这是用户在 2025-7-22 22:35 为 https://app.immersivetranslate.com/pdf-pro/37b1c91d-dd7d-4bb2-98a3-17cf701f85ed/ 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

The ethics of ChatGPT in medicine and healthcare: a systematic review on Large Language Models (LLMs)
ChatGPT 在医学和健康领域的伦理问题:大型语言模型(LLMs)的系统综述

Joschka Haltaufderheide © & Robert Ranisch ©
With the introduction of ChatGPT, Large Language Models (LLMs) have received enormous attention in healthcare. Despite potential benefits, researchers have underscored various ethical implications. While individual instances have garnered attention, a systematic and comprehensive overview of practical applications currently researched and ethical issues connected to them is lacking. Against this background, this work maps the ethical landscape surrounding the current deployment of LLMs in medicine and healthcare through a systematic review. Electronic databases and preprint servers were queried using a comprehensive search strategy which generated 796 records. Studies were screened and extracted following a modified rapid review approach. Methodological quality was assessed using a hybrid approach. For 53 records, a meta-aggregative synthesis was performed. Four general fields of applications emerged showcasing a dynamic exploration phase. Advantages of using LLMs are attributed to their capacity in data analysis, information provisioning, support in decision-making or mitigating information loss and enhancing information accessibility. However, our study also identifies recurrent ethical concerns connected to fairness, bias, non-maleficence, transparency, and privacy. A distinctive concern is the tendency to produce harmful or convincing but inaccurate content. Calls for ethical guidance and human oversight are recurrent. We suggest that the ethical guidance debate should be reframed to focus on defining what constitutes acceptable human oversight across the spectrum of applications. This involves considering the diversity of settings, varying potentials for harm, and different acceptable thresholds for performance and certainty in healthcare. Additionally, critical inquiry is needed to evaluate the necessity and justification of LLMs’ current experimental use.
随着 ChatGPT 的引入,大型语言模型(LLMs)在医疗保健领域受到了极大的关注。尽管存在潜在的好处,研究人员也强调了各种伦理问题。虽然个别案例引起了关注,但目前研究中的实际应用及其相关伦理问题的系统性和全面概述仍然缺乏。在此背景下,本研究通过系统回顾,绘制了当前 LLMs 在医学和医疗领域部署的伦理景观。通过全面的搜索策略查询了电子数据库和预印本服务器,生成了 796 篇记录。研究通过修改后的快速审查方法筛选和提取。方法学质量使用混合方法进行评估。对 53 篇记录进行了元综合合成。出现了四个主要的应用领域,展示了动态探索阶段。使用 LLMs 的优势在于其在数据分析、信息提供、支持决策或减轻信息丢失以及增强信息可访问性方面的能力。 然而,我们的研究还指出了与公平性、偏见、不伤害、透明度和隐私相关的反复出现的伦理问题。一个特别的担忧是生成有害或看似真实但不准确的内容的倾向。呼吁伦理指导和人类监督的声音是反复出现的。我们建议,伦理指导的讨论应重新聚焦于定义在各种应用范围内的适当人类监督标准。这包括考虑不同环境的多样性、潜在危害的不同程度以及在医疗保健领域性能和确定性可接受的不同阈值。此外,还需要进行批判性研究来评估 LLMs 当前实验性使用必要性和正当性。
Large language models (LLMs) have emerged as a transformative force in artificial intelligence (AI), generating significant interest across various sectors. The 2022 launch of OpenAI’s ChatGPT demonstrated their groundbreaking capabilities, revealing the current state of development to a wide audience. Since then, public availability and scientific interest have resulted in a flood of scientific papers exploring possible areas of application 1 1 ^(1){ }^{1} as well as their ethical and social implications from a practical perspective 2 2 ^(2){ }^{2}. A particularly rapid adoption of LLMs is seen in medicine and healthcare, encompassing clinical, educational and research applications 3 9 3 9 ^(3-9){ }^{3-9}. This development may present a case where a general-purpose technology swiftly integrates into specific domains. According to Libsey, such technologies are characterized by their potential for extensive refinement and expansion, a wide array of applications across various processes, and significant synergies with existing technologies 10 , 11 10 , 11 ^(10,11){ }^{10,11}. In a brief span, a significant number of publications have investigated the potential uses of LLMs in medicine and
大型语言模型(LLMs)已成为人工智能(AI)领域的一种变革性力量,引起了各个行业的广泛关注。2022 年 OpenAI 的 ChatGPT 的推出展示了其突破性的能力,向广大公众揭示了当前的发展状态。此后,LLMs 的公开可用性和科学兴趣导致了大量的科学论文探讨其可能的应用领域以及从实际角度出发的伦理和社会影响 1 1 ^(1){ }^{1} 。特别是在医疗和健康领域,LLMs 的应用呈现出特别快速的采纳,涵盖了临床、教育和研究等多个方面 2 2 ^(2){ }^{2} 。这种发展可能呈现一种通用技术迅速融入特定领域的案例。根据利斯比的说法,这类技术的特点在于其广泛的改进和扩展潜力、在各种过程中广泛的应用范围以及与现有技术的显著协同作用 3 9 3 9 ^(3-9){ }^{3-9} 。在短短的时间内,大量研究已经探讨了 LLMs 在医疗领域的潜在用途 10 , 11 10 , 11 ^(10,11){ }^{10,11}

healthcare 12 12 ^(12){ }^{12}, indicating a positive trajectory for the integration of medical AI. Present-day LLMs, such as ChatGPT, are considered to have a promising accuracy in clinical decision-making 13 , 14 13 , 14 ^(13,14){ }^{13,14}, diagnosis 15 15 ^(15){ }^{15}, symptomassessment, and triage-advice 16 16 ^(16){ }^{16}. In patient-communication, it has been posited that LLMs can also generate empathetic responses 17 17 ^(17){ }^{17}. LLMs specifically trained on biomedical corpora forebode even further capacities for clinical application and patient care 18 18 ^(18){ }^{18} in the foreseeable future.
医疗保健 12 12 ^(12){ }^{12} ,表明了医疗 AI 整合的积极趋势。当前的 LLMs,如 ChatGPT,在临床决策 13 , 14 13 , 14 ^(13,14){ }^{13,14} 、诊断 15 15 ^(15){ }^{15} 、症状评估和分诊建议 16 16 ^(16){ }^{16} 方面被认为具有良好的准确性。在患者沟通中,有人认为 LLMs 也可以生成具有同理心的回应 17 17 ^(17){ }^{17} 。专门训练于生物医学语料库的 LLMs 预示着未来在临床应用和患者护理方面将具备更强大的能力 18 18 ^(18){ }^{18}
Conversely, the adoption of LLMs is entwined with ethical and social concerns 19 19 ^(19){ }^{19}. In their seminal work, Bender et al. anticipated real-world harms that could arise from the deployment of LLMs 20 LLMs 20 LLMs^(20)\mathrm{LLMs}^{20}. Scholars have delineated potential risks across various application domains 21 , 22 21 , 22 ^(21,22){ }^{21,22}. The healthcare and medical fields, being particularly sensitive and heavily regulated, is notably susceptible to ethical dilemmas. This sector is also underpinned by stringent ethical norms, professional commitments, and societal role recognition. Despite the potential benefits of employing advanced AI technology,
相反,LLMs 的采用与伦理和社会问题紧密相关 19 19 ^(19){ }^{19} 。在 Bender 等人开创性的工作中,他们预见了部署 LLMs 可能带来的实际危害 LLMs 20 LLMs 20 LLMs^(20)\mathrm{LLMs}^{20} 。学者们已经界定了各种应用领域中潜在的风险 21 , 22 21 , 22 ^(21,22){ }^{21,22} 。医疗和医学领域,由于其高度敏感性和严格的监管,特别容易受到伦理困境的影响。该领域还受到严格的伦理规范、专业承诺和社会角色认可的支撑。尽管先进的 AI 技术具有潜在的好处,
researchers have underscored various ethical implications associated with using LLMs in healthcare and health-related research 4 , 6 , 7 , 23 26 4 , 6 , 7 , 23 26 ^(4,6,7,23-26){ }^{4,6,7,23-26}. Paramount concerns include the propensity of LLMs to disseminate inadequate information, the input of sensitive health information or patient data, which raises significant privacy issues 24 24 ^(24){ }^{24}, and the perpetuation of harmful gender, cultural or racial biases 27 30 27 30 ^(27-30){ }^{27-30}, well known from machine learning algorithms 31 31 ^(31){ }^{31}, especially in healthcare 32 32 ^(32){ }^{32}. Case reports have documented that ChatGPT has already caused actual damage, potentially life-threatening for patients 33 33 ^(33){ }^{33}.
研究人员强调了在医疗和健康相关研究中使用 LLMs 所涉及的各种伦理问题 4 , 6 , 7 , 23 26 4 , 6 , 7 , 23 26 ^(4,6,7,23-26){ }^{4,6,7,23-26} 。主要担忧包括 LLMs 传播不准确信息的可能性,输入敏感的健康信息或患者数据,这引发了重大隐私问题 24 24 ^(24){ }^{24} ,以及延续有害的性别、文化或种族偏见 27 30 27 30 ^(27-30){ }^{27-30} ,这些问题在机器学习算法中早已为人所知 31 31 ^(31){ }^{31} ,尤其是在医疗领域 32 32 ^(32){ }^{32} 。案例报告已经记录了 ChatGPT 已经造成了实际损害,甚至可能对患者构成生命威胁 33 33 ^(33){ }^{33}
While individual instances have drawn attention to ethical concerns surrounding the use of LLMs in healthcare, there appears to be a deficit in comprehensive, systematic overviews addressing these ethical considerations. This gap is significant, given the ambitions to rapidly integrate LLMs and foundational models into healthcare systems 34 34 ^(34){ }^{34}. Our intention is to bridge this lacuna by mapping out the ethical landscape surrounding the deployment of LLMs in this field. To this end, we conducted a systematic review of the current literature including relevant databases and preprint servers. Our inquiry was structured around two research questions: Firstly, we sought to delineate the ethically relevant applications, interventions, and contexts where LLMs have been tested or proposed within the realms of medicine and healthcare. Secondly, we aimed to identify the principal outcomes as well as the opportunities, risks, benefits, and potential harms associated with the use of LLMs in these sectors, as deemed significant from an ethical standpoint. Through this, we aspire not only to outline the current ethical discourse but also to inform future dialogue and policy-making at the intersection of LLMs and healthcare ethics.
尽管个别案例已经引起了人们对医疗保健领域使用 LLMs 所涉及的伦理问题的关注,但似乎缺乏全面而系统的综述来解决这些伦理考虑。鉴于希望迅速将 LLMs 和基础模型整合到医疗系统中,这一缺口尤为重要 34 34 ^(34){ }^{34} 。我们的意图是通过绘制 LLMs 在该领域部署所涉及的伦理景观来填补这一空白。为此,我们对相关文献数据库和预印本服务器进行了系统性回顾。我们的研究围绕两个研究问题展开:首先,我们试图界定在医学和医疗领域中已经测试或提议的具有伦理相关性的应用、干预措施和情境。其次,我们旨在识别这些领域中 LLMs 使用的主要结果,以及从伦理角度来看,与这些使用相关的机遇、风险、益处和潜在危害。 通过这一点,我们不仅希望概述当前的伦理讨论,还希望为 LLMs 与医疗保健伦理的交叉领域中的未来对话和政策制定提供信息。

Results  结果

Our search yielded a total of 796 database hits. After removal of duplicates, 738 records went through title/abstract screening. 158 full-texts were assessed. 53 records were included in the dataset, encompassing 23 original articles 25 , 35 56 25 , 35 56 ^(25,35-56)^{25,35-56}, including theoretical or empirical work, 11 letters 57 67 57 67 ^(57-67){ }^{57-67}, six
我们的搜索共获得了 796 条数据库记录。去重后,有 738 篇记录通过了标题/摘要筛选。158 篇全文进行了评估。最终有 53 篇记录被纳入数据集,其中包括 23 篇原创文章(包括理论或实证研究) 25 , 35 56 25 , 35 56 ^(25,35-56)^{25,35-56} ,11 封信件 57 67 57 67 ^(57-67){ }^{57-67} ,以及六篇

editorials 68 73 68 73 ^(68-73){ }^{68-73}, four reviews 8 , 74 76 8 , 74 76 ^(8,74-76){ }^{8,74-76}, three comments 24 , 77 , 78 24 , 77 , 78 ^(24,77,78){ }^{24,77,78}, one report 79 79 ^(79){ }^{79} and five unspecified articles 80 84 80 84 ^(80-84){ }^{80-84}. The flow of records through the review process can be seen in Fig. 1. Most works focus on applications utilizing ChatGPT across various healthcare fields, as indicated in Table 1. Regarding the affiliation of the first authors, 25 articles come from North America, 11 from Europe, six from West Asia, four from East asia, three from South Asia and four from Australia.
编辑 68 73 68 73 ^(68-73){ }^{68-73} 文章 4 篇 8 , 74 76 8 , 74 76 ^(8,74-76){ }^{8,74-76} ,评论 24 , 77 , 78 24 , 77 , 78 ^(24,77,78){ }^{24,77,78} 3 篇 79 79 ^(79){ }^{79} ,报告 80 84 80 84 ^(80-84){ }^{80-84} 1 篇 @5# 和其他未分类文章 5 篇 @6# 。记录通过审稿流程的流程图见图 1。大多数研究集中在 ChatGPT 在各种医疗健康领域的应用,详见表 1。关于第一作者的所属机构,25 篇文章来自北美,11 篇来自欧洲,6 篇来自西亚,4 篇来自东亚,3 篇来自南亚,4 篇来自澳大利亚。
During analysis, four general themes emerged in our dataset, which we used to structure our reporting. These themes include clinical applications, patient support applications, support of health professionals, and public health perspectives. Table 2 provides exemplary scenarios for each theme derived from the dataset.
在分析过程中,我们在数据集中发现了四个主要主题,我们使用这些主题来结构化我们的报告。这些主题包括临床应用、患者支持应用、对医务人员的支持以及公共卫生视角。表 2 提供了每个主题的示例场景,这些场景均来源于数据集。

Clinical applications  临床应用

To support initial diagnosis and triaging of patients 39 , 52 39 , 52 ^(39,52){ }^{39,52}, several authors discuss the use of LLMs in the context of predictive patient analysis and risk assessment in or prior to clinical situations as a potentially transformative application 74 , 80 74 , 80 ^(74,80){ }^{74,80}. The role of LLMs in this scenario is described as that of a “co-pilot” using available patient information to flag areas of concern or to predict diseases and risk factors 44 44 ^(44){ }^{44}.
为了支持初步诊断和患者分流,多位作者讨论了在临床情境中或临床前使用 LLMs 进行预测性患者分析和风险评估的潜在变革性应用。在这一场景中,LLMs 的角色被描述为“副驾”,利用可用的患者信息来标记需要关注的领域或预测疾病和风险因素。
Currie, in line with most authors, notes that predicting health outcomes and relevant patterns is very likely to improve patient outcomes and contribute to patient benefit 80 80 ^(80){ }^{80}. For example, overcrowded emergency departments present a serious issue worldwide and have a significant impact on patient outcomes. From a perspective of harm avoidance, using LLMs with triage notes could lead to reduced length of stay and a more efficient utilization of time in the waiting room 52 52 ^(52){ }^{52}.
Currie,和其他大多数作者的观点一致,认为预测健康结果和相关模式很可能改善患者结果并有助于患者受益 80 80 ^(80){ }^{80} 。例如,拥挤的急诊部门是全球性的问题,对患者结果有重大影响。从避免伤害的角度来看,使用 LLMs 进行分诊记录分析可能会减少住院时间,并更有效地利用候诊室的时间 52 52 ^(52){ }^{52}
All authors note, however, that such applications might also be problematic and require close human oversight 39 , 44 , 51 , 80 39 , 44 , 51 , 80 ^(39,44,51,80){ }^{39,44,51,80}. Although LLMs might be able to reveal connections between disparate knowledge 40 40 ^(40){ }^{40}, generating inaccurate information would have severe negative consequences 44 , 74 44 , 74 ^(44,74){ }^{44,74}.
然而,所有作者都指出,此类应用也可能存在问题,并需要密切的人类监督 39 , 44 , 51 , 80 39 , 44 , 51 , 80 ^(39,44,51,80){ }^{39,44,51,80} 。尽管 LLMs 可能能够揭示不同知识之间的联系 40 40 ^(40){ }^{40} ,生成不准确的信息将产生严重的负面影响 44 , 74 44 , 74 ^(44,74){ }^{44,74}
Fig. 1 | Flow of records through the screening process. This Diagram following PRISMA guidelines showing the flow of records through the screening process.
图 1 | 筛查过程中的记录流程。该图遵循 PRISMA 指南,展示了记录通过筛选过程的流程。

Identification of studies via databases and preprint servers
通过数据库和预印本服务器识别研究


Table 1 | Overview of the included records
表 1 | 包含记录的概述
Publication  发表 Procedural Quality Control
程序质量控制
Setting  环境
Title  标题 Origin  来源 Article Types  文章类型 Peer Reviewed  同行评议 COI Device  设备 Field of Application  应用领域
Abdulai & Hung 77 77 ^(77){ }^{77}  阿卜杜拉伊 & Hung 77 77 ^(77){ }^{77} CAN Commentary  评论 Unclear  不明确 Unclear  不明确 ChatGPT; ChatGPT 4 Nursing education, research and practice
护理教育、研究与实践
Agbavor & Liang 35 35 ^(35){ }^{35} USA Empirical Article  实证文章 Yes   None disclosed  未披露 GPT 3 Neurology  神经病学
Ahn 57 Ahn 57 Ahn^(57)\mathrm{Ahn}^{57} KOR Letter  信件 No   None disclosed  无利益冲突披露 ChatGPT Emergency Medicine  急诊医学
Ali et al. 36 36 ^(36){ }^{36}  阿里等人 36 36 ^(36){ }^{36} QAT Theoretical Article  理论文章 Preprint  预印本 Unclear  不明确 ChatGPT, Google Bard, Meta LLaMA Healthcare  医疗保健
Almazyad et al. 37 37 ^(37){ }^{37}  阿尔马兹亚德等人. 37 37 ^(37){ }^{37} SAU Empirical Article  实证文章 Yes   Unclear  伦理不清 ChatGPT 4 Pediatric Palliative Care
儿童舒缓护理
Antaki et al. 38 38 ^(38){ }^{38} CAN Empirical Article  实证文章 Preprint  预印本 Unclear  待定 ChatGPT; GPT 3.5  ChatGPT;GPT 3.5 Ophtalmology  眼科
Arslan 58 58 ^(58){ }^{58}  阿斯兰 58 58 ^(58){ }^{58} TUR Letter  信件 No   None disclosed  无利益冲突 ChatGPT Obesity Treatment  肥胖治疗
Beltrami & Grant-Kels 59 59 ^(59){ }^{59}
贝尔特马 & 格兰-基尔 59 59 ^(59){ }^{59}
USA Letter  致编辑部 No   Conflict disclosed  已披露冲突 ChatGPT Dermatology  皮肤科
Buzzaccarini et al. 60 60 ^(60){ }^{60} ITA Letter  信函 No   Conflict disclosed  利益冲突声明 ChatGPT Aesthetic Medicine  美学医学
Carullo et al. 40 40 ^(40){ }^{40} ITA Empirical Article  实证文章 Yes   None disclosed  无披露 ChatGPT Epidemiological Research
流行病学研究
Cheng et al. 61 61 ^(61){ }^{61}  程等 61 61 ^(61){ }^{61} CHN Letter  信件 No   None disclosed  无利益冲突 ChatGPT; GPT 3  ChatGPT;GPT 3 Infectiology  感染病学
Connor & O'Neill 39 39 ^(39){ }^{39} IRL Theoretical Article  理论文章 Preprint  预印本 Unclear  待定 ChatGPT; ChatDoctor; Google BARD Sport Science and Medicine
体育科学与医学
Currie 80 80 ^(80){ }^{80} AUS Unspecified  未指定 Yes   None disclosed  无利益冲突披露 ChatGPT; GPT 3.5  ChatGPT;GPT 3.5 Nuclear Medicine and Radiology
核医学与放射学
Dave et al. 8 8 ^(8){ }^{8}  戴夫等人. 8 8 ^(8){ }^{8} IND Review  审稿人 Yes   None disclosed  无利益冲突 ChatGPT Medicine  医学
De Angelis et al. 46 46 ^(46){ }^{46}
德安杰利斯等人 46 46 ^(46){ }^{46}
ITA Theoretical Article  理论文章 Yes   Conflict disclosed  冲突披露 GPT; BERT; GPT 2; GPT 3; GPT 4; Instruct GPT; BioBERT; BioGPT; PubMedGPT; Med-PaLm; CORD-19
GPT;BERT;GPT 2;GPT 3;GPT 4;指令 GPT;BioBERT;BioGPT;PubMedGPT;Med-PaLm;CORD-19
Public Health  公共卫生
Eggman & Blatz 81 81 ^(81){ }^{81} USA Unspecified  未指定 Unclear  不清楚 None disclosed  未披露 ChatGPT Dentistry  牙科
Ferrara 41 41 ^(41){ }^{41}  费拉拉 41 41 ^(41){ }^{41} USA Theoretical Article  理论文章 Preprint  预印本 Unclear  伦理问题 ChatGPT Healthcare  医疗健康
Ferreira & Lippoff 78 78 ^(78){ }^{78}  费雷拉 & 利波夫 78 78 ^(78){ }^{78} USA Commentary  评论 Unclear  不明确 None disclosed  未披露 ChatGPT Dermatology  皮肤科
Gottlieb et al. 82 82 ^(82){ }^{82}  戈特利布等人 82 82 ^(82){ }^{82} USA Unspecified  未指明 Yes   None disclosed  无利益冲突声明 ChatGPT Emergency Medicine  急诊医学
Guo et al. 42 42 ^(42){ }^{42}  郭等. 42 42 ^(42){ }^{42} CAN Empirical Article  实证文章 Preprint  预印本 Conflict disclosed  利益冲突披露 ChatGPT; GPT 3; NeuroGPT-X
ChatGPT;GPT 3;NeuroGPT-X
Neurosurgery  神经外科
Guo et al. 79 79 ^(79){ }^{79}  郭等. 79 79 ^(79){ }^{79} USA Report  报告 Preprint  预印本 Unclear  伦理不清 ProteinChat Protein Research  蛋白质研究
Gupta et al. 62 62 ^(62){ }^{62}  古普塔等 62 62 ^(62){ }^{62} USA Letter  致函 No  第几封 None disclosed  未披露 ChatGPT Aesthetic Surgery  美容手术
Harrer 83 83 ^(83){ }^{83}  哈勒 83 83 ^(83){ }^{83} AUS Unspecified  未指明 Yes   Conflict disclosed  利益冲突披露 ChatGPT; LaMDA; BARD; Med-Palm
ChatGPT;LaMDA;BARD;Med-Palm
Healthcare  医疗保健
Harskamp & Clercq 43 43 ^(43){ }^{43} NDL Empirical Article  实证文章 Preprint  预印本 None disclosed  无披露 ChatGPT; InstructGPT Cardiopulmonary Medicine
心血管医学
Hosseini et al. 44 44 ^(44){ }^{44}  霍斯林尼等. 44 44 ^(44){ }^{44} USA Empirical Article  经验性文章 Preprint  预印本 Unclear  不明确 ChatGPT; GPT 4; Elicit; Med-PaLM
ChatGPT;GPT 4;激发;Med-PaLM
Education, Research and Healthcare
教育、研究和医疗健康
Howard et al. 63 63 ^(63){ }^{63} GBR Letter  信件 No   Conflict disclosed  利益冲突声明 ChatGPT Infection Medicine  感染医学
Jairoun et al. 68 68 ^(68){ }^{68}  贾鲁恩等人 68 68 ^(68){ }^{68} UAE Editorial  编辑 No   Unclear  伦理问题 ChatGPT Pharmacy  药学
Kavian et al. 69 69 ^(69){ }^{69} USA Editorial  编辑 No   None disclosed  无利益冲突披露 ChatGPT Surgery  手术
Knebel et al. 45 45 ^(45){ }^{45} GER Empirical Article  实证文章 Preprint  预印本 None disclosed  无利益冲突 ChatGPT; GPT 3  ChatGPT;GPT 3 Ophtalmology  眼科
Li et al. 64 64 ^(64){ }^{64}  李等. 64 64 ^(64){ }^{64} CHN Letter  信件 No   No   ChatGPT Surgery  手术
Li et al. 24 24 ^(24){ }^{24}  李等. 24 24 ^(24){ }^{24} USA Commentary  评论 Unclear  不明确 No   ChatGPT; BioGPT; LaMDA; Sparrow; Pangu Alpha; OPT-IML; Megataron Turing MLG
ChatGPT;BioGPT;LaMDA;Sparrow;Pangu Alpha;OPT-IML;Megataron Turing MLG
Medicine and Medical Research
医学和医疗研究
Padovan et al. 47 47 ^(47){ }^{47} ITA Empirical Article  实证文章 Preprint  预印本 None disclosed  未披露 ChatGPT Occupational Medicine  职业医学
Page et al. 70 70 ^(70){ }^{70} USA Editorial  编辑 No   Conflict disclosed  利益冲突声明 ChatGPT 4 Microbial genomics research
微生物基因组学研究
Pal et al. 48 48 ^(48){ }^{48} IND Empirical Article  实证文章 Preprint  预印本 Unclear  不明确 BERT; BioBERT; BioClinicalBERT; SciBERT; UMLS-BERT
BERT;BioBERT;BioClinicalBERT;SciBERT;UMLS-BERT
Medicine  医学
Perlis 65 65 ^(65){ }^{65}  珀利斯 65 65 ^(65){ }^{65} USA Letter  信件 Preprint  预印本 Conflict disclosed  冲突披露 ChatGPT 4 Psychopharmacology  精神药理学
Rau et al. 49 49 ^(49){ }^{49}  拉等人. 49 49 ^(49){ }^{49} GER Empirical Article  实证文章 Preprint  预印本 Unclear  待定 ChatGPT; GPT 3.5 Turbo; accGPT
ChatGPT;GPT 3.5 Turbo;accGPT
Radiology  放射学
Sallam 74 74 ^(74){ }^{74}  萨拉姆 74 74 ^(74){ }^{74} JOR Review  综述 Preprint  预印本 None disclosed  无披露 ChatGPT Healthcare  医疗保健
Publication Procedural Quality Control Setting Title Origin Article Types Peer Reviewed COI Device Field of Application Abdulai & Hung ^(77) CAN Commentary Unclear Unclear ChatGPT; ChatGPT 4 Nursing education, research and practice Agbavor & Liang ^(35) USA Empirical Article Yes None disclosed GPT 3 Neurology Ahn^(57) KOR Letter No None disclosed ChatGPT Emergency Medicine Ali et al. ^(36) QAT Theoretical Article Preprint Unclear ChatGPT, Google Bard, Meta LLaMA Healthcare Almazyad et al. ^(37) SAU Empirical Article Yes Unclear ChatGPT 4 Pediatric Palliative Care Antaki et al. ^(38) CAN Empirical Article Preprint Unclear ChatGPT; GPT 3.5 Ophtalmology Arslan ^(58) TUR Letter No None disclosed ChatGPT Obesity Treatment Beltrami & Grant-Kels ^(59) USA Letter No Conflict disclosed ChatGPT Dermatology Buzzaccarini et al. ^(60) ITA Letter No Conflict disclosed ChatGPT Aesthetic Medicine Carullo et al. ^(40) ITA Empirical Article Yes None disclosed ChatGPT Epidemiological Research Cheng et al. ^(61) CHN Letter No None disclosed ChatGPT; GPT 3 Infectiology Connor & O'Neill ^(39) IRL Theoretical Article Preprint Unclear ChatGPT; ChatDoctor; Google BARD Sport Science and Medicine Currie ^(80) AUS Unspecified Yes None disclosed ChatGPT; GPT 3.5 Nuclear Medicine and Radiology Dave et al. ^(8) IND Review Yes None disclosed ChatGPT Medicine De Angelis et al. ^(46) ITA Theoretical Article Yes Conflict disclosed GPT; BERT; GPT 2; GPT 3; GPT 4; Instruct GPT; BioBERT; BioGPT; PubMedGPT; Med-PaLm; CORD-19 Public Health Eggman & Blatz ^(81) USA Unspecified Unclear None disclosed ChatGPT Dentistry Ferrara ^(41) USA Theoretical Article Preprint Unclear ChatGPT Healthcare Ferreira & Lippoff ^(78) USA Commentary Unclear None disclosed ChatGPT Dermatology Gottlieb et al. ^(82) USA Unspecified Yes None disclosed ChatGPT Emergency Medicine Guo et al. ^(42) CAN Empirical Article Preprint Conflict disclosed ChatGPT; GPT 3; NeuroGPT-X Neurosurgery Guo et al. ^(79) USA Report Preprint Unclear ProteinChat Protein Research Gupta et al. ^(62) USA Letter No None disclosed ChatGPT Aesthetic Surgery Harrer ^(83) AUS Unspecified Yes Conflict disclosed ChatGPT; LaMDA; BARD; Med-Palm Healthcare Harskamp & Clercq ^(43) NDL Empirical Article Preprint None disclosed ChatGPT; InstructGPT Cardiopulmonary Medicine Hosseini et al. ^(44) USA Empirical Article Preprint Unclear ChatGPT; GPT 4; Elicit; Med-PaLM Education, Research and Healthcare Howard et al. ^(63) GBR Letter No Conflict disclosed ChatGPT Infection Medicine Jairoun et al. ^(68) UAE Editorial No Unclear ChatGPT Pharmacy Kavian et al. ^(69) USA Editorial No None disclosed ChatGPT Surgery Knebel et al. ^(45) GER Empirical Article Preprint None disclosed ChatGPT; GPT 3 Ophtalmology Li et al. ^(64) CHN Letter No No ChatGPT Surgery Li et al. ^(24) USA Commentary Unclear No ChatGPT; BioGPT; LaMDA; Sparrow; Pangu Alpha; OPT-IML; Megataron Turing MLG Medicine and Medical Research Padovan et al. ^(47) ITA Empirical Article Preprint None disclosed ChatGPT Occupational Medicine Page et al. ^(70) USA Editorial No Conflict disclosed ChatGPT 4 Microbial genomics research Pal et al. ^(48) IND Empirical Article Preprint Unclear BERT; BioBERT; BioClinicalBERT; SciBERT; UMLS-BERT Medicine Perlis ^(65) USA Letter Preprint Conflict disclosed ChatGPT 4 Psychopharmacology Rau et al. ^(49) GER Empirical Article Preprint Unclear ChatGPT; GPT 3.5 Turbo; accGPT Radiology Sallam ^(74) JOR Review Preprint None disclosed ChatGPT Healthcare| Publication | | | Procedural Quality Control | | Setting | | | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Title | Origin | Article Types | Peer Reviewed | COI | Device | Field of Application | | Abdulai & Hung ${ }^{77}$ | CAN | Commentary | Unclear | Unclear | ChatGPT; ChatGPT 4 | Nursing education, research and practice | | Agbavor & Liang ${ }^{35}$ | USA | Empirical Article | Yes | None disclosed | GPT 3 | Neurology | | $\mathrm{Ahn}^{57}$ | KOR | Letter | No | None disclosed | ChatGPT | Emergency Medicine | | Ali et al. ${ }^{36}$ | QAT | Theoretical Article | Preprint | Unclear | ChatGPT, Google Bard, Meta LLaMA | Healthcare | | Almazyad et al. ${ }^{37}$ | SAU | Empirical Article | Yes | Unclear | ChatGPT 4 | Pediatric Palliative Care | | Antaki et al. ${ }^{38}$ | CAN | Empirical Article | Preprint | Unclear | ChatGPT; GPT 3.5 | Ophtalmology | | Arslan ${ }^{58}$ | TUR | Letter | No | None disclosed | ChatGPT | Obesity Treatment | | Beltrami & Grant-Kels ${ }^{59}$ | USA | Letter | No | Conflict disclosed | ChatGPT | Dermatology | | Buzzaccarini et al. ${ }^{60}$ | ITA | Letter | No | Conflict disclosed | ChatGPT | Aesthetic Medicine | | Carullo et al. ${ }^{40}$ | ITA | Empirical Article | Yes | None disclosed | ChatGPT | Epidemiological Research | | Cheng et al. ${ }^{61}$ | CHN | Letter | No | None disclosed | ChatGPT; GPT 3 | Infectiology | | Connor & O'Neill ${ }^{39}$ | IRL | Theoretical Article | Preprint | Unclear | ChatGPT; ChatDoctor; Google BARD | Sport Science and Medicine | | Currie ${ }^{80}$ | AUS | Unspecified | Yes | None disclosed | ChatGPT; GPT 3.5 | Nuclear Medicine and Radiology | | Dave et al. ${ }^{8}$ | IND | Review | Yes | None disclosed | ChatGPT | Medicine | | De Angelis et al. ${ }^{46}$ | ITA | Theoretical Article | Yes | Conflict disclosed | GPT; BERT; GPT 2; GPT 3; GPT 4; Instruct GPT; BioBERT; BioGPT; PubMedGPT; Med-PaLm; CORD-19 | Public Health | | Eggman & Blatz ${ }^{81}$ | USA | Unspecified | Unclear | None disclosed | ChatGPT | Dentistry | | Ferrara ${ }^{41}$ | USA | Theoretical Article | Preprint | Unclear | ChatGPT | Healthcare | | Ferreira & Lippoff ${ }^{78}$ | USA | Commentary | Unclear | None disclosed | ChatGPT | Dermatology | | Gottlieb et al. ${ }^{82}$ | USA | Unspecified | Yes | None disclosed | ChatGPT | Emergency Medicine | | Guo et al. ${ }^{42}$ | CAN | Empirical Article | Preprint | Conflict disclosed | ChatGPT; GPT 3; NeuroGPT-X | Neurosurgery | | Guo et al. ${ }^{79}$ | USA | Report | Preprint | Unclear | ProteinChat | Protein Research | | Gupta et al. ${ }^{62}$ | USA | Letter | No | None disclosed | ChatGPT | Aesthetic Surgery | | Harrer ${ }^{83}$ | AUS | Unspecified | Yes | Conflict disclosed | ChatGPT; LaMDA; BARD; Med-Palm | Healthcare | | Harskamp & Clercq ${ }^{43}$ | NDL | Empirical Article | Preprint | None disclosed | ChatGPT; InstructGPT | Cardiopulmonary Medicine | | Hosseini et al. ${ }^{44}$ | USA | Empirical Article | Preprint | Unclear | ChatGPT; GPT 4; Elicit; Med-PaLM | Education, Research and Healthcare | | Howard et al. ${ }^{63}$ | GBR | Letter | No | Conflict disclosed | ChatGPT | Infection Medicine | | Jairoun et al. ${ }^{68}$ | UAE | Editorial | No | Unclear | ChatGPT | Pharmacy | | Kavian et al. ${ }^{69}$ | USA | Editorial | No | None disclosed | ChatGPT | Surgery | | Knebel et al. ${ }^{45}$ | GER | Empirical Article | Preprint | None disclosed | ChatGPT; GPT 3 | Ophtalmology | | Li et al. ${ }^{64}$ | CHN | Letter | No | No | ChatGPT | Surgery | | Li et al. ${ }^{24}$ | USA | Commentary | Unclear | No | ChatGPT; BioGPT; LaMDA; Sparrow; Pangu Alpha; OPT-IML; Megataron Turing MLG | Medicine and Medical Research | | Padovan et al. ${ }^{47}$ | ITA | Empirical Article | Preprint | None disclosed | ChatGPT | Occupational Medicine | | Page et al. ${ }^{70}$ | USA | Editorial | No | Conflict disclosed | ChatGPT 4 | Microbial genomics research | | Pal et al. ${ }^{48}$ | IND | Empirical Article | Preprint | Unclear | BERT; BioBERT; BioClinicalBERT; SciBERT; UMLS-BERT | Medicine | | Perlis ${ }^{65}$ | USA | Letter | Preprint | Conflict disclosed | ChatGPT 4 | Psychopharmacology | | Rau et al. ${ }^{49}$ | GER | Empirical Article | Preprint | Unclear | ChatGPT; GPT 3.5 Turbo; accGPT | Radiology | | Sallam ${ }^{74}$ | JOR | Review | Preprint | None disclosed | ChatGPT | Healthcare |

  1. Faculty of Health Sciences Brandenburg, University of Potsdam, Am Mühlenberg 9, Potsdam, 14476, Germany. \boxtimes e-mail: ranisch@uni-potsdam.de
    Brandenburg 大学帕绍姆健康科学学院, 德国帕绍姆, 阿姆·穆尔 enberg 9 号, 14476, 电子邮件: ranisch@uni-potsdam.de