這是用戶在 2025-7-25 12:25 為 https://app.immersivetranslate.com/pdf-pro/bc16d3d9-4b3b-4db8-b167-93e55463ecfb/ 保存的雙語快照頁面,由 沉浸式翻譯 提供雙語支持。了解如何保存?

Microplastics and their affiliated PAHs in the sea surface connected to the southwest coast of Taiwan
與臺灣西南海岸相連的海面中的微塑膠及其附屬多環芳烴

Chih-Feng Chen a a ^(a){ }^{\mathrm{a}}, Yun-Ru Ju b b ^(b){ }^{\mathrm{b}}, Yee Cheng Lim a a ^(a){ }^{\mathrm{a}}, Ning-Hsing Hsu a a ^(a){ }^{\mathrm{a}}, Kun-Tu Lu c c ^(c){ }^{\mathrm{c}}, Shu-Ling Hsieh d ^("d "){ }^{\text {d }}, Cheng-Di Dong a, a,  ^("a, "^(****)){ }^{\text {a, }{ }^{* *}}, Chiu-Wen Chen a, a,  ^("a, "^(**)){ }^{\text {a, }{ }^{*}}
a a ^(a){ }^{\mathrm{a}} 志峰 , 朱雲如 b b ^(b){ }^{\mathrm{b}} , 林怡成 a a ^(a){ }^{\mathrm{a}} , 徐寧星 a a ^(a){ }^{\mathrm{a}} , 盧坤圖 c c ^(c){ }^{\mathrm{c}} , 謝淑玲 d ^("d "){ }^{\text {d }} , 董成迪 a, a,  ^("a, "^(****)){ }^{\text {a, }{ }^{* *}} , 陳 a, a,  ^("a, "^(**)){ }^{\text {a, }{ }^{*}} 溫文
a ^("a "){ }^{\text {a }} Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
國立高雄科技大學海洋環境工程 a ^("a "){ }^{\text {a }} 系,臺灣高雄 81157
b b ^(b){ }^{\mathrm{b}} Department of Safety, Health and Environmental Engineering, National United University, Miaoli, 36063, Taiwan
國立聯合大學安全衛生與環境工程 b b ^(b){ }^{\mathrm{b}} 系,苗栗,臺灣 36063
c c ^(c){ }^{\mathrm{c}} Department of Marine Environment and Engineering, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
國立中山大學海洋環境與工程 c c ^(c){ }^{\mathrm{c}} 系,臺灣高雄 80424
d d ^(d){ }^{\mathrm{d}} Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
國立高雄科技大學水產科學 d d ^(d){ }^{\mathrm{d}} 系,臺灣高雄 81157

H I G H L I G H T S

  • MPs and the associated PAHs along the southwestern coast of Taiwan were studied.
    研究了臺灣西南沿海的 MP 和相關 PAHs。
  • The abundance of MPs was 6.4 ± 10.7 % 6.4 ± 10.7 % 6.4+-10.7%6.4 \pm 10.7 \% of the abundance of zooplanktons.
    國會議員的豐富程度是 6.4 ± 10.7 % 6.4 ± 10.7 % 6.4+-10.7%6.4 \pm 10.7 \% 浮遊動物的豐富程度。
  • The most dominant MPs were small ( < 2 mm < 2 mm < 2mm<2 \mathrm{~mm} ), colored, fragments, composed of PE.
    最佔優勢的 MP 是小( < 2 mm < 2 mm < 2mm<2 \mathrm{~mm} )、彩色、碎片,由 PE 組成。
  • The PAHs concentration was 818 ± 874 ng / g 818 ± 874 ng / g 818+-874ng//g818 \pm 874 \mathrm{ng} / \mathrm{g}, which was mainly composed by 3-ring PAHs.
    多環芳烴濃度為 818 ± 874 ng / g 818 ± 874 ng / g 818+-874ng//g818 \pm 874 \mathrm{ng} / \mathrm{g} ,主要由三環多環芳烴組成。
  • The PAHs associated with MPs was mainly contributed by petrogenic sources.
    與 MP 相關的多環芳烴主要由石油源貢獻。

A R T I C L E I N F O

Article history:  文章歷史:

Received 28 February 2020
收稿日期:2020-2-28

Received in revised form  以訂正形式收到
30 March 2020  30 三月 2020
Accepted 15 April 2020  接受日期:2020 年 4 月 15 日
Available online 18 April 2020
2020 年 4 月 18 日在線提供

Handling Editor: Veeriah (Jega) Jegatheesan
處理編輯:Veeriah (Jega) Jegatheesan

Keywords:  關鍵字:

Coastal waters  沿海水域
Emerging contaminants  新出現的污染物
Microplastics  微塑膠
PAHs  多環芳烴
Source apportionment  源分配

Abstract  抽象

Contamination by microplastics (MPs) and the associated organic pollutants has caused potential threats to the ecological environment of global waters. In this study, MPs were sampled by trawling from the surface waters of the estuary, fishing port entrance and harbor entrance areas connected to the southwestern coast of Taiwan. Moreover, the abundance, morphological characteristics, composition, and associated polycyclic aromatic hydrocarbons (PAHs) of MPs were analyzed. The abundance of MPs was 0.36 ± 0.21 0.36 ± 0.21 0.36+-0.210.36 \pm 0.21 items / m 3 / m 3 //m^(3)/ \mathrm{m}^{3}, which was 6.4 ± 10.7 % 6.4 ± 10.7 % 6.4+-10.7%6.4 \pm 10.7 \% of the abundance of zooplanktons. The average abundance of MPs was the highest in the estuary area, indicating that river transport was the primary way for MPs to enter the ocean. The most dominant MPs were small ( 0.33 2 mm 0.33 2 mm 0.33-2mm0.33-2 \mathrm{~mm}; 78.8 ± 8.1 % 78.8 ± 8.1 % 78.8+-8.1%78.8 \pm 8.1 \% ), colored ( 60.0 ± 12.8 % 60.0 ± 12.8 % 60.0+-12.8%60.0 \pm 12.8 \% ), fragments ( 66.1 ± 10.6 % 66.1 ± 10.6 % 66.1+-10.6%66.1 \pm 10.6 \% ), comprising PE ( 52.6 ± 7.6 % 52.6 ± 7.6 % 52.6+-7.6%52.6 \pm 7.6 \% ), and PP ( 38.7 ± 9.4 % 38.7 ± 9.4 % 38.7+-9.4%38.7 \pm 9.4 \% ). The decomposition of various plastic products and disposable plastic packaging may be the most significant source. The total concentration of PAHs in MPs ranged from 104 to 3595 ng / g dw 3595 ng / g dw 3595ng//gdw3595 \mathrm{ng} / \mathrm{g} \mathrm{dw}, with an average of 818 ± 874 ng / g dw 818 ± 874 ng / g dw 818+-874ng//gdw818 \pm 874 \mathrm{ng} / \mathrm{g} \mathrm{dw}. The diagnostic ratios and the results of principal component analysis (PCA) and multiple linear regression of the absolute principal component scores (MLR-APCS) indicated that the PAHs were mainly contributed from sources related to petrogenic (71.4%) and vehicles ( 28.6 % 28.6 % 28.6%28.6 \% ). Most likely due to MPs on the sea surface coming into contact with floating oil spills from ships or floating tar particles.
微塑膠(MP)和相關有機污染物的污染對全球水域的生態環境造成了潛在威脅。在這項研究中,通過拖網捕魚從與臺灣西南海岸相連的河口、漁港入口和港口入口區域的地表水域對 MP 進行採樣。此外,還分析了 MPs 的豐度、形態特徵、組成和伴生多環芳烴(PAHs)。MPs 的豐富性是 0.36 ± 0.21 0.36 ± 0.21 0.36+-0.210.36 \pm 0.21 / m 3 / m 3 //m^(3)/ \mathrm{m}^{3} 6.4 ± 10.7 % 6.4 ± 10.7 % 6.4+-10.7%6.4 \pm 10.7 \% 遊動物的豐富性。河口地區 MP 的平均豐度最高,表明河流運輸是 MP 進入海洋的主要途徑。佔主導地位的議員人數較小( 0.33 2 mm 0.33 2 mm 0.33-2mm0.33-2 \mathrm{~mm} ; 78.8 ± 8.1 % 78.8 ± 8.1 % 78.8+-8.1%78.8 \pm 8.1 \% )、有色( 60.0 ± 12.8 % 60.0 ± 12.8 % 60.0+-12.8%60.0 \pm 12.8 \% )、片段( 66.1 ± 10.6 % 66.1 ± 10.6 % 66.1+-10.6%66.1 \pm 10.6 \% ),包括 PE( 52.6 ± 7.6 % 52.6 ± 7.6 % 52.6+-7.6%52.6 \pm 7.6 \% )和 PP( 38.7 ± 9.4 % 38.7 ± 9.4 % 38.7+-9.4%38.7 \pm 9.4 \% )。各種塑膠製品和一次性塑膠包裝的分解可能是最重要的來源。MPs 中 PAHs 的總濃度範圍為 104 至 3595 ng / g dw 3595 ng / g dw 3595ng//gdw3595 \mathrm{ng} / \mathrm{g} \mathrm{dw} ,平均為 818 ± 874 ng / g dw 818 ± 874 ng / g dw 818+-874ng//gdw818 \pm 874 \mathrm{ng} / \mathrm{g} \mathrm{dw} 。診斷比值、主成分分析(PCA)和絕對主成分評分多元線性回歸(MLR-APCS)結果表明,多環芳烴主要來自與岩石成因(71.4%)和載體( )相關的來源 28.6 % 28.6 % 28.6%28.6 \% 。很可能是由於海面上的 MP 接觸到船舶洩漏的浮油或漂浮的焦油顆粒。

© 2020 Elsevier Ltd. All rights reserved.
© 2020 愛思唯爾有限公司版權所有。

1. Introduction  1. 簡介

Microplastics (MPs; plastic beads of < 5 mm < 5 mm < 5mm<5 \mathrm{~mm} ) are one of the emerging pollutants which have attracted the most global
微塑膠(MP;塑膠珠 < 5 mm < 5 mm < 5mm<5 \mathrm{~mm} )是吸引全球最多的新興污染物之一
attention in recent times, due to their ubiquitous nature and rapid accumulation in the global environment (including environmental systems such as oceans, freshwaters, land, and atmosphere), and the hazard they pose to aquatic life (Thompson et al., 2004; Doyle et al., 2011; Tan et al., 2019). MPs in the environment include primary and secondary MPs (Horton et al., 2017; Cai et al., 2018). Primary MPs refer to micron-sized plastic particles which are manufactured for specific purposes, for example, microbeads which are used as ingredients of personal-care and cosmetic
近年來,由於它們無處不在,在全球環境(包括海洋、淡水、陸地和大氣等環境系統)中迅速積累,以及它們對水生生物構成的危害,引起了人們的注意(Thompson et al., 2004;Doyle 等人,2011 年;Tan 等人,2019 年)。環境中的議員包括初級和次要議員(Horton 等人,2017 年;Cai 等人,2018 年)。初級 MP 是指為特定目的而製造的微米級塑膠顆粒,例如用作個人護理和化妝品成分的微珠

products. Secondary MPs refer to those generated from the decomposition of large plastics through physical, chemical, and biological processes, which are considered to be an important factor causing MPs pollution (Horton et al., 2017; Akdogan and Guven, 2019). MPs (primary and secondary) can be transported to the marine environment through improper disposal and dumping, sewage outflow, urban and stormwater runoffs, river systems, coastlines, marine activities, and even atmospheric emissions. Therefore, the marine environment is considered to be the ultimate convergence point of MPs (Horton and Dixon, 2018). It is important to understand the size, abundance, and source of MPs in the marine environment, as this will affect the encounter probability and availability to aquatic biota (Thompson et al., 2009; Cole et al., 2011; Napper et al., 2015). Through ingesting MPs, aquatic organisms damage their energy reserves and cause bioaccumulation and biomagnification within the food chain. Moreover, due to the relatively large surface area and hydrophobic component of MPs, they easily absorb and concentrate the persistent organic pollutants (POPs) that are otherwise found at very low concentrations in seawater (for instance, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, polybrominated diphenyl ethers, and nonylphenol) (Hirai et al., 2011; Turner and Holmes, 2011; Rochman et al., 2013; Wang et al., 2017; Chen et al., 2018). Some studies have shown that the pollutants in MPs are available to organisms that ingested them. In addition, studies have also identified the potential for pollution by the transfer of MPs and pollutants to higher trophic levels along the food chain and to seafood consumed by humans (Heskett et al., 2012; Au et al., 2017; Santillo et al., 2017; Chen et al., 2018). This pollution poses a risk to the marine ecosystem and human health (Lebreton and Andrady, 2019). Therefore, apart from understanding the distribution of MPs in the marine environment, it is critical to also understand the concentration and origin of organic pollutants related to MPs, in order to assess the impact of MPs on the marine environment and develop well-informed prevention and management strategies.
產品。次級 MP 是指大塑膠通過物理、化學和生物過程分解產生的次級 MPs,被認為是造成 MPs 污染的重要因素(Horton et al., 2017;Akdogan 和 Guven,2019 年)。MP(初級和次級)可以通過不當處置和傾倒、污水外流、城市和雨水徑流、河流系統、海岸線、海洋活動甚至大氣排放被輸送到海洋環境中。因此,海洋環境被認為是國會議員的最終彙聚點(Horton 和 Dixon,2018)。瞭解海洋環境中 MP 的大小、豐度和來源非常重要,因為這將影響水生生物群的遭遇概率和可用性(Thompson 等人,2009 年;Cole 等人,2011 年;Napper 等人,2015 年)。通過攝入 MPs,水生生物會破壞其能量儲備,並在食物鏈中引起生物積累和生物放大。此外,由於 MPs 的表面積和疏水成分相對較大,它們很容易吸收和濃縮海水中濃度非常低的持久性有機污染物(POP)(例如,多環芳烴(PAHs)、多氯聯苯、多溴二苯醚和壬基苯酚)(Hirai 等人,2011 年;特納和福爾摩斯,2011 年;Rochman 等人,2013 年;Wang 等人,2017 年;Chen 等人,2018 年)。一些研究表明,攝入 MP 的生物體可以利用 MPs。 此外,研究還確定了 MP 和污染物轉移到食物鏈沿線的更高營養級以及人類食用的海鮮中可能造成的污染(Heskett 等人,2012 年;Au 等人,2017 年;Santillo 等人,2017 年;Chen 等人,2018 年)。這種污染對海洋生態系統和人類健康構成風險(Lebreton 和 Andrady,2019)。因此,除了瞭解 MPS 在海洋環境中的分佈外,瞭解與 MPs 相關的有機污染物的濃度和來源也至關重要,以評估 MPs 對海洋環境的影響,並制定明智的預防和管理策略。
The western half of Taiwan is a region of concentrated industrial zones, with many heavy industrial and export processing zones located on the southwestern coast. The major pollution inputs to the southwestern coastal waters of Taiwan include harbors, ocean outfalls, rivers, and industrial zones. After the pollutants enter coastal waters, tidal currents are the main force that diffuses them. However, the tidal currents on the southwestern coast of Taiwan are mainly semidiurnal tides, which predominantly flow back and forth along the shore (Fig. 1). Consequently, in these marine waters, the pollutants diffuse approximately 5 km to the left and right of the marine outfall, and 3 4 km 3 4 km 3-4km3-4 \mathrm{~km} from the shore, and cannot easily diffuse further (Fan, 1995). The study area has a tropical monsoon climate, with high temperatures all year round (average monthly temperature 22 29 C 22 29 C 22-29^(@)C22-29{ }^{\circ} \mathrm{C} ). The rainfall season is from June to September, with frequent typhoons and southwest monsoons (CWB, 2019). High temperatures or high solar exposure can accelerate the breakdown of plastic products into plastic fragments or MPs through weathering, while wind and precipitation facilitate the transport of plastic fragments and MPs to the aquatic environment.
臺灣的西半部是一個工業集中區,西南沿海有許多重工業和出口加工區。臺灣西南沿海水域的主要污染輸入包括港口、海洋排放口、河流和工業區。污染物進入近海后,潮汐流是擴散污染物的主要力量。然而,臺灣西南海岸的潮汐流主要是半日潮汐,主要沿海岸來回流動(圖 1)。因此,在這些海水中,污染物向海洋排放 3 4 km 3 4 km 3-4km3-4 \mathrm{~km} 口的左右和海岸擴散約 5 公里,並且不易進一步擴散(Fan,1995 年)。研究區屬熱帶季風氣候,常年高溫(月平均氣溫 22 29 C 22 29 C 22-29^(@)C22-29{ }^{\circ} \mathrm{C} )。雨季為 6 月至 9 月,颱風和西南季風頻繁(CWB,2019)。高溫或高日照會加速塑膠製品通過風化分解成塑膠碎片或 MPs,而風和降水則有利於塑膠碎片和 MPs 向水生環境的運輸。
In this study, MPs were collected from the surface waters of the southwestern coast of Taiwan by trawling. In addition, their morphological characteristics were analyzed and their polymer types were identified. PAHs in the MPs were also analyzed qualitatively and quantitatively. The aims of this study are to: (1) reveal the abundance, morphological characteristics, and composition of the MPs from the southwestern coast of Taiwan; (2) investigate the spatial distribution of MPs in areas bordering the ocean (estuaries, fishing port entrances, harbor entrances, estuaries in harbors, and fishing port entrances in harbors); and (3) investigate the
在這項研究中,通過拖網捕撈從臺灣西南海岸的地表水域收集了 MP。此外,還分析了它們的形貌特徵並鑒定了它們的聚合物類型。還對 MP 中的 PAH 進行定性和定量分析。本研究旨在:(1)揭示臺灣西南沿海 MP 的豐度、形態特徵和組成;(2)調查海洋邊界區域(河口、漁港入口、港口入口、港口口、港口漁港入口)的 MP 空間分佈;(3) 調查

concentration distribution, composition, and potential origin of the PAHs adsorbed on the MPs.
MPs 上吸附的 PAHs 的濃度分佈、組成和潛在來源。

2. Materials and methods  2. 材料和方法

2.1. Sample collection  2.1. 樣本採集

A total of 22 sampling sites were set up along the southwestern coast of Taiwan (Fig. 1), in five different types of area: estuary, fishing port entrance, industrial harbor entrance, estuary in harbor, and fishing port entrance in harbor. Sampling sites of estuary type include those of Erren River, Agongdian River, Dianbao River, Houjin River, and Gaoping River. These five rivers flow through the residential, industrial, livestock, aquaculture, and agriculture areas in Kaohsiung City, which has a population of 2.77 million, and carry mass and complex wastewater into the estuary area. For the type of Fishing port entrance, Yongxin Fishing Port, Nanliao Fishing Port, Keziliao Fishing Port, Fengbitou Fishing Port, Gangbu Fishing Port, and Zhongyun Fishing Port are generally used to moor rafts, boat, and sampans those carry out the fishing activities. Comparing with fishing port, industrial harbor has the wilder area size and the deeper water depth to dock large ships, such as tankers, bulk carriers, container ships, and warships, as well as has functions of trade, tourism and transportation. Four estuaries of Love River, Canon River, Chienchen River, and Salt River in harbor have been reported that severely polluted by the domestic wastewater and industrial discharge from the upstream (Chen et al., 2012, 2016). Besides, the diffusion of seawater in these estuaries affects by the boundary of Kaohsiung Harbor. For the same reason, the two fishing ports in Kaohsiung Harbor are also distinguished from other fishing ports. Further, many tourism industries and industries were built around the fishing ports in Kaohsiung Harbor.
在臺灣西南沿海共設置了 22 個採樣點(圖 1),分佈在河口、漁港入口、工業港口、港內河口和港內漁港入口五種不同類型區域。河口類型採樣點包括二仁河、阿公店河、電寶河、后津河和高平河。這五條河流流經人口 277 萬的高雄市住宅、工業、畜牧業、農業區,將大量複雜廢水帶入河口地區。漁港入口類型一般以永新漁港、南遼漁港、柯子寮漁港、豐壁頭漁港、崗埠漁港、中雲漁港為用,以筏、船、舢舨等進行捕撈活動。與漁港相比,工業港的面積面積更大,水深更深,可以停靠油輪、散貨船、集裝箱船、軍艦等大型船舶,並具有貿易、旅遊和運輸功能。據報導,港灣的愛河、卡農河、錢辰河和鹽河 4 個河口受到生活廢水和上游工業排放的嚴重污染(Chen et al., 2012, 2016)。此外,這些河口海水的擴散受到高雄港邊界的影響。出於同樣的原因,高雄港的兩個漁港也與其他漁港區分開來。此外,高雄港的漁港周圍還建成了許多旅遊產業和產業。
A total of 44 seawater samples were collected during June 1-3, 2019 and August 3-5, 2019. Microplastic samples from surface seawater were collected using a manta trawl ( 0.55 m wide × 0.25 m × 0.25 m xx0.25m\times 0.25 \mathrm{~m} vertical opening, 1.45 m long, 0.330 mm mesh) (Lattin et al., 2004; Ryan et al., 2009; Zhang et al., 2017; Xiong et al., 2018). A mechanical flow meter (Hydro-Bios, Germany) was mounted on the opening of the manta trawl to calculate the volume of filtered seawater. Field sampling was conducted with a fishing boat trawling at an average speed of 2 knots for 15 min . A Global Positioning System (GPS) device was used to record the latitude and longitude of the starting and ending positions of the trawl. After each sampling round, the trawl was thoroughly rinsed with seawater to reduce cross-contamination. Large fragments ( > 5 mm > 5 mm > 5mm>5 \mathrm{~mm} ) were removed from the collected water samples using a 5 mm stainless steel screen, and the water samples were then stored in pre-cleaned glass jars and temporarily kept in buckets containing crushed ice. All samples were shipped to the laboratory for further processing on the day of sampling.
2019 年 6 月 1 日至 3 日和 2019 年 8 月 3 日至 5 日期間,共採集了 44 份海水樣品。使用蝠鲼拖網(0.55 m 寬 × 0.25 m × 0.25 m xx0.25m\times 0.25 \mathrm{~m} 的垂直開口,1.45 m 長,0.330 mm 的網孔)從表層海水中收集微塑膠樣本(Lattin 等人,2004 年;Ryan 等人,2009 年;Zhang 等人,2017 年;Xiong 等人,2018 年)。機械流量計(Hydro-Bios,德國)安裝在蝠鲼拖網的開口處,以計算過濾后的海水體積。用漁船以平均速度 2 節拖網捕魚 15 min 進行現場採樣。使用全球定位系統 (GPS) 設備記錄拖網起點和終點位置的經緯度。每次取樣后,拖網都會用海水徹底沖洗,以減少交叉污染。使用 5 mm 不鏽鋼篩網從收集的水樣中取出大碎片 ( > 5 mm > 5 mm > 5mm>5 \mathrm{~mm} ),然後將水樣儲存在預先清潔的玻璃罐中,並暫時保存在裝有碎冰的桶中。所有樣品在採樣當天被運往實驗室進行進一步處理。

2.2. Sample preparation and analysis
2.2. 樣品製備和分析

Sample pretreatment consisted of screening, digestion, flotation, and filtration procedures. The water sample was first screened with 1 mm and 0.25 mm stainless steel sieves. The residue remaining on the 1 mm sieve was visually inspected, and MPs were transferred with stainless steel tweezers to petri dishes for further inspection. MPs were identified based on their morphology (Hidalgo-Ruz et al., 2012; Yuan et al., 2019). The residue remaining on the 0.25 mm sieve was rinsed with deionized water and transferred to a 250 mL separatory funnel, where NaCl was added until a density of 1.2 g / m 3 1.2 g / m 3 1.2g//m^(3)1.2 \mathrm{~g} / \mathrm{m}^{3} was reached (Hidalgo-Ruz et al., 2012; Xiong et al., 2018). The sample was mixed uniformly, then left for sedimentation and floatation for 6 h . After that, the sedimented
樣品預處理包括篩選、消化、浮選和過濾程式。首先用 1 mm 和 0.25 mm 不鏽鋼篩對水樣進行篩選。目視檢查殘留在 1 毫米篩子上的殘留物,並用不鏽鋼鑷子將 MP 轉移到培養皿中進行進一步檢查。MP 是根據其形態來識別的(Hidalgo-Ruz 等人,2012 年;Yuan et al., 2019)。將殘留在 0.25 mm 篩子上的殘留物用去離子水沖洗並轉移到 250 mL 分液漏鬥中,在其中加入 NaCl 直至達到密度 1.2 g / m 3 1.2 g / m 3 1.2g//m^(3)1.2 \mathrm{~g} / \mathrm{m}^{3} (Hidalgo-Ruz 等人,2012 年;Xiong 等人,2018 年)。將樣品混合均勻,然後沉澱和漂浮 6 h。之後,沉澱的

Fig. 1. Map of study area and sampling sites.
圖1.研究區域和採樣點的地圖。

material was discarded through the valve at the bottom of the funnel. The water sample was digested overnight with 35 % 35 % 35%35 \% hydrogen peroxide ( H 2 O 2 H 2 O 2 H_(2)O_(2)\mathrm{H}_{2} \mathrm{O}_{2} ) to remove floating organic particles. Next, it was filtered through a glass fiber filter with a pore size of 0.6 μ m 0.6 μ m 0.6 mum0.6 \mu \mathrm{~m} and dried in a desiccator (Nuelle et al., 2014; Xiong et al., 2018). All filters were visually inspected under a stereo microscope at up to 40x magnification and MPs were transferred to petri dishes using stainless steel tweezers. All collected MPs were observed and photographed using a stereo microscope. The number, shape (spheres, foams, lines, films, and fragments), color (white, black, colored, transparent) and size ( > 0.33 1 , 1 2 , 2 3 > 0.33 1 , 1 2 , 2 3 > 0.33-1,1-2,2-3>0.33-1,1-2,2-3, 3 4 3 4 3-43-4, and 4 < 5 mm 4 < 5 mm 4- < 5mm4-<5 \mathrm{~mm} ) of the MPs were recorded. Based on the morphology of the MPs, a total of 200 representative particles were selected for further identification with an attenuated total reflection-Fourier transform infrared spectrometer (ATR-FTIR) equipped with a Vertex 80 spectrometer and a Hyperion FTIR-ATR microscope (Bruker Optics, Germany). The 5 polymer types identified were Polyethylene (PE), Polypropylene (PP), Polystyrene (PS), Polyamide (PA), and Polyvinyl chloride (PVC). Typical photos of MPs and FTIR spectra from this study are shown in the supplementary
材料通過漏鬥底部的閥門丟棄。用過氧化氫( H 2 O 2 H 2 O 2 H_(2)O_(2)\mathrm{H}_{2} \mathrm{O}_{2} )消化 35 % 35 % 35%35 \% 水樣過夜,以去除漂浮的有機顆粒。接下來,通過孔徑為 的 0.6 μ m 0.6 μ m 0.6 mum0.6 \mu \mathrm{~m} 玻璃纖維篩檢程式過濾並在乾燥器中乾燥(Nuelle 等人,2014 年;Xiong 等人,2018 年)。所有過濾器在體視顯微鏡下以高達 40 倍的放大倍率進行目視檢查,並使用不鏽鋼鑷子將 MP 轉移到培養皿中。使用體視顯微鏡觀察和拍攝所有收集的 MP。記錄 MP 的數量、形狀(球體、泡沫、線條、薄膜和碎片)、顏色(白色、黑色、彩色、透明)和大小( > 0.33 1 , 1 2 , 2 3 > 0.33 1 , 1 2 , 2 3 > 0.33-1,1-2,2-3>0.33-1,1-2,2-3 3 4 3 4 3-43-4 4 < 5 mm 4 < 5 mm 4- < 5mm4-<5 \mathrm{~mm} 和 )。根據 MPs 的形貌,共選取 200 個代表性顆粒,使用配備 Vertex 80 光譜儀和 Hyperion FTIR-ATR 顯微鏡(Bruker Optics,德國)的衰減全反射傅里葉變換紅外光譜儀(ATR-FTIR)進一步鑒定。鑒定的 5 種聚合物類型是聚乙烯 (PE)、聚丙烯 (PP)、聚苯乙烯 (PS)、聚醯胺 (PA) 和聚氯乙烯 (PVC)。本研究的 MP 和 FTIR 光譜的典型照片顯示在補充中

materials (Figs. S1-S2).  材料(圖 S1-S2)。

2.3. Analysis of PAHs in microplastics
2.3. 微塑膠中多環芳烴的分析

Considering the low weight of MP samples and the accuracy of the analysis, MP samples collected from each site during the two sampling periods in June and August were combined and then divided into accurately weighed portions of 0.01 mg . To extract and analyze PAHs in the 22 MP samples, a slight modification of the procedure described by Chen et al. (2019) was used. In short, each MP sample (weight of sample between 7.01 and 166.06 mg ) was placed in a clean 2 mL glass vial, and 1 mL of n-hexane and 10 μ L 10 μ L 10 muL10 \mu \mathrm{~L} of surrogate standard mixture solution ( 4 mg / L 4 mg / L 4mg//L4 \mathrm{mg} / \mathrm{L}; 2-fluorobiphenyl and 4-terphenyl- d 14 d 14 d_(14)\mathrm{d}_{14} ) were added. The contents of the vial were mixed by vortexing for 60 s , then sonicated in an ultrasonic bath for 15 min , and centrifuged at 650 × g 650 × g 650 xx g650 \times g for 10 min to separate the solid and liquid phases. The supernatant was pipetted into another clean glass vial using a Pasteur pipette. After adding 1 mL n-hexane to the residue, the extraction process was repeated twice. All supernatants were collected in the same glass vial and concentrated to
考慮到 MP 樣品的低重量和分析的準確性,將 6 月和 8 月兩個採樣期從各地點採集的 MP 樣品合併,然後分成 0.01 mg 的精確稱量部分。為了提取和分析 22 個 MP 樣品中的 PAHs,對 Chen 等人(2019)描述的程式進行了輕微修改。簡而言之,將每個 MP 樣品(樣品重量在 7.01-166.06 mg 之間)放入乾淨的 2 mL 玻璃瓶中,並加入 1 mL 正己烷和 10 μ L 10 μ L 10 muL10 \mu \mathrm{~L} 替代標準混合物溶液( 4 mg / L 4 mg / L 4mg//L4 \mathrm{mg} / \mathrm{L} ;;2-氟聯苯和 4-三苯基- d 14 d 14 d_(14)\mathrm{d}_{14} )。將小瓶內容物渦旋混合 60 s,然後在超聲浴中超聲處理 15 min,離心 650 × g 650 × g 650 xx g650 \times g 10 min 分離固相和液相。使用巴斯德移液器將上清液移入另一個乾淨的玻璃瓶中。向殘基中加入 1 mL 正己烷後,重複提取過程兩次。將所有上清液收集在同一個玻璃瓶中並濃縮至