。我们从三个被诊断患有 MCI 的研究队列中招募了年龄在 60-90 岁之间的受试者,并以双盲和随机的方式为他们提供 ET 或安慰剂。在整个研究过程中,我们检查了 MCI 受试者的神经认知表现及其生化标志物,包括对潜在毒性的评估。我们希望我们的初步发现能够启发未来的研究方向和更大规模的临床研究,以评估 ET 在减缓或预防认知障碍方面的有益作用。

Methods  方法

Chemicals, reagents, and investigational compound
化学品、试剂和研究化合物

ET, L-ergothioneine-d9 (ET-d9), L-hercynine, L-hercynine-d9, S-methyl ET were provided by ERGOLD (formerly Tetrahedron, Paris, France). Encapsulated ET (25 mg/capsule Ergoneine®, synthetic ET >99.5% purity, GMP-certified, Lot no. 128020) and placebo (99% microcrystalline cellulose, 1% magnesium stearate) were also provided in coded bottles by ERGOLD. HPLC grade methanol (A454-4) and acetonitrile (A998-4) were purchased from Fisher Chemical (US). Formic acid (98%; 8841) was purchased from Lancaster (England). All other reagents were purchased from Sigma-Aldrich (US) unless otherwise specified.
ET、L-麦角硫因-d 9 (ET-d9)、L-海角氨酸、L-海角氨酸-d9、S-甲基 ET 由 ERGOLD(原 Tetrahedron,巴黎,法国)提供。ERGOLD 还提供封装的 ET(25 毫克/粒麦角因 ®,合成 ET >99.5% 纯度,GMP 认证,批号 128020)和安慰剂(99% 微晶纤维素,1% 硬脂酸镁)也装在编码瓶中。HPLC 级甲醇(A454-4)和乙腈(A998-4)购自 Fisher Chemical(美国)。甲酸(98%;8841)购自兰开斯特(英国)。除非另有说明,否则所有其他试剂均从 Sigma-Aldrich(美国)购买。

Study design and ethical approvals
研究设计和伦理批准

This randomized, double-blinded, placebo-controlled study (ClinicalTrials.gov identifier: NCT03641404) was conducted at the Investigational Medicine Unit, National University Hospital, Singapore in adherence with Good Clinical Practice (GCP). MCI subjects, 60–90 years of age were randomly assigned (GraphPad Prism Randomizer) to receive either placebo or ET (25 mg) capsules (identical capsule appearance, coded by manufacturer), administered orally three times a week, blinded to both subjects and administrators for the entire duration of the study (Figure 1). Participants visited the study site every 4 weeks (for a total of 14 visits) where they were provided with sufficient capsules to last until the subsequent visit and underwent safety and compliance monitoring. Blood samples were collectedl at baseline and quarterly (visits 1, 4, 7, 10, 14) for clinical safety assessment and biomarker analyses). Neuro-cognitive assessments were conducted biannually (visits 7 and 14). Baseline cognitive assessments were carried out during cohort screening. At the trial's conclusion, subjects underwent a final assessment, followed by a follow-up call one month later to monitor for any delayed adverse effects. The study adhered to ethical standards according to the Declaration of Helsinki and was approved by the Singapore National Healthcare Group, Domain Specific Review Board under protocol number 2017/00982 and Singapore Health Sciences Authority, Clinical Trial Certificate number CTC1800036.
这项随机、双盲、安慰剂对照研究(ClinicalTrials.gov 标识符:NCT03641404)在新加坡国立大学医院研究医学部进行,遵守良好临床规范 (GCP)。60-90 岁的 MCI 受试者被随机分配(GraphPad Prism Randomizer)接受安慰剂或 ET(25 mg)胶囊(胶囊外观相同,由制造商编码),每周口服给药 3 次,在整个研究期间对受试者和管理人员不知情( 图 1)。参与者每 4 周访问一次研究地点(总共 14 次访问),在那里他们获得了足够的胶囊,以持续到随后的访问,并接受了安全性和合规性监测。在基线和每季度(访问 1、4、7、10、14)收集血样,用于临床安全性评估和生物标志物分析)。每半年进行一次神经认知评估(第 7 次和第 14 次访问)。在队列筛选期间进行基线认知评估。试验结束时,受试者接受了最终评估,然后在一个月后进行随访,以监测任何延迟的不良反应。该研究遵守了赫尔辛基宣言的伦理标准,并获得了新加坡国家医疗保健集团、特定领域审查委员会的批准,协议编号为 2017/00982,新加坡卫生科学局的临床试验证书编号为 CTC1800036。
Figure 1. Timeline of the study. a A window period of 2 weeks before or after the scheduled visit was allowed.
图 1.研究时间表。a 允许在预定访问之前或之后有 2 周的窗口期。

Subject screening and inclusion/exclusion criteria
受试者筛选和纳入/排除标准

MCI subjects from the Diet and Healthy Ageing study (DaHA),36 Ageing in a Community Environment Studies (ACES),37 or Community Health Intergenerational Study (CHI)38 cohorts (comprised of community-dwelling elderly individuals from the Western regions of Singapore) were contacted (prior consent had been given to be contacted for future studies) for their potential interest to participate in the study. Given the slow identification rate of MCI subjects, consenting subjects were recruited in staggered enrollment. The recruited volunteers were screened (within a 6-month period of enrollment) using a cognitive assessment battery (comprising the Singapore modified Mini-Mental State Examination; SM-MMSE39 to assess global cognitive function together with a neurocognitive battery to assess other cognitive domains in detail) and identified as MCI by a panel of two senior consultant psychiatrists (EHK, RM) and the cohort PI (LF) according the consensus Petersen's criteria.40 General health conditions, including height, weight, blood pressure, age, medical history, dietary intake, were also assessed. Blood and urine samples were collected for biomarker and clinical safety monitoring (full blood count and renal and liver function tests). Inclusion criteria focused on ethnically Chinese individuals aged 60–90 years with MCI. From >1500 subjects screened in the three cohorts, 121 MCI subjects meeting the study criteria were invited to participate. Participants were required to be independent, capable of understanding the study's demands and of giving informed consent, and free from severe health issues or terminal illnesses. Exclusion criteria included mushroom allergies, history of severe cardiovascular complications, hematological conditions such as anemia, history of mental or psychiatric illnesses, history of drug or alcohol abuse, concurrent involvement in other studies requiring compound intake in the past 6 months, or any other underlying conditions deemed unsuitable by the investigator. Participants were asked to avoid the use of supplements or Traditional Chinese Medicines and excessive mushroom consumption for the duration of the study, and to report other concurrent medications.
来自饮食与健康老龄化研究 (DaHA)、36 社区环境老龄化研究 (ACES)、37 或社区健康代际研究 (CHI)38 队列(由来自新加坡西部地区的社区老年人组成)的 MCI 受试者被联系(事先同意联系他们进行未来的研究)以了解他们参与研究的潜在兴趣。鉴于 MCI 受试者识别率较慢,同意受试者以交错招募方式招募。招募的志愿者使用认知评估组合(包括新加坡改良的简易精神状态检查;SM-MMSE39 评估整体认知功能以及神经认知电池以详细评估其他认知领域),并由两名高级顾问精神科医生(EHK、RM)和队列 PI (LF) 组成的小组确定为 MCI,根据共识 Petersen 的标准。 还评估了 40 种一般健康状况,包括身高、体重、血压、年龄、病史、饮食摄入量。收集血液和尿液样本用于生物标志物和临床安全性监测(全血细胞计数以及肾和肝功能测试)。纳入标准侧重于 60-90 岁患有 MCI 的华裔个体。从三个队列中筛选的 >1500 名受试者中,邀请了 121 名符合研究标准的 MCI 受试者参加。参与者被要求独立,能够理解研究的要求并给予知情同意,并且没有严重的健康问题或绝症。 排除标准包括蘑菇过敏、严重心血管并发症史、贫血等血液系统疾病、精神或精神疾病史、药物或酒精滥用史、在过去 6 个月内同时参与其他需要复合摄入的研究,或任何其他潜在疾病研究者认为不合适。参与者被要求在研究期间避免使用补充剂或中药和过量食用蘑菇,并报告其他并发药物。

Study compliance and safety monitoring
研究依从性和安全性监测

Subjects were required to visit the study site every 4 weeks for safety and compliance monitoring. During the study visits, subjects were required to return any unconsumed capsules from the previous batch and provided with a new batch. An administration and adverse event log kept by the subject was checked for evidence of study compliance and safety. In addition to monitoring weight and blood pressure, fasting blood was collected every 3 months to assess safety by monitoring any changes in full blood counts, fasting glucose, and liver and renal function tests. Serum and sodium tubes were sent to the National University Hospital Referral Laboratories (Singapore) for blood parameter analysis including hematological profile, liver panel (albumin, total bilirubin, aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP)), renal panel (sodium, potassium, urea, creatinine), and fasting glucose. Those failing to adhere to the administration schedule in the first 3 months or demonstrating abnormal blood parameters were withdrawn from the study.
受试者被要求每 4 周访问一次研究地点以进行安全和依从性监测。在研究访问期间,受试者被要求退回前一批未消耗的胶囊,并提供新批次。检查受试者保存的给药和不良事件日志,以寻找研究依从性和安全性的证据。除了监测体重和血压外,每 3 个月采集一次空腹血,通过监测全血细胞计数、空腹血糖以及肝肾功能测试的任何变化来评估安全性。将血清和钠管送往国立大学医院转诊实验室(新加坡)进行血液参数分析,包括血液学特征、肝脏检查(白蛋白、总胆红素、天冬氨酸转氨酶 (AST)、丙氨酸转氨酶 (ALT)、碱性磷酸酶 (ALP))、肾检查(钠、钾、尿素、肌酐)和空腹血糖。那些在前 3 个月内未能遵守给药计划或表现出血液参数异常的人被退出研究。

Blood sampling, preparation, and storage
采血、制备和储存

Fasting venous blood samples were collected in 1x K2-EDTA spray-coated vacuum tubes (Becton Dickinson, US), 1x clot activator-treated vacuum tubes (Becton Dickinson, US) and 1x sodium fluoride-treated plasma tubes (Becton Dickinson, US) for whole blood/plasma, serum, and fasting plasma glucose measurement, respectively. Plasma samples were separated by centrifuging the whole blood samples in EDTA tubes at 1000 × g for 15 min. The samples were stored at −80 °C in 250 μl aliquots supplemented with 2 μl of 10 mM butylated hydroxytoluene (antioxidant) and 1 μl of 25 mM indomethacin (cyclooxygenase inhibitor) to prevent ex vivo autooxidation.
空腹静脉血样收集在 1x K 2-EDTA 喷涂真空管(Becton Dickinson,美国)、1x 凝块激活剂处理的真空管(Becton Dickinson,美国)和 1x 氟化钠处理的血浆管(Becton Dickinson,美国)中,分别用于全血/血浆、血清和空腹血糖测量。通过将 EDTA 管中的全血样本以 1000 × g 离心 15 min 来分离血浆样本。将样品储存在-80°C 的 250μl 等分试样中,补充有 2μl10mM 丁基化羟甲苯(抗氧化剂)和 1μl25mM 吲哚美辛(环氧合酶抑制剂),以防止离体自氧化。

Neuro-cognitive assessment
神经认知评估

Cognitive functions were assessed during screening, at visit 7 (26 weeks) and at visit 14 (52 weeks) using SM-MMSE modified for Chinese subjects,39 Rey Auditory Verbal Learning Test (RAVLT), Digit Span (WAIS-III UK version), Color Trials Tests (CTT), Block Design (WAIS-III UK version), Semantic Fluency, Symbol Digit Modality Test (SDMT), Boston Naming Test and Clinical Dementia Rating Scale (CDRS). Z-scores of the test results were calculated using the age- and education-adjusted local norms.41
在筛选期间、第 7 次访视(26 周)和第 14 次访视(52 周)使用针对中国受试者修改的 SM-MMSE、39 Rey 听觉语言学习测试 (RAVLT)、数字跨度(WAIS-III 英国版)、颜色试验测试 (CTT)、块设计(WAIS-III 英国版)、语义流畅性、符号数字模态测试 (SDMT)、波士顿命名测试和临床痴呆评定量表 (CDRS)。测试结果的 Z 分数是使用年龄和教育调整的当地标准计算的。41

Plasma ET, hercynine, and S-methyl ET measurement by LC-MS/MS
通过 LC-MS/MS 测量血浆 ET、hercynine 和 S-甲基 ET

Plasma samples were analyzed following previously optimized methods.42 Briefly, 10 μl of plasma was mixed with 100 μl methanol containing ET-d9 and hercynine-d9 as internal standards. The samples were mixed and incubated at −20°C for 2 h followed by centrifugation. The supernatants were dried under a stream of nitrogen gas, resuspended in 100 μl of dH2O, and transferred to a salinized glass insert in a sampling vial (Agilent Technologies, USA) for analysis by LC-MS/MS on the Agilent 1290 UPLC and 6460-QQQ MS (Agilent Technologies, USA).
按照先前优化的方法分析血浆样品。42 简而言之,将 10 μl 血浆与含有 ET-d9 和 hercynine-d9 的 100 μl 甲醇混合作为内标。将样品混合并在-20°C 下孵育 2 h,然后离心。将上清液在氮气流下干燥,重悬于 100 μl dH2O 中,然后转移到采样瓶(Agilent Technologies,美国)中的盐渍玻璃插入物中,在 Agilent 1290 UPLC 和 6460-QQQ MS(Agilent Technologies,美国)上进行 LC-MS/MS 分析。

Enzyme-linked immunosorbent assays (ELISA) for plasma biomarkers
血浆生物标志物的酶联免疫吸附测定 (ELISA)

ELISA kits for human tumor necrosis factor-α (TNF-α, ab181421), interleukin-18 (IL-18, ab215539), brain-derived neurotrophic factor (BDNF, ab212166), and protein carbonyls (ab238536) were purchased from Abcam. ELISA kits for neurofilament light-chain (NfL, E-EL-H0741) were from Probioscience Technologies. All samples were measured in duplicate, according to the manufacturer's protocols. All the ELISA assays were colorimetric, with absorbances read at 450 nm (BioTek Synergy H1). Concentrations were calculated using appropriate calibration curves.
人肿瘤坏死因子-α(TNF-α,ab181421)、白细胞介素-18(IL-18,ab215539)、脑源性神经营养因子(BDNF,ab212166)和蛋白质羰基(ab238536)的 ELISA 试剂盒购自 Abcam。用于神经丝轻链的 ELISA 试剂盒(NfL,E-EL-H0741)来自 Probioscience Technologies。根据制造商的协议,所有样品均一式两份进行测量。所有 ELISA 测定均采用比色法,吸光度读数为 450 nm (BioTek Synergy H1)。使用适当的校准曲线计算浓度。

Sample size calculations  样本量计算

Our original sample size calculations (conducted by JL) were based on composite cognitive outcomes from a standard neuropsychological assessment battery (from the Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability).43 Based on these cognitive outcomes, 44 MCI subjects per arm were required for a statistical power of 80% to detect a z-score difference of 0.3 over the one-year intervention, using a conventional alpha of 0.05. Given an estimated attrition rate of 20%, 106 subjects were needed for the study. However, given the complications in recruitment (see Discussion), and failure to hit the intended target, we have chosen to assess these data as a pilot study which demonstrates the safety and potential efficacy of ET.
我们最初的样本量计算(由 JL 进行)基于标准神经心理学评估组合(来自芬兰预防认知障碍和残疾的老年干预研究)的综合认知结果。43 基于这些认知结果,每组需要 44 名 MCI 受试者才能获得 80% 的统计功效,以检测一年干预期间 0.3 的 z 分数差异,使用常规 alpha 为 0.05。鉴于估计流失率为 20%,该研究需要 106 名受试者。然而,考虑到招募的复杂性(参见讨论)以及未能达到预期目标,我们选择将这些数据作为一项试点研究进行评估,以证明 ET 的安全性和潜在有效性。

Statistical analysis  统计分析

The statistical analysis adopted an intention-to-treat approach that included data from all participants, including the early withdrawals, to preserve randomness and provide a conservative estimate of the treatment effects. Data are expressed as mean ± standard deviation unless specified, n = 11 for the ET-supplemented arm and n = 8 for the placebo arm. Paired mixed-effect analysis, which deals with missing data, was used for paired comparison among study time points, followed by Dunnet's pairwise comparison against baseline with the following annotation: ***p < 0.001; ****p < 0.0001. Outliers were identified by ROUT method (Q = 0.1). Statistical analysis was conducted using GraphPad Prism (Version10).
统计分析采用意向治疗方法,包括所有参与者的数据,包括早期退出的数据,以保持随机性并提供治疗效果的保守估计。除非另有说明,否则数据表示为平均值±标准差,ET 补充组为 n = 11,安慰剂组为 n = 8。处理缺失数据的配对混合效应分析用于研究时间点之间的配对比较,然后是 Dunnet 与基线的成对比较,并附有以下注释:***p < 0.001;p < 0.0001。通过 ROUT 方法识别异常值 (Q = 0.1)。使用 GraphPad Prism(版本 10)进行统计分析。

Results  结果

Participant demographic characteristics at baseline
基线时的参与者人口统计特征

More than 1500 subjects from the three community cohorts were screened, of which 121 identified MCI subjects meeting the study criteria were contacted for interest to participate in the study. However, only 19 were enrolled and 14 completed the study. The poor uptake of the study was in part due to COVID-19 related fears among the volunteers as the pandemic hit soon after the commencement of the study (also leading to two voluntary withdrawals). Of the five withdrawn, two were due to health complications unrelated to the study and three were due to voluntary withdrawal or noncompliance. Among the 14 completed subjects, some scheduled measurements were missed due to restrictions during the COVID-19 pandemic. The enrolled participants all demonstrated MCI at baseline (as diagnosed by the clinical assessment team) with a median CDR-SOB of 0.5 (p = 0.001, Wilcoxon signed-rank test against 0).44 No significant differences were observed in baseline plasma levels of ET and its metabolites, hercynine and S-methyl ET, between the treatment groups (Table 1). Baseline plasma ET levels demonstrated no significant correlation with Mini-Mental State Examination (MMSE) scores or age (Figure 2(a) and (b)). No significant differences were observed in mean plasma ET levels between males (872 nM) and females (828 nM) (Figure 2(c)). Similarly, levels of the ET metabolites showed no age or gender differences.
筛选了来自三个社区队列的 1500 多名受试者,其中联系了 121 名已确定符合研究标准的 MCI 受试者,以了解他们有兴趣参与该研究。然而,只有 19 人入组,14 人完成了研究。该研究的接受率低,部分原因是志愿者对 COVID-19 的担忧,因为研究开始后不久就出现了大流行(也导致了两次自愿退出)。在五名退出者中,两项是由于与研究无关的健康并发症,三项是由于自愿退出或不依从。在完成的 14 名受试者中,由于 COVID-19 大流行期间的限制,一些预定的测量被错过了。登记的参与者在基线时均表现出 MCI(由临床评估团队诊断),中位 CDR-SOB 为 0.5(p = 0.001,Wilcoxon 符号秩检验对 0)。44 治疗组之间 ET 及其代谢物 hercynine 和 S-甲基 ET 的基线血浆水平没有观察到显着差异( 表 1)。基线血浆 ET 水平与简易精神状态检查(MMSE)评分或年龄没有显着相关性( 图 2(a) 和(b))。男性(872 nM)和女性(828 nM)之间的平均血浆 ET 水平没有观察到显着差异( 图 2(c))。同样,ET 代谢物的水平没有年龄或性别差异。
Figure 2. Correlation of ergothioneine with key demographic characteristics at baseline. No significant correlations were seen between plasma ET levels and (a) MMSE and (b) age, showing coefficients of determination (r2), trendlines plotted by simple linear regression, and p values from statistical comparisons of the slopes against 0. (c) Gender differences in baseline plasma levels of ET and its metabolites compared by unpaired student's t-test (M, male; F, female).
图 2.麦角硫因与基线时关键人口统计学特征的相关性。血浆 ET 水平与 (a) MMSE 和 (b) 年龄之间没有发现显着相关性,显示决定系数 (r2)、通过简单线性回归绘制的趋势线以及斜率与 0 的统计比较的 p 值。(c) 通过未配对学生 t 检验(M,男性;F,女性)。
Table 1. Baseline characteristics of participants.
表 1.参与者的基线特征。
 Total (n = 19)  总计 (n = 19)Study groups  学习小组
ET (n = 11)  ET (n = 11)Placebo (n = 8)  安慰剂 (n = 8)pa
Age (y)  年龄 (y)69.89 ± 6.97  69.89 ± 6.9770.55 ± 7.63  70.55 ± 7.6369.00 ± 6.76  69.00 ± 6.760.65
Male, n (%)  男性,n (%)11 (58%)8 (73%)3 (38%)-
Height (cm)  高度(厘米)162.84 ± 8.19  162.84 ± 8.19164.91 ± 6.70  164.91 ± 6.70160.00 ± 9.61  160.00 ± 9.610.21
Weight (kg)  重量(公斤)60.63 ± 9.16  60.63 ± 9.1662.11 ± 7.77  62.11 ± 7.7758.59 ± 11.02  58.59 ± 11.020.42
SBP (mmHg)  收缩压 (mmHg)145.37 ± 21.16  145.37 ± 21.16146.91 ± 23.04  146.91 ± 23.04143.25 ± 19.61  143.25 ± 19.610.72
DBP (mmHg)  舒张压 (mmHg)74.00 ± 11.28  74.00 ± 11.2872.27 ± 10.01  72.27 ± 10.0176.38 ± 13.16  76.38 ± 13.160.45
CDR-SOB, median (IQR)  CDR-SOB,中位数 (IQR)0.5 (0.625)0.5 (0.5)1 (0.5)0.093
MMSE27.93 ± 1.86  27.93 ± 1.8627.86 ± 2.67  27.86 ± 2.6728.00 ± 0.58  28.00 ± 0.580.89
Physical activityb, median (IQR)
体力活动 b,中位数 (IQR)
4 (2.25)4 (2.5)4 (2.75)0.89
Social activityb, media (IQR)
社交活动 b、媒体 (IQR)
2.5 (2)2.5 (2)2.5 (1.75)0.93
Plasma ET (nM)  血浆 ET (nM)855 ± 643  855 ± 643698 ± 415  698 ± 4151102 ± 877  1102 ± 8770.20
Plasma Hercynine (nM)  血浆海西宁 (nM)27 ± 11  27 ± 1125 ± 9  25 ± 931 ± 15  31 ± 150.34
Plasma S-methyl ET (nM)  血浆 S-甲基 ET (nM)7 ± 3  7 ± 37 ± 2  7 ± 27 ± 5  7 ± 50.93
a
Student t-test and Mann-Whitney test were used to compare means and medians, respectively, of ET and placebo groups.
学生 t 检验和 Mann-Whitney 检验分别用于比较 ET 组和安慰剂组的平均值和中位数。
b
Activity frequency scale: 1 = never or rarely, 2 = more than once a month but less than once a week, 3 = one to three times a week, 4 = four to six times a week, 5 = daily.
活动频率量表:1 = 从不或很少,2 = 每月超过一次但每周少于一次,3 = 每周一到三次,4 = 每周四到六次,5 = 每天。
SBP: systolic blood pressure; DBP: diastolic blood pressure; CDR-SOB: Clinical Dementia Rating-Sum of Boxes; IQR: inter-quartile range; MMSE: Mini-Mental State Examination.
收缩压:收缩压;DBP:舒张压;CDR-SOB:临床痴呆评级-方框总和;IQR:四分位距;MMSE:简易精神状态检查。

Plasma levels of ET, hercynine, and S-methyl-ET increased following ET intake
摄入 ET 后,血浆中 ET、疱疹氨酸和 S-甲基-ET 水平升高

At baseline, the average plasma levels of ET, hercynine, and S-methyl-ET of the study population were at 855 nM, 27 nM, and 7 nM, respectively (Figure 3). In subjects with ET supplementation, the ET level increased almost 5-fold to 3960 nM by visit 7 and continued to increase linearly to 6860 nM by visit 14 (Figure 3(a)). Hercynine and S-methyl-ET, also increased over time, albeit to a smaller extent, and reached 125 nM and 25 nM at visit 14, respectively (Figure 3(b) and (c)). No significant changes in levels of the three compounds were observed in the placebo group throughout the study.
在基线时,研究人群的 ET、hercynine 和 S-甲基-ET 的平均血浆水平分别为 855 nM、27 nM 和 7 nM( 图 3)。在补充 ET 的受试者中,到第 7 次访视时,ET 水平增加了近 5 倍,达到 3960 nM,到第 14 次访视时继续线性增加至 6860 nM( 图 3(a))。Hercynine 和 S-甲基-ET 也随着时间的推移而增加,尽管程度较小,并在第 14 次访视时分别达到 125 nM 和 25 nM( 图 3(b) 和 (c))。在整个研究过程中,安慰剂组没有观察到三种化合物的水平发生显着变化。
Figure 3. Levels of ET and its metabolites across the study. Plasma levels of (a) ET, (b) hercynine, and (c) S-methyl-ET of each of the study arms at visits 1, 7, and 14. Mixed-effect analysis was used for longitudinal comparison within each of the study arms, followed by Dunnett's post-hoc test. Asterisks denote significant differences compared to visit 1 (baseline) of the respective study arm, ***p < 0.001, ****p < 0.0001.
图 3.整个研究中 ET 及其代谢物的水平。在第 1、7 和 14 次访问时,每个研究组的 (a) ET、(b) hercynine 和 (c) S-甲基-ET 的血浆水平。混合效应分析用于每个研究组内的纵向比较,然后进行 Dennett 事后检验。星号表示与各自研究组的第 1 次访视(基线)相比存在显着差异,***p < 0.001,****p < 0.0001。

Safety profile of ET  ET 的安全性概况

ET administration did not cause significant changes in whole blood parameters, liver function markers, renal function markers, or fasting glucose levels (Table 2). Participants in both ET and placebo groups recorded a lower total white blood cell count compared to baseline at visit 7, both of which recovered subsequently. The reasons for this anomaly are unclear but values were all still within the expected range for their age.
ET 给药不会导致全血参数、肝功能标志物、肾功能标志物或空腹血糖水平发生显着变化( 表 2)。与第 7 次就诊时基线相比,ET 组和安慰剂组的参与者记录的白细胞总计数较低,随后均恢复。造成这种异常的原因尚不清楚,但数值仍在其年龄的预期范围内。
Table 2. Blood markers for safety profile of prolonged ET consumption.
表 2.长期服用 ET 的安全性的血液标志物。
 Study groups  学习小组Visits  访问Expected range (at age 70)
预期范围(70 岁时)
1714 
Total WBC (x 109/L)
总白细胞 (x 109/L)
ET7.05 ± 1.16  7.05 ± 1.165.87 ± 0.86a
5.87 ± 0.86
6.28 ± 1.20  6.28 ± 1.203.84–10.01
Placebo  安慰剂6.75 ± 2.16  6.75 ± 2.165.32 ± 1.52b5.96 ± 1.81  5.96 ± 1.81
% Neutrophils  中性粒细胞百分比ET54.6 ± 4.6  54.6 ± 4.652.4 ± 6.7  52.4 ± 6.750.5 ± 5.9  50.5 ± 5.941.6–62.6
Placebo  安慰剂62.13 ± 6.09  62.13 ± 6.0966.10 ± 13.67  66.10 ± 13.6762.76 ± 9.27  62.76 ± 9.27
% Lymphocytes  淋巴细胞百分比ET35.0 ± 5.9  35.0 ± 5.936.1 ± 6.1  36.1 ± 6.138.2 ± 6.9  38.2 ± 6.923.7–35.2
Placebo  安慰剂27.1 ± 5.5  27.1 ± 5.525.7 ± 5.0  25.7 ± 5.027.0 ± 8.3  27.0 ± 8.3
% Monocytes  % 单核细胞ET7.2 ± 1.6  7.2 ± 1.67.4 ± 1.9  7.4 ± 1.97.6 ± 2.0  7.6 ± 2.06.0–8.5
Placebo  安慰剂7.4 ± 1.4  7.4 ± 1.47.8 ± 1.3  7.8 ± 1.37.0 ± 1.1  7.0 ± 1.1
% Eosinophils  % 嗜酸性粒细胞ET2.4 ± 2.2  2.4 ± 2.23.2 ± 3.0  3.2 ± 3.02.7 ± 1.8  2.7 ± 1.81.3–5.8
Placebo  安慰剂2.8 ± 1.9  2.8 ± 1.93.2 ± 2.3  3.2 ± 2.32.2 ± 1.3  2.2 ± 1.3
% Basophils  % 嗜碱性粒细胞ET0.8 ± 0.3  0.8 ± 0.30.9 ± 0.4  0.9 ± 0.40.9 ± 0.4  0.9 ± 0.40–0.8
Placebo  安慰剂0.7 ± 0.3  0.7 ± 0.30.8 ± 0.5  0.8 ± 0.51.0 ± 0.4  1.0 ± 0.4
Total RBC (x 1012/L)
总红细胞 (x 1012/L)
ET4.72 ± 0.47  4.72 ± 0.474.80 ± 0.50  4.80 ± 0.504.71 ± 0.40  4.71 ± 0.404.43–5.78
Placebo  安慰剂4.91 ± 0.56  4.91 ± 0.564.92 ± 0.82  4.92 ± 0.825.04 ± 0.61  5.04 ± 0.61
Hemoglobin (g/dL)  血红蛋白 (g/dL)ET13.96 ± 1.07  13.96 ± 1.0714.14 ± 1.14  14.14 ± 1.1414.47 ± 1.31  14.47 ± 1.3113.1–16.6
Placebo  安慰剂14.24 ± 1.08  14.24 ± 1.0814.00 ± 1.51  14.00 ± 1.5114.22 ± 1.26  14.22 ± 1.26
MCV (fL)  MCV (fL)ET90.01 ± 5.59  90.01 ± 5.5989.78 ± 6.07  89.78 ± 6.0792.32 ± 2.48  92.32 ± 2.4893–95.5
Placebo  安慰剂88.66 ± 7.90  88.66 ± 7.9086.73 ± 8.42  86.73 ± 8.4285.22 ± 8.42  85.22 ± 8.42
MCH (pg)  母婴健康 (pg)ET29.77 ± 2.69  29.77 ± 2.6929.66 ± 2.75  29.66 ± 2.7530.72 ± 0.79  30.72 ± 0.7926.6–31.5
Placebo  安慰剂29.26 ± 2.94  29.26 ± 2.9428.82 ± 3.41  28.82 ± 3.4128.46 ± 3.46  28.46 ± 3.46
MCHC (g/dL)  母婴生长板 (g/dL)ET33.02 ± 1.29  33.02 ± 1.2933.00 ± 1.21  33.00 ± 1.2133.28 ± 0.47  33.28 ± 0.4730.8–34.2
Placebo  安慰剂32.98 ± 1.17  32.98 ± 1.1733.18 ± 1.27  33.18 ± 1.2733.36 ± 1.04  33.36 ± 1.04
Haematocrit (%)  血细胞比容 (%)ET42.3 ± 2.9  42.3 ± 2.942.9 ± 3.7  42.9 ± 3.743.5 ± 4.2  43.5 ± 4.240.3–50.3
Placebo  安慰剂43.1 ± 2.3  43.1 ± 2.342.2 ± 4.2  42.2 ± 4.242.7 ± 3.5  42.7 ± 3.5
Platelets (x 109/L)
血小板 (x 109/L)
ET235.60 ± 38.38  235.60 ± 38.38240.20 ± 40.58  240.20 ± 40.58236.40 ± 45.27  236.40 ± 45.27165–387
Placebo  安慰剂227.90 ± 47.07  227.90 ± 47.07228.00 ± 53.02  228.00 ± 53.02237.80 ± 66.38  237.80 ± 66.38
MPV (fL)  MPV (fL)ET9.90 ± 0.92  9.90 ± 0.929.82 ± 0.88  9.82 ± 0.889.98 ± 1.01  9.98 ± 1.018.3–11.9
Placebo  安慰剂10.69 ± 1.25  10.69 ± 1.2510.58 ± 1.24  10.58 ± 1.2410.74 ± 1.54  10.74 ± 1.54
RDW (%)  RDW (%)ET13.3 ± 1.6  13.3 ± 1.613.5 ± 1.7  13.5 ± 1.712.9 ± 0.7  12.9 ± 0.710.9–14.3
Placebo  安慰剂13.1 ± 1.5  13.1 ± 1.513.3 ± 1.4  13.3 ± 1.413.5 ± 1.8  13.5 ± 1.8
Liver Panel  肝脏检查     
Albumin (g/L)  白蛋白 (g/L)ET42.36 ± 2.54  42.36 ± 2.5441.10 ± 3.35  41.10 ± 3.3540.78 ± 2.33  40.78 ± 2.3338–48
 Placebo  安慰剂43.38 ± 1.69  43.38 ± 1.6941.83 ± 2.04  41.83 ± 2.0442.6 ± 2.70  42.6 ± 2.70 
Bilirubin, total (umol/L)
总胆红素 (umol/L)
ET11.73 ± 5.31  11.73 ± 5.3112.90 ± 2.73  12.90 ± 2.7311.44 ± 4.75  11.44 ± 4.755.0–30.0
Placebo  安慰剂12.25 ± 6.41  12.25 ± 6.4115.33 ± 5.92  15.33 ± 5.9215.40 ± 4.51  15.40 ± 4.51
AST (U/L)  AST (U/L)ET27.18 ± 5.00  27.18 ± 5.0024.20 ± 7.02  24.20 ± 7.0226.33 ± 4.50  26.33 ± 4.5010–50
Placebo  安慰剂24.60 ± 4.11  24.60 ± 4.1119.33 ± 8.21  19.33 ± 8.2125.20 ± 4.60  25.20 ± 4.60
ALT (U/L)  ALT (U/L)ET21.00 ± 8.06  21.00 ± 8.0626.30 ± 10.08  26.30 ± 10.0822.78 ± 9.05  22.78 ± 9.0510–70
Placebo  安慰剂20.13 ± 5.33  20.13 ± 5.3324.67 ± 6.62  24.67 ± 6.6221.20 ± 11.99  21.20 ± 11.99
ALP (U/L)  ALP (U/L)ET70.91 ± 19.04  70.91 ± 19.0464.50 ± 22.30  64.50 ± 22.3068.56 ± 19.35  68.56 ± 19.3540–130
Placebo  安慰剂69.63 ± 11.72  69.63 ± 11.7246.17 ± 32.02  46.17 ± 32.0271.60 ± 15.52  71.60 ± 15.52
Renal Panel  肾脏面板     
Sodium (mmol/L)  钠 (mmol/L)ET140.40 ± 2.11  140.40 ± 2.11138.9 ± 2.33  138.9 ± 2.33139.20 ± 2.17  139.20 ± 2.17135–145
Placebo  安慰剂139.80 ± 2.55  139.80 ± 2.55139.70 ± 3.08  139.70 ± 3.08139.60 ± 2.61  139.60 ± 2.61
Potassium (mmol/L)  钾 (mmol/L)ET4.32 ± 0.33  4.32 ± 0.334.38 ± 0.37  4.38 ± 0.374.49 ± 0.31  4.49 ± 0.313.5–5.0
Placebo  安慰剂4.06 ± 0.32  4.06 ± 0.324.30 ± 0.38  4.30 ± 0.384.08 ± 0.34  4.08 ± 0.34
Urea (mmol/L)  尿素(mmol/L)ET5.12 ± 1.70  5.12 ± 1.705.36 ± 0.64  5.36 ± 0.644.66 ± 1.27  4.66 ± 1.272.5–7.5
Placebo  安慰剂7.05 ± 1.96  7.05 ± 1.965.82 ± 1.39  5.82 ± 1.395.62 ± 1.60  5.62 ± 1.60
Creatinine (umol/L)  肌酐 (umol/L)ET74.09 ± 18.10  74.09 ± 18.1072.00 ± 16.84  72.00 ± 16.8469.56 ± 13.65  69.56 ± 13.6560–107
Placebo  安慰剂72.50 ± 23.83  72.50 ± 23.8374.83 ± 24.28  74.83 ± 24.2866.00 ± 14.82  66.00 ± 14.82
Glucose, fasting (mmol/L)
葡萄糖,空腹 (mmol/L)
ET5.55 ± 0.98  5.55 ± 0.985.59 ± 1.13  5.59 ± 1.135.86 ± 1.75  5.86 ± 1.753.0–6.0
Placebo  安慰剂4.73 ± 0.34  4.73 ± 0.344.90 ± 0.51  4.90 ± 0.514.96 ± 0.58  4.96 ± 0.58
a
denotes significant difference compared to visit 1 (i.e. baseline) by Dunnett's post-hoc comparison, p = 0.042.
表示与访问 1 相比的显着差异(即 基线)通过 Dunnett 的事后比较,P = 0.042。
b
denotes significant difference compared to visit 1 (i.e. baseline) by Dunnett's post-hoc comparison, p = 0.004.
表示与访问 1 相比的显着差异(即 基线)通过 Dunnett 的事后比较,P = 0.004。
MCV: mean corpuscular volume; MCH: mean corpuscular hemoglobin; MPV: mean platelet volume; RDW: red cell distribution width.
MCV:平均红细胞体积;MCH:平均红细胞血红蛋白;MPV:平均血小板体积;RDW:红细胞分布宽度。

ET intake improved performance in certain neuro-cognitive assessments (NCA)
ET 摄入提高了某些神经认知评估 (NCA) 的表现

We evaluated the cognitive performance of the subjects using a neuro-cognitive assessment battery consisting of 10 test components, at visit 7 and visit 14 (6 and 12 month, respectively). Baseline scores obtained during the subject screening process (visit 0) within 6 months prior to the commencement of our study, were considered the reference levels. SDMT tests were not conducted during prescreening. At the baseline, no significant differences in the Z-scores of all NCA components were observed between placebo and ET-supplemented groups. Following ET intake, an increase in Z-scores was observed in RAVLT assessments (immediate and delayed recalls), which evaluates learning ability and memory (Figure 4(a) and (b)). In contrast, no significant increase was observed in Z-scores across all NCA components, in the subjects given the placebo. A decrease in the Z-score of CTT1 was seen at visit 7 after ET intake but returned to baseline Z-scores by visit 14 (Figure 4(e)). Block design scores, which assess visual-motor coordination and problem-solving skills, declined over time in both ET and placebo groups (Figure 4(g)). Although not measured at baseline, Z-scores of SDMT (written format) in the ET group showed a trend to increase from visit 7 to visit 14 (Figure 4(i)).
我们在第 7 次访问和第 14 次访问(分别为 6 个月和 12 个月)时使用由 10 个测试组件组成的神经认知评估组合评估了受试者的认知表现。在我们的研究开始前 6 个月内在受试者筛选过程(访视 0)期间获得的基线分数被视为参考水平。预筛选期间未进行 SDMT 测试。在基线时,安慰剂组和补充 ET 组之间所有 NCA 成分的 Z 分数没有显着差异。摄入 ET 后,在评估学习能力和记忆的 RAVLT 评估(立即和延迟回忆)中观察到 Z 分数增加( 图 4(a) 和 (b))。相比之下,在给予安慰剂的受试者中,所有 NCA 成分的 Z 分数没有观察到显着增加。在摄入 ET 后的第 7 次访视时观察到 CTT1 的 Z 评分下降,但在第 14 次访视时恢复到基线 Z 评分( 图 4(e))。评估视觉运动协调和解决问题能力的块设计分数在 ET 组和安慰剂组中都随着时间的推移而下降( 图 4(g))。尽管未在基线时测量,但 ET 组中 SDMT(书面格式)的 Z 分数显示出从第 7 次访问到第 14 次访问的增加趋势( 图 4(i))。
Figure 4. Z-scores of NCA components across the study. Longitudinal data on Z-scores reflecting the performance on (a, b) RAVLT, (c, d) digit span, (e, f) Color trail test, (g) block design test (BDT), (h) semantic fluency test, and (i, j) symbol-digit modality test (SDMT). Mixed-effect analysis was used for longitudinal paired comparison within each of the study arms, followed by Dunnett's post-hoc test, with only the significant differences (p < 0.05) annotated.
图 4.整个研究中 NCA 组件的 Z 分数。Z 分数的纵向数据反映了 (a, b) RAVLT、(c, d) 数字跨度、(e, f) 颜色轨迹测试、(g) 块设计测试 (BDT)、(h) 语义流畅性测试和 (i, j) 符号数字模态测试 (SDMT)。混合效应分析用于每个研究组内的纵向配对比较,然后进行 Dunnett 事后检验,仅注释显着差异 (p < 0.05)。

ET intake attenuated the plasma level of neurofilament light chain (NfL)
ET 摄入减弱了神经丝轻链 (NfL) 的血浆水平

No significant differences in the plasma biomarkers were observed at baseline between ET and placebo arms. Following ET consumption in the MCI subjects, no significant changes in the plasma levels of NfL (a biomarker of neuronal injury) was seen over the 12-month study duration, with a trend to decreasing levels but this was not significant (Figure 5(a)). Conversely, a significant increase in plasma NfL was observed in the placebo group by visit 14. One data point was identified as an outlier by Prism likely due to technical error and hence the subject was completely removed from the analysis. Both ET and placebo consumption did not affect the plasma levels of BDNF, TNF-α, and IL-18 as markers of neurological function and inflammation, and protein carbonyls, as an index of oxidative protein damage (Figure 5(b)–(e)).45
在基线时,ET 组和安慰剂组的血浆生物标志物没有观察到显着差异。在 MCI 受试者中服用 ET 后,在 12 个月的研究期间,NfL(神经元损伤的生物标志物)血浆水平没有显着变化,水平有下降的趋势,但这并不显着( 图 5(a))。相反,在第 14 次就诊时观察到安慰剂组的血浆 NfL 显着增加。Prism 将一个数据点确定为异常值,可能是由于技术错误,因此该主题被完全从分析中删除。ET 和安慰剂的摄入均不影响血浆 BDNF、TNF-α 和 IL-18 的水平,作为神经功能和炎症的标志物,以及作为氧化蛋白损伤指标的羰基蛋白水平( 图 5(b)–(e))。45
Figure 5. Plasma biomarkers associated with pathological processes of dementia. Plasma levels of (a) NfL, (b) BDNF, (c) TNF-α, (d) IL-18, and (e) protein carbonyls at visit 1, 7, and 14 on each of the study arms. Mixed-effect analysis was used for longitudinal paired comparison within each of the study arms, followed by Dunnett's post-hoc test, with only the significant differences (p < 0.05) annotated.
图 5.与痴呆病理过程相关的血浆生物标志物。在每个研究组的第 1、7 和 14 次访视时,(a) NfL、(b) BDNF、(c) TNF-α、(d) IL-18 和 (e) 羰基蛋白的血浆水平。混合效应分析用于每个研究组内的纵向配对比较,然后进行 Dunnett 事后检验,仅注释显着差异 (p < 0.05)。

Discussion  讨论

While we have previously demonstrated the association between low plasma levels of ET and individuals with MCI or dementia,2830 no studies have directly investigated the safety and efficacy of ET supplementation in older individuals with MCI. Here we report an interventional pilot study that explores ET's neuroprotective potential in participants demonstrating early indications of cognitive impairment. Our findings confirm the strong safety profile of ET, with no observable adverse reactions or changes in clinical parameters over a year-long administration period in elderly individuals.
虽然我们之前已经证明了低血浆 ET 水平与 MCI 或痴呆患者之间的关联,28-30 但没有研究直接调查补充 ET 对患有 MCI 的老年人的安全性和有效性。在这里,我们报告了一项介入性试点研究,该研究探讨了 ET 在表现出认知障碍早期迹象的参与者中的神经保护潜力。我们的研究结果证实了 ET 的安全性很强,在老年人的一年给药期间没有观察到的不良反应或临床参数变化。
Plasma levels of ET and its metabolites, namely hercynine and S-methyl ET, were measured at each study time point to verify ET uptake by the subjects. A continuous and significant increase of plasma ET levels was observed with year-long regular (3 times weekly) consumption of ET, increasing linearly with no sign that levels had reached a plateau. These results demonstrate the avid uptake and retention of ET by the body and extend findings from our previous study demonstrating a 3-fold increase in plasma ET levels in healthy human young adults after a 7-day consumption of ET (25 mg).42 The avid uptake and retention of ET is attributed to the expression of the ET transporter, OCTN1, in the human intestinal tract and proximal renal tubules, respectively.18,46 We have demonstrated the ability of ET to accumulate in many mouse organs including the brain, following oral administration.21 The presence of OCTN1 and ET in the central nervous system in laboratory animals and in humans reveals ET's capability to cross the blood-brain barrier, supporting its potential to be neuroprotective.13
在每个研究时间点测量 ET 及其代谢物(即赫西宁和 S-甲基 ET)的血浆水平,以验证受试者对 ET 的摄取情况。观察到血浆 ET 水平持续显着增加,持续定期(每周 3 次)食用 ET,线性增加,没有迹象表明水平已达到平台期。这些结果表明,身体对 ET 的热切吸收和保留,并扩展了我们之前研究的结果,表明健康人类年轻人在食用 ET(25 毫克)7 天后血浆 ET 水平增加了 3 倍。42 ET 的狂热摄取和保留分别归因于 ET 转运蛋白 OCTN1 在人类肠道和肾小管近端的表达。18,46 我们已经证明了口服给药后 ET 在包括大脑在内的许多小鼠器官中积累的能力。21 OCTN1 和 ET 在实验动物和人类的中枢神经系统中的存在揭示了 ET 穿过血脑屏障的能力,支持其具有神经保护作用。13
Concurrently, we evaluated the cognitive performance of our subjects using a comprehensive neuro-cognitive assessment battery. Preliminary outcomes reveal that ET supplementation resulted in a gradual improvement in RAVLT immediate recall and delayed recall testing, which was significantly higher than baseline at visit 14 (Figure 4(a) and (b)). However, there was no increase in the Z-scores in the placebo group, indicating the improvements were likely attributable to ET (rather than to practice effects or other extrinsic factors). We also observed a stabilization of plasma levels of NfL (Figure 5(a)), a biomarker of axonal damage whereby elevated levels are indicative of neuronal function loss and progression of neurological disorders such as dementia,47,48 in subjects consuming ET. However, mean levels of plasma NfL increased in the placebo group, which was significant at the 12-month timepoint.
同时,我们使用全面的神经认知评估组合评估了受试者的认知表现。初步结果表明,补充 ET 导致 RAVLT 立即召回和延迟召回测试逐渐改善,显着高于第 14 次访视时的基线 [ 图 4(a) 和 (b)]。然而,安慰剂组的 Z 评分没有增加,表明改善可能归因于 ET(而不是实践效果或其他外在因素)。我们还观察到血浆中 NfL 水平的稳定( 图 5(a)),这是一种轴突损伤的生物标志物,其中水平升高表明神经元功能丧失和神经系统疾病(如痴呆)的进展,在食用 ET 的受试者中,47,48。然而,安慰剂组的平均血浆 NfL 水平增加,这在 12 个月的时间点显着。
The RAVLT recall tests examine the learning ability of adults which involves the formation and consolidation of episodic memory in the medial temporal lobe, including the hippocampus.49 According to the Hebb's rule, memory and learning require strengthening and stabilization of pre- and postsynaptic activities associated with the same input and stimulus.50 Studies in mice suggest that ET promotes hippocampal maturation and improves memory and learning as well increasing synaptic formation in hippocampal cells.51 Furthermore, early AD features compromise synaptic plasticity and long-term potentiation (LTP) due to the production and accumulation of toxic Aβ oligomers.52,53 Indeed, addition of ET to hippocampal slices isolated from APP/PS1 mice, a humanized early AD model, sustained a higher LTP compared to control (reviewed in13). Oral administration of ET to various mouse models of AD can also decrease neurodegeneration and memory and learning or cognition deficits.2426 The observed improvement in RAVLT and the stabilization of plasma NfL levels with ET-supplementation in MCI subjects suggest that ET may decrease neuronal injury, thus preserving the synaptic plasticity and LTP, therefore better learning abilities and memory. By contrast, the performance on block design task in the placebo group worsened over time, and ET did not mitigate the change. No significant changes were seen in other cognitive domains such as working memory, mental flexibility, executive function, and processing speed.
RAVLT 回忆测试检查成年人的学习能力,其中涉及内侧颞叶(包括海马体)情景记忆的形成和巩固。49 根据赫布法则,记忆和学习需要加强和稳定与相同输入和刺激相关的突触前后活动。50 对小鼠的研究表明,ET 可促进海马成熟并改善记忆和学习,并增加海马细胞的突触形成。51 此外,由于有毒 Aβ 寡聚物的产生和积累,早期 AD 特征会损害突触可塑性和长期增强 (LTP)。52,53 事实上,与对照组相比,将 ET 添加到从 APP / PS1 小鼠(一种人源化早期 AD 模型)中分离的海马切片中,维持了更高的 LTP( 在 13 中进行了综述)。将 ET 口服给各种 AD 小鼠模型也可以减少神经退行性变和记忆以及学习或认知缺陷。24-26 观察到 MCI 受试者 RAVLT 的改善和补充 ET 后血浆 NfL 水平的稳定表明 ET 可以减少神经元损伤,从而保留突触可塑性和 LTP,从而提高学习能力和记忆力。相比之下,安慰剂组在块设计任务上的表现随着时间的推移而恶化,ET 并没有减轻这种变化。在工作记忆、心理灵活性、执行功能和处理速度等其他认知领域没有观察到显着变化。
The plasma markers of oxidative protein damage and inflammation did not show significant differences compared to the placebo group, consistent with our previous study showing only small effects of ET on oxidative damage markers in plasma and urine in healthy subjects.42 Of course, peripheral levels of these biomarkers may not reflect events known to happen in the brain.6,8
与安慰剂组相比,氧化蛋白损伤和炎症的血浆标志物没有显示出显着差异,这与我们之前的研究一致,表明 ET 对健康受试者血浆和尿液中的氧化损伤标志物的影响很小。42 当然,这些生物标志物的外周水平可能无法反映已知发生在大脑中的事件。6,8
Besides monitoring of adverse events, the safety of ET administration was also monitored through quarterly assessment of various clinical parameters including liver and renal function and hematological assessment. No differences were observed in both placebo and ET administration group relative to baseline, and no adverse reactions from ET administration were recorded, consistent with previous data that ET is safe for prolonged supplementation. There was one anomaly whereby a reduction in total white blood cell count was observed in both the ET and placebo groups at the mid-point of the study, both of which returned to baseline values thereafter (Table 2). However, as this occurred in both study arms, it is likely not due to ET.
除了监测不良事件外,还通过每季度评估各种临床参数(包括肝肾功能和血液学评估)来监测 ET 给药的安全性。安慰剂组和 ET 给药组相对于基线均未观察到差异,也未记录 ET 给药的不良反应,这与之前的数据一致,即 ET 长期补充是安全的。在研究的中点,ET 组和安慰剂组都观察到总白细胞计数减少,此后两者都恢复到基线值( 表 2)。然而,由于这种情况发生在两个研究组中,因此很可能不是由于 ET。
Despite our promising findings, consistent with the proposed neuroprotective actions of ET,13 our study is subjected to several limitations. The most severe is the small number of participants, precluding generation of conclusive data as originally planned. The COVID-19 pandemic greatly impacted the study including the screening and enrollment of MCI subjects, hampered our data collection as some participants missed scheduled assessments due to COVID-19-related restrictions and reluctance of subjects to attend the clinic located near a hospital, two voluntary withdrawals at the onset of the pandemic and a very significantly decreased willingness to participate in the study in screened MCI subjects (>85% rejection by screened subjects). Consequently, the small size and composition of our cohort should be carefully considered when interpreting our work. Future studies will require a larger and more diverse study population and longer study duration to validate our findings, but our study lays the background for these and reinforces the safety of ET.
尽管我们的发现很有希望,与 ET 提出的神经保护作用一致,13 我们的研究仍受到一些限制。最严重的是参与者人数少,无法按原计划生成确凿的数据。COVID-19 大流行极大地影响了该研究,包括 MCI 受试者的筛选和入组,阻碍了我们的数据收集,因为一些参与者由于与 COVID-19 相关的限制和受试者不愿去医院附近的诊所而错过了预定的评估,两次自愿退出在大流行开始时,以及参与筛选 MCI 受试者研究的意愿显着下降(>85% 被筛选的受试者拒绝)。 因此,在解释我们的工作时,应仔细考虑我们队列的规模和组成。未来的研究将需要更大、更多样化的研究人群和更长的研究持续时间来验证我们的发现,但我们的研究为这些奠定了背景并加强了 ET 的安全性。
In conclusion, this pilot study confirms the safety and possible efficacy of ET and lays the groundwork for future large-scale trials that assess its role in cognitive health and as a therapeutic for neurodegenerative disorders. ET emerges not only as a potential preventive agent for cognitive decline but also as a therapeutic agent conferring direct neuroprotection in MCI patients. Further research should aim to decipher the mechanisms underpinning ET's cognitive benefits, which may be multiple,1316,25,26 including its ability to protect mitochondria,54 and their functional implications in AD patients when taken together with first-line disease-modifying therapies.
总之,这项试点研究证实了 ET 的安全性和可能的有效性,并为未来的大规模试验奠定了基础,这些试验评估其在认知健康和神经退行性疾病治疗中的作用。ET 不仅作为认知能力下降的潜在预防剂,而且作为一种治疗剂,为 MCI 患者提供直接的神经保护。进一步的研究应旨在破译支撑 ET 认知益处的机制,这些机制可能是多种的,13-16,25,26 包括其保护线粒体的能力,54 以及它们与一线疾病缓解疗法一起服用时对 AD 患者的功能影响。

Acknowledgments  确认

The authors wish to thank Dr Jean-Claude Yadan (ERGOLD; formally Tetrahedron, Paris, France) for the kind provision of the encapsulated ET (25 mg, Ergoneine®) and placebo used in this study as well as analytical standards for ET and related metabolites.
作者要感谢 Jean-Claude Yadan 博士(ERGOLD;正式名称为法国巴黎四面体)提供本研究中使用的封装 ET(25 毫克,麦角因®)和安慰剂,以及 ET 和相关代谢物的分析标准。

Declaration of conflicting interests
利益冲突的声明

L. Feng is an Editorial Board Member of this journal but was not involved in the peer-review process of this article nor had access to any information regarding its peer-review. The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
L. Feng 是该期刊的编辑委员会成员,但没有参与本文的同行评审过程,也无法获得有关其同行评审的任何信息。作者声明与本文的研究、作者身份和/或出版不存在潜在的利益冲突。

Funding  资金

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was funded by the Ministry of Education AcRF Tier 1, grant number NUHSRO/2017/055/T1, the Tan Chin Tuan Centennial Foundation, the Ministry of Health – National Academy of Medicine Healthy Longevity Catalyst Award (HLCA20Jan-0057), and the National Medical Research Council (Individual Research Grants NMRC/1264/2010/082/12 and NMRC/OFYIRG/0081/2018). Yau Y.F. was supported by the YLL-SoM, NUS, PhD scholarship.
作者披露了对本文的研究、作者身份和/或出版的以下财政支持:这项研究由教育部 AcRF Tier 1,拨款号 NUHSRO/2017/055/T1、陈展团百年基金会、卫生部 - 国家医学院健康长寿催化剂奖 (HLCA20Jan-0057) 和国家医学研究委员会(个人研究资助 NMRC/1264/2010/082/12 和 NMRC/OFYIRG/0081/2018)。邱耀辉获得了新加坡国立大学 YLL-SoM、博士奖学金的支持。

ORCID iDs  ORCID iD

Rachel E S Goh https://orcid.org/0009-0001-9444-0802
雷切尔·吴 (Rachel E S Goh) https://orcid.org/0009-0001-9444-0802

Data availability statement

The data supporting the findings of this study are available within the article or by contacting the corresponding author.

References

2. Cline EN, Bicca MA, Viola KL, et al. The amyloid-beta oligomer hypothesis: beginning of the third decade. J Alzheimers Dis 2018; 64: S567–S610.
3. Shea D, Hsu CC, Bi TM, et al. alpha-Sheet secondary structure in amyloid beta-peptide drives aggregation and toxicity in Alzheimer's disease. Proc Natl Acad Sci U S A 2019; 116: 8895–8900.
4. Vossel KA, Zhang K, Brodbeck J, et al. Tau reduction prevents Abeta-induced defects in axonal transport. Science 2010; 330: 198.
5. Best MN, Lim Y, Ferenc NN, et al. Extracellular tau oligomers damage the axon initial segment. J Alzheimers Dis 2023; 93: 1425–1441.
6. Perluigi M, Di Domenico F, Butterfield DA. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol Rev 2024; 104: 103–197.
7. Ashleigh T, Swerdlow RH, Beal MF. The role of mitochondrial dysfunction in Alzheimer's disease pathogenesis. Alzheimers Dement 2023; 19: 333–342.
8. Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci 2019; 20: 148–160.
9. Walker KA, Ficek BN, Westbrook R. Understanding the role of systemic inflammation in Alzheimer's disease. ACS Chem Neurosci 2019; 10: 3340–3342.
10. van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in early Alzheimer's disease. N Engl J Med 2023; 388: 9–21.
11. Halliwell B, Tang RMY, Cheah IK. Diet-derived antioxidants: the special case of ergothioneine. Annu Rev Food Sci Technol 2023; 14: 323–345.
12. Cheah IK, Halliwell B. Ergothioneine; antioxidant potential, physiological function and role in disease. Biochim Biophys Acta 2012; 1822: 784–793.
13. Halliwell B, Cheah I. Are age-related neurodegenerative diseases caused by a lack of the diet-derived compound ergothioneine? Free Radic Biol Med 2024; 217: 60–67.
14. Ishimoto T, Kato Y. Ergothioneine in the brain. FEBS Lett 2022; 596: 1290–1298.
15. Borodina I, Kenny LC, McCarthy CM, et al. The biology of ergothioneine, an antioxidant nutraceutical. Nutr Res Rev 2020; 33: 190–217.
16. Nakamichi N, Tsuzuku S, Shibagaki F. Ergothioneine and central nervous system diseases. Neurochem Res 2022; 47: 2513–2521.
17. Liu HM, Tang W, Wang XY, et al. Safe and effective antioxidant: the biological mechanism and potential pathways of ergothioneine in the skin. Molecules 2023; 28: 1648.
18. Grundemann D, Harlfinger S, Golz S, et al. Discovery of the ergothioneine transporter. Proc Natl Acad Sci U S A 2005; 102: 5256–5261.
19. Cheah IK, Halliwell B. Ergothioneine, recent developments. Redox Biol 2021; 42: 101868.
20. Grundemann D, Hartmann L, Flogel S. The ergothioneine transporter (ETT): substrates and locations, an inventory. FEBS Lett 2022; 596: 1252–1269.
21. Tang RMY, Cheah IK, Yew TSK, et al. Distribution and accumulation of dietary ergothioneine and its metabolites in mouse tissues. Sci Rep 2018; 8: 1601.
22. Jang JH, Aruoma OI, Jen LS, et al. Ergothioneine rescues PC12 cells from beta-amyloid-induced apoptotic death. Free Radic Biol Med 2004; 36: 288–299.
23. Cheah IK, Ng LT, Ng LF, et al. Inhibition of amyloid-induced toxicity by ergothioneine in a transgenic Caenorhabditis elegans model. FEBS Lett 2019; 593: 2139–2150.
24. Yang NC, Lin HC, Wu JH, et al. Ergothioneine protects against neuronal injury induced by beta-amyloid in mice. Food Chem Toxicol 2012; 50: 3902–3911.
25. Whitmore CA, Haynes JR, Behof WJ, et al. Longitudinal consumption of ergothioneine reduces oxidative stress and amyloid plaques and restores glucose metabolism in the 5XFAD mouse model of Alzheimer's disease. Pharmaceuticals (Basel) 2022; 15: 742.
26. Wijesinghe P, Whitmore CA, Campbell M, et al. Ergothioneine, a dietary antioxidant improves amyloid beta clearance in the neuroretina of a mouse model of Alzheimer's disease. Front Neurosci 2023; 17: 1107436.
27. Feng L, Cheah IK, Ng MM, et al. The association between mushroom consumption and mild cognitive impairment: a community-based cross-sectional study in Singapore. J Alzheimers Dis 2019; 68: 197–203.
28. Cheah I, Feng L, Tang RMY, et al. Ergothioneine levels in an elderly population decrease with age and incidence of cognitive decline; a risk factor for neurodegeneration? Biochem Biophys Res Commun 2016; 478: 162–167.
29. Wu LY, Cheah IK, Chong JR, et al. Low plasma ergothioneine levels are associated with neurodegeneration and cerebrovascular disease in dementia. Free Radic Biol Med 2021; 177: 201–211.
30. Wu LY, Kan CN, Cheah IK, et al. Low plasma ergothioneine predicts cognitive and functional decline in an elderly cohort attending memory clinics. Antioxidants (Basel) 2022; 11: 1717.
31. Tian X, Thorne JL, Moore JB. Ergothioneine: an underrecognised dietary micronutrient required for healthy ageing? Br J Nutr 2023; 129: 104–114.
32. Smith E, Ottosson F, Hellstrand S, et al. Ergothioneine is associated with reduced mortality and decreased risk of cardiovascular disease. Heart 2020; 106: 691–697.
33. Chen L, Zhang L, Ye X, et al. Ergothioneine and its congeners: anti-ageing mechanisms and pharmacophore biosynthesis. Protein Cell 2024; 15: 191–206.
34. Turck D, Bresson JL, Burlingame B, et al. Safety of synthetic l-ergothioneine (Ergoneine®) as a novel food pursuant to regulation (EC) No 258/97. EFSA J 2016; 14: report 4629.
35. Turck D, Bresson JL, Burlingame B, et al. Statement on the safety of synthetic l-ergothioneine as a novel food – supplementary dietary exposure and safety assessment for infants and young children, pregnant and breastfeeding women. EFSA J 2017; 15: report 5060.
36. Yu R, Sun Y, Ye KX, et al. Cohort profile: the Diet and Healthy Aging (DaHA) study in Singapore. Aging (Albany NY) 2020; 12: 23889–23899.
37. Feng L. Ageing in a community environment study (ACES) cohort. In: Pachana NA (eds) Encyclopedia of geropsychology. Singapore: Springer Singapore, 2017, pp.233–238.
38. Lee RZY, Yu J, Rawtaer I, et al. CHI Study: protocol for an observational cohort study on ageing and mental health in community-dwelling older adults. BMJ Open 2020; 10: e035003.
39. Feng L, Chong MS, Lim WS, et al. The Modified Mini-Mental State Examination test: normative data for Singapore Chinese older adults and its performance in detecting early cognitive impairment. Singapore Med J 2012; 53: 458–462.
40. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med 2004; 256: 183–194.
41. Lee CK, Collinson SL, Feng L, et al. Preliminary normative neuropsychological data for an elderly Chinese population. Clin Neuropsychol 2012; 26: 321–334.
42. Cheah IK, Tang RMY, Yew TS, et al. Administration of pure ergothioneine to healthy human subjects; uptake, metabolism and effects on biomarkers of oxidative damage and inflammation. Antioxid Redox Signal 2017; 26: 193–206.
43. Ngandu T, Lehtisalo J, Solomon A, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 2015; 385: 2255–2263.
44. O'Bryant SE, Lacritz LH, Hall J, et al. Validation of the new interpretive guidelines for the clinical dementia rating scale sum of boxes score in the national Alzheimer's coordinating center database. Arch Neurol 2010; 67: 746–749.
45. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine, 5th ed. Oxford: Oxford University Press, 2015.
46. Halliwell B, Cheah I. Ergothioneine, where are we now? FEBS Lett 2022; 596: 1227–1230.
47. Norgren N, Rosengren L, Stigbrand T. Elevated neurofilament levels in neurological diseases. Brain Res 2003; 987: 25–31.
48. Gaiottino J, Norgren N, Dobson R, et al. Increased neurofilament light chain blood levels in neurodegenerative neurological diseases. PLoS One 2013; 8: e75091.
49. Seger CA, Miller EK. Category learning in the brain. Annu Rev Neurosci 2010; 33: 203–219.
50. Hebb DO. The organization of behavior: a neuropsychological theory. New York: Wiley, 1949.
51. Nakamichi N, Nakao S, Nishiyama M, et al. Oral administration of the food-derived hydrophilic antioxidant ergothioneine enhances object recognition memory in mice. Curr Mol Pharmacol 2021; 14: 220–233.
52. Li S, Selkoe DJ. A mechanistic hypothesis for the impairment of synaptic plasticity by soluble Abeta oligomers from Alzheimer's brain. J Neurochem 2020; 154: 583–597.
53. He Y, Wei M, Wu Y, et al. Amyloid beta oligomers suppress excitatory transmitter release via presynaptic depletion of phosphatidylinositol-4,5-bisphosphate. Nat Commun 2019; 10: 1193.
54. Fong ZW, Tang RMY, Cheah IK, et al. Ergothioneine and mitochondria: an important protective mechanism? Biochem Biophys Res Commun 2024; 726: 150269.

Cite article

Cite article

Cite article

OR

Download to reference manager

If you have citation software installed, you can download article citation data to the citation manager of your choice

Share options

Share

Share this article

Share with email
Email Article Link
Share on social media

Share access to this article

Create a link to share a read only version of this article with your colleagues and friends. For more information view the Sage Journals article sharing page.

Please read and accept the terms and conditions and check the box to generate a sharing link.

terms and conditions

Information, rights and permissions

Information

Published In

Article first published online: November 15, 2024
Issue published: December 2024

Keywords

  1. Alzheimer’s disease
  2. cognitive impairment
  3. dementia
  4. ergothioneine
  5. neuroprotection
  6. prevention

Rights and permissions

© The Author(s) 2024.
Request permissions for this article.

Data availability statement

Data is available for this article. View more information
PubMed: 39544014

Authors

Notes

*
These authors contributed equally to this work.
Barry Halliwell, Neurobiology Programme, Life Science Institute, National University of Singapore, 28 Medical Drive, #05-01, 117456, Singapore. Email: bchbh@nus.edu.sg

Author contributions

Yu Fung Yau (Formal analysis; Investigation; Methodology; Visualization; Writing – original draft); Irwin Kee-Mun Cheah (Conceptualization; Funding acquisition; Investigation; Methodology; Project administration; Supervision; Writing – review & editing); Rathi Mahendran (Conceptualization; Investigation); Richard Ming Yi Tang (Conceptualization; Investigation); Ru Yuan Chua (Investigation); Rachel Ern Si Goh (Investigation); Lei Feng (Conceptualization; Investigation); Jialiang Li (Validation); Ee Heok Kua (Investigation); Christopher Li-Hsian Chen (Conceptualization); Barry Halliwell (Conceptualization; Funding acquisition; Methodology; Project administration; Supervision; Writing – review & editing).

Metrics and citations

Metrics

Journals metrics

This article was published in Journal of Alzheimer’s Disease.

View All Journal Metrics

Article usage*

Total views and downloads: 1897

*Article usage tracking started in December 2016


Articles citing this one

Receive email alerts when this article is cited

Web of Science: 4 view articles Opens in new tab

Crossref: 8

  1. Ergothioneine regulates the paracrine of dermal papilla cells through SIRT1/Nrf2 pathway to antagonize oxidative stress and natural hair follicle aging
    Go to citationCrossrefGoogle Scholar
  2. Post-COVID Condition and Neuroinflammation: Possible Management with Antioxidants
    Go to citationCrossrefGoogle Scholar
  3. The roles of placental senescence, autophagy and senotherapeutics in the development and prevention of pre-eclampsia: a focus on ergothioneine
    Go to citationCrossrefGoogle Scholar
  4. The Effect of Ergothioneine Supplementation on Cognitive Function, Memory, and Sleep in Older Adults with Subjective Memory Complaints: A Randomized Placebo-Controlled Trial
    Go to citationCrossrefGoogle Scholar
  5. Study protocol: The efficacy of mushroom to prevent cognitive decline in at-risk middle-aged adults and young-olds living in the community
    Go to citationCrossrefGoogle Scholar
  6. Mushrooms and Human Health
    Go to citationCrossrefGoogle Scholar
  7. The role of Ergothioneine in cognition and age-related neurodegenerative disease: a systematic review
    Go to citationCrossrefGoogle Scholar
  8. Molecule-resolvable SERSome for metabolic profiling
    Go to citationCrossrefGoogle Scholar

Figures and tables

Figures & Media

Tables

Table 1. Baseline characteristics of participants.
Table 2. Blood markers for safety profile of prolonged ET consumption.

View Options

View options

PDF/EPUB

View PDF/EPUB

Access options

If you have access to journal content via a personal subscription, university, library, employer or society, select from the options below:


Alternatively, view purchase options below:

Purchase 24 hour online access to view and download content.

Access journal content via a DeepDyve subscription or find out more about this option.