Journal of Pipeline Science and Engineering
Combined Ductile-Brittle Fracture Simulation of API X80 Under Impact Loading
ABSTRACT
Keywords
Nomenclature
- a0
- initial crack length [mm]
- Δa
- crack extension [mm]
- Cp
- specific heat [J/kg∙°C]
- c
- strain rate dependent Johnson-Cook (J-C) deformation parameter
- D1, D2, D3
- Johnson-Cook fracture parameters at quasi-static strain rate and room temperature
- D4
- strain rate dependent J-C fracture parameter
- D5
- temperature dependent J-C fracture parameter
- Dc
- critical damage value
- E
- Young's modulus [GPa]
- E0
- elastic energy absorption [J]
- T, ΔT
- temperature and its change [°C]
- Tmelt
- melting temperature [°C]
- V0
- reference volume [mm3]
- VE
- total volume of one layer element in the unnotched ligament [mm3]
- εf
- ,
- strain rate and reference strain rate
- εp, Δεp
- equivalent plastic strain and its increment
- ρ
- density [kg/m3]
- σ1
- principal stress [MPa]
- σ1,max
- maximum principal stress [MPa]
- σc
- critical stress for brittle fracture [MPa]
- σy, σu
- yield strength and ultimate tensile strength, respectively [MPa]
- σe
- equivalent stress [MPa]
- σm
- mean normal stress [MPa]
- σw
- Weibull stress [MPa]
- CMOD
- crack mouth opening displacement
- CVN
- Charpy V notch
- DWTT
- drop-weight tear test
- FE
- Finite element
- J-C
- Johnson-Cook
- RT
- room temperature
- SENT
- single edge notched tension
- SRB
- smooth round bar
ABBREVIATIONS
1. INTRODUCTION
2. PROPOSED COMBINED DUCTILE-BRITTLE FRACTURE SIMULATION MODEL
2.1. Johnson-Cook (J-C) Deformation Model under Impact Loading
- The original form of the J-C deformation model is as follows:(1)
2.2. Johnson-Cook (J-C) Fracture Strain Model for Ductile Fracture Simulation
2.3. Critical Stress Model for Brittle Fracture Simulation
2.4. Combined Ductile and Brittle Fracture Simulation

Figure 1. Combined ductile-brittle fracture simulation procedure.
3. SUMMARY OF EXPERIMENTS FOR MODEL DETERMINATION
- (1)Smooth round bar (SRB) test data conducted over a temperature range of -100 °C to 60 °C,
- (2)Single edge notched tensile (SENT) test conducted at room temperature (RT), and
- (3)Instrumented Charpy V-notch (CVN) test conducted at RT.
Table 1. Chemical composition of API X80 (wt.%).
| C | Si | Mn | Ni+Mo | Nb+Ti | Al |
|---|---|---|---|---|---|
| 0.073 | 0.23 | 1.76 | 0.56 | 0.05 | 0.033 |
Table 2. Summary of test cases for determination of deformation and fracture model parameters.
| Test | Temperature [°C] |
|---|---|
| SRB | 60, RT, -50, -100 |
| SENT | RT |
| CVN | RT |
3.1. Tensile Test

Figure 2. Tensile test data: (a) engineering stress-strain curve at -100 °C, RT, and 60 °C; (b) the variation of yield strength, tensile strength, and fracture strain with temperature.
3.2. Single Edge Notched Tensile (SENT) Test

Figure 3. (a) Schematic illustration of the SENT test specimen and (b) measured load-CMOD and Δa-CMOD curves at RT.
3.3. Charpy V Notched (CVN) Impact Test at Room Temperature

Figure 4. Load-displacement curves from instrumented CVN test at room temperature.
4. DETERMINATION OF API X80 DEFORMATION AND FRACTURE MODELS
4.1. Parameter Determination of Deformation Model
- (1)The true stress-strain curve at room temperature (RT) under quasi-static conditions was obtained from the smooth round bar (SRB) testing at RT.
- (2)The temperature-dependent parameter (k) was determined based on the variation of yield strength with temperature.
- (3)The strain rate-dependent parameter (c) was calibrated by simulating the experimental maximum load from the Charpy V-notch (CVN) test at RT

Figure 5. (a) FE mesh for simulating the SRB test, (b) engineering and true-stress strain curves at RT with FE simulation results, (c) variation of yield strength with temperature and determined temperature-dependent parameter k, and (d) comparison of simulated engineering stress-strain curves with experimental data at 60 °C and -100 °C.

Figure 6. FE mesh for simulating CVN test.
Table 3. Temperature-dependent specific heat for API 5L X80 in (Yan et al., 2014).
| Temperature [°C] | 20 | 100 | 200 | 400 | 800 | 1,200 |
|---|---|---|---|---|---|---|
| Specific heat [J/kg∙°C] | 423 | 473 | 536 | 662 | 914 | 1,160 |

Figure 7. (a) Comparison of experimental load-displacement curves with simulation results with different values of c and (b) variation of the simulated maximum load with c.
4.2. Parameter Determination of Ductile Fracture Model
- (1)The multi-axial fracture strain damage model parameters (D1, D2, and D3) and critical damage value Dc are determined by analyzing Smooth Round Bar (SRB) and Single Edge Notched Tensile (SENT) tests at room temperature (RT) under quasi-static conditions.
- (2)The temperature dependent parameter (D5) is determined by fitting the variation of fracture strain with temperature.
- (3)Finally, the strain rate dependent parameter (D4) is obtained by simulating the experimental Charpy V Notched (CVN) energy at RT.

Figure 8. (a) Variation of the stress triaxiality with equivalent plastic strain from SRB simulation and (b) determined fracture strain locus for API X80 at RT under quasi-static conditions.

Figure 9. FE meshes for simulating the SENT test.

Figure 10. Comparison of (a)-(b) simulation results with an element size of 0.1 mm; and (c)-(d) effect of the element size Le on the critical damage value Dc.

Figure 11. (a) Comparison of experimental load-displacement curves with simulation results using different values of D4 and (b) variation of the simulated CVN energy with D4.
4.3. Determination of Brittle Fracture Model

Figure 12. (a) Comparison of simulated load-displacement curves with experimental data at -60 °C, (b) variation of σc /σy(T) with CVN energy normalized by elastic energy absorption E0 in Eq. (13), and (c) variation of σc /σy(T) calculated from FE model with different element sizes of 0.1, 0.2 and 0.3 mm.
5. EXPERIMENTS FOR VALIDATION
- (1)CVN test at temperatures ranging from -120 to -30 °C
- (2)Drop weight Tear Test (DWTT) at -40 and 0 °C.
Table 4. Summary of test cases for validation.
| Test | Temperature [°C] |
|---|---|
| CVN | -30, -60, -90, -120 |
| DWTT | 0, -40 |
5.1. Charpy V Notched (CVN) Test

Figure 13. (a) Load-displacement curves from CVN test at -30 and -90 °C and (b) -60 and -120 °C.
5.2. Drop-Weight Tear Test (DWTT)

Figure 14. (a) Schematic illustration of DWTT specimen; (b) load-displacement curves and (c) fracture surfaces from DWTT at 0 and -40 °C.
6. COMPARISON WITH FE SIMULATION RESULTS FOR VALIDATION
6.1. Comparison of CVN Test with Simulation Results

Figure 15. Comparison of FE simulation result with CVN experimental data at -30 °C: (a) load-displacement curve, and (b) deformation and fracture surface.

Figure 16. Comparison of (a)-(c) FE simulation result (load-displacement curve at -60, -90, and -120 °C) with CVN experimental data, and of (d) deformation and fracture surface at -90 °C.
6.2. Comparison of DWTT with Simulation Results

Figure 17. FE mesh for simulating DWTT.
图 18(a) 将模拟的载荷-位移曲线与实验结果进行了比较。需要注意的是,图中显示的是未经任何处理的原始实验曲线,以突出数据散布的影响。FE 结果紧密遵循实验载荷-位移曲线,模拟的冲击能量与实验数据的误差在 5% 以内。体心立方钢的断裂行为随温度变化呈现四种不同的趋势:上部架状(延性)、上部转变(延性-脆性)、下部转变(延性-脆性)和下部架状(脆性)。在过渡区,由于延性和脆性断裂机制的混合贡献,数据表现出很大的散布性,因此很难提供延性断裂能量与脆性断裂能量对总断裂能量的相对贡献。所提出的方法可以预测过渡区中给定总断裂能量时延性和脆性断裂的能量贡献。为了进行比较,图 18(a)还显示了仅考虑延性断裂模型的模拟载荷-位移曲线(表示为“w/o σ c ”)。在不考虑σ c 的情况下,载荷平稳增加至 20 mm 的位移。然而,在实验和模拟结果中,当考虑脆性断裂时,一旦位移超过 10 mm,载荷就会降低。图 18(b)比较了-40 °C 下实验测试的断裂表面与 FE 模拟的断裂表面。试验后,使用图像分析仪分析了 DWTT 试样的断裂表面。由于应力三轴性高,中心表面表现出脆性断裂,而侧面表现出延性断裂。在 FE 结果中可以观察到非常相似的断裂表面。 特别是,使用从 CVN 测试确定的变形和断裂模型可以很好地模拟初始缺口尖端附近的三角形和锯齿状扩展的脆性断裂表面。

Figure 18. Comparison of FE simulation results with DWTT experimental data: (a) load-displacement curve at 0 and -40 °C, and (b) deformation and fracture surface at -40 °C.
图 18. FE 模拟结果与 DWTT 实验数据的比较:(a) 0 和 -40 °C 时的载荷-位移曲线,(b) -40 °C 时的变形和断裂表面。
7. DISCUSSION: EFFECT OF ADIABATIC HEATING AND STRAIN RATE ON COMBINED DUCTILE-BRITTLE FRACTURE SIMULATION FOR IMPACT TESTS
7. 讨论:绝热加热和应变速率对冲击试验韧脆性断裂模拟的影响
本节将讨论应变率和绝热加热对 CVN 和 DWTT 模拟的影响。在高应变率的冲击载荷条件下,材料温度会因绝热加热而升高。因此,材料会同时经历应变率硬化和绝热加热软化。为了分析每种效应,我们考虑了三种情况:(情况 1)同时考虑应变率和绝热加热效应;(情况 2)仅考虑应变率效应;以及(情况 3)忽略应变率和绝热加热效应。我们针对在试验中观察到延性-脆性复合断裂的场景进行了 FE 模拟,具体而言,CVN 试验在 -90°C 下进行,DWTT 试验在 -40°C 下进行。
图 19(a) 显示了前面描述的三种情况的 CVN 模拟结果。在我们之前的研究(Seo 等,2024)中,我们发现,在完全延性断裂场景的 CVN 试验模拟中,应变速率效应会使最大载荷增加约 10%,而绝热加热效应会使最大载荷降低约 5%。对于延性-脆性断裂组合模拟,绝热加热效应会使最大载荷降低 5%,呈现出与延性断裂中观察到的趋势类似的趋势。然而,应变速率对最大载荷的影响更为明显,增加了 15%。当不考虑绝热加热时,脆性断裂导致的载荷突然下降会加速(图 19(a) 中的情况 2 和 3)。这是因为绝热加热会使材料软化并降低主应力,这与先前研究的结果一致(Petti 和 Dodds,2005 年;Gao 等,2006 年;Wasiluk 等,2006 年)。值得注意的是,Petti 等(Petti 和 Dodds,2005 年)、Gao 等(Wasiluk 等,2006 年)和 Wasiluk 等(Wasiluk 等,2006 年)发现,在准静态条件下,威布尔应力 σ u 会随着温度升高而增大。因此,绝热加热有助于延缓脆性裂纹的萌生。

Figure 19. Simulation results with or without considering the strain rate and adiabatic heating effects: (a) CVN simulation at -90 °C and (b) DWTT simulation at -40 °C.
图 19. 考虑和不考虑应变率和绝热加热效应的模拟结果:(a) -90 °C 时的 CVN 模拟和 (b) -40 °C 时的 DWTT 模拟。
图 19(b)显示了三种情况下的 DWTT 模拟结果。由于应变速率效应,最大载荷增加了约 10%,而由于绝热加热效应,最大载荷降低了 10%。在 CVN 模拟中,由于绝热加热效应,脆性断裂被延迟。然而,在 DWTT 试验中,并未观察到这种延迟。这种差异可能归因于 CVN 和 DWTT 试验之间试样尺寸的差异。在两种试验中,受冲击表面都被压缩,压缩塑性应变由于绝热加热效应使试样的温度升高。由于 CVN 试样尺寸较小,CVN 试样的温度升高比 DWTT 试样更明显,如图 20 所示。然而,两种试验中裂纹尖端的温升相似。在冲击模拟过程中,温度升高了约 150℃。估算的温升与 CVN 试验中测量的 150°C 值非常接近,该值已在 Tanguy 等人,2005 年发表的论文中报道过。同样,我们之前的研究也观察到了类似的温升(Seo 等人,2024 年)。冲击模拟过程中的温升对脆性断裂的发生没有影响。随着位移的增加,这种差异变得更加明显。因此,在 DWTT 试验模拟中,绝热加热效应不太显著。

Figure 20. Comparison of temperature increase due to adiabatic heating effect in DWTT simulation versus CVN simulation at (a) maximum load and (b) twice the displacement of maximum load.
8. CONCLUSION
- (1)The temperature-dependent parameters in the J-C models are determined using smooth round bar (SRB) tests conducted at various temperatures under quasi-static conditions.
- (2)The strain rate-dependent parameters in the J-C models were obtained through a CVN test performed at room temperature (RT).
- (3)The critical stress fracture model was calibrated from CVN simulations using the determined J-C models.
CRediT authorship contribution statement
Declaration of competing interest
References
- Kristoffersen et al., 2013Impact against X65 steel pipes – An experimental investigationInt J Solids Struct, 50 (2013), pp. 3430-3445, 10.1016/J.IJSOLSTR.2013.06.013
- Eiber, 1965Correlation of full-scale tests with laboratory testsProc. AGA Symposium on line-pipe research, American Gas Association, Dallas (1965), pp. 83-118pp
- Wang and Ru, 2016Determination of two key parameters of a cohesive zone model for pipeline steels based on uniaxial stress-strain curveEng Fract Mech, 163 (2016), pp. 55-65, 10.1016/j.engfracmech.2016.06.017
- Yu and Ru, 2015Strain rate effects on dynamic fracture of pipeline steels: finite element simulationInt J Press Vessels Pip, 126–127 (2015), pp. 1-7
- Gu and Wang, 2022A strain rate-dependent cohesive zone model for shear failure of hat-shaped specimens under impactEng. Fract. Mech., 259 (2022), Article 108145, 10.1016/J.ENGFRACMECH.2021.108145
- May et al., 2015Rate dependent behavior of crash-optimized adhesives–experimental characterization, model development, and simulationEng. Fract. Mech., 133 (2015), pp. 112-137, 10.1016/J.ENGFRACMECH.2014.11.006
- Chandran et al., 2022Strain rate dependent plasticity and fracture of DP1000 steel under proportional and non-proportional loadingEur J Mech - A/solids, 92 (2022), Article 104446, 10.1016/J.EUROMECHSOL.2021.104446
- Rousselier, 1987Ductile fracture models and their potential in local approach of fractureNucl Eng Des, 105 (1987), pp. 97-111, 10.1016/0029-5493(87)90234-2
- Tanguy and Besson, 2002An extension of the Rousselier model to viscoplastic temperature dependent materialsInt J of Fract, 116 (2002), pp. 81-101, 10.1023/A:1020192527733
- Tanguy et al., 2005Ductile to brittle transition of an A508 steel characterized by Charpy impact test: Part I: experimental resultsEng Fract Mech, 72 (2005), pp. 49-72, 10.1016/j.engfracmech.2004.03.010
- Tanguy et al., 2005Ductile to brittle transition of an A508 steel characterized by Charpy impact test: Part II: modeling of the Charpy transition curveEng Fract Mech, 72 (2005), pp. 413-434, 10.1016/j.engfracmech.2004.03.011
- Dey et al., 2004The effect of target strength on the perforation of steel plates using three different projectile nose shapesInt. J. Impact Eng, 30 (2004), pp. 1005-1038, 10.1016/J.IJIMPENG.2004.06.004
- Dey et al., 2006On the influence of fracture criterion in projectile impact of steel platesComput. Mater. Sci, 38 (2006), pp. 176-191, 10.1016/J.COMMATSCI.2006.02.003
- Dey et al., 2007On the influence of constitutive relation in projectile impact of steel platesInt. J. Impact Eng, 34 (2007), pp. 464-486, 10.1016/J.IJIMPENG.2005.10.003
- Banerjee et al., 2015Determination of Johnson cook material and failure model constants and numerical modelling of Charpy impact test of armour steelMater. Sci. Eng. A, 640 (2015), pp. 200-209, 10.1016/J.MSEA.2015.05.073
- Mirone et al., 2024Combined rate-temperature effects in postnecking plasticity of A2-70 stainless steelInt J Mech Sci, 262 (2024), Article 108754, 10.1016/j.ijmecsci.2023.108754
- Seo et al., 2024Finite Element Ductile Fracture Simulation of Charpy and Drop Weight Tear Tests for API X52Theor Appl Fract Mech, 133 (2024), Article 104629, 10.1016/j.tafmec.2024.104629
- Chu et al., 2019A unified phase field damage model for modeling the brittle-ductile dynamic failure mode transition in metalsEng Fract Mech, 212 (2019), pp. 197-209, 10.1016/j.engfracmech.2019.03.031
- Samaniego et al., 2021A phase-field model for ductile fracture with shear bands: A parallel implementationInt J Mech Sci, 200 (2021), Article 106424, 10.1016/j.ijmecsci.2021.106424
- Zhang et al., 2024A three-dimensional coupled thermo-elastic-plastic phase field model for the brittle-ductile failure mode transition of metalsInt J Impact Eng, 193 (2024), Article 105062, 10.1016/j.ijimpeng.2024.105062
- Hojo et al., 2016Application of Coupled Damage and Beremin Model to Ductile-Brittle Transition Temperature Region Considering Constraint EffectProcedia Struct Integr, 2 (2016), pp. 1643-1651, 10.1016/j.prostr.2016.06.208
- Beremin et al., 1983A local criterion for cleavage fracture of a nuclear pressure vessel steelMetall Trans A, 14 (1983), pp. 2277-2287, 10.1007/BF02663302
- Gurson, 1977Continuum theory of ductile rupture by void nucleation and growth: Part 1 - yield criteria and flow rules for porous ductile mediaJ. Eng. Mater. Technol. Trans. ASME., 99 (10) (1977), pp. 2-15, 10.1115/1.3443401
- Tvergaard and Needleman, 1984Analysis of the cup-cone fracture in a round tensile barActa Metall, 32 (1) (1984), pp. 157-169, 10.1016/0001-6160(84)90213-X
- Koplik and Needleman, 1988Void growth and coalescence in porous plastic solidsInt. J. Solids Struct., 24 (8) (1988), pp. 835-853, 10.1016/0020-7683(88)90051-0
- Batra and Lear, 2004Simulation of brittle and ductile fracture in an impact loaded prenotched plateInt. J. Fract., 126 (2004), pp. 179-203, 10.1023/B:FRAC.0000026364.13365.71
- Lin et al., 2022Simulation of ductile-to-brittle transition combining complete Gurson model and CZM with application to hydrogen embrittlementEng Fract Mech, 268 (2022), Article 108511, 10.1016/j.engfracmech.2022.108511
- Chakraborty and Biner, 2014A unified cohesive zone approach to model the ductile to brittle transition of fracture toughness in reactor pressure vessel steelsEng Fract Mech, 131 (2014), pp. 194-209, 10.1016/j.engfracmech.2014.07.029
- Kim et al., 2022Quantification of notch type and specimen thickness effects on ductile and brittle fracture behaviour of drop weight tear testEur J Mech A Solids, 92 (2022), Article 104466, 10.1016/j.euromechsol.2021.104466
- Seo et al., 2023Finite element simulation method for combined Ductile-Brittle fracture of small punch test in hydrogenEng Fract Mech, 289 (2023), Article 109489, 10.1016/j.engfracmech.2023.109489
- Hwang et al., 2024Fracture-toughness estimation from small-punch test in hydrogen exhibiting ductile and ductile–brittle fracture modesEur J Mech A Solids, 103 (2024), Article 105193, 10.1016/j.euromechsol.2023.105193
- Camacho and Ortiz, 1997Adaptive Lagrangian modelling of ballistic penetration of metallic targetsComput Methods Appl Mech Eng, 142 (1997), pp. 269-301, 10.1016/S0045-7825(96)01134-6
- Gerstgrasser et al., 2021Analysis of two parameter identification methods for original and modified Johnson-Cook fracture strains, including numerical comparison and validation of a new blue-brittle dependent fracture model for free-cutting steel 50SiB8Theor Appl Fract Mech, 112 (2021), Article 102905, 10.1016/J.TAFMEC.2021.102905
- Borvik et al., 2001A computational model of viscoplasticity and ductile damage for impact and penetrationEur J Mech - A/Solids, 20 (2001), pp. 685-712, 10.1016/S0997-7538(01)01157-3
- Chanda, 2015Chanda, Sourayon. Temperature effects on dynamic fracture of pipeline steel. 2015. https://doi-org.ezproxy.lib.kyushu-u.ac.jp/10.7939/R3695Q
- Gambirasio and Rizzi, 2016An enhanced Johnson–Cook strength model for splitting strain rate and temperature effects on lower yield stress and plastic flowComput Mater Sci, 113 (2016), pp. 231-265, 10.1016/J.COMMATSCI.2015.11.034
- Seo et al., 2022Fracture toughness prediction of hydrogen-embrittled materials using small punch test data in HydrogenInt J Mech Sci, 225 (2022), Article 107371, 10.1016/j.ijmecsci.2022.107371
- Seo et al., 2024Quantification of pre-strain effect on ductile fracture and application to irradiation embrittlement problemsEng Fract Mech, 300 (2024), Article 109986, 10.1016/j.engfracmech.2024.109986
- Kim et al., 2011Comparison of fracture strain based ductile failure simulation with experimental resultsInt J Press Vessels Pip, 88 (2011), pp. 434-447, 10.1016/j.ijpvp.2011.07.006
- Oh et al., 2011A finite element ductile failure simulation method using stress-modified fracture strain modelEng Fract Mech, 78 (2011), pp. 124-137, 10.1016/j.engfracmech.2010.10.004
- Jeon et al., 2016Extracting ductile fracture toughness from small punch test data using numerical modelingInt J Press Vessels Pip, 139–140 (2016), pp. 204-219, 10.1016/j.ijpvp.2016.02.011
- Kim et al., 2020Fracture simulation model for API X80 Charpy test in Ductile-Brittle transition temperaturesInt J Mech Sci, 182 (2020), Article 105771, 10.1016/j.ijmecsci.2020.105771
- Jung et al., 2014S–N Fatigue and Fatigue Crack Propagation Behaviors of X80 Steel at Room and Low TemperaturesMetall Mater Trans A, 45 (2014), pp. 654-662, 10.1007/s11661-013-2012-4
- Heier et al., June 2013Reeling Installation of Rigid Steel Pipelines at Low TemperaturePaper presented at the The Twenty-third International Offshore and Polar Engineering Conference, Anchorage, Alaska (June 2013)
- Akselsen et al., June 2012Low Temperature Fracture Toughness of X80 Girth WeldsPaper presented at the The Twenty-second International Offshore and Polar Engineering Conference, Rhodes, Greece (June 2012)
- Kim et al., 2024Fracture analysis of hydrogen-embrittled API X52 pipes at low temperatureInt J Mech Sci, 276 (2024), Article 109374, 10.1016/j.ijmecsci.2024.109374
- BSI 2014BS 8571 2014 - Method of test for determination of fracture toughness in metallic materials using single edge notched tension (SENT) specimensBSI; (2014)
- Institute, 2007API 5L Specification for line pipeApi Spec, 5L (2007)
- Tu et al., 2022Hybrid experimental-numerical strategy for efficiently and accurately identifying post-necking hardening and ductility diagram parametersInt J Mech Sci, 219 (2022), Article 107074, 10.1016/J.IJMECSCI.2022.107074
- ABAQUS Version 2018User's manual. Dassault SystemsInc (2018), p. 2018
- Origin(Pro), Version 2020Origin(Pro), Version 2020. OriginLab Corporation, Northampton, MA, USA.
- Talemi et al., 2019A fully coupled fluid-structure interaction simulation of three-dimensional dynamic ductile fracture in a steel pipelineTheor. Appl. Fract. Mech., 101 (2019), pp. 224-235, 10.1016/J.TAFMEC.2019.02.005
- Yan et al., 20143D modeling of the hydrogen distribution in X80 pipeline steel welded jointsComput Mater Sci, 83 (2014), pp. 158-163, 10.1016/J.COMMATSCI.2013.11.007
- Tronskar et al., 2002Measurement of fracture initiation toughness and crack resistance in instrumented Charpy impact testingEng Fract Mech, 69 (2002), pp. 321-338, 10.1016/S0013-7944(01)00077-7
- Kobayashi, 1984Analysis of impact properties of A533 steel for nuclear reactor pressure vessel by instrumented Charpy testEng Fract Mech, 19 (1984), pp. 49-65, 10.1016/0013-7944(84)90068-7
- Oulad Brahim et al., 2022Prediction of the peak load and crack initiation energy of dynamic brittle fracture in X70 steel pipes using an improved artificial neural network and extended Finite Element MethodTheor Appl Fract Mech, 122 (2022), Article 103627, 10.1016/J.TAFMEC.2022.103627
- Seo et al., 2022Fracture toughness prediction of hydrogen-embrittled materials using small punch test data in HydrogenInt J Mech Sci, 225 (2022), Article 107371, 10.1016/j.ijmecsci.2022.107371
- Seo et al., 2024Quantification of pre-strain effect on ductile fracture and application to irradiation embrittlement problemsEng Fract Mech, 300 (2024), Article 109986, 10.1016/j.engfracmech.2024.109986
- Kim et al., 2011Comparison of fracture strain based ductile failure simulation with experimental resultsInt J Press Vessels Pip, 88 (2011), pp. 434-447, 10.1016/j.ijpvp.2011.07.006
- ASTM Standard E436-03 2021Standard Test Method for Drop-Weight Tear Tests of Ferritic Steels(2021)
- Kim et al., 2021Finite element simulation of drop-weight tear test of API X80 at ductile-brittle transition temperaturesInt J Mech Sci, 191 (2021), Article 106103, 10.1016/j.ijmecsci.2020.106103
- Kim et al., 2022Numerical method to characterize probabilistic energy distribution of drop weight tear test at Ductile-Brittle transition temperaturesEng Fract Mech, 269 (2022), Article 108540, 10.1016/j.engfracmech.2022.108540
- Petti and Dodds, 2005Calibration of the Weibull stress scale parameter, σu, using the Master CurveEng Fract Mech, 72 (2005), pp. 91-120, 10.1016/j.engfracmech.2004.03.009
- Gao et al., 2006A probabilistic model for prediction of cleavage fracture in the ductile-to-brittle transition region and the effect of temperature on model parametersMater Sci Eng, 415 (2006), pp. 264-272, 10.1016/j.msea.2005.09.098
- Wasiluk et al., 2006Temperature dependence of Weibull stress parameters: Studies using the Euro-materialEng Fract Mech, 73 (2006), pp. 1046-1069, 10.1016/j.engfracmech.2005.11.006
- Uenishi et al., 2011High Strain Rate Properties of High Strength Steel SheetsInt J Automot Eng, 2 (2011), pp. 109-113, 10.20485/jsaeijae.2.4_109
- Vaynman et al., 2006Effect of strain rate and temperature on mechanical properties and fracture mode of high strength precipitation hardened ferritic steelsScr Mater, 55 (2006), pp. 351-354, 10.1016/J.SCRIPTAMAT.2006.04.029
- Soares and Hokka, 2021The Taylor–Quinney coefficients and strain hardening of commercially pure titanium, iron, copper, and tin in high rate compressionInt J Impact Eng, 156 (2021), Article 103940, 10.1016/J.IJIMPENG.2021.103940
- Rittel et al., 2017The dependence of the Taylor–Quinney coefficient on the dynamic loading modeJ Mech Phys Solids, 107 (2017), pp. 96-114, 10.1016/J.JMPS.2017.06.016


