Journal of Pipeline Science and Engineering
2025 年 5 月 8 日在线发布,100295
Combined Ductile-Brittle Fracture Simulation of API X80 Under Impact Loading
API X80 在冲击载荷下的延性-脆性断裂模拟
ABSTRACT 抽象的
本研究探索了冲击载荷下 API X80 钢延性-脆性断裂行为的有限元 (FE) 模拟,其中考虑了应变率和绝热加热的影响。采用 Johnson-Cook (JC) 变形模型进行变形分析,采用 (JC) 断裂应变模型模拟延性断裂,并采用临界应力模型捕捉脆性断裂。通过在不同温度下进行的光圆棒 (SRB) 试验校准了 JC 模型的温度相关参数,而采用室温 (RT) 下的夏比 V 型缺口 (CVN) 冲击试验识别了应变率相关参数。此外,通过在室温下对 CVN 试验进行 FE 模拟,确定了脆性断裂的临界应力模型。校准后的变形模型和组合断裂模型用于模拟-120 至 0 °C 温度范围内的 CVN 和落锤撕裂试验 (DWTT)。模拟准确地捕捉了变形行为、载荷-位移曲线和断裂表面。敏感性分析强调了绝热加热和应变率效应在断裂行为中的作用。
Keywords 关键词
绝热加热及应变速率效应 API X80 钢冲击载荷下延脆性断裂模拟 Johnson-Cook 变形及断裂应变模型临界应力脆性断裂模型
Nomenclature 命名法
- a0
- initial crack length [mm]
初始裂纹长度[mm] - Δa
- crack extension [mm] 裂纹延伸[毫米]
- Cp
- specific heat [J/kg∙°C] 比热[J/kg∙°C]
- c
- strain rate dependent Johnson-Cook (J-C) deformation parameter
应变率相关的 Johnson-Cook(JC)变形参数 - D1, D2, D3
D 1 、D 2 、D 3 - Johnson-Cook fracture parameters at quasi-static strain rate and room temperature
准静态应变率和室温下的 Johnson-Cook 断裂参数 - D4
- strain rate dependent J-C fracture parameter
应变率相关的 JC 断裂参数 - D5
- temperature dependent J-C fracture parameter
温度相关的 JC 断裂参数 - Dc
- critical damage value 临界伤害值
- E
- Young's modulus [GPa] 杨氏模量[GPa]
- E0
- elastic energy absorption [J]
弹性能量吸收[J] - T, ΔT T,ΔT
- temperature and its change [°C]
温度及其变化[°C] - Tmelt
- melting temperature [°C] 熔化温度[°C]
- V0
- reference volume [mm3]
参考体积 [mm 3 ] - VE
- total volume of one layer element in the unnotched ligament [mm3]
无缺口韧带中一层单元的总体积 [mm 3 ] - εf
- ,
- strain rate and reference strain rate
应变率和参考应变率 - εp, Δεp
e p ,德 p - equivalent plastic strain and its increment
等效塑性应变及其增量 - ρ
- density [kg/m3] 密度[kg/m 3 ]
- σ1
- principal stress [MPa] 主应力[MPa]
- σ1,max
- maximum principal stress [MPa]
最大主应力[MPa] - σc
- critical stress for brittle fracture [MPa]
- σy, σu
- yield strength and ultimate tensile strength, respectively [MPa]
- σe
- equivalent stress [MPa]
- σm
- mean normal stress [MPa]
- σw
- Weibull stress [MPa]
- CMOD
- crack mouth opening displacement
- CVN
- Charpy V notch
- DWTT
- drop-weight tear test
- FE
- Finite element
- J-C
- Johnson-Cook
- RT
- room temperature
- SENT
- single edge notched tension
- SRB
- smooth round bar
ABBREVIATIONS
1. INTRODUCTION
2. PROPOSED COMBINED DUCTILE-BRITTLE FRACTURE SIMULATION MODEL
2.1. Johnson-Cook (J-C) Deformation Model under Impact Loading
- The original form of the J-C deformation model is as follows:(1)
2.2. Johnson-Cook (J-C) Fracture Strain Model for Ductile Fracture Simulation
2.3. Critical Stress Model for Brittle Fracture Simulation
2.4. Combined Ductile and Brittle Fracture Simulation

Figure 1. Combined ductile-brittle fracture simulation procedure.
3. SUMMARY OF EXPERIMENTS FOR MODEL DETERMINATION
- (1)Smooth round bar (SRB) test data conducted over a temperature range of -100 °C to 60 °C,
- (2)Single edge notched tensile (SENT) test conducted at room temperature (RT), and
- (3)Instrumented Charpy V-notch (CVN) test conducted at RT.
Table 1. Chemical composition of API X80 (wt.%).
| C | Si | Mn | Ni+Mo | Nb+Ti | Al |
|---|---|---|---|---|---|
| 0.073 | 0.23 | 1.76 | 0.56 | 0.05 | 0.033 |
Table 2. Summary of test cases for determination of deformation and fracture model parameters.
| Test | Temperature [°C] |
|---|---|
| SRB | 60, RT, -50, -100 |
| SENT | RT |
| CVN | RT |
3.1. Tensile Test

Figure 2. Tensile test data: (a) engineering stress-strain curve at -100 °C, RT, and 60 °C; (b) the variation of yield strength, tensile strength, and fracture strain with temperature.
3.2. Single Edge Notched Tensile (SENT) Test

Figure 3. (a) Schematic illustration of the SENT test specimen and (b) measured load-CMOD and Δa-CMOD curves at RT.
3.3. Charpy V Notched (CVN) Impact Test at Room Temperature

Figure 4. Load-displacement curves from instrumented CVN test at room temperature.
4. DETERMINATION OF API X80 DEFORMATION AND FRACTURE MODELS
4.1. Parameter Determination of Deformation Model
- (1)The true stress-strain curve at room temperature (RT) under quasi-static conditions was obtained from the smooth round bar (SRB) testing at RT.
- (2)The temperature-dependent parameter (k) was determined based on the variation of yield strength with temperature.
- (3)The strain rate-dependent parameter (c) was calibrated by simulating the experimental maximum load from the Charpy V-notch (CVN) test at RT

Figure 5. (a) FE mesh for simulating the SRB test, (b) engineering and true-stress strain curves at RT with FE simulation results, (c) variation of yield strength with temperature and determined temperature-dependent parameter k, and (d) comparison of simulated engineering stress-strain curves with experimental data at 60 °C and -100 °C.

Figure 6. FE mesh for simulating CVN test.
Table 3. Temperature-dependent specific heat for API 5L X80 in (Yan et al., 2014).
| Temperature [°C] | 20 | 100 | 200 | 400 | 800 | 1,200 |
|---|---|---|---|---|---|---|
| Specific heat [J/kg∙°C] | 423 | 473 | 536 | 662 | 914 | 1,160 |

Figure 7. (a) Comparison of experimental load-displacement curves with simulation results with different values of c and (b) variation of the simulated maximum load with c.
4.2. Parameter Determination of Ductile Fracture Model
- (1)The multi-axial fracture strain damage model parameters (D1, D2, and D3) and critical damage value Dc are determined by analyzing Smooth Round Bar (SRB) and Single Edge Notched Tensile (SENT) tests at room temperature (RT) under quasi-static conditions.
- (2)The temperature dependent parameter (D5) is determined by fitting the variation of fracture strain with temperature.
- (3)Finally, the strain rate dependent parameter (D4) is obtained by simulating the experimental Charpy V Notched (CVN) energy at RT.

Figure 8. (a) Variation of the stress triaxiality with equivalent plastic strain from SRB simulation and (b) determined fracture strain locus for API X80 at RT under quasi-static conditions.

Figure 9. FE meshes for simulating the SENT test.

Figure 10. Comparison of (a)-(b) simulation results with an element size of 0.1 mm; and (c)-(d) effect of the element size Le on the critical damage value Dc.

Figure 11. (a) Comparison of experimental load-displacement curves with simulation results using different values of D4 and (b) variation of the simulated CVN energy with D4.
4.3. Determination of Brittle Fracture Model

Figure 12. (a) Comparison of simulated load-displacement curves with experimental data at -60 °C, (b) variation of σc /σy(T) with CVN energy normalized by elastic energy absorption E0 in Eq. (13), and (c) variation of σc /σy(T) calculated from FE model with different element sizes of 0.1, 0.2 and 0.3 mm.
5. EXPERIMENTS FOR VALIDATION
- (1)CVN test at temperatures ranging from -120 to -30 °C
- (2)Drop weight Tear Test (DWTT) at -40 and 0 °C.
Table 4. Summary of test cases for validation.
| Test | Temperature [°C] |
|---|---|
| CVN | -30, -60, -90, -120 |
| DWTT | 0, -40 |
5.1. Charpy V Notched (CVN) Test

Figure 13. (a) Load-displacement curves from CVN test at -30 and -90 °C and (b) -60 and -120 °C.
5.2. Drop-Weight Tear Test (DWTT)

Figure 14. (a) Schematic illustration of DWTT specimen; (b) load-displacement curves and (c) fracture surfaces from DWTT at 0 and -40 °C.
6. COMPARISON WITH FE SIMULATION RESULTS FOR VALIDATION
6.1. Comparison of CVN Test with Simulation Results

Figure 15. Comparison of FE simulation result with CVN experimental data at -30 °C: (a) load-displacement curve, and (b) deformation and fracture surface.

Figure 16. Comparison of (a)-(c) FE simulation result (load-displacement curve at -60, -90, and -120 °C) with CVN experimental data, and of (d) deformation and fracture surface at -90 °C.
6.2. Comparison of DWTT with Simulation Results

Figure 17. FE mesh for simulating DWTT.

Figure 18. Comparison of FE simulation results with DWTT experimental data: (a) load-displacement curve at 0 and -40 °C, and (b) deformation and fracture surface at -40 °C.
7. DISCUSSION: EFFECT OF ADIABATIC HEATING AND STRAIN RATE ON COMBINED DUCTILE-BRITTLE FRACTURE SIMULATION FOR IMPACT TESTS

Figure 19. Simulation results with or without considering the strain rate and adiabatic heating effects: (a) CVN simulation at -90 °C and (b) DWTT simulation at -40 °C.

Figure 20. Comparison of temperature increase due to adiabatic heating effect in DWTT simulation versus CVN simulation at (a) maximum load and (b) twice the displacement of maximum load.
8. CONCLUSION
- (1)The temperature-dependent parameters in the J-C models are determined using smooth round bar (SRB) tests conducted at various temperatures under quasi-static conditions.
- (2)The strain rate-dependent parameters in the J-C models were obtained through a CVN test performed at room temperature (RT).
- (3)The critical stress fracture model was calibrated from CVN simulations using the determined J-C models.
CRediT authorship contribution statement
Declaration of competing interest
References
- Kristoffersen et al., 2013Impact against X65 steel pipes – An experimental investigationInt J Solids Struct, 50 (2013), pp. 3430-3445, 10.1016/J.IJSOLSTR.2013.06.013
- Eiber, 1965Correlation of full-scale tests with laboratory testsProc. AGA Symposium on line-pipe research, American Gas Association, Dallas (1965), pp. 83-118pp
- Wang and Ru, 2016Determination of two key parameters of a cohesive zone model for pipeline steels based on uniaxial stress-strain curveEng Fract Mech, 163 (2016), pp. 55-65, 10.1016/j.engfracmech.2016.06.017
- Yu and Ru, 2015Strain rate effects on dynamic fracture of pipeline steels: finite element simulationInt J Press Vessels Pip, 126–127 (2015), pp. 1-7
- Gu and Wang, 2022A strain rate-dependent cohesive zone model for shear failure of hat-shaped specimens under impactEng. Fract. Mech., 259 (2022), Article 108145, 10.1016/J.ENGFRACMECH.2021.108145
- May et al., 2015Rate dependent behavior of crash-optimized adhesives–experimental characterization, model development, and simulationEng. Fract. Mech., 133 (2015), pp. 112-137, 10.1016/J.ENGFRACMECH.2014.11.006
- Chandran et al., 2022Strain rate dependent plasticity and fracture of DP1000 steel under proportional and non-proportional loadingEur J Mech - A/solids, 92 (2022), Article 104446, 10.1016/J.EUROMECHSOL.2021.104446
- Rousselier, 1987Ductile fracture models and their potential in local approach of fractureNucl Eng Des, 105 (1987), pp. 97-111, 10.1016/0029-5493(87)90234-2
- Tanguy and Besson, 2002An extension of the Rousselier model to viscoplastic temperature dependent materialsInt J of Fract, 116 (2002), pp. 81-101, 10.1023/A:1020192527733
- Tanguy et al., 2005Ductile to brittle transition of an A508 steel characterized by Charpy impact test: Part I: experimental resultsEng Fract Mech, 72 (2005), pp. 49-72, 10.1016/j.engfracmech.2004.03.010
- Tanguy et al., 2005Ductile to brittle transition of an A508 steel characterized by Charpy impact test: Part II: modeling of the Charpy transition curveEng Fract Mech, 72 (2005), pp. 413-434, 10.1016/j.engfracmech.2004.03.011
- Dey et al., 2004The effect of target strength on the perforation of steel plates using three different projectile nose shapesInt. J. Impact Eng, 30 (2004), pp. 1005-1038, 10.1016/J.IJIMPENG.2004.06.004
- Dey et al., 2006On the influence of fracture criterion in projectile impact of steel platesComput. Mater. Sci, 38 (2006), pp. 176-191, 10.1016/J.COMMATSCI.2006.02.003
- Dey et al., 2007On the influence of constitutive relation in projectile impact of steel platesInt. J. Impact Eng, 34 (2007), pp. 464-486, 10.1016/J.IJIMPENG.2005.10.003
- Banerjee et al., 2015Determination of Johnson cook material and failure model constants and numerical modelling of Charpy impact test of armour steelMater. Sci. Eng. A, 640 (2015), pp. 200-209, 10.1016/J.MSEA.2015.05.073
- Mirone et al., 2024Combined rate-temperature effects in postnecking plasticity of A2-70 stainless steelInt J Mech Sci, 262 (2024), Article 108754, 10.1016/j.ijmecsci.2023.108754
- Seo et al., 2024Finite Element Ductile Fracture Simulation of Charpy and Drop Weight Tear Tests for API X52Theor Appl Fract Mech, 133 (2024), Article 104629, 10.1016/j.tafmec.2024.104629
- Chu et al., 2019A unified phase field damage model for modeling the brittle-ductile dynamic failure mode transition in metalsEng Fract Mech, 212 (2019), pp. 197-209, 10.1016/j.engfracmech.2019.03.031
- Samaniego et al., 2021A phase-field model for ductile fracture with shear bands: A parallel implementationInt J Mech Sci, 200 (2021), Article 106424, 10.1016/j.ijmecsci.2021.106424
- Zhang et al., 2024A three-dimensional coupled thermo-elastic-plastic phase field model for the brittle-ductile failure mode transition of metalsInt J Impact Eng, 193 (2024), Article 105062, 10.1016/j.ijimpeng.2024.105062
- Hojo et al., 2016Application of Coupled Damage and Beremin Model to Ductile-Brittle Transition Temperature Region Considering Constraint EffectProcedia Struct Integr, 2 (2016), pp. 1643-1651, 10.1016/j.prostr.2016.06.208
- Beremin et al., 1983A local criterion for cleavage fracture of a nuclear pressure vessel steelMetall Trans A, 14 (1983), pp. 2277-2287, 10.1007/BF02663302
- Gurson, 1977Continuum theory of ductile rupture by void nucleation and growth: Part 1 - yield criteria and flow rules for porous ductile mediaJ. Eng. Mater. Technol. Trans. ASME., 99 (10) (1977), pp. 2-15, 10.1115/1.3443401
- Tvergaard and Needleman, 1984Analysis of the cup-cone fracture in a round tensile barActa Metall, 32 (1) (1984), pp. 157-169, 10.1016/0001-6160(84)90213-X
- Koplik and Needleman, 1988Void growth and coalescence in porous plastic solidsInt. J. Solids Struct., 24 (8) (1988), pp. 835-853, 10.1016/0020-7683(88)90051-0
- Batra and Lear, 2004Simulation of brittle and ductile fracture in an impact loaded prenotched plateInt. J. Fract., 126 (2004), pp. 179-203, 10.1023/B:FRAC.0000026364.13365.71
- Lin et al., 2022Simulation of ductile-to-brittle transition combining complete Gurson model and CZM with application to hydrogen embrittlementEng Fract Mech, 268 (2022), Article 108511, 10.1016/j.engfracmech.2022.108511
- Chakraborty and Biner, 2014A unified cohesive zone approach to model the ductile to brittle transition of fracture toughness in reactor pressure vessel steelsEng Fract Mech, 131 (2014), pp. 194-209, 10.1016/j.engfracmech.2014.07.029
- Kim et al., 2022Quantification of notch type and specimen thickness effects on ductile and brittle fracture behaviour of drop weight tear testEur J Mech A Solids, 92 (2022), Article 104466, 10.1016/j.euromechsol.2021.104466
- Seo et al., 2023Finite element simulation method for combined Ductile-Brittle fracture of small punch test in hydrogenEng Fract Mech, 289 (2023), Article 109489, 10.1016/j.engfracmech.2023.109489
- Hwang et al., 2024Fracture-toughness estimation from small-punch test in hydrogen exhibiting ductile and ductile–brittle fracture modesEur J Mech A Solids, 103 (2024), Article 105193, 10.1016/j.euromechsol.2023.105193
- Camacho and Ortiz, 1997Adaptive Lagrangian modelling of ballistic penetration of metallic targetsComput Methods Appl Mech Eng, 142 (1997), pp. 269-301, 10.1016/S0045-7825(96)01134-6
- Gerstgrasser et al., 2021Analysis of two parameter identification methods for original and modified Johnson-Cook fracture strains, including numerical comparison and validation of a new blue-brittle dependent fracture model for free-cutting steel 50SiB8Theor Appl Fract Mech, 112 (2021), Article 102905, 10.1016/J.TAFMEC.2021.102905
- Borvik et al., 2001A computational model of viscoplasticity and ductile damage for impact and penetrationEur J Mech - A/Solids, 20 (2001), pp. 685-712, 10.1016/S0997-7538(01)01157-3
- Chanda, 2015Chanda, Sourayon. Temperature effects on dynamic fracture of pipeline steel. 2015. https://doi-org.ezproxy.lib.kyushu-u.ac.jp/10.7939/R3695Q
- Gambirasio and Rizzi, 2016An enhanced Johnson–Cook strength model for splitting strain rate and temperature effects on lower yield stress and plastic flowComput Mater Sci, 113 (2016), pp. 231-265, 10.1016/J.COMMATSCI.2015.11.034
- Seo et al., 2022Fracture toughness prediction of hydrogen-embrittled materials using small punch test data in HydrogenInt J Mech Sci, 225 (2022), Article 107371, 10.1016/j.ijmecsci.2022.107371
- Seo et al., 2024Quantification of pre-strain effect on ductile fracture and application to irradiation embrittlement problemsEng Fract Mech, 300 (2024), Article 109986, 10.1016/j.engfracmech.2024.109986
- Kim et al., 2011Comparison of fracture strain based ductile failure simulation with experimental resultsInt J Press Vessels Pip, 88 (2011), pp. 434-447, 10.1016/j.ijpvp.2011.07.006
- Oh et al., 2011A finite element ductile failure simulation method using stress-modified fracture strain modelEng Fract Mech, 78 (2011), pp. 124-137, 10.1016/j.engfracmech.2010.10.004
- Jeon et al., 2016Extracting ductile fracture toughness from small punch test data using numerical modelingInt J Press Vessels Pip, 139–140 (2016), pp. 204-219, 10.1016/j.ijpvp.2016.02.011
- Kim et al., 2020Fracture simulation model for API X80 Charpy test in Ductile-Brittle transition temperaturesInt J Mech Sci, 182 (2020), Article 105771, 10.1016/j.ijmecsci.2020.105771
- Jung et al., 2014S–N Fatigue and Fatigue Crack Propagation Behaviors of X80 Steel at Room and Low TemperaturesMetall Mater Trans A, 45 (2014), pp. 654-662, 10.1007/s11661-013-2012-4
- Heier et al., June 2013Reeling Installation of Rigid Steel Pipelines at Low TemperaturePaper presented at the The Twenty-third International Offshore and Polar Engineering Conference, Anchorage, Alaska (June 2013)
- Akselsen et al., June 2012Low Temperature Fracture Toughness of X80 Girth WeldsPaper presented at the The Twenty-second International Offshore and Polar Engineering Conference, Rhodes, Greece (June 2012)
- Kim et al., 2024Fracture analysis of hydrogen-embrittled API X52 pipes at low temperatureInt J Mech Sci, 276 (2024), Article 109374, 10.1016/j.ijmecsci.2024.109374
- BSI 2014BS 8571 2014 - Method of test for determination of fracture toughness in metallic materials using single edge notched tension (SENT) specimensBSI; (2014)
- Institute, 2007API 5L Specification for line pipeApi Spec, 5L (2007)
- Tu et al., 2022Hybrid experimental-numerical strategy for efficiently and accurately identifying post-necking hardening and ductility diagram parametersInt J Mech Sci, 219 (2022), Article 107074, 10.1016/J.IJMECSCI.2022.107074
- ABAQUS Version 2018User's manual. Dassault SystemsInc (2018), p. 2018
- Origin(Pro), Version 2020Origin(Pro), Version 2020. OriginLab Corporation, Northampton, MA, USA.
- Talemi et al., 2019A fully coupled fluid-structure interaction simulation of three-dimensional dynamic ductile fracture in a steel pipelineTheor. Appl. Fract. Mech., 101 (2019), pp. 224-235, 10.1016/J.TAFMEC.2019.02.005
- Yan et al., 20143D modeling of the hydrogen distribution in X80 pipeline steel welded jointsComput Mater Sci, 83 (2014), pp. 158-163, 10.1016/J.COMMATSCI.2013.11.007
- Tronskar et al., 2002Measurement of fracture initiation toughness and crack resistance in instrumented Charpy impact testingEng Fract Mech, 69 (2002), pp. 321-338, 10.1016/S0013-7944(01)00077-7
- Kobayashi, 1984Analysis of impact properties of A533 steel for nuclear reactor pressure vessel by instrumented Charpy testEng Fract Mech, 19 (1984), pp. 49-65, 10.1016/0013-7944(84)90068-7
- Oulad Brahim et al., 2022Prediction of the peak load and crack initiation energy of dynamic brittle fracture in X70 steel pipes using an improved artificial neural network and extended Finite Element MethodTheor Appl Fract Mech, 122 (2022), Article 103627, 10.1016/J.TAFMEC.2022.103627
- Seo et al., 2022Fracture toughness prediction of hydrogen-embrittled materials using small punch test data in HydrogenInt J Mech Sci, 225 (2022), Article 107371, 10.1016/j.ijmecsci.2022.107371
- Seo et al., 2024Quantification of pre-strain effect on ductile fracture and application to irradiation embrittlement problemsEng Fract Mech, 300 (2024), Article 109986, 10.1016/j.engfracmech.2024.109986
- Kim et al., 2011Comparison of fracture strain based ductile failure simulation with experimental resultsInt J Press Vessels Pip, 88 (2011), pp. 434-447, 10.1016/j.ijpvp.2011.07.006
- ASTM Standard E436-03 2021Standard Test Method for Drop-Weight Tear Tests of Ferritic Steels(2021)
- Kim et al., 2021Finite element simulation of drop-weight tear test of API X80 at ductile-brittle transition temperaturesInt J Mech Sci, 191 (2021), Article 106103, 10.1016/j.ijmecsci.2020.106103
- Kim et al., 2022Numerical method to characterize probabilistic energy distribution of drop weight tear test at Ductile-Brittle transition temperaturesEng Fract Mech, 269 (2022), Article 108540, 10.1016/j.engfracmech.2022.108540
- Petti and Dodds, 2005Calibration of the Weibull stress scale parameter, σu, using the Master CurveEng Fract Mech, 72 (2005), pp. 91-120, 10.1016/j.engfracmech.2004.03.009
- Gao et al., 2006A probabilistic model for prediction of cleavage fracture in the ductile-to-brittle transition region and the effect of temperature on model parametersMater Sci Eng, 415 (2006), pp. 264-272, 10.1016/j.msea.2005.09.098
- Wasiluk et al., 2006Temperature dependence of Weibull stress parameters: Studies using the Euro-materialEng Fract Mech, 73 (2006), pp. 1046-1069, 10.1016/j.engfracmech.2005.11.006
- Uenishi et al., 2011High Strain Rate Properties of High Strength Steel SheetsInt J Automot Eng, 2 (2011), pp. 109-113, 10.20485/jsaeijae.2.4_109
- Vaynman et al., 2006Effect of strain rate and temperature on mechanical properties and fracture mode of high strength precipitation hardened ferritic steelsScr Mater, 55 (2006), pp. 351-354, 10.1016/J.SCRIPTAMAT.2006.04.029
- Soares and Hokka, 2021The Taylor–Quinney coefficients and strain hardening of commercially pure titanium, iron, copper, and tin in high rate compressionInt J Impact Eng, 156 (2021), Article 103940, 10.1016/J.IJIMPENG.2021.103940
- Rittel et al., 2017The dependence of the Taylor–Quinney coefficient on the dynamic loading modeJ Mech Phys Solids, 107 (2017), pp. 96-114, 10.1016/J.JMPS.2017.06.016


