Impact of Aging on Cardiovascular Diseases: From Chronological Observation to Biological Insights: JACC Family Series
衰老对心血管疾病的影响:从时间顺序观察到生物学见解:JACC 系列
Authors Info & Affiliations
作者:赵东 deezhao@vip.sina.com, 王义斌, Nathan D. Wong, 和王建安 作者信息&隶属关系
作者:赵东 deezhao@vip.sina.com, 王义斌, Nathan D. Wong, 和王建安 作者信息&隶属关系
Publication: JACC: Asia 出版物:JACC: 亚洲
Volume 4, Number 5 第 4 卷,第 5 期
Central Illustration 中心图示
Abstract 摘要
Cardiovascular disease (CVD) has increasing challenges for human health with an increasingly aging population worldwide, imposing a significant obstacle to the goal of healthy aging. Rapid advancements in our understanding of biological aging process have shed new light on some important insights to aging-related diseases. Although numerous reviews delved into the mechanisms through which biological aging affects CVD and age-related diseases, most of these reviews relied heavily on research related to cellular and molecular processes often observed from animal experiments. Few reviews have provided insights that connect hypotheses regarding the biological aging process with the observed patterns of chronological aging-related impacts on CVD in human populations. The purpose of this review is to highlight some of the major questions in studies of aging-related CVD and provide our perspectives in the context of real-world patterns of CVD with multidimensional information and potential biological insights.
随着全球人口老龄化日益严重,心血管疾病(CVD)对人类健康的挑战日益增加,对实现健康老龄化的目标构成了重大障碍。我们对生物衰老过程的理解的快速进步,为与衰老相关的疾病的一些重要见解提供了新的思路。 尽管大量综述深入研究了生物衰老影响心血管疾病和年龄相关疾病的机制,但这些综述大多严重依赖于与动物实验中经常观察到的细胞和分子过程相关的研究。很少有综述能够深入了解将关于生物衰老过程的假设与在人类群体中观察到的按时间顺序排列的衰老相关影响心血管疾病的模式联系起来。 本综述旨在强调衰老相关心血管疾病研究中的一些主要问题,并结合多维信息和潜在的生物学见解,在现实世界的心血管疾病模式下提供我们的观点。
随着全球人口老龄化日益严重,心血管疾病(CVD)对人类健康的挑战日益增加,对实现健康老龄化的目标构成了重大障碍。我们对生物衰老过程的理解的快速进步,为与衰老相关的疾病的一些重要见解提供了新的思路。 尽管大量综述深入研究了生物衰老影响心血管疾病和年龄相关疾病的机制,但这些综述大多严重依赖于与动物实验中经常观察到的细胞和分子过程相关的研究。很少有综述能够深入了解将关于生物衰老过程的假设与在人类群体中观察到的按时间顺序排列的衰老相关影响心血管疾病的模式联系起来。 本综述旨在强调衰老相关心血管疾病研究中的一些主要问题,并结合多维信息和潜在的生物学见解,在现实世界的心血管疾病模式下提供我们的观点。
The 2023 World Health Organization (WHO) report noted a global decline of 27% in age-standardized mortality related to cardiovascular disease (CVD) between the years 2000 and 2019.1 This substantial reduction in age-standardized CVD mortality underscores the success of prevention initiatives implemented in numerous countries. These initiatives have harnessed established knowledge regarding CVD risk factors, deployed effective interventions, and promoted the adherence to evidence-based practices within both clinical and broader population settings.
世界卫生组织(WHO)2023 年的报告指出,2000 年至 2019 年间,全球与心血管疾病(CVD)相关的年龄标准化死亡率下降了 27%。 1 年龄标准化心血管疾病死亡率的大幅降低突显了许多国家实施的预防措施的成功。 这些举措利用了关于心血管疾病风险因素的既有知识,实施了有效的干预措施,并在临床和更广泛的人群环境中促进了对循证实践的坚持。
世界卫生组织(WHO)2023 年的报告指出,2000 年至 2019 年间,全球与心血管疾病(CVD)相关的年龄标准化死亡率下降了 27%。 1 年龄标准化心血管疾病死亡率的大幅降低突显了许多国家实施的预防措施的成功。 这些举措利用了关于心血管疾病风险因素的既有知识,实施了有效的干预措施,并在临床和更广泛的人群环境中促进了对循证实践的坚持。
Despite these notable achievements, the actual burden of CVD, as measured by the number of CVD-related deaths, increased by 33%, whereas crude CVD mortality rose by 6% over the same period.2 This increase can be primarily attributed to the substantial impact of demographic transition toward increasingly aged populations.3-8 Globally, the total aged population defined as age ≥65 years will increase from 770.4 million in 2022 to 1.58 billion in 2050, representing an increase from 9.7% of the global population to 16.4%. This dramatic increase in the size and proportion of the aged population has been observed and is projected to further aggravate in all regions globally (Figure 1).3,4 Importantly, the reductions in CVD burden achieved through prevention efforts has been—and will be—further offset by the impact of the increase on the aged population.5-8
尽管取得了这些显著成就,但以心血管疾病相关死亡人数衡量的实际心血管疾病负担增加了 33%,而同期粗略的心血管疾病死亡率上升了 6%。 2 这一增长主要归因于人口结构向老龄化转变的巨大影响。 3-8 在全球范围内,年龄≥65 岁的老年人口总数将从 2022 年的 7.704 亿增加到 2050 年的 15.8 亿,占全球人口的比例将从 9.7%增加到 16.4%。人们已经观察到老年人口的规模和比例都在急剧增加,并且预计这种情况将在全球所有地区进一步加剧(图 1)。 3 4 重要的是,通过预防工作实现的 CVD 负担的减轻已经被——并将继续被——老年人口增加所带来的影响进一步抵消。 5-8
尽管取得了这些显著成就,但以心血管疾病相关死亡人数衡量的实际心血管疾病负担增加了 33%,而同期粗略的心血管疾病死亡率上升了 6%。 2 这一增长主要归因于人口结构向老龄化转变的巨大影响。 3-8 在全球范围内,年龄≥65 岁的老年人口总数将从 2022 年的 7.704 亿增加到 2050 年的 15.8 亿,占全球人口的比例将从 9.7%增加到 16.4%。人们已经观察到老年人口的规模和比例都在急剧增加,并且预计这种情况将在全球所有地区进一步加剧(图 1)。 3 4 重要的是,通过预防工作实现的 CVD 负担的减轻已经被——并将继续被——老年人口增加所带来的影响进一步抵消。 5-8

Figure 1 Increasing Aged Populations Around the World From 1990 to 2050
图 1 全球 1990 年至 2050 年老年人口不断增加
图 1 全球 1990 年至 2050 年老年人口不断增加
For a long time, aging has been regarded as an unmodifiable CVD risk factor—akin to sex—at both individual and population levels. Therefore, although age is an essential factor considered in all available CVD risk-assessment tools used routinely in clinical practice, the recommendations specifically made on how to lower aging-related CVD risk have been very limited as part of the prevention guidelines for CVD.9-11 Almost all publications regarding CVD burden at the population level use only age-standardized rates and the CVD burden caused by the impact of aging is largely overlooked.11-14 This leads to a pressing question: Can we confront these challenges and diminish or delay the residual risk of CVD associated with aging at both the population and individual levels? Obviously, this inquiry extends beyond CVD and encompasses all age-related diseases.
长期以来,衰老在个体和群体层面都被认为是一种不可改变的心血管疾病风险因素,类似于性别。因此,尽管年龄是所有临床实践中常用的心血管疾病风险评估工具中的一个重要因素,但在心血管疾病的预防指南中,关于如何降低与衰老相关的心血管疾病风险的具体建议非常有限。 9-11 几乎所有关于人群层面 CVD 负担的出版物都只使用年龄标准化率,而由衰老影响引起的 CVD 负担在很大程度上被忽视了。 11-14 这引出了一个紧迫的问题:我们能否应对这些挑战,并在人口和个体层面减少或延迟与衰老相关的 CVD 残余风险? 显然,这种探究超越了 CVD,涵盖了所有与年龄相关的疾病。
长期以来,衰老在个体和群体层面都被认为是一种不可改变的心血管疾病风险因素,类似于性别。因此,尽管年龄是所有临床实践中常用的心血管疾病风险评估工具中的一个重要因素,但在心血管疾病的预防指南中,关于如何降低与衰老相关的心血管疾病风险的具体建议非常有限。 9-11 几乎所有关于人群层面 CVD 负担的出版物都只使用年龄标准化率,而由衰老影响引起的 CVD 负担在很大程度上被忽视了。 11-14 这引出了一个紧迫的问题:我们能否应对这些挑战,并在人口和个体层面减少或延迟与衰老相关的 CVD 残余风险? 显然,这种探究超越了 CVD,涵盖了所有与年龄相关的疾病。
Rapid advancements in our understanding of aging have shed new light on some important insights to the process. First, although chronological age—as defined by time from birth—is an unmodifiable parameter for individuals or a given population, biological age (as loosely defined by the biological state of an individual along the entire ageing continuum) may be altered by both intrinsic (genetic makeup) and extrinsic (lifestyle, risk exposure) factors. Although the chronological aging of a population is clearly an important parameter for current CVD burden, the rate of biological aging (also termed “age acceleration” or “age deviation”) is an even more important determinant to the disease trend. Consequently, uncovering and modifying the underlying drivers of biological aging and aging acceleration would hold significant potential for clinical application. This ongoing progress continually provides new insights and opportunities for the prevention of CVD and noncommunicable diseases (NCDs) within the context of the impact of biological aging.15-17
我们对衰老的理解的快速发展,为该过程的一些重要见解提供了新的线索。首先,虽然日历年龄(由从出生开始的时间定义)对个人或特定人群来说是一个不可改变的参数,但生物学年龄(粗略地定义为个体在整个衰老过程中的生物学状态)可能会因内在(遗传构成)和外在(生活方式、风险暴露)因素而改变。 虽然一个人口的实际年龄是目前心血管疾病负担的一个重要参数,但生物学衰老速度(也称为“年龄加速”或“年龄偏差”)是疾病发展趋势更重要的决定因素。因此,发现并改变生物学衰老和衰老加速的潜在驱动因素,对临床应用具有重大潜力。 这种持续的进展不断为在生物衰老影响的背景下预防心血管疾病和非传染性疾病 (NCD) 提供新的见解和机会。 15-17
我们对衰老的理解的快速发展,为该过程的一些重要见解提供了新的线索。首先,虽然日历年龄(由从出生开始的时间定义)对个人或特定人群来说是一个不可改变的参数,但生物学年龄(粗略地定义为个体在整个衰老过程中的生物学状态)可能会因内在(遗传构成)和外在(生活方式、风险暴露)因素而改变。 虽然一个人口的实际年龄是目前心血管疾病负担的一个重要参数,但生物学衰老速度(也称为“年龄加速”或“年龄偏差”)是疾病发展趋势更重要的决定因素。因此,发现并改变生物学衰老和衰老加速的潜在驱动因素,对临床应用具有重大潜力。 这种持续的进展不断为在生物衰老影响的背景下预防心血管疾病和非传染性疾病 (NCD) 提供新的见解和机会。 15-17
Although numerous reviews have delved into the mechanisms through which biological aging affects CVD and age-related diseases, most of these reviews heavily rely on research related to cellular and molecular processes often observed from animal experiments.17-19 Few reviews have provided insights that connect hypotheses regarding the biological aging process with the patterns of chronological aging-related effects on CVD in human populations.
尽管有大量综述深入研究了生物衰老影响心血管疾病和年龄相关疾病的机制,但这些综述大多严重依赖于来自动物实验的细胞和分子过程相关研究。 17-19 很少有综述能够将关于生物衰老过程的假设与人类群体中心血管疾病的按时间顺序排列的衰老相关效应模式联系起来。
尽管有大量综述深入研究了生物衰老影响心血管疾病和年龄相关疾病的机制,但这些综述大多严重依赖于来自动物实验的细胞和分子过程相关研究。 17-19 很少有综述能够将关于生物衰老过程的假设与人类群体中心血管疾病的按时间顺序排列的衰老相关效应模式联系起来。
To bridge this gap, this review aims to pose critical translational questions derived from the studies on biological aging, relate these questions to the tangible patterns of chronological aging-related effects on CVD, and provide valuable insights that can stimulate future research endeavors and expedite the translation of biological aging hypotheses. The content of this review draws upon a comprehensive review of the literature and an analysis of the available age-specific data from the Global Burden of Disease (GBD) database. This data source is an open database of the GBD study accessible through the Global Health Data Exchange at The Institute for Health Metrics and Evaluation. The details of the relevant methodology and quality assessment are available on the published papers or on the GBD study website.2,20
为了弥合这一差距,本综述旨在提出源于生物衰老研究的关键转化问题,将这些问题与 CVD 中按时间顺序排列的衰老相关影响的实际模式联系起来,并提供有价值的见解,从而激发未来的研究工作并加速生物衰老假设的转化。 本综述的内容借鉴了对文献的全面回顾和对来自全球疾病负担(GBD)数据库的现有年龄特定数据的分析。该数据源是 GBD 研究的开放数据库,可通过健康指标与评估研究所的全球健康数据交换访问。相关方法和质量评估的详细信息可在已发表的论文或 GBD 研究网站上找到。 2 20
为了弥合这一差距,本综述旨在提出源于生物衰老研究的关键转化问题,将这些问题与 CVD 中按时间顺序排列的衰老相关影响的实际模式联系起来,并提供有价值的见解,从而激发未来的研究工作并加速生物衰老假设的转化。 本综述的内容借鉴了对文献的全面回顾和对来自全球疾病负担(GBD)数据库的现有年龄特定数据的分析。该数据源是 GBD 研究的开放数据库,可通过健康指标与评估研究所的全球健康数据交换访问。相关方法和质量评估的详细信息可在已发表的论文或 GBD 研究网站上找到。 2 20
Definitions or Concepts of Chronological and Biological Age and Aging
关于时间年龄和生物年龄以及衰老的定义或概念
Chronological age in individuals is defined as the time that has passed since birth. This measure increases unidirectionally and irreversibly throughout a person's lifespan. The concept of chronological aging is further defined by arbitrary criteria. According to the updated criteria of the WHO, individuals are considered aged when they reach the age of 65 years or older. At the population level, a population is classified as an aging population when the proportion of individuals aged 65 years and above reaches 7% and as an aged population when that proportion reaches 14%.21
个体的时间年龄被定义为自出生以来所经过的时间。这个指标在人的一生中单向且不可逆地增长。时间年龄的概念由任意标准进一步定义。根据世界卫生组织更新的标准,个体达到 65 岁或以上时被认为是老年人。 在人口层面,当 65 岁及以上的人口比例达到 7% 时,该人口被归类为老龄化人口,而当该比例达到 14% 时,则被归类为老年人口。 21
个体的时间年龄被定义为自出生以来所经过的时间。这个指标在人的一生中单向且不可逆地增长。时间年龄的概念由任意标准进一步定义。根据世界卫生组织更新的标准,个体达到 65 岁或以上时被认为是老年人。 在人口层面,当 65 岁及以上的人口比例达到 7% 时,该人口被归类为老龄化人口,而当该比例达到 14% 时,则被归类为老年人口。 21
The concept of biological age pertains to the functional state of the individual, often measured by physiological functions of cells, tissues, and organs that shape and sustain the essence of life.
生物年龄的概念与个体的功能状态有关,通常通过细胞、组织和器官的生理功能来衡量,这些生理功能塑造并维持着生命的本质。
生物年龄的概念与个体的功能状态有关,通常通过细胞、组织和器官的生理功能来衡量,这些生理功能塑造并维持着生命的本质。
A definition of biological aging refers to the process of comprehensive biological degeneration of structures and functions of human body in aging people. At functional levels, biological aging is characterized by a progressive decline in physiological ability to meet demands and loss of resilience and regenerative capacity. At the mechanistic level, numerous hypotheses for an intrinsic biological process have been proposed, including accumulation of damage at DNA, protein, and organelle levels; loss of reparative machinery; and diminished renewal at molecular and cellular levels.22-26 Although the concept of biological aging is straightforward, the science of determining biological aging process accurately—especially the intrinsic biological process in the clinical setting—proves to be very challenging and problematic. Much of the focus in aging research is to find ways to mitigate or delay the accumulation of chronologically related damages by reducing risk exposures while boosting reparative and regenerative activities. Ultimately, the goal of biological aging research is to slow aging acceleration or reverse biological aging and extend the period of healthy living. In recent decades, a number of biomarkers have been developed for humans, including telomere length and more robustly DNA methylation pattern-based epigenetic clock.25-27 The further development of these tools should allow investigators to characterize the pace and the mechanisms of biological aging process unambiguously as well as search mitigation strategies that can affect the biological aging process. At present, our discussions on both biological age and rate of biological aging in humans remain primarily at a conceptual level, and much research is needed to translate this concept into our daily clinical practices with specific guidelines.
生物衰老的定义指的是老年人身体结构和功能的全面生物退化过程。在功能层面,生物衰老的特征在于满足需求的生理能力的逐渐下降以及恢复能力和再生能力的丧失。 在机制层面,人们已经提出了许多关于内在生物学过程的假设,包括 DNA、蛋白质和细胞器水平的损伤累积;修复机制的丧失;以及分子和细胞水平的更新减少。 22-26 尽管生物衰老的概念很简单,但准确确定生物衰老过程的科学——尤其是在临床环境中的内在生物过程——已被证明非常具有挑战性和问题性。衰老研究的重点主要在于通过减少风险暴露,同时促进修复和再生活动,来寻找减轻或延缓与时间相关的损害积累的方法。 最终,生物衰老研究的目标是减缓衰老加速或逆转生物衰老,并延长健康生活的时间。近几十年来,人们为人类开发了许多生物标志物,包括端粒长度和更可靠的基于 DNA 甲基化模式的表观遗传时钟。 25-27 这些工具的进一步开发应使研究人员能够明确地描述生物衰老过程的速度和机制,并寻找能够影响生物衰老过程的缓解策略。目前,我们对人类生物年龄和生物衰老速度的讨论主要停留在概念层面,还需要大量的研究才能将这一概念转化为我们日常的临床实践,并制定具体的指南。
生物衰老的定义指的是老年人身体结构和功能的全面生物退化过程。在功能层面,生物衰老的特征在于满足需求的生理能力的逐渐下降以及恢复能力和再生能力的丧失。 在机制层面,人们已经提出了许多关于内在生物学过程的假设,包括 DNA、蛋白质和细胞器水平的损伤累积;修复机制的丧失;以及分子和细胞水平的更新减少。 22-26 尽管生物衰老的概念很简单,但准确确定生物衰老过程的科学——尤其是在临床环境中的内在生物过程——已被证明非常具有挑战性和问题性。衰老研究的重点主要在于通过减少风险暴露,同时促进修复和再生活动,来寻找减轻或延缓与时间相关的损害积累的方法。 最终,生物衰老研究的目标是减缓衰老加速或逆转生物衰老,并延长健康生活的时间。近几十年来,人们为人类开发了许多生物标志物,包括端粒长度和更可靠的基于 DNA 甲基化模式的表观遗传时钟。 25-27 这些工具的进一步开发应使研究人员能够明确地描述生物衰老过程的速度和机制,并寻找能够影响生物衰老过程的缓解策略。目前,我们对人类生物年龄和生物衰老速度的讨论主要停留在概念层面,还需要大量的研究才能将这一概念转化为我们日常的临床实践,并制定具体的指南。
As part of growing awareness of biological aging, concepts such as “vessel aging” or “cardiovascular aging” in people have also gained traction in recent years. In several studies examining the impact of aging, parameters obtained from direct measurement of heart and vascular structures or functions were used as either specific outcomes for association analysis, or collective predictors of future CVD risk.28,29 Several cardiac and vascular functional or structural parameters are featured in aging studies such as pulse-wave velocity (PWV), arterial intima-media thickness (IMT) in carotid arteries, coronary artery calcification (CAC), and flow-mediated vasodilation (FMD). The rationale behind their selection is that these parameters can serve as more quantifiable phenotypes to gauge the aging process for the cardiovascular system, and it is also governed by the underlying biological aging process.30-33 However, there is a lack of integrated parameters or scores to measure cardiovascular age and pace of biological aging based on aging specific biomarkers, structural, and functional measurements that can be applicable in clinical practice.
随着人们对生物衰老认识的不断提高,“血管衰老”或“心血管衰老”等概念近年来也备受关注。在一些研究衰老影响的试验中,直接测量心脏和血管结构或功能获得的参数,被用作关联分析的特定结果,或未来心血管疾病风险的集合预测因子。 28 29 衰老研究中,有几个心脏和血管的功能或结构参数是重点,例如脉搏波速度 (PWV)、颈动脉的动脉内中膜厚度 (IMT)、冠状动脉钙化 (CAC) 和血流介导的血管舒张 (FMD)。 他们选择这些参数的理由是,这些参数可以作为更可量化的表型来衡量心血管系统的衰老过程,并且它也受到潜在的生物衰老过程的支配。 30-33 然而,目前还缺乏综合的参数或评分,以基于衰老特异性生物标志物、结构和功能测量来衡量心血管年龄和生物衰老速度,而这些参数或评分可以在临床实践中应用。
随着人们对生物衰老认识的不断提高,“血管衰老”或“心血管衰老”等概念近年来也备受关注。在一些研究衰老影响的试验中,直接测量心脏和血管结构或功能获得的参数,被用作关联分析的特定结果,或未来心血管疾病风险的集合预测因子。 28 29 衰老研究中,有几个心脏和血管的功能或结构参数是重点,例如脉搏波速度 (PWV)、颈动脉的动脉内中膜厚度 (IMT)、冠状动脉钙化 (CAC) 和血流介导的血管舒张 (FMD)。 他们选择这些参数的理由是,这些参数可以作为更可量化的表型来衡量心血管系统的衰老过程,并且它也受到潜在的生物衰老过程的支配。 30-33 然而,目前还缺乏综合的参数或评分,以基于衰老特异性生物标志物、结构和功能测量来衡量心血管年龄和生物衰老速度,而这些参数或评分可以在临床实践中应用。
Questions for Biological Aging-Related Impact on CVD
关于生物衰老对心血管疾病影响的问题
In 2020, Cohen et al34 reported the results of a survey conducted during a symposium on biology of aging, involving the participants' perspectives on key questions related to biological aging studies. The survey revealed a significant lack of consensus and marked disagreement among experts, even on some of the most fundamental questions within the field. These contentious issues included debates about when aging begins and whether aging is a programmed process or not.
在 2020 年,Cohen 等人 34 报告了一项在衰老生物学研讨会期间进行的调查结果,其中涉及参与者对与生物衰老研究相关的关键问题的看法。调查显示,即使在该领域最基本的一些问题上,专家们也明显缺乏共识,存在明显的分歧。这些有争议的问题包括关于衰老何时开始以及衰老是否是一个程序化过程的辩论。
在 2020 年,Cohen 等人 34 报告了一项在衰老生物学研讨会期间进行的调查结果,其中涉及参与者对与生物衰老研究相关的关键问题的看法。调查显示,即使在该领域最基本的一些问题上,专家们也明显缺乏共识,存在明显的分歧。这些有争议的问题包括关于衰老何时开始以及衰老是否是一个程序化过程的辩论。
Two of the possible reasons for the lack of consensus in biological aging studies are insufficient evidence for a significant impact of these biological aging processes in humans and lack of objective criteria for “aging” in humans except for chronological age. In our opinion, the following questions can link the characteristics of CVD, one of the most significant chronological aging-related diseases, to the hypotheses of biological aging process in CVD. 1) Although the criteria of measurable biological age and aging are not available in humans, what are the patterns and magnitude of chronological age-related manifestation of CVD that imply the importance of the underlying biological aging process in CVD? 2) What are the findings in long-term cohort studies on the effects of multiple CVD risk factors that can provide insights to the possible independent effects of the hypothetical intrinsic biological aging process vs the effects of the extrinsic factors in shaping the process of biological aging? 3) Can we find in certain chronological age when the effects of CVD risk, potentially stemming from the intrinsic biological aging process, become irreversible? 4) Do the biological aging processes have unique impact on CVD that differ from other aging-related diseases such as cancer?
生物衰老研究缺乏共识的两个可能原因,是缺乏足够的证据表明这些生物衰老过程对人类有显著影响,以及除了实际年龄外,缺乏对人类“衰老”的客观标准。我们认为,以下问题可以将心血管疾病(CVD,一种与实际年龄相关性最显著的疾病)的特征,与 CVD 中生物衰老过程的假设联系起来。 1) 尽管在人类身上无法获得可测量的生物年龄和衰老标准,但与年龄相关的 CVD 表现模式和程度如何,从而暗示了潜在的生物衰老过程在 CVD 中的重要性? 2) 关于多种心血管疾病风险因素影响的长期队列研究中有哪些发现,可以为假设的内在生物衰老过程的独立影响,以及外在因素在塑造生物衰老过程中的影响提供见解?3) 我们能否找到某个年龄段,心血管疾病风险的影响(可能源于内在生物衰老过程)变得不可逆转? 4) 生物衰老过程对心血管疾病的影响是否具有独特性,与其他衰老相关疾病(如癌症)不同?
生物衰老研究缺乏共识的两个可能原因,是缺乏足够的证据表明这些生物衰老过程对人类有显著影响,以及除了实际年龄外,缺乏对人类“衰老”的客观标准。我们认为,以下问题可以将心血管疾病(CVD,一种与实际年龄相关性最显著的疾病)的特征,与 CVD 中生物衰老过程的假设联系起来。 1) 尽管在人类身上无法获得可测量的生物年龄和衰老标准,但与年龄相关的 CVD 表现模式和程度如何,从而暗示了潜在的生物衰老过程在 CVD 中的重要性? 2) 关于多种心血管疾病风险因素影响的长期队列研究中有哪些发现,可以为假设的内在生物衰老过程的独立影响,以及外在因素在塑造生物衰老过程中的影响提供见解?3) 我们能否找到某个年龄段,心血管疾病风险的影响(可能源于内在生物衰老过程)变得不可逆转? 4) 生物衰老过程对心血管疾病的影响是否具有独特性,与其他衰老相关疾病(如癌症)不同?
What Are the Patterns of the Aging-Related Impact on CVD in the Human Population?
在人类群体中,与衰老相关的影响对心血管疾病有哪些模式?
Patterns of chronological aging-related impact on CVD mortality
与年龄相关的 CVD 死亡率影响模式
In a survey addressing specific inquiries within the field of aging research, 76% of the participants engaged in aging research agreed that mortality rates or survival curves can often serve as a reasonable proxy for assessing aging at organismal level.34 Among the major risk factors for CVD, chronological age stands out as a potent indicator. At present, we lack a specific pattern of biological aging-related CVD deaths in humans. However, the association between chronological age and CVD mortality patterns can serve as a foundational reference for understanding the potential effect of biological aging. The global chronological age-specific CVD mortality rate can be viewed as the average probability of experiencing a CVD event within a specific age or age group at any given time in the human population. However, many publications focusing on the epidemiologic aspects of CVD mortality at a global scale often offer limited insights into age-specific CVD mortality patterns.
在一项针对衰老研究领域特定问题的调查中,76%的衰老研究参与者认为,死亡率或生存曲线通常可以作为评估生物体衰老的合理指标。 34 在 CVD 的主要危险因素中,实际年龄是一个强有力的指标。目前,我们缺乏与人类生物衰老相关的 CVD 死亡的具体模式。 然而,生理年龄与 CVD 死亡模式之间的关联可以作为理解生物衰老潜在影响的基础参考。全球按实际年龄划分的 CVD 特定死亡率,可以被看作是人类群体中在特定年龄或年龄段内,随时发生 CVD 事件的平均概率。 然而,许多关注全球范围内心血管疾病死亡率流行病学方面的出版物,往往对特定年龄的心血管疾病死亡模式提供的见解有限。
在一项针对衰老研究领域特定问题的调查中,76%的衰老研究参与者认为,死亡率或生存曲线通常可以作为评估生物体衰老的合理指标。 34 在 CVD 的主要危险因素中,实际年龄是一个强有力的指标。目前,我们缺乏与人类生物衰老相关的 CVD 死亡的具体模式。 然而,生理年龄与 CVD 死亡模式之间的关联可以作为理解生物衰老潜在影响的基础参考。全球按实际年龄划分的 CVD 特定死亡率,可以被看作是人类群体中在特定年龄或年龄段内,随时发生 CVD 事件的平均概率。 然而,许多关注全球范围内心血管疾病死亡率流行病学方面的出版物,往往对特定年龄的心血管疾病死亡模式提供的见解有限。
To address this limitation and provide updated information, we conducted an analysis of age-specific mortality data from the GBD database. This comprehensive database supplies mortality data for all causes across various age groups, ranging from newborns to individuals aged 95 and older, spanning the years from 1990 to 2019.2 Figure 2 illustrates a fundamental pattern of global age-specific CVD mortality rates for both men and women in 2019, focusing on populations aged 25 to ≥95 years in 5-year intervals. CVD mortality rates for both men and women consistently increased with advancing age, following an exponential curve that steepened as age increased. This exponential pattern indicates a more rapid rise in CVD mortality rates with older age.
为了解决这一局限性并提供最新的信息,我们对 GBD 数据库中特定年龄的死亡率数据进行了分析。这个综合数据库提供了从 1990 年到 2019 年所有年龄段(从新生儿到 95 岁及以上的老年人)各种死因的死亡率数据。 2 图 2 展示了 2019 年全球特定年龄别 CVD 死亡率的基本模式,分别针对男性和女性,重点关注 25 岁至≥95 岁人群,以 5 年为间隔。男性和女性的 CVD 死亡率均随着年龄的增长而持续上升,呈现出一条随着年龄增长而变得陡峭的指数曲线。这种指数模式表明,CVD 死亡率随着年龄的增长而迅速上升。
为了解决这一局限性并提供最新的信息,我们对 GBD 数据库中特定年龄的死亡率数据进行了分析。这个综合数据库提供了从 1990 年到 2019 年所有年龄段(从新生儿到 95 岁及以上的老年人)各种死因的死亡率数据。 2 图 2 展示了 2019 年全球特定年龄别 CVD 死亡率的基本模式,分别针对男性和女性,重点关注 25 岁至≥95 岁人群,以 5 年为间隔。男性和女性的 CVD 死亡率均随着年龄的增长而持续上升,呈现出一条随着年龄增长而变得陡峭的指数曲线。这种指数模式表明,CVD 死亡率随着年龄的增长而迅速上升。

Figure 2 Global Age-Specific CVD Mortality Rates in 2019
图 2 2019 年全球各年龄段心血管疾病死亡率
图 2 2019 年全球各年龄段心血管疾病死亡率
Global age-specific CVD mortality rates in 2019 illustrate the association between aging and CVD mortality through the exponential curve of age-specific CVD mortality from age 25 years to age ≥95 years of the world population.2 CVD = cardiovascular disease.
2019 年全球各年龄段心血管疾病死亡率说明了衰老与心血管疾病死亡率之间的关系,从全球人口的 25 岁到≥95 岁,心血管疾病死亡率呈指数曲线增长。 2 心血管疾病 = cardiovascular disease。
2019 年全球各年龄段心血管疾病死亡率说明了衰老与心血管疾病死亡率之间的关系,从全球人口的 25 岁到≥95 岁,心血管疾病死亡率呈指数曲线增长。 2 心血管疾病 = cardiovascular disease。
The mean doubling time for CVD mortality was 7.2 years in men and 6.5 years in women. To put this into perspective, the observed CVD mortality rates in the population aged 65 to 69 years were 61 and 67 times higher than those in the 25 to 29 years age group for men and women, respectively. Furthermore, in the age of 85 to 89 population, the CVD mortality rates for men and women were a striking 441 and 630 times higher, respectively, than in the 25- to 29-year age group. This steep and dramatic increase in CVD mortality with advanced age underscores that CVD, as a constellation of multiple diseases is a profoundly aging-related disease. A potential limitation is that cardiovascular death is sometimes given as a cause when there are no other obvious causes, making it difficult to get precise quantitative estimates regarding the contribution of biological aging to cardiovascular morbidity and mortality; however, this should not dramatically affect any findings regarding trends in cardiovascular mortality.
男性心血管疾病死亡率的平均倍增时间为 7.2 年,女性为 6.5 年。为了便于理解,65 至 69 岁人群中观察到的心血管疾病死亡率分别是 25 至 29 岁年龄组男女性的 61 倍和 67 倍。此外,在 85 至 89 岁的人群中,男性和女性的心血管疾病死亡率分别比 25 至 29 岁的年龄组高出惊人的 441 倍和 630 倍。 随着年龄的增长,心血管疾病死亡率急剧上升,这突显出心血管疾病作为多种疾病的集合,是一种与衰老密切相关的疾病。 一个潜在的局限性是,在没有其他明显原因的情况下,心血管死亡有时会被作为死因,这使得难以获得关于生物衰老对心血管发病率和死亡率贡献的精确量化估计;然而,这不应显著影响关于心血管死亡率趋势的任何发现。
男性心血管疾病死亡率的平均倍增时间为 7.2 年,女性为 6.5 年。为了便于理解,65 至 69 岁人群中观察到的心血管疾病死亡率分别是 25 至 29 岁年龄组男女性的 61 倍和 67 倍。此外,在 85 至 89 岁的人群中,男性和女性的心血管疾病死亡率分别比 25 至 29 岁的年龄组高出惊人的 441 倍和 630 倍。 随着年龄的增长,心血管疾病死亡率急剧上升,这突显出心血管疾病作为多种疾病的集合,是一种与衰老密切相关的疾病。 一个潜在的局限性是,在没有其他明显原因的情况下,心血管死亡有时会被作为死因,这使得难以获得关于生物衰老对心血管发病率和死亡率贡献的精确量化估计;然而,这不应显著影响关于心血管死亡率趋势的任何发现。
Patterns of aging-related prevalence of vascular disease in different arterial territories
不同动脉区域血管疾病与衰老相关的患病率模式
Significant evidence concerning the impact of aging can be derived from studies involving direct measurements in various arterial territories. A large-scale study involving more than 3.6 million participants in the United States who completed medical and lifestyle questionnaires—as well as screening for peripheral artery disease (PAD)—using ankle-brachial index (ABI) (with PAD defined as an ABI <0.9) and ultrasound imaging (with carotid artery stenosis [CAS] defined as ≥50% and abdominal aortic aneurysm was based on an aortic diameter of 3 cm or more).35 The prevalence of PAD and CAS exhibited an exponential increase with advanced age, spanning from ages 40 to 50 years and 91 to 100 years, for both men and women, irrespective of whether individuals were symptomatic or asymptomatic.
关于衰老影响的重要证据可以从涉及对不同动脉区域进行直接测量的研究中得出。 一项涉及美国超过 360 万参与者的大规模研究,他们完成了医疗和生活方式问卷调查,并使用踝臂指数 (ABI)(PAD 定义为 ABI <0.9)和超声成像(颈动脉狭窄 [CAS] 定义为 ≥50%,腹主动脉瘤基于 3 厘米或更大的主动脉直径)进行了外周动脉疾病 (PAD) 筛查。 35 PAD 和 CAS 的患病率随着年龄的增长呈指数级增长,无论男女,无论个体是否有症状,年龄跨度均为 40 至 50 岁以及 91 至 100 岁。
关于衰老影响的重要证据可以从涉及对不同动脉区域进行直接测量的研究中得出。 一项涉及美国超过 360 万参与者的大规模研究,他们完成了医疗和生活方式问卷调查,并使用踝臂指数 (ABI)(PAD 定义为 ABI <0.9)和超声成像(颈动脉狭窄 [CAS] 定义为 ≥50%,腹主动脉瘤基于 3 厘米或更大的主动脉直径)进行了外周动脉疾病 (PAD) 筛查。 35 PAD 和 CAS 的患病率随着年龄的增长呈指数级增长,无论男女,无论个体是否有症状,年龄跨度均为 40 至 50 岁以及 91 至 100 岁。
Several large-scale autopsy studies conducted in different countries and among diverse ethnic groups have consistently revealed that atherosclerosis becomes more prevalent as individuals age, affecting various arterial territories.36-38 One notable study conducted in China during the 1980s, a period when China had a lower socio-demographic index (SDI) level and lower risk factors for atherosclerotic cardiovascular disease (ASCVD), analyzed 7,159 autopsy cases, spanning from infants to people above the age of 90 years. This study observed a substantial increase in the proportion of atherosclerosis and stenosis in coronary arteries with advancing age. Specifically, the prevalence of atherosclerosis was 58% in people aged 40 to 49 years, 87% in those aged 60 to 69 years, and reached 100% in those above the age of 90 years. Importantly, these autopsy studies not only underscore the impact of aging on atherosclerosis but also consistently demonstrate that atherosclerotic changes can be found in individuals at very early stages of life, with a 10% prevalence noted among those aged only 10 to 19 years.36
在不同国家和不同种族群体中进行的多项大规模尸检研究一致表明,随着个体年龄的增长,动脉粥样硬化变得更加普遍,影响着不同的动脉区域。 36-38 中国在 20 世纪 80 年代进行了一项值得注意的研究,当时中国的社会人口指数(SDI)水平较低,且动脉粥样硬化性心血管疾病(ASCVD)的危险因素也较低。该研究分析了 7159 例尸检病例,年龄跨度从婴儿到 90 岁以上的老人。研究观察到,随着年龄的增长,冠状动脉粥样硬化和狭窄的比例显著增加。 具体而言,动脉粥样硬化患病率在 40 岁至 49 岁人群中为 58%,在 60 岁至 69 岁人群中为 87%,在 90 岁以上人群中达到 100%。重要的是,这些尸检研究不仅强调了衰老对动脉粥样硬化的影响,而且一致表明,在生命早期阶段的个体中也可以发现动脉粥样硬化改变,在仅 10 岁至 19 岁的人群中,患病率就达到了 10%。 36
在不同国家和不同种族群体中进行的多项大规模尸检研究一致表明,随着个体年龄的增长,动脉粥样硬化变得更加普遍,影响着不同的动脉区域。 36-38 中国在 20 世纪 80 年代进行了一项值得注意的研究,当时中国的社会人口指数(SDI)水平较低,且动脉粥样硬化性心血管疾病(ASCVD)的危险因素也较低。该研究分析了 7159 例尸检病例,年龄跨度从婴儿到 90 岁以上的老人。研究观察到,随着年龄的增长,冠状动脉粥样硬化和狭窄的比例显著增加。 具体而言,动脉粥样硬化患病率在 40 岁至 49 岁人群中为 58%,在 60 岁至 69 岁人群中为 87%,在 90 岁以上人群中达到 100%。重要的是,这些尸检研究不仅强调了衰老对动脉粥样硬化的影响,而且一致表明,在生命早期阶段的个体中也可以发现动脉粥样硬化改变,在仅 10 岁至 19 岁的人群中,患病率就达到了 10%。 36
These consistent findings—regarding the impact of chronological aging on CVD mortality and vascular diseases across various arteries, spanning different time periods, countries, and ethnic groups, regardless of socioeconomic and level of major modifiable risk factors—may imply on the pattern and magnitude of CVD aggravation driven by biological aging process and underscore the critical importance of biological aging research in elucidating the underlying mechanisms of this phenomenon.
这些一致的发现——关于生理年龄增长对心血管疾病死亡率和血管疾病(涉及不同动脉,跨越不同时期、国家和种族,且不受社会经济和主要可改变危险因素水平的影响)的影响——可能暗示着由生物衰老过程驱动的心血管疾病恶化的模式和程度,并强调了生物衰老研究在阐明这一现象的潜在机制中的重要性。
这些一致的发现——关于生理年龄增长对心血管疾病死亡率和血管疾病(涉及不同动脉,跨越不同时期、国家和种族,且不受社会经济和主要可改变危险因素水平的影响)的影响——可能暗示着由生物衰老过程驱动的心血管疾病恶化的模式和程度,并强调了生物衰老研究在阐明这一现象的潜在机制中的重要性。
What is the Magnitude of Independent Aging-Related Impact on CVD Risk?
独立衰老相关因素对心血管疾病风险的影响有多大?
One of the explanations for the exponential increase in CVD mortality risk associated with advancing age is predominantly caused by prolonged exposure to modifiable CVD risk factors—including high systolic blood pressure (SBP), elevated total cholesterol (TC) or low-density lipoprotein-cholesterol (LDL-C) levels, smoking, diabetes, and obesity—in the aging population. This leads us to ponder the magnitude of impact potentially stemming from the intrinsic biological aging process such as natural senescence of cells, proteostasis, or other molecular processes, as well as their interactions with the extrinsic factors associated with the heightened CVD risk. These questions become pivotal in estimating the extent to which the residual risk resulting from the intrinsic aging process may be irreversible, thus determining the ultimate lifespan of the cardiovascular system. With such insight, we will be able to evaluate the potential effect of additional new interventions on the specific residual CVD risk associated with aging. Addressing these questions is crucial for developing effective strategies to mitigate age-related CVD risk and to promote healthier aging.
与年龄增长相关的心血管疾病死亡风险呈指数增长的原因之一,主要是由于老龄人口长期暴露于可改变的心血管疾病风险因素,包括高收缩压(SBP)、总胆固醇(TC)或低密度脂蛋白胆固醇(LDL-C)水平升高、吸烟、糖尿病和肥胖。 这就引导我们思考,诸如细胞自然衰老、蛋白稳态或其他分子过程等内在生物衰老过程,以及它们与升高心血管疾病风险相关的外在因素相互作用,可能产生的潜在影响程度。 这些问题对于评估由内在衰老过程导致的残余风险在多大程度上可能是不可逆的至关重要,从而决定了心血管系统的最终寿命。有了这样的洞察力,我们将能够评估额外的新干预措施对与衰老相关的特定残余心血管疾病风险的潜在影响。 解决这些问题对于制定有效的策略以降低与年龄相关的 CVD 风险和促进更健康的衰老至关重要。
与年龄增长相关的心血管疾病死亡风险呈指数增长的原因之一,主要是由于老龄人口长期暴露于可改变的心血管疾病风险因素,包括高收缩压(SBP)、总胆固醇(TC)或低密度脂蛋白胆固醇(LDL-C)水平升高、吸烟、糖尿病和肥胖。 这就引导我们思考,诸如细胞自然衰老、蛋白稳态或其他分子过程等内在生物衰老过程,以及它们与升高心血管疾病风险相关的外在因素相互作用,可能产生的潜在影响程度。 这些问题对于评估由内在衰老过程导致的残余风险在多大程度上可能是不可逆的至关重要,从而决定了心血管系统的最终寿命。有了这样的洞察力,我们将能够评估额外的新干预措施对与衰老相关的特定残余心血管疾病风险的潜在影响。 解决这些问题对于制定有效的策略以降低与年龄相关的 CVD 风险和促进更健康的衰老至关重要。
Independent impact and interaction of aging on lifetime CVD risk
衰老对终生 CVD 风险的独立影响和相互作用
Studying lifetime risk for CVD provides compelling evidence for the independent effect of aging, which may reflect the potential impact of the hypothetical intrinsic biological aging process and the interactions between this aging process and major CVD risk factors such as blood pressure, lipids, smoking status, and diabetes status.22-26,39-42
对心血管疾病的终生风险进行研究,为衰老的独立影响提供了令人信服的证据,这可能反映了假设的内在生物衰老过程的潜在影响,以及该衰老过程与主要心血管疾病风险因素(如血压、血脂、吸烟状况和糖尿病状况)之间的相互作用。 22-26 39-42
对心血管疾病的终生风险进行研究,为衰老的独立影响提供了令人信服的证据,这可能反映了假设的内在生物衰老过程的潜在影响,以及该衰老过程与主要心血管疾病风险因素(如血压、血脂、吸烟状况和糖尿病状况)之间的相互作用。 22-26 39-42
A meta-analysis of 18 cohort studies in the United States investigated lifetime risks of CVD across the age spectrum. The curve depicting lifetime CVD risk as individuals age at 50 with optimal level of risk factors showed the potential independent impact of the biological aging process and the interplay between the biological aging process and the presence and extent of risk factors.39 Similar patterns for lifetime CVD risk have also been reported in other studies globally.40-42
一项对美国 18 项队列研究进行的荟萃分析调查了整个年龄段 CVD 的终生风险。描述个体在 50 岁时具有最佳水平风险因素的情况下,CVD 终生风险的曲线显示了生物衰老过程的潜在独立影响,以及生物衰老过程与风险因素的存在和程度之间的相互作用。 39 全球其他研究也报告了类似的 CVD 终生风险模式。 40-42
一项对美国 18 项队列研究进行的荟萃分析调查了整个年龄段 CVD 的终生风险。描述个体在 50 岁时具有最佳水平风险因素的情况下,CVD 终生风险的曲线显示了生物衰老过程的潜在独立影响,以及生物衰老过程与风险因素的存在和程度之间的相互作用。 39 全球其他研究也报告了类似的 CVD 终生风险模式。 40-42
As illustrated in Figure 3, the independent impact of aging-related effects on lifetime stroke risk for individuals aged 40 years or greater was demonstrated in a lifetime study of stroke in China. When all risk factors were at optimal levels, the risk of stroke remained low or raised slightly from age 40 to 80 years in men and women. The aging-related impact—which may stem from the hypothetical intrinsic biological aging process—on lifetime stroke risk was significantly lower compared with individuals with elevated risk factors. The gradual increases in risk during the aging process were observed at each level of risk-factor profile from not optimal, ≥1 elevated risk factors, 1 major risk factor, to ≥2 major risk factors. This may reflect not only the additive impact of risk factors to the basic effect of the hypothetical intrinsic biological aging but also the synergistic effects of risk factors interacting with the intrinsic biological aging.40
如图 3 所示,一项在中国进行的终生卒中研究表明,年龄相关效应对 40 岁或以上人群的终生卒中风险具有独立影响。当所有风险因素都处于最佳水平时,男性和女性从 40 岁到 80 岁的卒中风险仍然较低或略有上升。 与具有较高风险因素的个体相比,与年龄相关的因素(可能源于假设的内在生物衰老过程)对终生卒中风险的影响显著降低。在从不理想、≥1 个升高的风险因素、1 个主要风险因素到 ≥2 个主要风险因素的每个风险因素水平上,都观察到衰老过程中风险的逐渐增加。 这不仅反映了风险因素对假定的内在生物衰老基本影响的累加作用,也反映了风险因素与内在生物衰老相互作用的协同效应。 40
如图 3 所示,一项在中国进行的终生卒中研究表明,年龄相关效应对 40 岁或以上人群的终生卒中风险具有独立影响。当所有风险因素都处于最佳水平时,男性和女性从 40 岁到 80 岁的卒中风险仍然较低或略有上升。 与具有较高风险因素的个体相比,与年龄相关的因素(可能源于假设的内在生物衰老过程)对终生卒中风险的影响显著降低。在从不理想、≥1 个升高的风险因素、1 个主要风险因素到 ≥2 个主要风险因素的每个风险因素水平上,都观察到衰老过程中风险的逐渐增加。 这不仅反映了风险因素对假定的内在生物衰老基本影响的累加作用,也反映了风险因素与内在生物衰老相互作用的协同效应。 40

Figure 3 Lifetime Risk of Stroke in Individuals With Different Risk-Factor Profiles
图 3 不同风险因素人群的终生卒中风险
图 3 不同风险因素人群的终生卒中风险
Potential impact of the hypothetical intrinsic biological aging process on risk of major types of CVD and the interactions between the hypothetical intrinsic biological aging and major CVD risk factors such as blood pressure, lipids, smoking status, and diabetes status. Reprinted with permission from Wang et al.40 Abbreviations as in Figure 2.
假设的内在生物衰老过程对主要类型的心血管疾病风险的潜在影响,以及假设的内在生物衰老与主要心血管疾病风险因素(如血压、血脂、吸烟状况和糖尿病状况)之间的相互作用。经 Wang 等人 40 许可转载。缩写与图 2 相同。
假设的内在生物衰老过程对主要类型的心血管疾病风险的潜在影响,以及假设的内在生物衰老与主要心血管疾病风险因素(如血压、血脂、吸烟状况和糖尿病状况)之间的相互作用。经 Wang 等人 40 许可转载。缩写与图 2 相同。
Independent impact and interaction of aging in risk-assessment model of ASCVD
衰老对 ASCVD 风险评估模型的独立影响和交互作用
Data from long-term cohort studies, which assessed individuals with diverse risk-factor profiles, have offered more precise quantification of the independent impact of age and aging and the interactions between aging and other risk factors.43-46 In a model developed by the WHO CVD Risk Chart Working Group, which drew data from 80 cohort studies involving approximately 1 million individuals without histories of CVD at baseline from across the globe, it was observed that for each 5-year increase in age from the baseline age of 40 years, the 10-year risk of fatal and nonfatal acute myocardial infarction and coronary heart disease death increased independently by 43% (HR: 1.43 [95% CI: 1.40-1.47]) in men and 67% (HR: 1.67 [95% CI: 1.60-1.73]) in women.43 In comparison, the corresponding independent effects resulting from a 20-mm Hg increase in SBP were 30% (HR: 1.30 [95% CI: 1.28-1.33]) in men and 37% (HR: 1.37 [95% CI: 1.33-1.42]) in women. When assessing the risk of stroke, it was found that for each 5-year increase in age from the baseline age of 40 years, the 10-year risk of fatal and nonfatal stroke increased independently by 64% (HR: 1.64 [95% CI: 1.58-1.70]) in men and 70% (HR: 1.70 [95% CI: 1.58-1.70]) in women.
来自长期队列研究的数据,对具有不同风险因素特征的个体进行了评估,能够更精确地量化年龄和衰老的独立影响,以及衰老与其他风险因素之间的相互作用。 43-46 在世界卫生组织 CVD 风险图工作组开发的模型中,该模型采用了来自全球约 100 万名基线时无 CVD 病史的个体所参与的 80 项队列研究的数据,观察到从 40 岁基线年龄开始,每增加 5 岁,男性发生致命性和非致命性急性心肌梗死和冠心病死亡的 10 年风险独立增加 43%(HR:1.43 [95% CI:1.40-1.47]),女性增加 67%(HR:1.67 [95% CI:1.60-1.73])。 43 相比之下,收缩压每升高 20 毫米汞柱,男性和女性的独立影响分别为 30%(风险比:1.30 [95% CI:1.28-1.33])和 37%(风险比:1.37 [95% CI:1.33-1.42])。在评估卒中风险时,研究发现,从 40 岁的基线年龄开始,年龄每增长 5 年,男性和女性发生致命性和非致命性卒中的 10 年风险分别独立增加 64%(风险比:1.64 [95% CI:1.58-1.70])和 70%(风险比:1.70 [95% CI:1.58-1.70])。
来自长期队列研究的数据,对具有不同风险因素特征的个体进行了评估,能够更精确地量化年龄和衰老的独立影响,以及衰老与其他风险因素之间的相互作用。 43-46 在世界卫生组织 CVD 风险图工作组开发的模型中,该模型采用了来自全球约 100 万名基线时无 CVD 病史的个体所参与的 80 项队列研究的数据,观察到从 40 岁基线年龄开始,每增加 5 岁,男性发生致命性和非致命性急性心肌梗死和冠心病死亡的 10 年风险独立增加 43%(HR:1.43 [95% CI:1.40-1.47]),女性增加 67%(HR:1.67 [95% CI:1.60-1.73])。 43 相比之下,收缩压每升高 20 毫米汞柱,男性和女性的独立影响分别为 30%(风险比:1.30 [95% CI:1.28-1.33])和 37%(风险比:1.37 [95% CI:1.33-1.42])。在评估卒中风险时,研究发现,从 40 岁的基线年龄开始,年龄每增长 5 年,男性和女性发生致命性和非致命性卒中的 10 年风险分别独立增加 64%(风险比:1.64 [95% CI:1.58-1.70])和 70%(风险比:1.70 [95% CI:1.58-1.70])。
However, the reported increase in HRs of independent age-related CVD risk in each 5-year increment of age from 40 years in men and women is less consistent with the finding of the lower independent impact of aging on lifetime CVD risk when all risk factors were at optimal levels. One possible explanation is that the reported HRs of independent age-related CVD risk was mean HRs derived from Cox regression models based on presumed linear associations between age and CVD risk when it was actually a nonlinear association. The analyses of interaction between age and major risk factors for CVD outcomes suggest that, as individuals grow older, the general influence from aging process becomes more pronounced in both groups with higher or relatively lower level of risk factors. The independent effect from elevated SBP, TC, diabetes, and smoking on CVD outcomes are actually diminishing relatively as individuals age.43
然而,据报告,在男性和女性中,从 40 岁开始,每增加 5 岁,与年龄相关的独立 CVD 风险的 HR 均有所增加,但这一发现与当所有风险因素都处于最佳水平时,年龄对终生 CVD 风险的独立影响较小的发现不太一致。 一种可能的解释是,已报告的独立于年龄相关的心血管疾病风险的风险比,是基于年龄和心血管疾病风险之间假定的线性关系,通过 Cox 回归模型得出的平均风险比,而实际情况是非线性关系。对年龄和心血管疾病结局主要危险因素之间相互作用的分析表明,随着个体年龄增长,衰老过程的总体影响在具有较高或相对较低水平危险因素的两组人群中都变得更加明显。 随着个体年龄的增长,收缩压升高、总胆固醇升高、糖尿病和吸烟对心血管疾病结局的独立影响实际上在相对减弱。 43
然而,据报告,在男性和女性中,从 40 岁开始,每增加 5 岁,与年龄相关的独立 CVD 风险的 HR 均有所增加,但这一发现与当所有风险因素都处于最佳水平时,年龄对终生 CVD 风险的独立影响较小的发现不太一致。 一种可能的解释是,已报告的独立于年龄相关的心血管疾病风险的风险比,是基于年龄和心血管疾病风险之间假定的线性关系,通过 Cox 回归模型得出的平均风险比,而实际情况是非线性关系。对年龄和心血管疾病结局主要危险因素之间相互作用的分析表明,随着个体年龄增长,衰老过程的总体影响在具有较高或相对较低水平危险因素的两组人群中都变得更加明显。 随着个体年龄的增长,收缩压升高、总胆固醇升高、糖尿病和吸烟对心血管疾病结局的独立影响实际上在相对减弱。 43
Nonlinear impact of aging-related on prevalence of vascular disease in different arterial territories
年龄相关因素对不同动脉区域血管疾病患病率的非线性影响
In a large-scale study in the United States, involving more than 3.6 million participants who completed medical and lifestyle questionnaires, individuals were assessed through screening ankle brachial indices for PAD and underwent ultrasound imaging to evaluate carotid artery CAS and abdominal aortic aneurysms (AAAs).35 A nonlinear effect of aging on vascular diseases was identified. When people at the 40- to 50-year age group were taken as reference, there were notably elevated risks of vascular disease in different arterial territories. For example, compared with those aged 40 to 50 years, the adjusted OR for PAD was 5 times greater at age 71 to 80 years and 12 and 27 times greater at ages 81 to 90 years and 91 to 100 years, respectively.35
在美国一项大规模研究中,超过 360 万名参与者完成了医疗和生活方式问卷,并通过踝臂指数筛查评估 PAD,并接受超声成像评估颈动脉 CAS 和腹主动脉瘤(AAA)。 35 研究发现,年龄对血管疾病的影响呈非线性关系。 当以 40 岁至 50 岁年龄段的人群作为参考时,不同动脉区域的血管疾病风险显著升高。例如,与 40 岁至 50 岁的人群相比,71 岁至 80 岁时 PAD 的调整后 OR 值高出 5 倍,81 岁至 90 岁和 91 岁至 100 岁时分别高出 12 倍和 27 倍。 35
在美国一项大规模研究中,超过 360 万名参与者完成了医疗和生活方式问卷,并通过踝臂指数筛查评估 PAD,并接受超声成像评估颈动脉 CAS 和腹主动脉瘤(AAA)。 35 研究发现,年龄对血管疾病的影响呈非线性关系。 当以 40 岁至 50 岁年龄段的人群作为参考时,不同动脉区域的血管疾病风险显著升高。例如,与 40 岁至 50 岁的人群相比,71 岁至 80 岁时 PAD 的调整后 OR 值高出 5 倍,81 岁至 90 岁和 91 岁至 100 岁时分别高出 12 倍和 27 倍。 35
In summary, there were several implications for potential impact of biological aging from the findings here. First, the patterns of independent effect from aging in lifetime risk studies imply that the potential impact of the hypothetical intrinsic biological aging on the risk of CVD events could remain relatively low and retarded until 75, or even 80, years of age if all other major risk factors were kept at optimal levels. Second, the impact of aging may be augmented substantially when external risk factors are elevated, implying that the elevated modifiable risk factors could accelerate the hypothetical intrinsic biological aging process significantly in a dose-response pattern, which, in turn, may also be the driver of elevated modifiable CVD risk factors such as blood pressure, lipids, and chronic inflammation. Third, the potential effects from the intrinsic biological aging process may increase nonlinearly with aging in all individuals, becoming more predominant with dramatically elevated risk of CVD in older persons. We have to acknowledge the potential contribution of newly discovered environmental or acquired CVD risk factors that have emerged more recently than what is currently available in survey data and also that the impact of unknown extrinsic risk factors are not considered in this argument.
总之,本研究的发现对生物衰老的潜在影响有以下几个方面的启示。首先,终生风险研究中衰老独立影响的模式表明,如果所有其他主要危险因素都保持在最佳水平,那么假设的内在生物衰老对 CVD 事件风险的潜在影响可能保持在相对较低的水平,并在 75 岁甚至 80 岁之前受到抑制。 其次,当外部风险因素升高时,衰老的影响可能会显著增强,这意味着升高的可调节风险因素可能会以剂量反应模式显著加速假设的内在生物衰老过程,反过来,这也可能是血压、血脂和慢性炎症等升高的可调节心血管疾病风险因素的驱动因素。 第三,内在生物衰老过程的潜在影响可能在所有个体中随着年龄的增长而非线性地增加,随着老年人患心血管疾病的风险急剧升高而变得更加显著。 我们必须承认新发现的环境或获得性心血管疾病风险因素的潜在贡献,这些因素的出现比目前调查数据中可用的信息要晚,而且未知的外在风险因素的影响也没有在本论证中被考虑。
总之,本研究的发现对生物衰老的潜在影响有以下几个方面的启示。首先,终生风险研究中衰老独立影响的模式表明,如果所有其他主要危险因素都保持在最佳水平,那么假设的内在生物衰老对 CVD 事件风险的潜在影响可能保持在相对较低的水平,并在 75 岁甚至 80 岁之前受到抑制。 其次,当外部风险因素升高时,衰老的影响可能会显著增强,这意味着升高的可调节风险因素可能会以剂量反应模式显著加速假设的内在生物衰老过程,反过来,这也可能是血压、血脂和慢性炎症等升高的可调节心血管疾病风险因素的驱动因素。 第三,内在生物衰老过程的潜在影响可能在所有个体中随着年龄的增长而非线性地增加,随着老年人患心血管疾病的风险急剧升高而变得更加显著。 我们必须承认新发现的环境或获得性心血管疾病风险因素的潜在贡献,这些因素的出现比目前调查数据中可用的信息要晚,而且未知的外在风险因素的影响也没有在本论证中被考虑。
Is the Aging-Related Impact on CVD Risk Modifiable?
与衰老相关的心血管疾病风险影响是否可改变?
Changes of age-related impact on CVD mortality across different time
不同时期年龄相关因素对心血管疾病死亡率的影响变化
It can be inferred that if the notable surge in CVD mortality up to a certain age point would be driven primarily by the programmed and hard-to-reverse biological aging process, then CVD mortality beyond this age might exhibit relatively fewer fluctuations, even over extended periods and across countries with significant differences in socioeconomic levels. Adams and White22 provided not only a reasonable definition of biological aging but also hypothesized a pathway linking socioeconomic status, risk factors, and genetic determinants for the rate of biological aging and health status in their paper entitled “Biological Aging” published in 2004. However, there is no previous evidence to support this proposed paradigm in large population studies for CVD.
由此可以推断,如果心血管疾病死亡率在达到某个年龄点之前的显著上升主要是由程序化的、难以逆转的生物衰老过程驱动的,那么超过这个年龄之后的心血管疾病死亡率可能表现出相对较少的波动,即使在较长时期内以及社会经济水平存在显著差异的国家之间也是如此。 亚当斯和怀特 22 不仅对生物衰老给出了合理的定义,而且在他们 2004 年发表的题为“生物衰老”的论文中,假设了一条连接社会经济地位、危险因素和遗传决定因素的生物衰老速率和健康状况的通路。然而,目前还没有证据支持在大型人群 CVD 研究中提出的这一范例。
由此可以推断,如果心血管疾病死亡率在达到某个年龄点之前的显著上升主要是由程序化的、难以逆转的生物衰老过程驱动的,那么超过这个年龄之后的心血管疾病死亡率可能表现出相对较少的波动,即使在较长时期内以及社会经济水平存在显著差异的国家之间也是如此。 亚当斯和怀特 22 不仅对生物衰老给出了合理的定义,而且在他们 2004 年发表的题为“生物衰老”的论文中,假设了一条连接社会经济地位、危险因素和遗传决定因素的生物衰老速率和健康状况的通路。然而,目前还没有证据支持在大型人群 CVD 研究中提出的这一范例。
Therefore, we compared the age-specific CVD mortality rates in 2019 with those in 1990. Although data from both 1990 and 2019 saw CVD mortality rates increase exponentially with chronological age, there was a significant decrease in CVD mortality from 1990 to 2019 for each age group from 25 to ≥95 years (Figure 4). In men, the most substantial decrease in CVD mortality occurred in the 75- to 79-year age group, with a 35% decline from 1990 to 2019. Moreover, the magnitudes of decline in the 90- to 94- and ≥95-year age groups were larger than that in the 40- to 44-age group. In women, the magnitude of decrease in CVD mortality from 1990 to 2019 exceeded that in men across all age groups except for those aged 95 years, in which the decline was notable as well. This reduction ranged from 25% to 40% across the entire age spectrum (Figure 4). Remarkably, in 2019, it took approximately 5 additional years to reach a mortality rate similar to that of 1990 across age groups from 25 to ≥95 years, both in men and women. Notably, there was no distinct chronological age point at which a relatively stable mortality rate was observed over the 3-decade period.
因此,我们将 2019 年特定年龄段的心血管疾病死亡率与 1990 年的数据进行了比较。虽然 1990 年和 2019 年的数据显示心血管疾病死亡率都随着年龄的增长呈指数增长,但从 1990 年到 2019 年,25 岁到≥95 岁的每个年龄组的心血管疾病死亡率都显著下降(图 4)。在男性中,心血管疾病死亡率降幅最大的是 75 岁至 79 岁年龄组,从 1990 年到 2019 年下降了 35%。 此外,90-94 岁和≥95 岁年龄组的降幅大于 40-44 岁年龄组。在女性中,除 95 岁年龄组外,1990 年至 2019 年心血管疾病死亡率的降幅超过了所有年龄组的男性,该年龄组的降幅也很显著。在整个年龄段中,这一降幅从 25%到 40%不等(图 4)。 值得注意的是,在 2019 年,男性和女性从 25 岁到≥95 岁的各个年龄组,要达到与 1990 年相似的死亡率,大约需要额外花费 5 年时间。值得注意的是,在这 30 年期间,并没有观察到相对稳定的死亡率的明显时间年龄点。
因此,我们将 2019 年特定年龄段的心血管疾病死亡率与 1990 年的数据进行了比较。虽然 1990 年和 2019 年的数据显示心血管疾病死亡率都随着年龄的增长呈指数增长,但从 1990 年到 2019 年,25 岁到≥95 岁的每个年龄组的心血管疾病死亡率都显著下降(图 4)。在男性中,心血管疾病死亡率降幅最大的是 75 岁至 79 岁年龄组,从 1990 年到 2019 年下降了 35%。 此外,90-94 岁和≥95 岁年龄组的降幅大于 40-44 岁年龄组。在女性中,除 95 岁年龄组外,1990 年至 2019 年心血管疾病死亡率的降幅超过了所有年龄组的男性,该年龄组的降幅也很显著。在整个年龄段中,这一降幅从 25%到 40%不等(图 4)。 值得注意的是,在 2019 年,男性和女性从 25 岁到≥95 岁的各个年龄组,要达到与 1990 年相似的死亡率,大约需要额外花费 5 年时间。值得注意的是,在这 30 年期间,并没有观察到相对稳定的死亡率的明显时间年龄点。

Figure 4 Decreasing Age-Specific CVD Mortality Rates From 1990 to 2019
图 4 1990 年至 2019 年期间,特定年龄段的心血管疾病死亡率下降
图 4 1990 年至 2019 年期间,特定年龄段的心血管疾病死亡率下降
Changes of age-related impact on CVD mortality across populations with different SDI levels
年龄相关因素对不同 SDI 水平人群心血管疾病死亡率的影响变化
In 1990, it was evident that countries with a low SDI had significantly higher CVD mortality rates than those with a high SDI,2 but this difference was observed only before the age of 75 years in men and before the age of 80 years in women. But, in 2019, we observed that these differences in CVD mortality between low and high SDI countries not only persisted but also intensified. These disparities extended to all age groups except those aged ≥95 years, encompassing both men and women.
在 1990 年,很明显的是,低 SDI 国家的 CVD 死亡率显著高于高 SDI 国家, 2 但这种差异仅在男性 75 岁之前和女性 80 岁之前观察到。但是,在 2019 年,我们观察到低 SDI 国家和高 SDI 国家之间 CVD 死亡率的这些差异不仅持续存在,而且还在加剧。这些差异扩大到除 ≥95 岁年龄组以外的所有年龄组,包括男性和女性。
在 1990 年,很明显的是,低 SDI 国家的 CVD 死亡率显著高于高 SDI 国家, 2 但这种差异仅在男性 75 岁之前和女性 80 岁之前观察到。但是,在 2019 年,我们观察到低 SDI 国家和高 SDI 国家之间 CVD 死亡率的这些差异不仅持续存在,而且还在加剧。这些差异扩大到除 ≥95 岁年龄组以外的所有年龄组,包括男性和女性。
High-SDI countries enjoyed delays of 10 to 20 years in reaching similar CVD mortality rates as low-SDI countries, with the larger delay in women and a slightly smaller delay in men, all before the age of ≥95 years (Figure 5). From 1990 to 2019, there was a notable decrease in CVD mortality across all age groups in countries with high SDIs, ranging from 32% to 62% in men and 31% to 64% in women (Figure 6). Even in countries with low SDIs, significant reductions in CVD mortality were observed across age groups, especially before the ages of 75 to 79 years, although the magnitude of decline was somewhat lower compared with countries with high SDIs.2
在高社会人口指数国家,达到与低社会人口指数国家相似的心血管疾病死亡率的时间延迟了 10 到 20 年,女性的延迟时间更长,男性则略短,所有这些都发生在≥95 岁之前(图 5)。从 1990 年到 2019 年,在高社会人口指数国家,所有年龄组的心血管疾病死亡率都显著下降,男性下降了 32%到 62%,女性下降了 31%到 64%(图 6)。 即使在低社会人口学指数国家,各年龄组的心血管疾病死亡率也显著降低,尤其是在 75 至 79 岁之前,尽管降幅与高社会人口学指数国家相比略低。 2
在高社会人口指数国家,达到与低社会人口指数国家相似的心血管疾病死亡率的时间延迟了 10 到 20 年,女性的延迟时间更长,男性则略短,所有这些都发生在≥95 岁之前(图 5)。从 1990 年到 2019 年,在高社会人口指数国家,所有年龄组的心血管疾病死亡率都显著下降,男性下降了 32%到 62%,女性下降了 31%到 64%(图 6)。 即使在低社会人口学指数国家,各年龄组的心血管疾病死亡率也显著降低,尤其是在 75 至 79 岁之前,尽管降幅与高社会人口学指数国家相比略低。 2

Figure 5 Age-Specific CVD Mortality by Time and SDI
图 5:按时间和 SDI 划分的年龄别 CVD 死亡率
图 5:按时间和 SDI 划分的年龄别 CVD 死亡率
Differences in age-specific CVD mortality rates and changes in women and men among countries with different SDI levels (low, low middle, middle, high middle, and high) in 1990 and 2019.2 (A) women ages 25 to 64 years in 1990; (B) women ages 65 to ≥95 years in 1990; (C) men ages 25 to 64 in 1990; (D) men ages 65 to ≥95 years in 1990; (E) women ages 25 to 64 years in 2019; (F) women ages 65 to ≥95 years in 2019; (G) men ages 25 to 64 in 2019; (H) men ages 65 to ≥95 years in 2019. SDI = Socio-demographic Index; other abbreviations as in Figure 2.
1990 年和 2019 年,不同社会人口指数(SDI)水平(低、中低、中、中高和高)的国家中,特定年龄的心血管疾病死亡率以及女性和男性的变化差异。 2 (A) 1990 年 25 至 64 岁女性;(B) 1990 年 65 至≥95 岁女性;(C) 1990 年 25 至 64 岁男性;(D) 1990 年 65 至≥95 岁男性;(E) 2019 年 25 至 64 岁女性;(F) 2019 年 65 至≥95 岁女性;(G) 2019 年 25 至 64 岁男性;(H) 2019 年 65 至≥95 岁男性。 SDI = 社会人口指数;其他缩写与图 2 相同。
1990 年和 2019 年,不同社会人口指数(SDI)水平(低、中低、中、中高和高)的国家中,特定年龄的心血管疾病死亡率以及女性和男性的变化差异。 2 (A) 1990 年 25 至 64 岁女性;(B) 1990 年 65 至≥95 岁女性;(C) 1990 年 25 至 64 岁男性;(D) 1990 年 65 至≥95 岁男性;(E) 2019 年 25 至 64 岁女性;(F) 2019 年 65 至≥95 岁女性;(G) 2019 年 25 至 64 岁男性;(H) 2019 年 65 至≥95 岁男性。 SDI = 社会人口指数;其他缩写与图 2 相同。

Figure 6 Decline in Rates of Age-Specific Cardiovascular Disease Mortality by SDI
图 6 按 SDI 划分的特定年龄段心血管疾病死亡率下降
图 6 按 SDI 划分的特定年龄段心血管疾病死亡率下降
Decreases in age-specific CVD mortality rate among countries with different SDI levels (low, low middle, middle, high middle, and high) from1990 to 2019.2 (A) Countries with low SDI levels; (B) countries with high SDI levels. Abbreviations as in Figures 2 and 5.
1990 年至 2019 年,不同 SDI 水平(低、中低、中、中高和高)国家特定年龄段 CVD 死亡率的下降情况。 2 (A)低 SDI 水平国家;(B)高 SDI 水平国家。缩写同图 2 和图 5。
1990 年至 2019 年,不同 SDI 水平(低、中低、中、中高和高)国家特定年龄段 CVD 死亡率的下降情况。 2 (A)低 SDI 水平国家;(B)高 SDI 水平国家。缩写同图 2 和图 5。
The significant decrease in CVD mortality across all chronological age groups in only 3 decades, even across countries with varying SDI levels, suggests that the effect of the biological aging process on CVD can be modified, even in individuals aged ≥95 years, using current known preventive strategies. Throughout our analysis, we did not identify any specific age point, from 25 to ≥95 years, at which CVD mortality remained relatively unchanged, indicating that there is significant potential to further reduce CVD mortality to a level that delays by 10 to 20 years compared with countries with lower SDI levels as they undergo socioeconomic development.
在短短 30 年内,即使在社会发展指数水平不同的国家,所有年龄组的心血管疾病死亡率都显著下降,这表明即使是≥95 岁的老年人,也可以通过目前已知的预防策略来改变生物衰老过程对心血管疾病的影响。 在我们的分析中,我们没有发现从 25 岁到≥95 岁期间,心血管疾病死亡率保持相对不变的任何特定年龄点,这表明与社会经济发展水平较低的国家相比,心血管疾病死亡率有很大的潜力进一步降低 10 到 20 年。
在短短 30 年内,即使在社会发展指数水平不同的国家,所有年龄组的心血管疾病死亡率都显著下降,这表明即使是≥95 岁的老年人,也可以通过目前已知的预防策略来改变生物衰老过程对心血管疾病的影响。 在我们的分析中,我们没有发现从 25 岁到≥95 岁期间,心血管疾病死亡率保持相对不变的任何特定年龄点,这表明与社会经济发展水平较低的国家相比,心血管疾病死亡率有很大的潜力进一步降低 10 到 20 年。
The decline in CVD mortality across all age groups, and notably lower mortality among the elderly population in countries with high SDIs, potentially can be attributed to a combination of factors and the interactions among them, including the delayed or alleviated effect from both the biological aging process and improved management of modifiable risk factors such as therapies for lipids (eg, statins); blood pressure; and diabetes as well as the influence of improved sanitation, nutrition, living conditions, and medical care of patients with CVD such as thrombolytic therapy or angioplasty as socioeconomic development. Consequently, the biological aging process in humans does not appear to be entirely irreversibly programmed. The decline in CVD mortality observed from 1990 to 2019 occurred not only in the young and middle-aged population but also in the elderly, further implying that the impact of biological aging on CVD may be modifiable even in very old populations. It implies an optimistic expectation for natural lifespan in humans.
在所有年龄组中,心血管疾病死亡率均有所下降,特别是在高人类发展指数国家的老年人口中,死亡率显著降低,这可能归因于多种因素及其相互作用,包括生物衰老过程的延迟或减轻,以及对可改变危险因素的改善管理,例如血脂治疗(如他汀类药物)、血压和糖尿病,以及社会经济发展带来的卫生条件的改善、营养的改善、生活条件的改善以及心血管疾病患者的医疗护理改善,如溶栓治疗或血管成形术。 因此,人类的生物衰老过程似乎并非完全不可逆转地预先设定。1990 年至 2019 年观察到的 CVD 死亡率下降不仅发生在年轻人和中年人群中,也发生在老年人中,这进一步表明,即使在非常老龄化的人群中,生物衰老对 CVD 的影响也可能是可改变的。这意味着对人类自然寿命的乐观预期。
在所有年龄组中,心血管疾病死亡率均有所下降,特别是在高人类发展指数国家的老年人口中,死亡率显著降低,这可能归因于多种因素及其相互作用,包括生物衰老过程的延迟或减轻,以及对可改变危险因素的改善管理,例如血脂治疗(如他汀类药物)、血压和糖尿病,以及社会经济发展带来的卫生条件的改善、营养的改善、生活条件的改善以及心血管疾病患者的医疗护理改善,如溶栓治疗或血管成形术。 因此,人类的生物衰老过程似乎并非完全不可逆转地预先设定。1990 年至 2019 年观察到的 CVD 死亡率下降不仅发生在年轻人和中年人群中,也发生在老年人中,这进一步表明,即使在非常老龄化的人群中,生物衰老对 CVD 的影响也可能是可改变的。这意味着对人类自然寿命的乐观预期。
Particularly intriguing is to understand how the underlying biological aging process has been modified in the last 30 years, especially in countries that have witnessed the most substantial decrease in CVD mortality among the elderly population, as these insights could offer valuable strategies for other nations.
尤其引人关注的是,了解在过去 30 年中,潜在的生物衰老过程是如何被改变的,尤其是在那些老年人口心血管疾病死亡率大幅下降的国家,因为这些见解可以为其他国家提供有价值的策略。
尤其引人关注的是,了解在过去 30 年中,潜在的生物衰老过程是如何被改变的,尤其是在那些老年人口心血管疾病死亡率大幅下降的国家,因为这些见解可以为其他国家提供有价值的策略。
Is the Pattern of Aging-Related Effects for CVD Similar for Cancer?
心血管疾病的衰老相关影响模式与癌症相似吗?
The biological aging process may serve as the basis for the development of multiple age-related diseases, given the increasing prevalence of multimorbidity in the aging population. In fact, both CVD and cancer have many common risk factors and been identified among the top 25 conditions contributing to multimorbidity, particularly in low- and middle-income countries.47-49 It is reasonable to infer that new intervention strategies targeting key pathways of biological aging have the potential to prevent multiple age-related diseases. Notably, immunosenescence is considered a primary underlying cause of the increasing proinflammatory status in aging and aging-related diseases, particularly in CVD and cancer.50,51 Based on this hypothesis, one might anticipate that, as individuals age, both CVD and cancer could exhibit similar patterns in age-specific mortality. There could even be an assumption that cancer might surpass CVD in terms of mortality rates among the super-aging population.
鉴于老龄化人群中多病共存的患病率不断上升,生物衰老过程可能是多种年龄相关疾病发展的基础。事实上,心血管疾病和癌症都有许多共同的危险因素,并且已被确定为导致多病共存的前 25 种疾病,尤其是在中低收入国家。 47-49 可以合理地推断,针对生物衰老关键通路的新干预策略有可能预防多种与年龄相关的疾病。值得注意的是,免疫衰老被认为是衰老和与衰老相关的疾病(特别是心血管疾病和癌症)中炎症状态日益加剧的主要根本原因。 50 51 基于这一假设,人们可能会预料到,随着个体年龄的增长,心血管疾病和癌症在特定年龄的死亡率方面可能表现出相似的模式。甚至可以假设,在超老龄人口中,癌症的死亡率可能会超过心血管疾病。
鉴于老龄化人群中多病共存的患病率不断上升,生物衰老过程可能是多种年龄相关疾病发展的基础。事实上,心血管疾病和癌症都有许多共同的危险因素,并且已被确定为导致多病共存的前 25 种疾病,尤其是在中低收入国家。 47-49 可以合理地推断,针对生物衰老关键通路的新干预策略有可能预防多种与年龄相关的疾病。值得注意的是,免疫衰老被认为是衰老和与衰老相关的疾病(特别是心血管疾病和癌症)中炎症状态日益加剧的主要根本原因。 50 51 基于这一假设,人们可能会预料到,随着个体年龄的增长,心血管疾病和癌症在特定年龄的死亡率方面可能表现出相似的模式。甚至可以假设,在超老龄人口中,癌症的死亡率可能会超过心血管疾病。
Differences in patterns of age-related CVD morality and cancer mortality
年龄相关的心血管疾病死亡率和癌症死亡率模式的差异
However, several key differences in the patterns of the impact of chronological age between CVD and cancer can be observed. First, CVD exhibits a surged increase from ages 25 to ≥95 years in an exponential pattern. However, for cancer mortality, a sharper exponential increase is only seen from ages 25 to 29 years to ages 60 to 64 years, after which it significantly slows down among individuals aged 65 years and older, both in men and women. Across all age groups, CVD mortality remains higher than cancer mortality, with differences ranging from 1.5 to 3.7 times higher in men. In women, CVD mortality is initially lower than cancer mortality before age 60 years but reverses after age 60 years, with CVD mortality being 5.3 times and 6.2 times that of cancer mortality in individuals aged 90 to 94 years and ≥95 years, respectively (Figure 7). Next, women exhibit cancer mortality rates comparable with men from ages 25 to 49 years. However, starting from age 50 years, which typically coincides with the onset of menopause, women demonstrate a 10-year delay in reaching a similar level of cancer mortality rates compared with men. This pattern persists until the age bracket of 90 to 94 years (Figure 7). Finally, the patterns of the increasing rate of age-specific cancer mortality, as indicated by the sequential growth ratios per 5-year increase from ages 25 to ≥95 years, differ significantly from those of CVD (Figure 8). For cancer, the increase rates slow down after the age 50 to 54 years in both men and women. In contrast, CVD exhibits a much stronger aging-related pattern, with higher increase rates persisting until age 80 years, especially in women.
然而,在心血管疾病和癌症之间,观察到按时间顺序排列的年龄影响模式存在几个关键差异。首先,心血管疾病呈现出从 25 岁到≥95 岁的指数级增长。然而,对于癌症死亡率,仅在 25 岁至 29 岁到 60 岁至 64 岁之间出现更急剧的指数级增长,之后在 65 岁及以上的男性和女性中,增长速度明显放缓。 在所有年龄组中,心血管疾病死亡率仍高于癌症死亡率,男性之间的差异为 1.5 到 3.7 倍。在女性中,60 岁之前心血管疾病死亡率最初低于癌症死亡率,但在 60 岁之后发生逆转,90 至 94 岁和≥95 岁的人群中,心血管疾病死亡率分别是癌症死亡率的 5.3 倍和 6.2 倍(图 7)。接下来,女性在 25 岁至 49 岁之间的癌症死亡率与男性相当。 然而,从 50 岁开始,通常与女性更年期开始的时间相吻合,女性在达到与男性相似的癌症死亡率水平方面,表现出 10 年的延迟。这种模式一直持续到 90 至 94 岁的年龄段(图 7)。最后,年龄别癌症死亡率增长率的模式,如 25 岁至≥95 岁每增加 5 年的连续增长率所示,与 CVD 的增长率有显著差异(图 8)。 对于癌症,男性和女性在 50 岁到 54 岁之后,发病率的增长速度都会放缓。相比之下,CVD 表现出更强的与年龄相关的模式,更高的增长率持续到 80 岁,尤其是在女性中。
然而,在心血管疾病和癌症之间,观察到按时间顺序排列的年龄影响模式存在几个关键差异。首先,心血管疾病呈现出从 25 岁到≥95 岁的指数级增长。然而,对于癌症死亡率,仅在 25 岁至 29 岁到 60 岁至 64 岁之间出现更急剧的指数级增长,之后在 65 岁及以上的男性和女性中,增长速度明显放缓。 在所有年龄组中,心血管疾病死亡率仍高于癌症死亡率,男性之间的差异为 1.5 到 3.7 倍。在女性中,60 岁之前心血管疾病死亡率最初低于癌症死亡率,但在 60 岁之后发生逆转,90 至 94 岁和≥95 岁的人群中,心血管疾病死亡率分别是癌症死亡率的 5.3 倍和 6.2 倍(图 7)。接下来,女性在 25 岁至 49 岁之间的癌症死亡率与男性相当。 然而,从 50 岁开始,通常与女性更年期开始的时间相吻合,女性在达到与男性相似的癌症死亡率水平方面,表现出 10 年的延迟。这种模式一直持续到 90 至 94 岁的年龄段(图 7)。最后,年龄别癌症死亡率增长率的模式,如 25 岁至≥95 岁每增加 5 年的连续增长率所示,与 CVD 的增长率有显著差异(图 8)。 对于癌症,男性和女性在 50 岁到 54 岁之后,发病率的增长速度都会放缓。相比之下,CVD 表现出更强的与年龄相关的模式,更高的增长率持续到 80 岁,尤其是在女性中。

Figure 7 Comparison of Age-Specific CVD and Cancer Mortality in 2019
图 7 2019 年特定年龄段心血管疾病和癌症死亡率的比较
图 7 2019 年特定年龄段心血管疾病和癌症死亡率的比较
Patterns of age-specific CVD mortality and age-specific cancer mortality.2 (A) Age-specific CVD mortality and cancer mortality from age 25 to 95 years; (B) age-specific CVD mortality and cancer mortality from age 25 to 64 years; and (C) age-specific CVD mortality and cancer mortality from age 65 to ≥95 years. Abbreviations as in Figure 2.
特定年龄段心血管疾病死亡率和特定年龄段癌症死亡率的模式。 2 (A)25 岁至 95 岁的特定年龄段心血管疾病死亡率和癌症死亡率;(B)25 岁至 64 岁的特定年龄段心血管疾病死亡率和癌症死亡率;以及(C)65 岁至≥95 岁的特定年龄段心血管疾病死亡率和癌症死亡率。缩写与图 2 相同。
特定年龄段心血管疾病死亡率和特定年龄段癌症死亡率的模式。 2 (A)25 岁至 95 岁的特定年龄段心血管疾病死亡率和癌症死亡率;(B)25 岁至 64 岁的特定年龄段心血管疾病死亡率和癌症死亡率;以及(C)65 岁至≥95 岁的特定年龄段心血管疾病死亡率和癌症死亡率。缩写与图 2 相同。

Figure 8 Sequential Growth Ratios of Age-Specific CVD and Cancer Mortality Rates
图 8 年龄特定心血管疾病和癌症死亡率的逐年增长比率
图 8 年龄特定心血管疾病和癌症死亡率的逐年增长比率
Gender-specific acceleration patterns CVD and cancer mortality as per 5 years’ increase from ages 25 to ≥95 years.2 (A) Sequential growth ratio of CVD mortality by age groups in men and women. (B) Sequential growth ratios of cancer mortality by age groups in men and women. Abbreviations as in Figure 2.
性别特异性的心血管疾病和癌症死亡率加速模式,按年龄从 25 岁到≥95 岁每 5 年递增计算。 2 (A) 男性和女性心血管疾病死亡率按年龄组划分的连续增长率。(B) 男性和女性癌症死亡率按年龄组划分的连续增长率。缩写同图 2。
性别特异性的心血管疾病和癌症死亡率加速模式,按年龄从 25 岁到≥95 岁每 5 年递增计算。 2 (A) 男性和女性心血管疾病死亡率按年龄组划分的连续增长率。(B) 男性和女性癌症死亡率按年龄组划分的连续增长率。缩写同图 2。
Changes of age-related impact on cancer mortality across different time and populations
与年龄相关的因素对不同时期和人群癌症死亡率的影响变化
When comparing cancer mortality rates in 2019 with those in 1990, a decline in cancer mortality is observed before the age of 85 years, with reductions ranging from 5% to 23% in women and 5% to 31% in men across the age groups of 25 to 29 years and 80 to 84 years. Notably, in countries with high SDIs, cancer mortality is considerably higher than in countries with low SDI levels, starting after age 60 years in women and age 50 years in men. Moreover, countries with high SDIs have witnessed much larger declines in cancer mortality from 1990 to 2019.
在比较 2019 年与 1990 年的癌症死亡率时,可以观察到 85 岁之前的癌症死亡率有所下降,其中 25 岁至 29 岁以及 80 岁至 84 岁年龄段的女性降幅为 5%至 23%,男性降幅为 5%至 31%。值得注意的是,在高 SDI 国家,60 岁以上女性和 50 岁以上男性的癌症死亡率远高于低 SDI 国家。 此外,社会人口指数高的国家在 1990 年至 2019 年期间,癌症死亡率的下降幅度更大。
在比较 2019 年与 1990 年的癌症死亡率时,可以观察到 85 岁之前的癌症死亡率有所下降,其中 25 岁至 29 岁以及 80 岁至 84 岁年龄段的女性降幅为 5%至 23%,男性降幅为 5%至 31%。值得注意的是,在高 SDI 国家,60 岁以上女性和 50 岁以上男性的癌症死亡率远高于低 SDI 国家。 此外,社会人口指数高的国家在 1990 年至 2019 年期间,癌症死亡率的下降幅度更大。
These distinct patterns of the effect of chronological aging between CVD and cancer may suggest different mechanisms or effects of the biological aging process on different age-related diseases. It is possible that different organs or systems have unique hallmarks and “clocks” in the aging process. These findings lead to questions such as “Why are age-specific CVD mortality rates significantly higher than cancer mortality, especially as individuals age?” “Why do women have lower cancer mortality rates than men after the age of 50 years, despite both men and women experiencing a substantial decline in immunologic function and metabolic health?”
心血管疾病和癌症之间这种由时间年龄造成的不同模式的影响可能表明,生物衰老过程对不同年龄相关疾病的影响或机制有所不同。不同的器官或系统可能在衰老过程中具有独特的标志和“时钟”。 这些发现引出了诸如“为什么特定年龄段的心血管疾病死亡率显著高于癌症死亡率,尤其是在个体年龄增长时?”“为什么在 50 岁以后,女性的癌症死亡率低于男性,尽管男性和女性的免疫功能和代谢健康都出现了显著下降?”等问题
心血管疾病和癌症之间这种由时间年龄造成的不同模式的影响可能表明,生物衰老过程对不同年龄相关疾病的影响或机制有所不同。不同的器官或系统可能在衰老过程中具有独特的标志和“时钟”。 这些发现引出了诸如“为什么特定年龄段的心血管疾病死亡率显著高于癌症死亡率,尤其是在个体年龄增长时?”“为什么在 50 岁以后,女性的癌症死亡率低于男性,尽管男性和女性的免疫功能和代谢健康都出现了显著下降?”等问题
Conclusions 结论
Focusing on 4 critical translational questions derived from the study of biological aging, this review provides some insights that can stimulate future research endeavors and expedite the translation of the knowledge of biological aging from hypotheses to interventional strategies against harmful effects from aging in CVD prevention practice.
本综述着重探讨源于生物衰老研究的 4 个关键转化问题,提供了一些见解,可以激发未来的研究工作,并加快将生物衰老知识从假设转化为干预策略,以对抗衰老对心血管疾病预防实践的有害影响。
本综述着重探讨源于生物衰老研究的 4 个关键转化问题,提供了一些见解,可以激发未来的研究工作,并加快将生物衰老知识从假设转化为干预策略,以对抗衰老对心血管疾病预防实践的有害影响。
Several perspectives from this review are particularly noteworthy. First, the dramatic impact of chronological aging on CVD mortality and vascular diseases across various arteries can be considered as a mirrored estimation of the overall pattern and magnitude of CVD aggravation driven by the underlying biological aging process in humans. Second, although the intrinsic biological aging itself may play important role as a background driver of aging-related CVD risk, the overall contribution of biological aging process should encompass a synergistic effect of modifiable CVD risk factors (known and unknown) interacting with the intrinsic biological aging process. And the synergistic effect is very likely to be modifiable, influenced by socioeconomic development levels. Therefore, early interventions targeted to improving the control of risk factors and socioeconomic disparities will yield significant benefits in reducing adverse CVD outcomes over the lifespan (Central Illustration). Third, the distinct patterns of chronological aging effects between CVD and cancer may suggest different mechanisms or effects of the biological aging process on different age-related diseases. It is possible that different organs or systems have unique hallmarks and "clocks" in the aging process.
本综述中的几个观点尤其值得关注。首先,从时间顺序上看,衰老对各种动脉的心血管疾病死亡率和血管疾病的巨大影响,可以被认为是人类潜在的生物衰老过程驱动的心血管疾病恶化总体模式和程度的镜像估计。 其次,虽然内在的生物衰老本身可能作为衰老相关心血管疾病风险的背景驱动因素发挥重要作用,但生物衰老过程的总体贡献应包括可改变的心血管疾病风险因素(已知和未知)与内在生物衰老过程相互作用的协同效应。而且这种协同效应很可能受到社会经济发展水平的影响,是可以改变的。 因此,早期干预,旨在改善对风险因素和社会经济差距的控制,将在降低整个生命周期中的不良 CVD 结局方面产生显著效益(中心图示)。第三,CVD 和癌症之间明显的按时间顺序衰老效应模式可能表明生物衰老过程对不同年龄相关疾病具有不同的机制或影响。 在衰老过程中,不同的器官或系统可能具有独特的标志和“时钟”。
本综述中的几个观点尤其值得关注。首先,从时间顺序上看,衰老对各种动脉的心血管疾病死亡率和血管疾病的巨大影响,可以被认为是人类潜在的生物衰老过程驱动的心血管疾病恶化总体模式和程度的镜像估计。 其次,虽然内在的生物衰老本身可能作为衰老相关心血管疾病风险的背景驱动因素发挥重要作用,但生物衰老过程的总体贡献应包括可改变的心血管疾病风险因素(已知和未知)与内在生物衰老过程相互作用的协同效应。而且这种协同效应很可能受到社会经济发展水平的影响,是可以改变的。 因此,早期干预,旨在改善对风险因素和社会经济差距的控制,将在降低整个生命周期中的不良 CVD 结局方面产生显著效益(中心图示)。第三,CVD 和癌症之间明显的按时间顺序衰老效应模式可能表明生物衰老过程对不同年龄相关疾病具有不同的机制或影响。 在衰老过程中,不同的器官或系统可能具有独特的标志和“时钟”。

Central Illustration Synergistic Effects of Biological Aging Process on Aging-Related Cardiovascular Disease Risk
中心图示 生物衰老过程对衰老相关心血管疾病风险的协同效应
中心图示 生物衰老过程对衰老相关心血管疾病风险的协同效应
The impact of biological aging on aging-related CVD may be a synergistic effect of the hypothetical intrinsic biological aging process, status of modifiable risk factors, and the levels of socioeconomic development. CVD = cardiovascular disease.
生物衰老对衰老相关心血管疾病的影响可能是假定的内在生物衰老过程、可改变的危险因素的状态以及社会经济发展水平的协同效应。CVD = 心血管疾病。
生物衰老对衰老相关心血管疾病的影响可能是假定的内在生物衰老过程、可改变的危险因素的状态以及社会经济发展水平的协同效应。CVD = 心血管疾病。
One of the most significant knowledge gaps in the field of biological aging research revolves around the translation of aging specific biomarkers and functional parameters into human-level assessments. This includes exploring the intricate relationships among hallmarks of biological aging and recognizing that different individuals may follow unique aging roadmaps. This would not only facilitate a deeper understanding of the aging process but also pave the way for more precise interventions and personalized strategies to promote healthy aging.
生物衰老研究领域中最重要的知识缺口之一,是衰老特异性生物标志物和功能参数向人类水平评估的转化。这包括探索生物衰老特征之间的复杂关系,并认识到不同个体可能遵循独特的衰老路线图。 这不仅有助于更深入地了解衰老过程,而且还将为更精确的干预措施和个性化策略铺平道路,以促进健康衰老。
生物衰老研究领域中最重要的知识缺口之一,是衰老特异性生物标志物和功能参数向人类水平评估的转化。这包括探索生物衰老特征之间的复杂关系,并认识到不同个体可能遵循独特的衰老路线图。 这不仅有助于更深入地了解衰老过程,而且还将为更精确的干预措施和个性化策略铺平道路,以促进健康衰老。
Abbreviations and Acronyms
缩略语
- AAA =
- abdominal aortic aneurysm
腹主动脉瘤 - ASCVD =
- atherosclerotic cardiovascular disease
动脉粥样硬化性心血管疾病 - CAC =
- coronary artery calcium 冠状动脉钙化
- CAS =
- carotid artery stenosis 颈动脉狭窄
- CVD =
- cardiovascular disease 心血管疾病
- FMD =
- flow-mediated vasodilation
血流介导的血管舒张 - GBD =
- global burden of disease 全球疾病负担
- IMT =
- intima-media thickness 内中膜厚度
- NCD =
- noncommunicable disease 非传染性疾病
- PAD =
- peripheral artery disease
外周动脉疾病 - PWV =
- pulse-wave velocity 脉搏波速度
- SBP =
- systolic blood pressure 收缩压
- SDI =
- socio-demographic index 社会人口统计学指数
- TC =
- total cholesterol 总胆固醇
- WHO =
- World Health Organization
世界卫生组织
Funding Support and Author Disclosures
资金支持和作者披露
The authors have reported that they have no relationships relevant to the contents of this paper to disclose.
作者声明与本文内容无关的任何关系。
作者声明与本文内容无关的任何关系。
Footnotes 脚注
Latha Palaniappan, MD, served as Guest Associate Editor of this paper. William F. Fearon, MD, served as Guest Editor-in-Chief of this paper.
Latha Palaniappan 医学博士担任本文的客座副编辑。William F. Fearon 医学博士担任本文的客座主编。
Latha Palaniappan 医学博士担任本文的客座副编辑。William F. Fearon 医学博士担任本文的客座主编。
The authors attest they are in compliance with human studies committees and animal welfare regulations of the authors’ institutions and Food and Drug Administration guidelines, including patient consent where appropriate. For more information, visit the Author Center.
作者声明,他们遵守作者所在机构的人体研究委员会和动物福利条例以及美国食品和药物管理局的指导方针,包括在适当情况下获得患者的知情同意。更多信息请访问作者中心。
作者声明,他们遵守作者所在机构的人体研究委员会和动物福利条例以及美国食品和药物管理局的指导方针,包括在适当情况下获得患者的知情同意。更多信息请访问作者中心。
References 参考文献
1.
World Health Organization. World Health Statistics 2023: Monitoring Health for the SDGs. Geneva, Switzerland: Sustainable Development Goals., 2023.
世界卫生组织。《2023 年世界卫生统计:监测可持续发展目标健康状况》。瑞士日内瓦:可持续发展目标,2023 年。
世界卫生组织。《2023 年世界卫生统计:监测可持续发展目标健康状况》。瑞士日内瓦:可持续发展目标,2023 年。
2.
Global Burden of Disease Collaborative Network. Global Burden of Disease Study Results. Seattle, WA: Institute for Health Metrics and Evaluation (IHME), 2020. http://ghdx.healthdata.org/gbdresults-tool. Accessed September 10, 2023.
全球疾病负担合作网络。《全球疾病负担研究结果》。华盛顿州西雅图:健康指标与评估研究所 (IHME),2020 年。http://ghdx.healthdata.org/gbdresults-tool。访问日期:2023 年 9 月 10 日。
全球疾病负担合作网络。《全球疾病负担研究结果》。华盛顿州西雅图:健康指标与评估研究所 (IHME),2020 年。http://ghdx.healthdata.org/gbdresults-tool。访问日期:2023 年 9 月 10 日。
3.
United Nations, Population Division. World Population Prospects 2019, Volume I: Comprehensive Tables (ST/ESA/SER.A/426). Department of Economic and Social Affairs, 2019.
联合国,人口司。《2019 年世界人口展望》第一卷:综合表格(ST/ESA/SER.A/426)。经济和社会事务部,2019 年。
联合国,人口司。《2019 年世界人口展望》第一卷:综合表格(ST/ESA/SER.A/426)。经济和社会事务部,2019 年。
4.
United Nations, Population Division. World Population Prospects 2022: Summary of Results. (UN DESA/POP/2022/TR/NO. 3.). Department of Economic and Social Affairs, 2022.
联合国,人口司。《2022 年世界人口展望:结果摘要》。 (UN DESA/POP/2022/TR/NO. 3.). 经济和社会事务部,2022 年。
联合国,人口司。《2022 年世界人口展望:结果摘要》。 (UN DESA/POP/2022/TR/NO. 3.). 经济和社会事务部,2022 年。
5.
Lopez A.D., Mathers C.D. Measuring the global burden of disease and epidemiological transitions: 2002-2030. Ann Trop Med Parasitol. 2006;100:5-6: 481-499.
Lopez A.D., Mathers C.D. 衡量全球疾病负担和流行病学转变:2002-2030。《热带医学与寄生虫学年鉴》。2006;100:5-6: 481-499。
Lopez A.D., Mathers C.D. 衡量全球疾病负担和流行病学转变:2002-2030。《热带医学与寄生虫学年鉴》。2006;100:5-6: 481-499。
6.
Roth G.A., Forouzanfar M.H., Moran A.E., et al. Demographic and epidemiologic drivers of global cardiovascular mortality. N Engl J Med. 2015;372:14: 1333-1341.
Roth G.A., Forouzanfar M.H., Moran A.E., et al. 全球心血管死亡率的人口和流行病学驱动因素。新英格兰医学杂志。2015;372:14: 1333-1341.
Roth G.A., Forouzanfar M.H., Moran A.E., et al. 全球心血管死亡率的人口和流行病学驱动因素。新英格兰医学杂志。2015;372:14: 1333-1341.
7.
Hambleton I.R., Caixeta R., Jeyaseelan S.M., Luciani S., Hennis A.J.M. The rising burden of non-communicable diseases in the Americas and the impact of population aging: a secondary analysis of available data. Lancet Reg Health Am. 2023;21:100483.
Hambleton I.R., Caixeta R., Jeyaseelan S.M., Luciani S., Hennis A.J.M. 美洲非传染性疾病负担日益加重以及人口老龄化的影响:一项对现有数据的二次分析。柳叶刀区域健康-美洲。2023;21:100483.
Hambleton I.R., Caixeta R., Jeyaseelan S.M., Luciani S., Hennis A.J.M. 美洲非传染性疾病负担日益加重以及人口老龄化的影响:一项对现有数据的二次分析。柳叶刀区域健康-美洲。2023;21:100483.
8.
Moran A., Gu D., Zhao D., et al. Future cardiovascular disease in China: Markov model and risk factor scenario projections from the coronary heart disease policy model-China. Circ Cardiovasc Qual Outcomes. 2010;3:3: 243-252.
Moran A.,Gu D.,Zhao D.等。中国未来心血管疾病:来自中国冠心病政策模型的马尔可夫模型和危险因素情景预测。《循环:心血管质量与结局》。2010;3:3:243-252。
Moran A.,Gu D.,Zhao D.等。中国未来心血管疾病:来自中国冠心病政策模型的马尔可夫模型和危险因素情景预测。《循环:心血管质量与结局》。2010;3:3:243-252。
9.
Visseren F.L.J., Mach F., Smulders Y.M., et al. ESC Scientific Document Group. 2021 ESC guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;42:34: 3227-3337.
Visseren F.L.J.,Mach F.,Smulders Y.M.等。ESC 科学文件组。2021 年 ESC 关于临床实践中心血管疾病预防的指南。《欧洲心脏杂志》。2021;42:34:3227-3337。
Visseren F.L.J.,Mach F.,Smulders Y.M.等。ESC 科学文件组。2021 年 ESC 关于临床实践中心血管疾病预防的指南。《欧洲心脏杂志》。2021;42:34:3227-3337。
10.
Arnett D.K., Blumenthal R.S., Albert M.A., et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;74:10: e177-e232.
Arnett D.K., Blumenthal R.S., Albert M.A., et al. 2019 ACC/AHA 心血管疾病一级预防指南:美国心脏病学会/美国心脏协会临床实践指南工作组报告。J Am Coll Cardiol. 2019;74:10: e177-e232.
Arnett D.K., Blumenthal R.S., Albert M.A., et al. 2019 ACC/AHA 心血管疾病一级预防指南:美国心脏病学会/美国心脏协会临床实践指南工作组报告。J Am Coll Cardiol. 2019;74:10: e177-e232.
11.
World Heart Federation. World Health Report 2023: Confronting the World’s Number One Killer. Geneva, Switzerland2023. www.worldheart.org.
世界心脏联盟。《2023 年世界卫生报告:直面世界头号杀手》。瑞士日内瓦,2023 年。www.worldheart.org。
世界心脏联盟。《2023 年世界卫生报告:直面世界头号杀手》。瑞士日内瓦,2023 年。www.worldheart.org。
12.
Roth G.A., Abate D., Abate K.H., et al. GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:10159: 1736-1788.
Roth G.A.,Abate D.,Abate K.H.等。GBD 2017 死因合作者。1980-2017 年全球疾病负担研究 2017:195 个国家和地区 282 种死因的全球、区域和国家年龄-性别特定死亡率:一项系统分析。《柳叶刀》。2018;392:10159: 1736-1788。
Roth G.A.,Abate D.,Abate K.H.等。GBD 2017 死因合作者。1980-2017 年全球疾病负担研究 2017:195 个国家和地区 282 种死因的全球、区域和国家年龄-性别特定死亡率:一项系统分析。《柳叶刀》。2018;392:10159: 1736-1788。
13.
Wang H., Naghavi M., Allen C., et al. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:10053: 1459-1544.
Wang H., Naghavi M., Allen C., 等. GBD 2015 死亡率和死因合作者. 1980-2015 年全球、区域和国家预期寿命、全因死亡率和 249 种死因的特定病因死亡率:2015 年全球疾病负担研究的系统分析. 柳叶刀. 2016;388:10053: 1459-1544.
Wang H., Naghavi M., Allen C., 等. GBD 2015 死亡率和死因合作者. 1980-2015 年全球、区域和国家预期寿命、全因死亡率和 249 种死因的特定病因死亡率:2015 年全球疾病负担研究的系统分析. 柳叶刀. 2016;388:10053: 1459-1544.
14.
Roth G.A., Mensah G.A., Johnson C.O., et al. GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group. global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76:25: 2982-3021.
Roth G.A., Mensah G.A., Johnson C.O., et al. GBD-NHLBI-JACC 全球心血管疾病写作组。1990-2019 年全球心血管疾病和危险因素负担:来自 GBD 2019 研究的更新。J Am Coll Cardiol. 2020;76:25: 2982-3021。
Roth G.A., Mensah G.A., Johnson C.O., et al. GBD-NHLBI-JACC 全球心血管疾病写作组。1990-2019 年全球心血管疾病和危险因素负担:来自 GBD 2019 研究的更新。J Am Coll Cardiol. 2020;76:25: 2982-3021。
15.
Hamczyk M.R., Nevado R.M., Barettino A., Fuster V., Andrés V. Biological versus chronological aging: JACC Focus Seminar. J Am Coll Cardiol. 2020;75:8: 919-930.
Hamczyk M.R., Nevado R.M., Barettino A., Fuster V., Andrés V. 生物学衰老与实际年龄衰老:JACC 焦点研讨会。J Am Coll Cardiol. 2020;75:8: 919-930。
Hamczyk M.R., Nevado R.M., Barettino A., Fuster V., Andrés V. 生物学衰老与实际年龄衰老:JACC 焦点研讨会。J Am Coll Cardiol. 2020;75:8: 919-930。
16.
Liberale L., Montecucco F., Tardif J.C., Libby P., Camici G.G. Inflamm-ageing: the role of inflammation in age-dependent cardiovascular disease. Eur Heart J. 2020;41:31: 2974-2982.
Liberale L., Montecucco F., Tardif J.C., Libby P., Camici G.G. 炎症衰老:炎症在年龄依赖性心血管疾病中的作用。 Eur Heart J. 2020;41:31: 2974-2982.
Liberale L., Montecucco F., Tardif J.C., Libby P., Camici G.G. 炎症衰老:炎症在年龄依赖性心血管疾病中的作用。 Eur Heart J. 2020;41:31: 2974-2982.
17.
Campisi J., Kapahi P., Lithgow G.J., Melov S., Newman J.C., Verdin E. From discoveries in ageing research to therapeutics for healthy ageing. Nature. 2019;571:7764: 183-192.
Campisi J., Kapahi P., Lithgow G.J., Melov S., Newman J.C., Verdin E. 从衰老研究的发现到健康衰老的疗法。 Nature. 2019;571:7764: 183-192.
Campisi J., Kapahi P., Lithgow G.J., Melov S., Newman J.C., Verdin E. 从衰老研究的发现到健康衰老的疗法。 Nature. 2019;571:7764: 183-192.
18.
López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G. Hallmarks of aging: an expanding universe. Cell. 2023;186:2: 243-278.
López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G. 衰老的标志:一个不断扩展的宇宙。细胞。2023;186:2: 243-278.
López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G. 衰老的标志:一个不断扩展的宇宙。细胞。2023;186:2: 243-278.
19.
Abdellatif M., Rainer P.P., Sedej S., Kroemer G. Hallmarks of cardiovascular ageing. Nat Rev Cardiol. 2023;20:754-777. https://doi.org/10.1038/s41569-023-00881-3.
Abdellatif M., Rainer P.P., Sedej S., Kroemer G. 心血管衰老的标志。《自然综述:心脏病学》。2023;20:754-777。https://doi.org/10.1038/s41569-023-00881-3.
Abdellatif M., Rainer P.P., Sedej S., Kroemer G. 心血管衰老的标志。《自然综述:心脏病学》。2023;20:754-777。https://doi.org/10.1038/s41569-023-00881-3.
20.
Wang H., Abbas K.M., Abbasifard M., et al. GBD 2019 Demographics Collaborators. Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396:1160-1203.
Wang H., Abbas K.M., Abbasifard M., et al. GBD 2019 Demographics Collaborators. 1950-2019 年 204 个国家和地区特定年龄和性别的生育率、死亡率、健康预期寿命(HALE)和人口估计:2019 年全球疾病负担研究的综合人口分析。《柳叶刀》。2020;396:1160-1203.
Wang H., Abbas K.M., Abbasifard M., et al. GBD 2019 Demographics Collaborators. 1950-2019 年 204 个国家和地区特定年龄和性别的生育率、死亡率、健康预期寿命(HALE)和人口估计:2019 年全球疾病负担研究的综合人口分析。《柳叶刀》。2020;396:1160-1203.
21.
Amuthavalli Thiyagarajan J., Mikton C., Harwood R.H., et al. The UN Decade of healthy ageing: strengthening measurement for monitoring health and wellbeing of older people. Age Ageing. 2022;51:7: afac147.
Amuthavalli Thiyagarajan J., Mikton C., Harwood R.H., et al. 联合国健康老龄化十年:加强衡量以监测老年人的健康和福祉。老年与衰老。2022;51:7: afac147。
Amuthavalli Thiyagarajan J., Mikton C., Harwood R.H., et al. 联合国健康老龄化十年:加强衡量以监测老年人的健康和福祉。老年与衰老。2022;51:7: afac147。
22.
Adams J.M., White M. Biological ageing: a fundamental, biological link between socio-economic status and health? Eur J Public Health. 2004;14:3: 331-334.
Adams J.M., White M. 生物衰老:社会经济地位与健康之间的一个基本生物学联系?欧洲公共卫生杂志。2004;14:3: 331-334。
Adams J.M., White M. 生物衰老:社会经济地位与健康之间的一个基本生物学联系?欧洲公共卫生杂志。2004;14:3: 331-334。
23.
Calimport S.R.G., Bentley B.L., Stewart C.E., et al. To help aging populations, classify organismal senescence. Science. 2019;366:6465: 576-578.
Calimport S.R.G., Bentley B.L., Stewart C.E.等。为了帮助老龄化人口,对有机体的衰老进行分类。科学。2019;366:6465: 576-578。
Calimport S.R.G., Bentley B.L., Stewart C.E.等。为了帮助老龄化人口,对有机体的衰老进行分类。科学。2019;366:6465: 576-578。
24.
Kennedy B.K., Berger S.L., Brunet A., et al. Geroscience: linking aging to chronic disease. Cell. 2014;159:709-713.
Kennedy B.K., Berger S.L., Brunet A.等。衰老科学:将衰老与慢性疾病联系起来。细胞。2014;159:709-713。
Kennedy B.K., Berger S.L., Brunet A.等。衰老科学:将衰老与慢性疾病联系起来。细胞。2014;159:709-713。
25.
Anders J.L., Newman A.B. Telomere length in epidemiology: a biomarker of aging, age-related disease, both, or neither? Epidemiol Rev. 2013;35:1: 112-131.
Anders J.L., Newman A.B. 流行病学中的端粒长度:衰老、年龄相关疾病的生物标志物,两者都是,或者都不是?流行病学评论。2013;35:1: 112-131。
Anders J.L., Newman A.B. 流行病学中的端粒长度:衰老、年龄相关疾病的生物标志物,两者都是,或者都不是?流行病学评论。2013;35:1: 112-131。
26.
Belsky D.W., Caspi A., Corcoran D.L., et al. DunedinPACE, a DNA methylation biomarker of the pace of aging. eLife. 2022;11:e73420.
Belsky D.W., Caspi A., Corcoran D.L., et al. DunedinPACE,一种反映衰老速度的 DNA 甲基化生物标志物。eLife. 2022;11:e73420。
Belsky D.W., Caspi A., Corcoran D.L., et al. DunedinPACE,一种反映衰老速度的 DNA 甲基化生物标志物。eLife. 2022;11:e73420。
27.
Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:10: R115.
Horvath S. 人类组织和细胞类型的 DNA 甲基化年龄。Genome Biol. 2013;14:10: R115。
Horvath S. 人类组织和细胞类型的 DNA 甲基化年龄。Genome Biol. 2013;14:10: R115。
28.
Fortier C., Sidibé A., Desjardins M.P., et al. Aortic-brachial pulse wave velocity ratio: a blood pressure-independent index of vascular aging. Hypertension. 2017;69:1: 96-101.
Fortier C., Sidibé A., Desjardins M.P., et al. 主动脉-肱动脉脉搏波速度比值:一种与血压无关的血管衰老指标。Hypertension. 2017;69:1: 96-101。
Fortier C., Sidibé A., Desjardins M.P., et al. 主动脉-肱动脉脉搏波速度比值:一种与血压无关的血管衰老指标。Hypertension. 2017;69:1: 96-101。
29.
Ohkuma T., Ninomiya T., Tomiyama H., et al. Collaborative Group for J-BAVEL (Japan Brachial-Ankle Pulse Wave Velocity Individual Participant Data Meta-Analysis of Prospective Studies). Brachial-ankle pulse wave velocity and the risk prediction of cardiovascular disease: an individual participant data meta-analysis. Hypertension. 2017;69:6: 1045-1052.
Ohkuma T.,Ninomiya T.,Tomiyama H.等。J-BAVEL(日本肱踝脉搏波速度前瞻性研究个体参与者数据荟萃分析协作组)。肱踝脉搏波速度与心血管疾病风险预测:一项个体参与者数据荟萃分析。《高血压》。2017;69:6: 1045-1052。
Ohkuma T.,Ninomiya T.,Tomiyama H.等。J-BAVEL(日本肱踝脉搏波速度前瞻性研究个体参与者数据荟萃分析协作组)。肱踝脉搏波速度与心血管疾病风险预测:一项个体参与者数据荟萃分析。《高血压》。2017;69:6: 1045-1052。
30.
Donato A.J., Machin D.R., Lesniewski L.A. Mechanisms of dysfunction in the aging vasculature and role in age-related disease. Circ Res. 2018;123:7: 825-848.
Donato A.J., Machin D.R., Lesniewski L.A. 衰老血管功能障碍的机制及其在年龄相关疾病中的作用。Circ Res. 2018;123:7: 825-848.
Donato A.J., Machin D.R., Lesniewski L.A. 衰老血管功能障碍的机制及其在年龄相关疾病中的作用。Circ Res. 2018;123:7: 825-848.
31.
Ball R.L., Feiveson A.H., Schlegel T.T., Starc V., Dabney A.R. Predicting "heart age" using electrocardiography. J Pers Med. 2014;4:1: 65-78.
Ball R.L., Feiveson A.H., Schlegel T.T., Starc V., Dabney A.R. 使用心电图预测“心脏年龄”。J Pers Med. 2014;4:1: 65-78.
Ball R.L., Feiveson A.H., Schlegel T.T., Starc V., Dabney A.R. 使用心电图预测“心脏年龄”。J Pers Med. 2014;4:1: 65-78.
32.
Shaw L.J., Raggi P., Berman D.S., Callister T.Q. Coronary artery calcium as a measure of biologic age. Atherosclerosis. 2006;188:1: 112-119.
Shaw L.J., Raggi P., Berman D.S., Callister T.Q. 冠状动脉钙化作为生物年龄的衡量标准。动脉粥样硬化。2006;188:1: 112-119.
Shaw L.J., Raggi P., Berman D.S., Callister T.Q. 冠状动脉钙化作为生物年龄的衡量标准。动脉粥样硬化。2006;188:1: 112-119.
33.
Cuende J.I., Cuende N., Calaveras-Lagartos J. How to calculate vascular age with the SCORE project scales: a new method of cardiovascular risk evaluation. Eur Heart J. 2010;31:19: 2351-2358.
Cuende J.I., Cuende N., Calaveras-Lagartos J. 如何使用 SCORE 项目量表计算血管年龄:一种新的心血管风险评估方法。Eur Heart J. 2010;31:19: 2351-2358.
Cuende J.I., Cuende N., Calaveras-Lagartos J. 如何使用 SCORE 项目量表计算血管年龄:一种新的心血管风险评估方法。Eur Heart J. 2010;31:19: 2351-2358.
34.
Cohen A.A., Kennedy B.K., Anglas U., et al. Lack of consensus on an aging biology paradigm? A global survey reveals an agreement to disagree, and the need for an interdisciplinary framework. Mech Ageing Dev. 2020;191:111316.
Cohen A.A., Kennedy B.K., Anglas U., 等。 缺乏关于衰老生物学范式的共识?一项全球调查显示,人们同意存在分歧,并需要一个跨学科的框架。《衰老机制与发展》。2020;191:111316。
Cohen A.A., Kennedy B.K., Anglas U., 等。 缺乏关于衰老生物学范式的共识?一项全球调查显示,人们同意存在分歧,并需要一个跨学科的框架。《衰老机制与发展》。2020;191:111316。
35.
Savji N., Rockman C.B., Skolnick A.H., et al. Association between advanced age and vascular disease in different arterial territories: a population database of over 3.6 million subjects. J Am Coll Cardiol. 2013;61:16: 1736-1743.
Savji N., Rockman C.B., Skolnick A.H., 等。 不同动脉区域的高龄与血管疾病之间的关联:一项超过 360 万受试者的人口数据库。《美国心脏病学会杂志》。2013;61:16: 1736-1743。
Savji N., Rockman C.B., Skolnick A.H., 等。 不同动脉区域的高龄与血管疾病之间的关联:一项超过 360 万受试者的人口数据库。《美国心脏病学会杂志》。2013;61:16: 1736-1743。
36.
Study Group of Atherosclerosis. Atherosclerosis in coronary arteries of 7159 cases and aortas of 2044 cases: an autopsy study. Chin J Pathol. 1983;2:81-869.(in Chinese).
动脉粥样硬化研究组。7159 例冠状动脉和 2044 例主动脉动脉粥样硬化的尸检研究。中华病理学杂志。1983;2:81-869.(中文)。
动脉粥样硬化研究组。7159 例冠状动脉和 2044 例主动脉动脉粥样硬化的尸检研究。中华病理学杂志。1983;2:81-869.(中文)。
37.
Kimura H., Takao M., Suzuki N., Kanemaru K., Mihara B., Murayama S. pathologic study of intracranial large artery atherosclerosis in 7260 autopsy cases. J Stroke Cerebrovasc Dis. 2017;26:12: 2821-2827.
Kimura H., Takao M., Suzuki N., Kanemaru K., Mihara B., Murayama S. 7260 例尸检病例颅内大动脉粥样硬化的病理学研究。J Stroke Cerebrovasc Dis. 2017;26:12: 2821-2827。
Kimura H., Takao M., Suzuki N., Kanemaru K., Mihara B., Murayama S. 7260 例尸检病例颅内大动脉粥样硬化的病理学研究。J Stroke Cerebrovasc Dis. 2017;26:12: 2821-2827。
38.
Rahimi R., Singh M.K.C., Noor N.M., et al. Manifestation of coronary atherosclerosis in Klang Valley, Malaysia: an autopsy study. J Atheroscler Thromb. 2018;25:5: 405-409.
Rahimi R., Singh M.K.C., Noor N.M., 等。马来西亚巴生河流域冠状动脉粥样硬化的表现:一项尸检研究。J Atheroscler Thromb. 2018;25:5: 405-409。
Rahimi R., Singh M.K.C., Noor N.M., 等。马来西亚巴生河流域冠状动脉粥样硬化的表现:一项尸检研究。J Atheroscler Thromb. 2018;25:5: 405-409。
39.
Berry J.D., Dyer A., Cai X., et al. Lifetime risks of cardiovascular disease. N Engl J Med. 2012;366:4: 321-329.
Berry J.D., Dyer A., Cai X., et al. 心血管疾病的终生风险。N Engl J Med. 2012;366:4: 321-329.
Berry J.D., Dyer A., Cai X., et al. 心血管疾病的终生风险。N Engl J Med. 2012;366:4: 321-329.
40.
Wang Y., Liu J., Wang W., et al. Lifetime risk of stroke in young-aged and middle-aged Chinese population: the Chinese Multi-Provincial Cohort Study. J Hypertens. 2016;34:12: 2434-2440.
Wang Y., Liu J., Wang W., et al. 中国青中年人群的终生卒中风险:中国多省队列研究。J Hypertens. 2016;34:12: 2434-2440.
Wang Y., Liu J., Wang W., et al. 中国青中年人群的终生卒中风险:中国多省队列研究。J Hypertens. 2016;34:12: 2434-2440.
41.
Feigin V.L., Nguyen G., Cercy K., et al. GBD 2016 Lifetime Risk of Stroke Collaborators. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. N Engl J Med. 2018;379:25: 2429-2437.
Feigin V.L., Nguyen G., Cercy K., et al. GBD 2016 脑卒中终生风险合作组。1990 年和 2016 年全球、区域和国家特定脑卒中终生风险。N Engl J Med. 2018;379:25: 2429-2437。
Feigin V.L., Nguyen G., Cercy K., et al. GBD 2016 脑卒中终生风险合作组。1990 年和 2016 年全球、区域和国家特定脑卒中终生风险。N Engl J Med. 2018;379:25: 2429-2437。
42.
Satoh M., Ohkubo T., Asayama K., et al. EPOCH-JAPAN Research Group. Lifetime risk of stroke and coronary heart disease deaths according to blood pressure level: EPOCH-JAPAN (Evidence for Cardiovascular Prevention From Observational Cohorts in Japan). Hypertension. 2019;73:1: 52-59.
Satoh M., Ohkubo T., Asayama K.,等. EPOCH-JAPAN 研究组. 根据血压水平评估的卒中和冠心病死亡的终生风险:EPOCH-JAPAN(来自日本观察性队列的心血管预防证据). Hypertension. 2019;73:1: 52-59.
Satoh M., Ohkubo T., Asayama K.,等. EPOCH-JAPAN 研究组. 根据血压水平评估的卒中和冠心病死亡的终生风险:EPOCH-JAPAN(来自日本观察性队列的心血管预防证据). Hypertension. 2019;73:1: 52-59.
43.
Kaptoge S., Pennells L., De Bacquer D., et al. WHO CVD Risk Chart Working Group. World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. Lancet Glob Health. 2019;7:10: e1332-e1345.
Kaptoge S., Pennells L., De Bacquer D., et al. WHO CVD 风险图工作组。世界卫生组织心血管疾病风险图:修订后的模型,用于估计 21 个全球区域的风险。柳叶刀全球健康。2019;7:10: e1332-e1345。
Kaptoge S., Pennells L., De Bacquer D., et al. WHO CVD 风险图工作组。世界卫生组织心血管疾病风险图:修订后的模型,用于估计 21 个全球区域的风险。柳叶刀全球健康。2019;7:10: e1332-e1345。
44.
Ueda P., Woodward M., Lu Y., et al. Laboratory-based and office-based risk scores and charts to predict 10-year risk of cardiovascular disease in 182 countries: a pooled analysis of prospective cohorts and health surveys. Lancet Diabetes Endocrinol. 2017;5:3: 196-213.
上田 P.,伍德沃德 M.,卢 Y.,等。基于实验室和办公室的风险评分和图表,用于预测 182 个国家 10 年心血管疾病风险:一项对前瞻性队列和健康调查的汇总分析。《柳叶刀糖尿病与内分泌学杂志》。2017;5:3: 196-213。
上田 P.,伍德沃德 M.,卢 Y.,等。基于实验室和办公室的风险评分和图表,用于预测 182 个国家 10 年心血管疾病风险:一项对前瞻性队列和健康调查的汇总分析。《柳叶刀糖尿病与内分泌学杂志》。2017;5:3: 196-213。
45.
Zhao D., Liu J., Xie W., Qi Y. Cardiovascular risk assessment: a global perspective. Nat Rev Cardiol. 2015;12:5: 301-311.
Zhao D., Liu J., Xie W., Qi Y. 心血管风险评估:全球视角. Nat Rev Cardiol. 2015;12:5: 301-311.
Zhao D., Liu J., Xie W., Qi Y. 心血管风险评估:全球视角. Nat Rev Cardiol. 2015;12:5: 301-311.
46.
Gorenoi V., Hagen A. Overview of risk-estimation tools for primary prevention of cardiovascular diseases in European populations. Cent Eur J Public Health. 2015;23:2: 91-99.
Gorenoi V., Hagen A. 欧洲人群心血管疾病一级预防风险评估工具概览。Cent Eur J Public Health. 2015;23:2: 91-99。
Gorenoi V., Hagen A. 欧洲人群心血管疾病一级预防风险评估工具概览。Cent Eur J Public Health. 2015;23:2: 91-99。
47.
Koene R.J., Prizment A.E., Blaes A., Konety S.H. Shared risk factors in cardiovascular disease and cancer. Circulation. 2016;133:11: 1104-1114.
Koene R.J., Prizment A.E., Blaes A., Konety S.H. 心血管疾病和癌症的共同风险因素。Circulation. 2016;133:11: 1104-1114。
Koene R.J., Prizment A.E., Blaes A., Konety S.H. 心血管疾病和癌症的共同风险因素。Circulation. 2016;133:11: 1104-1114。
48.
Karlstaedt A., Moslehi J., de Boer R.A. Cardio-onco-metabolism: metabolic remodeling cardiovascular disease and cancer. Nat Rev Cardiol. 2022;19:6: 414-425.
Karlstaedt A., Moslehi J., de Boer R.A. 心脏-肿瘤-代谢:代谢重塑心血管疾病和癌症。Nat Rev Cardiol. 2022;19:6: 414-425。
Karlstaedt A., Moslehi J., de Boer R.A. 心脏-肿瘤-代谢:代谢重塑心血管疾病和癌症。Nat Rev Cardiol. 2022;19:6: 414-425。
49.
Abebe F., Schneider M., Asrat B., Ambaw F. Multimorbidity of chronic non-communicable diseases in low- and middle-income countries: a scoping review. J Comorb. 2020;10:2235042X20961919.
Abebe F.,Schneider M.,Asrat B.,Ambaw F. 低收入和中等收入国家慢性非传染性疾病的多重病患:范围界定综述。J Comorb. 2020;10:2235042X20961919.
Abebe F.,Schneider M.,Asrat B.,Ambaw F. 低收入和中等收入国家慢性非传染性疾病的多重病患:范围界定综述。J Comorb. 2020;10:2235042X20961919.
50.
Franceschi C., Bonafè M., Valensin S., et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244-254.
Franceschi C.,Bonafè M.,Valensin S.,等。炎症衰老。免疫衰老的进化视角。Ann N Y Acad Sci. 2000;908:244-254.
Franceschi C.,Bonafè M.,Valensin S.,等。炎症衰老。免疫衰老的进化视角。Ann N Y Acad Sci. 2000;908:244-254.
51.
Fulop T., Larbi A., Pawelec G., et al. Immunology of aging: the birth of inflammaging. Clin Rev Allergy Immunol. 2023;64:2: 109-122.
Fulop T., Larbi A., Pawelec G., 等。衰老免疫学:炎症衰老的诞生。Clin Rev Allergy Immunol. 2023;64:2: 109-122。
Fulop T., Larbi A., Pawelec G., 等。衰老免疫学:炎症衰老的诞生。Clin Rev Allergy Immunol. 2023;64:2: 109-122。
Information & Authors
Information
Published In

JACC: Asia
Volume 4 • Number 5 • 1 May 2024
Pages: 345 - 358
Copyright
Copyright © 2024, The Authors. Published by Elsevier on Behalf of The American College of Cardiology Foundation. This is an Open Access Article under the CC BY-NC-ND License (http://creativecommons.org/licenses/by-nc-nd/4.0/).
History
Received: 2 October 2023
Revised: 9 February 2024
Accepted: 12 February 2024
Published online: 8 April 2024
Topics
Keywords
Authors
Metrics & Citations
Metrics
Citations
Download article citation data for:
How to cite this article: Zhao, D, Wang, Y, Wong, N. et al. Impact of Aging on Cardiovascular Diseases: From Chronological Observation to Biological Insights: JACC Family Series. JACC: Asia. 2024 May, 4 (5) 345–358. https://doi.org/10.1016/j.jacasi.2024.02.002
Download article citation: If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.
Citing Literature
- Brenda Alessandra Munhóz, Débora Parra Baptista, Fermented dairy products as sources of bioactive peptides with potential benefits to older adults' health, Food Research International, 10.1016/j.foodres.2025.116921, 218, (116921), (2025).
- Zhijian Song, Xiaobing Lu, Jijun Zhu, Pan Li, Shenghan Wang, Shunjie Zhang, Zhongting Huang, Fuqiang Cai, Weixin Liu, Fei Ling, Junfang Chen, Epigenetic signatures of accelerated aging and immune dysregulation in youth with social anxiety disorder, Behavioural Brain Research, 10.1016/j.bbr.2025.115729, 494, (115729), (2025).
- Yeyan Lei, Dongmei Li, Shuang Bai, Xing Zeng, Rongyuan Yang, Qing Liu, Clinical Relationship Between Serum ApoB , HER2, and Myocardial Ischemia Risk in Breast Cancer Patients , Cancer Reports, 10.1002/cnr2.70075, 8, 7, (2025).
- Nadine Mozalbat, Lital Sharvit, Gil Atzmon, Microgravity Therapy as Treatment for Decelerated Aging and Successful Longevity, International Journal of Molecular Sciences, 10.3390/ijms26136544, 26, 13, (6544), (2025).
- Xin Zhang, Yu Yan, Yuxin Liu, Zixin Wang, Yuchen Jiang, Shuo Zhang, Tongda Xu, Ke Wang, Chu Zheng, Ping Zeng, Association of biological aging acceleration transitions and burdens with incident cardiovascular disease: longitudinal insights from a national cohort study, BMC Medicine, 10.1186/s12916-025-04177-w, 23, 1, (2025).
- Hejing Tang, Xu Zhang, Senyang Hu, Yuhan Song, Wenhua Jin, Jianmin Zou, Yan Zhang, Jiayue Guo, Peng An, Junjie Luo, Pengjie Wang, Yongting Luo, Yinhua Zhu, Natural Products Acting as Senolytics and Senomorphics Alleviate Cardiovascular Diseases by Targeting Senescent Cells, Targets, 10.3390/targets3030023, 3, 3, (23), (2025).
- Yifeng Chen, Hongye Hao, Yijing Yin, Xianchi Zhou, Zuolong Liu, Yuxian Lai, Xingwang Wang, Cong Wang, Jing Wang, Peng Zhang, Jian Ji, Bioinert Albumin Surface Enables Ultra-High Vascular Cell Selectivity Superior to Specific Binding Ligands, ACS Nano, 10.1021/acsnano.5c05293, 19, 25, (23209-23222), (2025).
- Guanghao Li, Youhuang Bai, Feng Tao, Tingting Hu, Ting Wang, Yong Zeng, Deqiang Sun, Methylation aberrations and genomic instability synergistically drive the evolution of intrahepatic cholangiocarcinoma, Epigenomics, 10.1080/17501911.2025.2518919, 17, 10, (661-674), (2025).
- Paolo Abondio, DNA Methylation in a Systemic Framework for Healthy Aging and Longevity, Decoding Aging and Neurodegeneration, 10.1007/978-3-031-91072-2_6, (119-135), (2025).
- Byung Sik Kim, Hyun-Jin Kim, Hasung Kim, Jungkuk Lee, Jeong-Hun Shin, Ki-Chul Sung, Longitudinal Changes in Cardiovascular-Kidney-Metabolic Syndrome Stages and Their Impact on Outcomes: A Nationwide Cohort Study, Journal of Clinical Medicine, 10.3390/jcm14113888, 14, 11, (3888), (2025).
- See more
View Options
View options
Figures
Figure 1 Increasing Aged Populations Around the World From 1990 to 2050
Figure 2 Global Age-Specific CVD Mortality Rates in 2019
Figure 3 Lifetime Risk of Stroke in Individuals With Different Risk-Factor Profiles
Figure 4 Decreasing Age-Specific CVD Mortality Rates From 1990 to 2019
Figure 5 Age-Specific CVD Mortality by Time and SDI
Figure 6 Decline in Rates of Age-Specific Cardiovascular Disease Mortality by SDI
Figure 7 Comparison of Age-Specific CVD and Cancer Mortality in 2019
Figure 8 Sequential Growth Ratios of Age-Specific CVD and Cancer Mortality Rates
Central Illustration Synergistic Effects of Biological Aging Process on Aging-Related Cardiovascular Disease Risk
Tables
Media
References
References
1.
World Health Organization. World Health Statistics 2023: Monitoring Health for the SDGs. Geneva, Switzerland: Sustainable Development Goals., 2023.
2.
Global Burden of Disease Collaborative Network. Global Burden of Disease Study Results. Seattle, WA: Institute for Health Metrics and Evaluation (IHME), 2020. http://ghdx.healthdata.org/gbdresults-tool. Accessed September 10, 2023.
3.
United Nations, Population Division. World Population Prospects 2019, Volume I: Comprehensive Tables (ST/ESA/SER.A/426). Department of Economic and Social Affairs, 2019.
4.
United Nations, Population Division. World Population Prospects 2022: Summary of Results. (UN DESA/POP/2022/TR/NO. 3.). Department of Economic and Social Affairs, 2022.
5.
Lopez A.D., Mathers C.D. Measuring the global burden of disease and epidemiological transitions: 2002-2030. Ann Trop Med Parasitol. 2006;100:5-6: 481-499.
6.
Roth G.A., Forouzanfar M.H., Moran A.E., et al. Demographic and epidemiologic drivers of global cardiovascular mortality. N Engl J Med. 2015;372:14: 1333-1341.
7.
Hambleton I.R., Caixeta R., Jeyaseelan S.M., Luciani S., Hennis A.J.M. The rising burden of non-communicable diseases in the Americas and the impact of population aging: a secondary analysis of available data. Lancet Reg Health Am. 2023;21:100483.
8.
Moran A., Gu D., Zhao D., et al. Future cardiovascular disease in China: Markov model and risk factor scenario projections from the coronary heart disease policy model-China. Circ Cardiovasc Qual Outcomes. 2010;3:3: 243-252.
9.
Visseren F.L.J., Mach F., Smulders Y.M., et al. ESC Scientific Document Group. 2021 ESC guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;42:34: 3227-3337.
10.
Arnett D.K., Blumenthal R.S., Albert M.A., et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;74:10: e177-e232.
11.
World Heart Federation. World Health Report 2023: Confronting the World’s Number One Killer. Geneva, Switzerland2023. www.worldheart.org.
12.
Roth G.A., Abate D., Abate K.H., et al. GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:10159: 1736-1788.
13.
Wang H., Naghavi M., Allen C., et al. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:10053: 1459-1544.
14.
Roth G.A., Mensah G.A., Johnson C.O., et al. GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group. global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76:25: 2982-3021.
15.
Hamczyk M.R., Nevado R.M., Barettino A., Fuster V., Andrés V. Biological versus chronological aging: JACC Focus Seminar. J Am Coll Cardiol. 2020;75:8: 919-930.
16.
Liberale L., Montecucco F., Tardif J.C., Libby P., Camici G.G. Inflamm-ageing: the role of inflammation in age-dependent cardiovascular disease. Eur Heart J. 2020;41:31: 2974-2982.
17.
Campisi J., Kapahi P., Lithgow G.J., Melov S., Newman J.C., Verdin E. From discoveries in ageing research to therapeutics for healthy ageing. Nature. 2019;571:7764: 183-192.
18.
López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G. Hallmarks of aging: an expanding universe. Cell. 2023;186:2: 243-278.
19.
Abdellatif M., Rainer P.P., Sedej S., Kroemer G. Hallmarks of cardiovascular ageing. Nat Rev Cardiol. 2023;20:754-777. https://doi.org/10.1038/s41569-023-00881-3.
20.
Wang H., Abbas K.M., Abbasifard M., et al. GBD 2019 Demographics Collaborators. Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396:1160-1203.
21.
Amuthavalli Thiyagarajan J., Mikton C., Harwood R.H., et al. The UN Decade of healthy ageing: strengthening measurement for monitoring health and wellbeing of older people. Age Ageing. 2022;51:7: afac147.
22.
Adams J.M., White M. Biological ageing: a fundamental, biological link between socio-economic status and health? Eur J Public Health. 2004;14:3: 331-334.
23.
Calimport S.R.G., Bentley B.L., Stewart C.E., et al. To help aging populations, classify organismal senescence. Science. 2019;366:6465: 576-578.
24.
Kennedy B.K., Berger S.L., Brunet A., et al. Geroscience: linking aging to chronic disease. Cell. 2014;159:709-713.
25.
Anders J.L., Newman A.B. Telomere length in epidemiology: a biomarker of aging, age-related disease, both, or neither? Epidemiol Rev. 2013;35:1: 112-131.
26.
Belsky D.W., Caspi A., Corcoran D.L., et al. DunedinPACE, a DNA methylation biomarker of the pace of aging. eLife. 2022;11:e73420.
27.
Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:10: R115.
28.
Fortier C., Sidibé A., Desjardins M.P., et al. Aortic-brachial pulse wave velocity ratio: a blood pressure-independent index of vascular aging. Hypertension. 2017;69:1: 96-101.
29.
Ohkuma T., Ninomiya T., Tomiyama H., et al. Collaborative Group for J-BAVEL (Japan Brachial-Ankle Pulse Wave Velocity Individual Participant Data Meta-Analysis of Prospective Studies). Brachial-ankle pulse wave velocity and the risk prediction of cardiovascular disease: an individual participant data meta-analysis. Hypertension. 2017;69:6: 1045-1052.
30.
Donato A.J., Machin D.R., Lesniewski L.A. Mechanisms of dysfunction in the aging vasculature and role in age-related disease. Circ Res. 2018;123:7: 825-848.
31.
Ball R.L., Feiveson A.H., Schlegel T.T., Starc V., Dabney A.R. Predicting "heart age" using electrocardiography. J Pers Med. 2014;4:1: 65-78.
32.
Shaw L.J., Raggi P., Berman D.S., Callister T.Q. Coronary artery calcium as a measure of biologic age. Atherosclerosis. 2006;188:1: 112-119.
33.
Cuende J.I., Cuende N., Calaveras-Lagartos J. How to calculate vascular age with the SCORE project scales: a new method of cardiovascular risk evaluation. Eur Heart J. 2010;31:19: 2351-2358.
34.
Cohen A.A., Kennedy B.K., Anglas U., et al. Lack of consensus on an aging biology paradigm? A global survey reveals an agreement to disagree, and the need for an interdisciplinary framework. Mech Ageing Dev. 2020;191:111316.
35.
Savji N., Rockman C.B., Skolnick A.H., et al. Association between advanced age and vascular disease in different arterial territories: a population database of over 3.6 million subjects. J Am Coll Cardiol. 2013;61:16: 1736-1743.
36.
Study Group of Atherosclerosis. Atherosclerosis in coronary arteries of 7159 cases and aortas of 2044 cases: an autopsy study. Chin J Pathol. 1983;2:81-869.(in Chinese).
37.
Kimura H., Takao M., Suzuki N., Kanemaru K., Mihara B., Murayama S. pathologic study of intracranial large artery atherosclerosis in 7260 autopsy cases. J Stroke Cerebrovasc Dis. 2017;26:12: 2821-2827.
38.
Rahimi R., Singh M.K.C., Noor N.M., et al. Manifestation of coronary atherosclerosis in Klang Valley, Malaysia: an autopsy study. J Atheroscler Thromb. 2018;25:5: 405-409.
39.
Berry J.D., Dyer A., Cai X., et al. Lifetime risks of cardiovascular disease. N Engl J Med. 2012;366:4: 321-329.
40.
Wang Y., Liu J., Wang W., et al. Lifetime risk of stroke in young-aged and middle-aged Chinese population: the Chinese Multi-Provincial Cohort Study. J Hypertens. 2016;34:12: 2434-2440.
41.
Feigin V.L., Nguyen G., Cercy K., et al. GBD 2016 Lifetime Risk of Stroke Collaborators. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. N Engl J Med. 2018;379:25: 2429-2437.
42.
Satoh M., Ohkubo T., Asayama K., et al. EPOCH-JAPAN Research Group. Lifetime risk of stroke and coronary heart disease deaths according to blood pressure level: EPOCH-JAPAN (Evidence for Cardiovascular Prevention From Observational Cohorts in Japan). Hypertension. 2019;73:1: 52-59.
43.
Kaptoge S., Pennells L., De Bacquer D., et al. WHO CVD Risk Chart Working Group. World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. Lancet Glob Health. 2019;7:10: e1332-e1345.
44.
Ueda P., Woodward M., Lu Y., et al. Laboratory-based and office-based risk scores and charts to predict 10-year risk of cardiovascular disease in 182 countries: a pooled analysis of prospective cohorts and health surveys. Lancet Diabetes Endocrinol. 2017;5:3: 196-213.
45.
Zhao D., Liu J., Xie W., Qi Y. Cardiovascular risk assessment: a global perspective. Nat Rev Cardiol. 2015;12:5: 301-311.
46.
Gorenoi V., Hagen A. Overview of risk-estimation tools for primary prevention of cardiovascular diseases in European populations. Cent Eur J Public Health. 2015;23:2: 91-99.
47.
Koene R.J., Prizment A.E., Blaes A., Konety S.H. Shared risk factors in cardiovascular disease and cancer. Circulation. 2016;133:11: 1104-1114.
48.
Karlstaedt A., Moslehi J., de Boer R.A. Cardio-onco-metabolism: metabolic remodeling cardiovascular disease and cancer. Nat Rev Cardiol. 2022;19:6: 414-425.
49.
Abebe F., Schneider M., Asrat B., Ambaw F. Multimorbidity of chronic non-communicable diseases in low- and middle-income countries: a scoping review. J Comorb. 2020;10:2235042X20961919.
50.
Franceschi C., Bonafè M., Valensin S., et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244-254.
51.
Fulop T., Larbi A., Pawelec G., et al. Immunology of aging: the birth of inflammaging. Clin Rev Allergy Immunol. 2023;64:2: 109-122.
